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Denote by {•} the fractional part. We establish several new metrical results on the distribution properties of the sequence ({x n }) n≥1 . Many of them are presented in a more general framework, in which the sequence of functions (x → x n ) n≥1 is replaced by a sequence (fn) n≥1 , under some growth and regularity conditions on the functions fn.

Introduction

Let {•} denote the fractional part and • the distance to the nearest integer. For a given real number x > 1, only few results are known on the distribution of the sequence ({x n }) n≥1 . For example, we still do not know whether 0 is a limit point of ({e n }) n≥1 , nor of ({( 32 ) n }) n≥1 ; see [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF] for a survey of related results.

However, several metric statements have been established. The first one was obtained in 1935 by Koksma [START_REF] Koksma | Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins[END_REF], who proved that for almost every x > 1 the sequence ({x n }) n≥1 is uniformly distributed on the unit interval [0, 1]. Here and below, almost every always refers to the Lebesgue measure. In 1967, Mahler and Szekeres [START_REF] Mahler | On the approximation of real numbers by roots of integers[END_REF] studied the quantity P (x) := lim inf x n 1/n (x > 1).

They proved that if P (x) = 0 then x is transcendental, and P (x) = 1 for almost all x > 1. The function x → P (x) was subsequently studied in 2008 by Bugeaud and Dubickas [START_REF] Bugeaud | On a problem of Mahler and Szekeres on approximation by roots of integers[END_REF]. Among other results, it was shown in [START_REF] Bugeaud | On a problem of Mahler and Szekeres on approximation by roots of integers[END_REF] that, for all v > u > 1 and b > 1, we have dim H {x ∈ (u, v) : P (x) ≤ 1/b} = log v log (bv) ,

where dim H denotes the Hausdorff dimension. In a different direction, Pollington [START_REF] Pollington | The Hausdorff dimension of certain sets related to sequences which are not dense mod 1[END_REF] showed in 1980 that there are many real numbers x > 1 such that ({x n }) n≥1 is very far from being well distributed, namely he established that, for any ε > 0, we have dim H x > 1 : {x n } < ε for all n = 1. This result has been subsequently extended by Bugeaud and Moshchevitin [START_REF] Bugeaud | On fractional parts of powers of real numbers close to 1[END_REF] and, independently, by Kahane [START_REF] Kahane | Sur la répartition des puissances modulo 1[END_REF], who proved that for any ε > 0, for any sequence of real numbers (y n ) n≥1 , we have dim H x > 1 : x n -y n < ε for all n = 1.

In the present paper, we further investigate, from a metric point of view, the Diophantine approximation properties of the sequence ({x n }) n≥1 , where x > 1, and extend several known results to more general families of sequences ({f n (x)}) n≥1 , under some conditions on the sequence of functions (f n ) n≥1 .

As a consequence of our main theorem, we obtain an inhomogeneous version of the result of Bugeaud and Dubickas [START_REF] Bugeaud | On a problem of Mahler and Szekeres on approximation by roots of integers[END_REF] mentioned above.

Theorem 1. Let b > 1 be a real number and y = (y n ) n≥1 an arbitrary sequence of real numbers in [0, [START_REF] Baker | On the distribution of powers of real numbers modulo 1[END_REF]. Set E(b, y) := {x > 1 : x n -y n < b -n for infinitely many n}.

For every v > 1, we have

lim ε→0 dim H ([v -ε, v + ε] ∩ E(b, y)) = log v log(bv)
.

In the homogeneous case (that is, the case where y n = 0 for n ≥ 1), Theorem 1 was proved in [START_REF] Bugeaud | On a problem of Mahler and Szekeres on approximation by roots of integers[END_REF] by using a classical result of Koksma [START_REF] Koksma | Sur la théorie métrique des approximations diophantiques[END_REF] and the mass transference principle developed by Beresnevich and Velani [START_REF] Beresnevich | A Mass Transference Principle and the Duffin-Schaeffer conjecture for Hausdorff measures[END_REF]. The method of [START_REF] Bugeaud | On a problem of Mahler and Szekeres on approximation by roots of integers[END_REF] still works when y is a constant sequence, but one then needs to apply the inhomogeneous version of Koksma's theorem in [START_REF] Koksma | Sur la théorie métrique des approximations diophantiques[END_REF].

Here, for an arbitrary sequence (y n ) n≥1 , we use a direct construction.

Letting v tend to infinity in Theorem 1, we obtain the following immediate corollary.

Corollary 2. For an arbitrary sequence y of real numbers in [0, 1] and any real number b > 1, the set E(b, y) has full Hausdorff dimension.

