Architecture level Optimizations for Kummer based HECC on FPGAs

Gabriel GALLIN - Turku Ozlum CELIK - Arnaud TISSERAND

CNRS - IRISA - Univ. Rennes - Lab-STICC

December, $11^{\text {th }}$
Indocrypt 2017

CominLabs

ECC, HECC, Kummer-HECC

	size of $\mathrm{GF}(\mathcal{P})$ elems.	ADD	DBL	source
ECC	$\ell_{\text {ECC }}$	$12 \mathrm{M}+2 \mathrm{~S}$	$7 \mathrm{M}+3 \mathrm{~S}$	$[2]$
HECC	$\ell_{\text {HECC }} \approx \frac{1}{2} \ell_{\text {ECC }}$	$40 \mathrm{M}+4 \mathrm{~S}$	$38 \mathrm{M}+6 \mathrm{~S}$	$[7]$
KHECC	$\ell_{\text {HECC }}$	$19 \mathrm{M}+12 \mathrm{~S}$		$[10]$

Metric for algorithms efficiency: number of multiplications (M) and squares (S) in $\mathrm{GF}(\mathcal{P})$

Kummer-HECC (KHECC) is more efficient than ECC:

- Software implementations by Renes et al. at CHES 2016 [10]
- ARM Cortex M0: up to 75% clock cycles reduction for signatures
- AVR AT-mega: up to 32% cycles reduction for Diffie-Hellman

Operations Hierarchy in KHECC

- Protocols based on scalar multiplication
- Sequence of curve-level operation xDBLADD: $(\pm P, \pm Q, \pm(P-Q)) \rightarrow(\pm[2] P, \pm(P+Q))$
- Size of elements in $\operatorname{GF}(\mathcal{P}): 128$ bits
- Dedicated hyper-threaded multiplier [3]: 3 independent modular multiplications computed in parallel

Scalar Multiplication: Montgomery Ladder

Montgomery ladder based crypto_scalarmult from [10]:

```
Require: \(m\)-bit scalar \(k=\sum_{i=0}^{m-1} 2^{i} k_{i}\), point \(P_{b}\), cst \(\in \operatorname{GF}(\mathcal{P})^{4}\)
Ensure: \(V_{1}=[k] P_{b}, V_{2}=[k+1] P_{b}\)
    \(V_{1} \leftarrow c s t\)
    \(V_{2} \leftarrow P_{b}\)
    for \(i=m-1\) downto 0 do
    \(\left(V_{1}, V_{2}\right) \leftarrow \operatorname{CSWAP}\left(k_{i},\left(V_{1}, V_{2}\right)\right)\)
    \(\left(V_{1}, V_{2}\right) \leftarrow \operatorname{xDBLADD}\left(V_{1}, V_{2}, P_{b}\right)\)
    \(\left(V_{1}, V_{2}\right) \leftarrow \operatorname{CSWAP}\left(k_{i},\left(V_{1}, V_{2}\right)\right)\)
    end for
    return \(\left(V_{1}, V_{2}\right)\)
\(\operatorname{CSWAP}\left(k_{i},(X, Y)\right)\) returns \((X, Y)\) if \(k_{i}=0\), else \((Y, X)\)
```

- Constant time, uniform operations (independent from key bits)
- CSWAP: very simple but handles secret bits (to be protected)

x DBLADD $\operatorname{GF}(\mathcal{P})$ Operation

- Some parallelism available (up to $8 \mathrm{GF}(\mathcal{P})$ operations)
- Several possible hardware architectures can be implemented

Architectural Exploration

- Fast exploration and validation of numerous hardware architecture configurations with dedicated tools (cf. paper)
- Full implementation of 4 selected architectures

A1: Smallest architecture
A2: Modification of CSWAP
A3: Doubled number of arithmetic units
A4: Doubled number of units (arithmetic and MEM) in 2 clusters

