# A common approach to Brocard's problem, the problem of the infinitude of primes of the form $n^{2}+1$, and the twin prime problem 

## Apoloniusz Tyszka


#### Abstract

Let $f(3)=4$, and let $f(n+1)=f(n)$ ! for every integer $n \geqslant 3$. For an integer $n \geqslant 3$, let $\Phi_{n}$ denote the following statement: if a system $\mathcal{S} \subseteq\left\{x_{i}!=x_{i+1}: 1 \leqslant i \leqslant n-1\right\} \cup$ $\left\{x_{i} \cdot x_{j}=x_{j+1}: 1 \leqslant i \leqslant j \leqslant n-1\right\}$ has at most finitely many solutions in integers $x_{1}, \ldots, x_{n}$ greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. We conjecture that the statements $\Phi_{3}, \ldots, \Phi_{16}$ are true. We prove: (1) if the equation $x!+1=y^{2}$ has only finitely many solutions in positive integers, then the statement $\Phi_{6}$ implies that each such solution $(x, y)$ belongs to the set $\{(4,5),(5,11),(7,71)\}$; (2) the statement $\Phi_{9}$ proves the implication: if there exists an integer $x$ such that $x^{2}+1$ is prime and $x^{2}+1>f(7)$, then there are infinitely many primes of the form $n^{2}+1$; (3) the statement $\Phi_{16}$ proves the implication: if there exists a twin prime greater than $f(14)$, then there are infinitely many twin primes.


Key words and phrases: Brocard's problem, Brocard-Ramanujan Diophantine equation, prime numbers of the form $n^{2}+1$, single query to the halting oracle, twin prime conjecture.

2010 Mathematics Subject Classification: 11A41, 11D85.

## 1 Introduction and basic lemmas

In this article, we propose a conjecture which provides a common approach to Brocard's problem, the problem of the infinitude of primes of the form $n^{2}+1$, and the twin prime problem. Let $f(3)=4$, and let $f(n+1)=f(n)$ ! for every integer $n \geqslant 3$. For an integer $n \geqslant 3$, let $\mathcal{U}_{n}$ denote the following system of equations:

$$
\left\{\begin{aligned}
\forall i \in\{1, \ldots, n-1\} \backslash\{2\} x_{i}! & =x_{i+1} \\
x_{1} \cdot x_{2} & =x_{3} \\
x_{2} \cdot x_{2} & =x_{3}
\end{aligned}\right.
$$

The diagram in Figure 1 illustrates the construction of the system $\mathcal{U}_{n}$.


Fig. 1 Construction of the system $\mathcal{U}_{n}$

Lemma 1. For every integer $n \geqslant 3$, the system $\mathcal{U}_{n}$ has exactly one solution in integers greater than 1, namely $(2,2, f(3), \ldots, f(n))$.

Let

$$
B_{n}=\left\{x_{i}!=x_{i+1}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{x_{i} \cdot x_{j}=x_{j+1}: 1 \leqslant i \leqslant j \leqslant n-1\right\}
$$

For an integer $n \geqslant 3$, let $\Phi_{n}$ denote the following statement: if a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in integers $x_{1}, \ldots, x_{n}$ greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. We conjecture that the statements $\Phi_{3}, \ldots, \Phi_{16}$ are true. For every integer $n \geqslant 3$, the system $B_{n}$ has a finite number of subsystems. Therefore, every statement $\Phi_{n}$ is true with an integer bound that depends on $n$.
Lemma 2. For every statement $\Phi_{n}$, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 1 because $\mathcal{U}_{n} \subseteq B_{n}$.
Lemma 3. For every integers $x$ and $y$ greater than $1, x!\cdot y=y!$ if and only if $x+1=y$.
Lemma 4. If $x \geqslant 4$, then $\frac{(x-1)!+1}{x}>1$.
Lemma 5. (Wilson's theorem, [2] p. 89]) For every integer $x \geqslant 2, x$ is prime if and only if $x$ divides $(x-1)!+1$.

## 2 Brocard's problem

Let $\mathcal{A}$ denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system $\mathcal{A}$.


Fig. 2 Construction of the system $\mathcal{A}$
Lemma 6. For every integers $x_{1}$ and $x_{4}$ greater than 1 , the system $\mathcal{A}$ is solvable in integers $x_{2}, x_{3}, x_{5}, x_{6}$ greater than 1 if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

Proof. It follows from Lemma 3
It is conjectured that $x!+1$ is a perfect square only for $x \in\{4,5,7\}$, see [5] p. 297]. A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x!+1=y^{2}$, see [4].

Theorem 1. If the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then the statement $\Phi_{6}$ implies that each such solution $\left(x_{1}, x_{4}\right)$ belongs to the set $\{(4,5),(5,11),(7,71)\}$.

Proof. Assume that the antecedent holds. Assume that positive integers $x_{1}$ and $x_{4}$ satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma6, the system $\mathcal{A}$ is solvable in integers $x_{2}, x_{3}, x_{5}, x_{6}$ greater than 1 . Since $\mathcal{A} \subseteq B_{6}$, the statement $\Phi_{6}$ implies that $x_{6}=\left(x_{1}!+1\right)!\leqslant f(6)=f(5)!$ Hence, $x_{1}!+1 \leqslant f(5)=f(4)$ ! Consequently, $x_{1}<f(4)=24$. If $x_{1} \in\{2, \ldots, 23\}$, then $x_{1}!+1$ is a perfect square only for $x_{1} \in\{4,5,7\}$.

## 3 Are there infinitely many prime numbers of the form $n^{2}+1$ ?

Let $\mathcal{B}$ denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system $\mathcal{B}$.