Theorem 1 gives, for every v > 1, the value of the localized Hausdorff dimension of E(b, y) at the point v. We stress that, in the present context, the localized Hausdorff dimension varies with v, while this is not at all the case for many classical results, including the Jarník-Besicovitch Theorem and its extensions. Taking this point of view allows us also to place Theorem 1 in a more general context, where the family of functions x → x n is replaced by an arbitrary family of functions f n satisfying some regularity and growth conditions.

We consider a family of strictly positive increasing

C 1 functions f = (f n ) n≥1 defined on an open interval I ⊂ R and such that f n (x), f n (x) > 1 for all x ∈ I. For τ > 1, define E(f, y, τ ) := {x ∈ I : f n (x) -y n < f n (x) -τ for infinitely many n}. For v ∈ I, put u(v) := lim sup n→∞ log f n (v) log f n (v) , (v) := lim inf n→∞ log f n (v) log f n (v) .
We will assume the regularity condition

(1.1) lim r→0 lim sup n→∞ sup |x-y|<r log f n (x) log f n (y) = 1,
which guarantees the continuity of the functions u and .

For non-linear functions f n , i.e., when f n is not of the form f n (x) = a n • x + b n , we also need the following condition:

(1.2) M := sup n≥1 log f n+1 (v) log f n (v) < ∞ for all v ∈ I.
Theorem 1 is a particular case of the following general statement.

Theorem 3. Consider a family of strictly positive increasing

C 1 functions f = (f n ) n≥1 defined on an open interval I ⊂ R and such that f n (x), f n (x) > 1 for all x ∈ I. Assume (1.1) and (1.2). If for all x ∈ I, ∀ε > 0, ∞ n=1 f n (x) -ε < ∞, (1.3)
then, for any v ∈ I and any τ > 1, we have

1 1 + τ u(v) ≤ lim ε→0 dim H ([v -ε, v + ε] ∩ E(f, y, τ )) ≤ 1 1 + τ (v)
.

If the functions f n are linear then we do not need to assume (1.2), and the assertion gets strengthened to

lim ε→0 dim H ([v -ε, v + ε] ∩ E(f, y, τ )) = 1 1 + τ (v)
.

We remark that the condition (1.3) is satisfied if

∀x ∈ I, lim n→∞ log f n (x) log n = ∞. (1.4)
We also observe that the condition (1.1) implies that (v) ≥ 1 for v in I. In many cases (in particular, for f n (x) = x n ), we have u(v) = (v) = 1 for v in I.

It follows from the formulation of Theorem 3 that the real number τ can be replaced by a continuous function τ : I → (0, ∞), in which case the set E(f, y, τ ) is defined by E(f, y, τ ) := {x ∈ I : f n (x) -y n < f n (x) -τ (x) for infinitely many n}.

We get at once the following localized version of Theorem 3. For the classical Jarník-Besicovitch Theorem, such a localized theorem was obtained by Barral and Seuret [START_REF] Barral | A localized Jarnik-Besicovich theorem[END_REF], who were the first to consider localized Diophantine approximation.

Corollary 4. With the above notation and under the hypotheses of Theorem 3, we have

1 1 + τ (v)u(v) ≤ lim ε→0 dim H ([v -ε, v + ε] ∩ E(f, y, τ )) ≤ 1 1 + τ (v) (v)
.

We illustrate Theorem 3 and Corollary 4 by some examples. If the family of functions f = (f n ) n≥1 in Theorem 3 is such that, for every x in I, the sequence (f n (x)) n≥1 increases sufficiently rapidly, then

lim ε→0 dim H ([v -ε, v + ε] ∩ E(f, y, τ )) = 1 1 + τ ,
independently of the family f . This applies, for example, to the families of functions x n 2 , x n , 2 n x and x √ n . The case f n (x) = a n x, where (a n ) n≥1 is an increasing sequence of positive integers, has been studied by Borosh and Fraenkel [START_REF] Borosh | A generalization of Jarník's theorem on Diophantine approximations[END_REF] (but only in the special case of a constant sequence y equal to 0). Let I be an open, non-empty, real interval. They proved that dim H {x ∈ I :

a n x < a -τ n } = 1 + s 1 + τ ,
where s (usually called the convergence exponent of the sequence (a n ) n≥1 ) is the largest real number in [0, 1] such that n≥1 a -s-ε n converges for any ε > 0.

The case s = 0 of their result, which corresponds to rapidly growing sequences (a n ) n≥1 , follows from Theorem 3. The case a n = n for n ≥ 1 corresponds to the Jarník-Besicovitch Theorem. We stress that the assumption (1.3) is satisfied only if (a n ) n≥1 increases sufficiently rapidly.