- Width of MEM and interconnect to be selected: $w=34,68$ or 136 bits

Architecture A1: Base Solution

- Smallest accelerator: 1 AddSub, 1 Mult, 1 MEM and 1 CSWAP

FPGA	w $[\mathrm{bit}]$	LUT	FF	logic slices	DSP slices	RAM blocks	freq. $[\mathrm{MHz}]$	clock cycles	time $[\mathrm{ms}]$
V4	$\mathbf{3 4}$	1010	1833	1361	11	$\mathbf{4}$	322	$\mathbf{1 9 4 , 6 1 4}$	0.60
	$\mathbf{6 8}$	$\mathbf{1 7 5 0}$	3050	2251	11	$\mathbf{5}$	305	$\mathbf{1 8 6 , 9 1 1}$	0.61
	$\mathbf{1 3 6}$	2281	3028	1985	11	$\mathbf{7}$	266	$\mathbf{1 8 4 , 3 3 7}$	0.69
V5	34	757	1816	603	11	4	360	194,614	0.54
	68	1264	3033	908	11	5	360	186,911	0.52
	136	1582	3008	940	11	7	360	184,337	0.51
S6	34	1064	1770	408	11	4	278	194,614	0.70
	68	1555	2970	705	11	5	252	186,911	0.74
	136	1910	2994	747	11	7	221	184,337	0.83

- Area increases when w increases
- Increased number of BRAMs for large memories
- Small clock cycles reduction for larger w cancelled by frequency drops
- Small w34 more interesting for A1 architecture

Architecture A2: CSWAP Optimization

- Same architecture topology as A1:

1 AddSub, 1 Mult, 1 MEM and 1 modified CSWAP

- Modified CSWAP unit implements new CSWAP ${ }_{\mathrm{V} 2}$ operation:
- Merged consecutive CSWAP operations of successive iterations

$$
\begin{aligned}
& \left(V_{1}, V_{2}\right) \leftarrow \operatorname{CSWAP}_{\mathrm{v} 2}\left(\left(0, k_{m-1}\right),\left(V_{1}, V_{2}\right)\right) \\
& \text { for } i=m-1 \text { downto } 1 \text { do } \\
& \quad\left(V_{1}, V_{2}\right) \leftarrow \operatorname{xDBLADD}\left(V_{1}, V_{2}, P_{b}\right) \\
& \quad\left(V_{1}, V_{2}\right) \leftarrow \operatorname{CSWAP}_{\mathrm{v} 2}\left(\left(k_{i}, k_{i-1}\right),\left(V_{1}, V_{2}\right)\right) \\
& \text { end for }
\end{aligned}
$$

- Swaps $V 1$ and $V 2$ if $k_{i} \neq k_{i-1}$ (only one xor gate needed)
- CSWAP unit has constant time behavior

FPGA	w $[$ bit $]$	LUT	FF	logic slices	DSP slices	RAM blocks	freq. $[\mathrm{MHz}]$	clock cycles	time $[\mathrm{ms}]$
V4	$\mathbf{3 4}$	872	1624	1121	11	4	330	$\mathbf{1 8 4 , 3 7 4}$	0.56
	$\mathbf{6 8}$	1556	2637	1978	11	5	290	$\mathbf{1 8 3 , 0 7 1}$	0.63
	$\mathbf{1 3 6}$	2161	3027	2100	11	7	327	$\mathbf{1 8 3 , 0 5 7}$	0.56
V5	34	722	1605	541	11	4	360	184,374	0.51
	68	1196	2620	840	11	5	360	183,071	0.51
	136	1419	3009	944	11	7	360	183,057	0.51
S6	34	940	1559	381	11	4	293	184,374	0.63
	68	1503	2565	553	11	5	262	183,071	0.70
	136	1890	2981	667	11	7	283	183,057	0.65

- Less CSWAP ${ }_{\mathrm{V} 2}$ operations \Rightarrow slightly less clock cycles than in A1
- Simplified management of CSWAP $\mathrm{V}_{\mathrm{V} 2}$ operations
- Slightly higher frequencies, with smaller variations
- Slightly reduced area (LUTs and FFs)
- A2 slightly more interesting than A1 both for speed and area ($\sim 10 \%$)
- Small w34 still the best configuration

Architecture A3: Large Architecture

- Doubled number of $\operatorname{GF}(\mathcal{P})$ units: 2 AddSub, 2 Mult
- More $\operatorname{GF}(\mathcal{P})$ operations in parallel: up to 6 multiplications