Fig. 3 Construction of the system $\mathcal{B}$
Lemma 7. For every integer $x_{1} \geqslant 2$, the system $\mathcal{B}$ is solvable in integers $x_{2}, \ldots, x_{9}$ greater than 1 if and only if $x_{1}^{2}+1$ is prime. In this case, the integers $x_{2}, \ldots, x_{9}$ are uniquely determined by the
following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemmas 3 and 4 , for every integer $x_{1} \geqslant 2$, the system $\mathcal{B}$ is solvable in integers $x_{2}, \ldots, x_{9}$ greater than 1 if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 7 follows from Lemma 5 ,

Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [3, pp. 37-38].

Theorem 2. The statement $\Phi_{9}$ proves the implication: if there exists an integer $x_{1}$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then there are infinitely many primes of the form $n^{2}+1$.

Proof. Assume that the antecedent holds. By Lemma7, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system $\mathcal{B}$. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

Since $\mathcal{B} \subseteq B_{9}$, the statement $\Phi_{9}$ and the inequality $x_{9}>f(9)$ imply that the system $\mathcal{B}$ has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 7 , there are infinitely many primes of the form $n^{2}+1$.

Corollary 1. Assuming the statement $\Phi_{9}$, a single query to the halting oracle decides Landau's problem.

## 4 The twin prime conjecture

Let $C$ denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{4}! & =x_{5} \\
x_{6}! & =x_{7} \\
x_{7}! & =x_{8} \\
x_{9}! & =x_{10} \\
x_{12}! & =x_{13} \\
x_{15}! & =x_{16} \\
x_{2} \cdot x_{4} & =x_{5} \\
x_{5} \cdot x_{6} & =x_{7} \\
x_{7} \cdot x_{9} & =x_{10} \\
x_{4} \cdot x_{11} & =x_{12} \\
x_{3} \cdot x_{12} & =x_{13} \\
x_{9} \cdot x_{14} & =x_{15} \\
x_{8} \cdot x_{15} & =x_{16}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 4 explain the construction of the system $\mathcal{C}$.


Fig. 4 Construction of the system $C$
Lemma 8. If $x_{4}=2$, then the system $C$ has no solutions in integers $x_{1}, \ldots, x_{16}$ greater than 1 .
Proof. The equality $x_{2} \cdot x_{4}=x_{5}=x_{4}$ ! and the equality $x_{4}=2$ imply that $x_{2}=1$.
Lemma 9. If $x_{4}=3$, then the system $C$ has no solutions in integers $x_{1}, \ldots, x_{16}$ greater than 1 .
Proof. The equality $x_{4} \cdot x_{11}=x_{12}=\left(x_{4}-1\right)!+1$ and the equality $x_{4}=3$ imply that $x_{11}=1$.
Lemma 10. For every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system $C$ is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if $x_{4}$ and $x_{9}$ are prime and $x_{4}+2=x_{9}$. In this case, the integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{1} & =x_{4}-1 \\
x_{2} & =\left(x_{4}-1\right)! \\
x_{3} & =\left(\left(x_{4}-1\right)!\right)! \\
x_{5} & =x_{4}! \\
x_{6} & =x_{9}-1 \\
x_{7} & =\left(x_{9}-1\right)! \\
x_{8} & =\left(\left(x_{9}-1\right)!\right)! \\
x_{10} & =x_{9}! \\
x_{11} & =\frac{\left(x_{4}-1\right)!+1}{x_{4}} \\
x_{12} & =\left(x_{4}-1\right)!+1 \\
x_{13} & =\left(\left(x_{4}-1\right)!+1\right)! \\
x_{14} & =\frac{\left(x_{9}-1\right)!+1}{x_{9}} \\
x_{15} & =\left(x_{9}-1\right)!+1 \\
x_{16} & =\left(\left(x_{9}-1\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemmas 3 and 4, for every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system $C$ is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if

$$
\left(x_{4}+2=x_{9}\right) \wedge\left(x_{4} \mid\left(x_{4}-1\right)!+1\right) \wedge\left(x_{9} \mid\left(x_{9}-1\right)!+1\right)
$$

Hence, the claim of Lemma 10 follows from Lemma 5 .
A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [3, p.39].

Theorem 3. The statement $\Phi_{16}$ proves the implication: if there exists a twin prime greater than $f(14)$, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers $x_{4}$ and $x_{9}$ such that $x_{9}=x_{4}+2>f(14)$. Hence, $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 10, there exists a unique tuple $\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right) \in(\mathbb{N} \backslash\{0,1\})^{14}$ such that the tuple $\left(x_{1}, \ldots, x_{16}\right)$ solves the system $C$. Since $x_{9}>f(14)$, we obtain that $x_{9}-1 \geqslant f(14)$. Therefore, $\left(x_{9}-1\right)!\geqslant f(14)!=f(15)$. Hence, $\left(x_{9}-1\right)!+1>f(15)$. Consequently,

$$
x_{16}=\left(\left(x_{9}-1\right)!+1\right)!>f(15)!=f(16)
$$

Since $C \subseteq B_{16}$, the statement $\Phi_{16}$ and the inequality $x_{16}>f(16)$ imply that the system $C$ has infinitely many solutions in integers $x_{1}, \ldots, x_{16}$ greater than 1 . According to Lemmas $8-10$, there are infinitely many twin primes.

Corollary 2. Assuming the statement $\Phi_{16}$, a single query to the halting oracle decides the twin prime problem.

Corollary 2 conditionally solves the problem in [1].

## References

[1] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, http://mathoverflow.net/questions/71050.
[2] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[3] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[4] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. $2,104$.
[5] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