Questions of uniform Diophantine approximation were recently studied by Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] for the b-ary and β-expansions and by Kim and Liao [START_REF] Kim | Dirichlet uniformly well-approximated numbers[END_REF] for the irrational rotations. In this paper, we consider the uniform Diophantine approximation of the sequence ({x n }) n≥1 with x > 1.

For a real number B > 1 and a sequence of real numbers y = (y n ) n≥1 in [0, 1], set

F (B, y) := {x > 1 : for all large integer N, x n -y n < B -N has a solution 1 ≤ n ≤ N }.
Our next theorem gives a lower bound for the Hausdorff dimension of F (B, y) intersected with a small interval.

Theorem 5. Let B > 1 be a real number and y an arbitrary sequence of real numbers in [0, 1]. For any v > 1, we have

lim ε→0 dim H ([v -ε, v + ε] ∩ F (B, y)) ≥ log v -log B log v + log B 2 .
Unfortunately, we are unable to decide whether the inequality in Theorem 5 is an equality. Observe that the lower bound we obtain is the same as the one established in [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] for a question of uniform Diophantine approximation related to b-ary and β-expansions.

Letting v tend to infinity, we have the following corollary.

Corollary 6. For an arbitrary sequence y of real numbers in [0, 1] and any real number B > 1, the set F (B, y) has full Hausdorff dimension.

We end this paper with results on sequences ({x n }) n≥1 , with x > 1, which are badly distributed, in the sense that all of their points lie in a small interval. As above, we take a more general point of view. Consider a family of C 1 strictly positive increasing functions f = (f n ) n≥1 defined on an open interval I ⊂ R and such that f n (x), f n (x) > 1 for all x ∈ I and for all n ≥ 1. Let δ = (δ n ) n≥1 be a sequence of positive real numbers such that

δ n < 1/4 for n ≥ 1. Set G(f, y, δ) := {x ∈ I : f n (x) -y n ≤ δ n , ∀n ≥ 1}.
We need the following hypotheses:

∀ε > 0, ∀n ≥ 1, inf x∈(v-ε,v+ε) f n+1 (x) sup x∈(v-ε,v+ε) f n (x) • δ n ≥ 2, (1.5) ∀x ∈ I, lim n→∞ log f n+1 (x) log f n (x) = ∞. (1.6)
Our last main theorem is as follows.

Theorem 7. Keep the above notation. Under the hypotheses (1.1), (1.5), and (1.6), for all v ∈ I, we have

(1.7) lim ε→0 dim H ([v -ε, v + ε] ∩ G(f, y, δ)) = lim inf n→∞ log f n (v) + n-1 j=1 log δ j log f n (v) -log δ n .
We remark that our result extends a recent result of Baker [START_REF] Baker | On the distribution of powers of real numbers modulo 1[END_REF]. In fact, in [START_REF] Baker | On the distribution of powers of real numbers modulo 1[END_REF], the author studied the special case f n (x) = x qn with (q n ) n≥1 being a strictly increasing sequence of real numbers such that lim n→∞ (q n+1 -q n ) = +∞.

Our result also gives the following corollary. Then, for any sequence (y n ) n≥1 of real numbers, we have

dim H {x ∈ R : lim n→+∞ a n x -y n = 0} = 1.

Basic tools

We present two lemmas which serve as important tools for estimating the Hausdorff dimension of the sets studied in this paper.

Let [0, 1] = E 0 ⊃ E 1 ⊃ E 2 ⊃ • • • be a decreasing sequence of sets, with each E k a finite union of disjoint closed intervals. The components of E k are called k-th level basic intervals. Set F = ∩ ∞ k=0 E k .
We do not assume that each basic interval in E k-1 contains the same number of next level basic intervals, nor that they are of the same length, nor that the gaps between two consecutive basic intervals are equal. Instead, for x ∈ E k-1 , we denote by m k (x) the number of k-th level basic intervals contained in the (k -1)-th level basic interval containing x, and by εk (x) the minimal distance between two of them. Set

ε k (x) = min i≤k εi (x).
In the following, we generalize a lemma in Falconer's book [START_REF] Falconer | Fractal Geometry, Mathematical Foundations and Application[END_REF]Example 4.6].

Lemma 9.