FPGA	w $[$ bit $]$	LUT	FF	logic slices	DSP slices	RAM blocks	freq. $[\mathrm{MHz}]$	clock cycles	time $[\mathrm{ms}]$
V4	$\mathbf{3 4}$	$\mathbf{1 4 6 2}$	2611	1783	$\mathbf{2 2}$	$\mathbf{6}$	294	188,218	0.64
	$\mathbf{6 8}$	2802	4367	3468	$\mathbf{2 2}$	$\mathbf{7}$	282	$\mathbf{1 2 4 , 1 9 1}$	0.44
	$\mathbf{1 3 6}$	3768	5017	3660	$\mathbf{2 2}$	$\mathbf{9}$	285	$\mathbf{1 1 9 , 0 5 7}$	0.42
V5	34	1262	2607	921	22	6	358	188,218	0.53
	68	2290	4403	1409	22	7	345	124,191	0.36
	136	2737	4978	1594	22	9	348	119,057	0.34
S6	34	1527	2503	668	22	6	265	188,218	0.71
	68	2421	4267	1020	22	7	225	124,191	0.55
	136	3007	4877	1131	22	9	225	119,057	0.53

- $+60-90 \%$ LUTs, 11 DSP slices, +2 BRAMs compared to A2
- Frequency drops on V4 ($<13 \%$) and S6 ($<20 \%$)
- $-34-36 \%$ clock cycles for $w 68$ and $w 136$, compared to $w 34$
- 25 to 35% reduced computation time for $w 136$ depending on FPGA
- A3 faster than A2, but larger \rightarrow area - speed trade-offs

Architecture A4: Clustered Architecture

- Decomposition of xDBLADD into two symmetric clusters of $\mathrm{GF}(\mathcal{P})$ operations

Architecture A4: Clustered Architecture

- Decomposition of xDBLADD into two symmetric clusters of $\mathrm{GF}(\mathcal{P})$ operations
- Modifications of xDBLADD:
- Squares \rightarrow multiplications
- No impact on mathematical behavior nor on operations count

Architecture A4: Clustered Architecture

- Decomposition of xDBLADD into two symmetric clusters of $\operatorname{GF}(\mathcal{P})$ operations
- Modifications of xDBLADD:
- Squares \rightarrow multiplications
- No impact on mathematical behavior nor on operations count
- New modification of CSWAP: CSWAP ${ }_{\mathrm{V} 3}$
- Replaced by two new swapping operations
- $\mathrm{CS}_{0}(A, B, C, D) \rightarrow(A, B, C, B)$ if $k_{i}=0$ else (C, D, A, D)
- $\mathrm{CS}_{1}(A, B, C, D) \rightarrow(A, B, C, D)$ if $k_{i}=0$ else (C, D, A, B)
- Same number of $\operatorname{GF}(\mathcal{P})$ units as in A3: 2 AddSub, 2 Mult
- Doubled number of MEM : one for each hardware cluster
- CSWAP unit: "bridge" to exchange data between clusters
- Same control for both clusters (reduced complexity)

FPGA	w $[$ bit $]$	LUT	FF	logic slices	DSP slices	RAM blocks	freq. $[\mathrm{MHz}]$	clock cycles	time $[\mathrm{ms}]$
V4	34	1695	2950	2158	22	$\mathbf{7}$	324	$\mathbf{1 4 2 , 1 1 9}$	0.44
	68	2804	4282	3184	22	$\mathbf{9}$	290	128,021	0.44
	136	3171	4994	3337	22	$\mathbf{1 3}$	299	125,456	0.42
V5	34	1370	2953	1013	22	7	358	142,119	0.40
	68	2095	4259	1358	22	9	337	128,021	0.38
	136	2514	4952	1589	22	13	313	125,456	0.40
S6	34	1564	2089	758	22	7	262	142,119	0.54
	68	2387	4030	1060	22	9	239	128,021	0.54
	136	3181	4786	1136	22	13	251	125,456	0.50

- Increased area for w34 compared to A3
- Increased number of BRAMs for additional MEM
- Less clock cycles for w34 \Rightarrow MEM bottleneck in small configurations
- A4 better than A3 for small configuration w34