For any open interval I ⊂ [0, 1] intersecting F , we have

dim H (I ∩ F ) ≥ inf x∈I∩F lim inf k→∞ log(m 1 (x) • • • m k-1 (x)) -log(m k (x)ε k (x)) .
Proof. The proof is similar to that in the book of Falconer. We define a probability measure µ on F by assigning the mass evenly. Precisely, for k ≥ 1, let I k (x) be the k-th level interval containing x. For x ∈ F and k ≥ 1, we put a mass (m

1 (x) • • • m k (x)) -1
to the interval I k (x). Note that any two k-th basic intervals contained in the same (k -1)-th interval have the same measure. One can check that the measure µ is well defined. Now let us calculate the local dimension at the point x. Let B(x, r) be the ball of radius r centered at x. Suppose that

ε k (x) ≤ 2r < ε k-1 (x). The number of k-th level intervals intersecting B(x, r) is at most min m k (x), 2r ε k (x) + 1 ≤ min m k (x), 4r ε k (x) ≤ m k (x) 1-s 4r ε k (x) s , for any s ∈ [0, 1]. Thus µ(B(x, r)) ≤ m k (x) 1-s 4r ε k (x) s • (m 1 (x) • • • m k (x)) -1 . Hence log µ(B(x, r)) log r ≥ s log m k (x)ε k (x) -s log(4r) + log(m 1 (x) • • • m k-1 (x)) -log r .
Let s be in (0, 1) such that

s < inf z∈I∩F lim inf k→∞ log(m 1 (z) • • • m k-1 (z)) -log m k (z)ε k (z) ≤ lim inf k→∞ log(m 1 (x) • • • m k-1 (x)) -log m k (x)ε k (x) . Then s log m k (x)ε k (x) -s log 4 + log(m 1 (x) • • • m k-1 (x)) ≥ 0, for k large enough. Therefore lim inf r→0 log µ(B(x, r)) log r ≥ s.
The proof is completed by applying the mass distribution principle (see [START_REF] Falconer | Techniques in Fractal Geometry[END_REF], Proposition 2.3).

We also have an upper bound for the dimension of the set I ∩ F . Denote by |I k (x)| the length of the k-th basic interval I k (x) containing x.

Lemma 10. For any open interval

I ⊂ [0, 1] intersecting F , we have dim H (I ∩ F ) ≤ sup x∈I∩F lim inf k→∞ log(m 1 (x) • • • m k (x)) -log |I k (x)| .
Proof. We define the same probability measure µ as in Lemma 9, i.e., the interval

I k (x) has measure (m 1 (x) • • • m k (x)) -1 . Then lim inf r→0 log µ(B(x, r)) log r ≤ lim inf k→∞ log µ(I k (x)) -log |I k (x)| = lim inf k→∞ log(m 1 (x) • • • m k (x)) -log |I k (x)| .
We finish the proof by applying again the mass distribution principle (see [START_REF] Falconer | Techniques in Fractal Geometry[END_REF], Proposition 2.3).

Asymptotic approximation

In this section, we prove Theorem 3. To see that Theorem 1 is a special case of it, take the family of functions f defined by

f n (x) = x n , ∀n ≥ 1, we have u(v) = (v) = 1 and [v -ε, v + ε] ∩ E f, y, log b log(v + ε) ⊂ [v -ε, v + ε] ∩ E(b, y) ⊂ [v -ε, v + ε] ∩ E f, y, log b log(v -ε)
.

Then, Theorem 1 follows directly from Theorem 3. Now we prove Theorem 3.

Proof of Theorem 3. Lower bound: We can assume that u(v) is finite, since otherwise there is nothing to prove. Let us start by the simple observation about the condition (1.1). Given an integer n ≥ 1, set (3.1)

η(n) = sup log f n (w) log f n (z) -1; w, z ∈ [v -ε, v + ε], |f n (w) -f n (z)| ≤ 1 .
Lemma 11. If (1.1) and (1.3) hold, then

lim n→∞ η(n) = 0.
Proof. Assume this is not true. Then there exists a sequence of integers (n i ) and a sequence of pairs of points (w i , z i ) such that

|f n i (w i ) -f n i (z i )| ≤ 1 and log f n i (w i ) log f n i (z i ) > Z > 1.
By compactness of [v -ε, v + ε], taking a subsequence if necessary, we can assume that (w i ) i≥1 converges to some point w 0 . By (1.3), f n (v) → ∞. Hence, (1.1) gives us

lim n→∞ inf x∈[v-ε,v+ε] f n (x) = ∞.
This implies that

|w i -z i | ≤ 1 inf x∈[v-ε,v+ε] f n i (x)
→ 0 as i → ∞, and hence any neighborhood of w 0 contains all except finitely many points w i , z i . Thus, in any neighbourhood U of w 0 we have lim sup

n→∞ sup w,z∈U log f n (w) log f n (z) > Z,
which is a contradiction with (1.1). Now we construct a nested Cantor set which is the intersection of unions of subintervals at level n i , where (n i ) i≥1 is an increasing sequence of positive integers which will be defined precisely later. Suppose we have already well chosen this subsequence. Let us describe the nested family of subintervals. For each level i, we need to consider the set of points x such that

f n i (x) -y n i ≤ f n i (x) -τ .
By the property f n 1 (x) -y n 1 ≤ f n 1 (x) -τ , we take the intervals at level 1 as

I 1 (k, v, f, y, τ ) := [f -1 n 1 (k + y n 1 -f n 1 (v + ε) -τ ), f -1 n 1 (k + y n 1 + f n 1 (v + ε) -τ )], with k being an integer in [f n 1 (v -ε) + 1, f n 1 (v + ε) -1].
Suppose we have constructed the intervals at level i -

1. Let [c i-1 , d i-1 ] be an interval at such level. A subinterval of [c i-1 , d i-1 ] at level i is such that [f -1 n i (k + y n i -f n i (d i-1 ) -τ ), f -1 n i (k + y n i + f n i (d i-1 ) -τ )], with k being an integer in [f n i (c i-1 ) + 1, f n i (d i-1 ) -1]
. By continuing this construction, we obtain intervals I i (•) for all levels.

Finally, the intersection F of these nested intervals is obviously a subset

of [v -ε, v + ε] ∩ E(f, y, τ ).
Let z ∈ F and [c i (z), d i (z)] be the i-th level interval containing z. Then we have

(3.2) m i+1 (z) ≥ f n i+1 (w i ) • (d i -c i ) -2 ≥ f n i+1 (w i ) • 2f n i (d i ) -τ f n i (z i ) -2, where w i , z i ∈ [c i (z), d i (z)]. Furthermore, (3.3) ε i+1 (z) ≥ 1 -2f n i+1 (c i (z)) -τ f n i+1 (u i ) ≥ 1 2f n i+1 (u i )
,

where u i ∈ [c i (z), d i (z)
]. Now we are going to define the subsequence (n i ) i≥1 .

Lemma 12. Assume (1.1) and (1.2). For any γ > 0, we can find a subsequence (n i ) i≥1 such that

(3.4) f n i+1 (w) f n i+1 (u) ≤ f n i (z) γ ∀w, u ∈ [c i (z), d i (z)],
and for any small ε > 0, we have

∀x ∈ (v -ε, v + ε), lim i→∞ log f n i (x) log f n i-1 (x) = lim i→∞ log f n i (x) log f n i-1 (x) = ∞, (3.5) and inf x∈(v-ε,v+ε) f n i+1 (x) sup x∈(v-ε,v+ε) f n i (x) • f n i (x) τ ≥ 2. (3.6)
If f n are linear then we do not need to assume (1.2), moreover we can choose (n i ) in such a way that we have (in addition to the other parts of the assertion)

(3.7) lim i→∞ log f n i (v) log f n i (v) = (v).
Proof. In the linear case (3.4) is automatically true, and to have (3.5) and (3.6) we just need that (n i ) i≥1 increases sufficiently fast (as will be clear from the proof for the general case). Hence, we will be free to choose (n i ) satisfying in addition (3.7).

Let us proceed with the general case. For any γ > 0, by Lemma 11, there exists n 0 ∈ N such that

∀n ≥ n 0 , η(n) < γ 2M ,
where M is the constant in assumption (1.2).

Starting with this n 0 , by the assumption (1.2), we can then construct a subsequence (n i ) i≥1 satisfying

(3.8) γ 2η(n i ) • M ≤ log f n i+1 (v) log f n i (v) ≤ γ 2η(n i ) .
Observe that, as η(n i ) → 0 by Lemma 11, the lefthand side of (3.8) implies the first part of (3.5). As u < ∞, the second part of (3.5) follows. The condition (3.6) will also follow, provided that n 0 was selected large enough.

We need now to prove (3.4). By (3.1), for any w, u in the interval [c i (z), d i (z)], (3.9) f n i+1 (w)

f n i+1 (u) ≤ f n i+1 (z) 1+η(n i ) f n i+1 (z) 1-η(n i ) = f n i+1 (z) 2η(n i ) .
Combining (3.8) and (3.9), we get (3.4).

We continue the proof of the lower bound of Theorem 3. By (3.2) and (3.6),

m i+1 (z) ≥ f n i+1 (w i ) • 2f n i (d i ) -τ f n i (z i ) -2 ≥ 2,
which then implies that F is non-empty. Further, by (3.4), for any γ > 0, 

m i+1 (z) ≥ f n i+1 (z) • f n i (z) -γ • f n i (d i ) -τ f n i (z i ) . ( 3 
m i+1 (z)ε i+1 (z) ≥ f n i (z) -γ • f n i (d i ) -τ 2f n i (z i ) . ( 3 
lim inf i→∞ log(m 2 (z) • • • m i (z)) -log m i+1 (z)ε i+1 (z) ≥ lim inf i→∞ i j=2 (log f n j (z) -γ log f n j-1 (z) -τ log f n j-1 (d j ) -log f n j-1 (z j )) log 2 + log f n i (z i ) + γ log f n i (z) + τ log f n i (d i ) = lim inf i→∞ log f n i (z) log f n i (z i ) + γ log f n i (z) + τ log f n i (d i )
.

Hence, by the definition of η(n i ), we have

lim inf i→∞ log(m 2 (z) • • • m i (z)) -log m i+1 (z)ε i+1 (z) ≥ 1 lim sup i→∞ 1 + η(n i ) + γ + τ (1 + η(n i )) • log fn i (d i ) log f n i (d i )
.

In the linear case, log

f n i (d i )/ log f n i (d i ) converges to ( lim i→∞ d i ).
In the general situation, we have lim sup

i→∞ log f n i (d i ) log f n i (d i ) ≤ u( lim i→∞ d i ).
As γ can be chosen arbitrarily small, η(n i ) → 0 by Lemma 11, and

lim i→∞ d i ∈ [v -ε, v + ε],
the lower bound is obtained by applying Lemma 9.

Upper bound: Since for all x ∈ [v -ε, v + ε] ∩ E(f, y, τ ), we have f n (x) -y n < f n (x) -τ for infinitely many n ≥ 1. Then the set [v -ε, v + ε] ∩ E(f, y, τ
) is covered by the union of the family of intervals

I n (k) := [f -1 n (k + y n -f n (v -ε) -τ ), f -1 n (k + y n + f n (v -ε) -τ )], where k ∈ [f n (v -ε), f n (v + ε)
] is an integer. Note that the length of the interval I n (k) satisfies

|I n (k)| ≤ 2f n (v -ε) -τ f n (z) for some z ∈ (v -ε, v + ε).
The number of the intervals at level n is less than

f n (v + ε) -f n (v -ε) ≤ 2εf n (w) for some w ∈ (v -ε, v + ε). Thus for s > 0 ∞ n=1 k∈[fn(v-ε),fn(v+ε)] |I n (k)| s ≤ ∞ n=1 2εf n (w) • 2f n (v -ε) -τ f n (z) s . (3.12)
By the definition of (v), for any η > 0, there exists

n 0 = n 0 (η) ∈ N such that for any n ≥ n 0 f n (v -ε) > f n (v -ε) (v-ε)-η .
Thus by ignoring the first n 0 terms, we have (3.12) is bounded by

2 1+s ε ∞ n=n 0 f n (w) • f n (z) -s • f n (v -ε) -τ s( (v-ε)-η) . (3.13)
Hence by the assumption (1.3) if

s > lim sup n→∞ log f n (w) log f n (z) + τ ( (v -ε) -η) log f n (v -ε)
the sum in (3.12) converges. By (1.1),

lim n→∞ log f n (w) log f n (z) = 1, lim n→∞ log f n (w) log f n (v -ε) = 1. Therefore lim ε→0 dim H [v -ε, v + ε] ∩ E(f, y, τ ) ≤ 1 1 + τ (v)
.

Uniform Diophantine approximation

In this section, we study the uniform Diophantine approximation of the sequence ({x n }) n≥1 with x > 1.

Recall that for any sequence of real numbers y = (y n ) n≥1 in [0, 1], we are interested in the set

F (B, y) := {x > 1 : for all large integer N, x n -y n < B -N has a solution 1 ≤ n ≤ N }.
For any v ∈ F (B, y), for any ε > 0, we will give a lower bound for the Hausdorff dimension of [v -ε, v +ε]∩F (B, y). To this end, we investigate the uniform Diophantine approximation and asymptotic Diophantine approximation together. We consider the following subset of Proof of Theorem 5. We first construct a subset F ⊂ F (v, ε, b, B, y). Suppose that b = B θ with θ > 1. Let n k = θ k . Consider the points z such that

[v -ε, v + ε] ∩ F (B, y) F (v,
z n k -y n k < b -n k . Then one can check that z ∈ F (v, ε, b, B, y) = F (v, ε, B θ , B, y) = F (v, ε, b, b 1 θ , y).
We do the same construction as in Section 3. We will obtain a Cantor set F ⊂ F (v, ε, b, b 1 θ , y), which is the intersection of a nested family of intervals with

m k (z) = 2n k+1 c k (z) n k+1 -1 n k b n k d k (z) n k -1 and ε k (z) = 1 - 2 b n k+1 1 n k+1 d k (z) n k+1 -1 , where [c k (z), d k (z)] is the k-th level interval containing z.
By the choice of n k , we will have the following estimations: 1) .

m k (z) ≥ 2(θ k+1 -1)c k (z) θ k+1 -1 θ k b θ k d k (z) θ k -1 ≥ θ • b -θ k • c k (z) d k (z) θ k • c k (z) θ k (θ-
and ε k (z) ≥ 1 2θ k+1 • d k (z) -θ k+1 . Since d k (z) -c k (z) ≤ b -n k n k c k (z) n k -1 ≤ b -θ k is much more smaller than 1/θ k , c k (z) d k (z) θ k = 1 - d k (z) -c k (z) d k (z) θ k ≥ 1 2 1 bz θ k .
Thus by Lemma 9, for any z ∈ F , we have

lim inf k→∞ log(m 1 (z) • • • m k-1 (z)) -log m k (z)ε k (z) ≥ lim inf k→∞ (θ -1) log z -log b k-1 j=1 θ j θ k log bz = lim inf k→∞ (θ -1) log z -log b (θ -1) log bz • θ k-1 -1 θ k-1 = (θ -1) log z -log b (θ -1) log bz .
Hence, by the relation b = B θ , we deduce that the Hausdorff dimension of the set

F (v, ε, b, B, y) = F (v, ε, B θ , B, y) is at least equal to (θ -1) log(v -ε) -log b (θ -1) log(b(v -ε)) = log(v -ε) -θ θ-1 log B log(v -ε) + θ log B .
Taking θ → ∞ in the left side of the equality, we get the lower bound log(v -ε)/ log(b(v -ε)) for the Hausdorff dimension of the set considered in Theorem 1:

[v -ε, v + ε] ∩ E(b, y) ={v -ε ≤ x ≤ v + ε : x n -y n < b -n for infinitely many n}.
By maximizing the right side of the equality with respect to θ > 1, we obtain the lower bound

log(v -ε) -log B log(v -ε) + log B 2 for the Hausdorff dimension of the set [v -ε, v + ε] ∩ F (B, y) ={v -ε ≤ x ≤ v + ε : ∀N 1, ||x n -y|| < B -N has a solution 1 ≤ n ≤ N }.
By letting ε tend to 0, this completes the proof of Theorem 5.

Bad approximation

In this section, we study the bad approximation properties of the sequence ({x n }) n≥1 , where x > 1.

Let q = (q n ) n≥1 be a sequence of positive real numbers and y = (y n ) n≥1 be an arbitrary sequence of real numbers in [0, 1]. Define G(q, y) = {x > 1 : lim n→∞ x qn -y n = 0}, and, for v > 1, define

G(v, q, y) = {1 < x < v : lim n→∞ x qn -y n = 0}.
Recently Baker [START_REF] Baker | On the distribution of powers of real numbers modulo 1[END_REF] showed that if q = (q n ) n≥1 is strictly increasing and lim n→∞ (q n+1 -q n ) = ∞, then the set G(q, y) has Hausdorff dimension 1.

We want to generalize Baker's result. Consider a family of C 1 functions f = (f n ) n≥1 from an interval I ⊂ R to R such that f n (x) ≥ 1 for all x ∈ I and for all n ≥ 1. Let δ = (δ n ) n≥1 be a sequence of positive real numbers tending to 0. For ε > 0, set

G(ε, v, f, y, δ) := {v -ε < x < v + ε : f n (x) -y n ≤ δ n , ∀n ≥ 1}.
To prove Theorem 7, we need to estimate dim H G(ε, v, f, y, δ). Sketch proof of Theorem 7. Lower bound: We do the same construction as in the proof of the lower bound in Theorem 3. If the right-hand side inequality in (3.8) is satisfied, that is, if

(5.1) log f n+1 (v) log f n (v) ≤ γ 2η(n) ,
for some γ > 0, for large enough n, and for η defined in (3.1), then the distortion estimation (3.4) holds and we estimate the dimension in exactly the same way as in Theorem 3. If, however, (5.1) is not satisfied, that is, at some place f n is too sparse, with log f n+1 (v) log f n (v) then we can apply the idea of Baker ([1], page 69): we add some new functions fm between f n and f n+1 , in such a way that the resulting, expanded, sequence of their logarithms of derivatives is not too sparse anymore. We also add some δm = 1 for each added fm . Observe that the right-hand side of (1.7) does not change. Naturally, the resulting set G(ε, v, f , y, δ) is exactly the same as G(ε, v, f, y, δ). So, for the lower bound, we need only to estimate the lower bound of dim H G(ε, v, f , y, δ).

This means that we can freely assume that (5.1) holds. We will construct a subset of G(ε, v, f, y, δ) which is the intersection of a nested family of subintervals I n (•).

For n = 1, by the property f 1 (x) -y 1 ≤ δ 1 , we take the intervals at level 1 as 

I 1 (k, v, f
m n+1 (z) ≥ f n+1 (w n ) • (d n -c n ) -2 ≥ f n+1 (w n ) • 2δ n f n (z n ) -2 ≥ 2,
and

ε n+1 (z) ≥ 1 -2δ n+1 f n+1 (u n ) ≥ 1 2f n+1 (u n ) .
with w n , z n , u n ∈ [c n (z), d n (z)]. As we are assuming (5.1), we have (3.4) and then for any γ > 0

m n+1 (z) ≥ f n+1 (z) • f n (z) -γ • δ n f n (z n ) .
and Hence the lower bound of Theorem 7 is obtained by Lemma 9.

m n+1 (z)ε n+1 (z) ≥ f n (z) -γ • δ n 2f n (z n ) Thus,
Upper bound: We will apply Lemma 10. For each basic interval I n (z), by (1.1), we have for any γ, for n large enough

δ n f n (z)f n-1 (z) γ ≤ |I n (z)| ≤ δ n f n-1 (z) γ f n (z) .
Thus,

m n (z) ≤ |I n-1 (z)| • f n (z)f n-1 (z) γ ≤ δ n-1 f n-2 (z) γ f n-1 (z) f n (z)f n-1 (z) γ .
Hence, By Lemma 10, we conclude the proof.

Corollary 8 .

 8 Let (a n ) n≥1 be a sequence of positive real numbers such that lim n→∞ a n+1 a n = +∞.

. 10 )

 10 By (3.2), (3.3) and (3.4),

. 11 )

 11 Thus, (1.3) and (3.5) imply that -log m i+1 (z)ε i+1 (z) is unbounded. So by (3.10),(3.11) and(3.5) 

  ε, b, B, y) := {z ∈ [v -ε, v + ε] : z n -y n < b -n for infinitely many n and ∀N 1, z n -y n < B -N has a solution 1 ≤ n ≤ N }. The proof of Theorem 5 will be completed by maximizing the lower bounds of F (v, ε, b, B, y) with respect to b > B.

  , y, δ) := [f -1 1 (k + y 1 -δ 1 ), f -1 1 (k + y 1 + δ 1 )], with k being an integer in [f 1 (v -ε) + 1, f 1 (v + ε) -1].Suppose we have constructed the intervals at leveln -1. Let [c n-1 , d n-1 ] be an interval at this level. A subinterval of [c n-1 , d n-1 ] at level n is [f -1 n (k + y n -δ n ), f -1 n (k + y n + δ n )], with k being an integer in [f n (c n-1 ) + 1, f n (d n-1 ) -1]. By continuing this construction, we obtain intervals I n (•) for all levels. Finally, the intersection F of these nested intervals is obviously a subset of G(ε, v, f, y, δ).Let z ∈ F and [c n (z), d n (z)] be the n-th level interval containing z. Then by(1.5) 

log(m 2 1 j=1

 21 (z) • • • m n (z)) -log m n+1 (z)ε n+1 (z) ≥ log f n (z) -log f 1 (z) + z) -γ f j (z j ) log 2 + log f n (z n ) + γ log f n (z) -log δ n .By (1.6), we havelim inf n→∞ log(m 2 (z) • • • m n (z)) -log m n+1 (z)ε n+1 (z) log f n (z n ) + γ log f n (z) -log δ n .Since γ can be chosen arbitrary small and z n tends to z, by (1.1) we havelim inf n→∞ log(m 2 (z) • • • m n (z)) -log m n+1 (z)ε n+1 (z) ≥ lim inf n→∞ log f n (z) + nlog δ j log f n (z) -log δ n .

  1 (z) • • • m n (z)) -log |I n (z)| ≤ lim inf n→∞ log f n (z) + n-1 j=1 log δ j log f n (z) -log δ n .
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