Trade-offs for our Architectures A1-4

V4

Trade-offs for our Architectures A1-4

S6

archi.	A1	A2	A3	A4
\#Mult	1	1	2	2
\#AddSub	1	1	2	2
\#CSWAP	1	1	1	1
\#MEM	1	1	1	2

Comparisons with ECC State-of-the-Art

year	ref.	target	\mathcal{P}	LUT	FF	logic slices	$\begin{array}{c\|} \hline \text { DSP } \\ \text { slices } \end{array}$	RAM blocks	freq. [MHz]	$\begin{aligned} & \mathrm{time} \\ & {[\mathrm{~ms}]} \end{aligned}$
2008	[4]	XC4VFX12	NIST-256	2589	2028	1715	32	11	490	0.50
		XC4VFX12	NIST-256	34896	32430	24574	512	176	375	0.04
2014	[1]	XC6VFX760	NIST-256	32900	n.a.	11200	289	128	100	0.40
2012	[6]	XC4VFX12	GEN-256	n.a.	n.a.	2901	14	n.a	227	1.09
		XC5VLX110	GEN-256	n.a.	n.a.	3657	10	n.a.	263	0.86
2013	[8]	XC4VLX100	GEN-256	5740	4876	4655	37	11	250	0.44
		XC5VLX110T	GEN-256	4177	4792	1725	37	10	291	0.38
2017	A4(w34)	XC4VLX100	GEN-128	1695	2950	2158	22	7	324	0.44
		XC5VLX110T	GEN-128	1370	2953	1013	22	7	358	0.40

Conclusion and Perspectives

- Kummer-HECC efficient alternative to ECC in hardware:
- Halved area for same computation time
- Scalar multiplication 40% faster for same area cost compared to equivalent state-of-the-art solutions for ECC
- Exploration of new architectures: topology, control, protection against SCA
- Release of VHDL codes and exploration tools under open-source license (by the end of Spring)

References I

[1] H. Alrimeih and D. Rakhmatov.
Fast and flexible hardware support for ECC over multiple standard prime fields.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(12):2661-2674, January 2014.
[2] D. J. Bernstein and T. Lange.
Explicit-formulas database.
http://hyperelliptic.org/EFD/.
[3] G. Gallin and A. Tisserand.
Hyper-threaded multiplier for HECC.
In Proc. 51st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, October 2017. IEEE.
[4] T. Güneysu and C. Paar.
Ultra high performance ECC over NIST primes on commercial FPGAs.
In Proc. 10th Conf. Cryptographic Hardware and Embedded Systems (CHES), volume 5154 of LNCS, pages 62-78.
Springer, August 2008.
[5] C. K. Koc, T. Acar, and B. S. Kaliski.
Analyzing and comparing Montgomery multiplication algorithms.
IEEE Micro, 16(3):26-33, June 1996.
[6] J.-Y. Lai, Y.-S. Wang, and C.-T. Huang.
High-performance architecture for elliptic curve cryptography over prime fields on FPGAs.
Interdisciplinary Information Sciences, 18(2):167-173, 2012.
[7] T. Lange.
Formulae for arithmetic on genus 2 hyperelliptic curves.
Applicable Algebra in Eng., Communication and Computing, 15(5):295-328, February 2005.

References II

[8] Y. Ma, Z. Liu, W. Pan, and J. Jing.
A high-speed elliptic curve cryptographic processor for generic curves over $\operatorname{GF}(p)$.
In Proc. 20th International Workshop on Selected Areas in Cryptography (SAC), volume 8282 of LNCS, pages 421-437, Burnaby, BC, Canada, August 2013. Springer.
[9] P. L. Montgomery.
Modular multiplication without trial division.
Mathematics of Computation, 44(170):519-521, April 1985.
[10] J. Renes, P. Schwabe, B. Smith, and L. Batina.
μ Kummer: Efficient hyperelliptic signatures and key exchange on microcontrollers.
In B. Gierlichs and A. Y. Poschmann, editors, Proc. 18th International Conference on Cryptographic Hardware and Embedded Systems (CHES), volume 9813 of LNCS, pages 301-320, Santa Barbara, CA, USA, August 2016. Springer.

This work is funded by $\mathrm{H}-\mathrm{A}-\mathrm{H}$ project

Thank you for your attention

Comparisons of A4 with ECC State-of-the-Art (\%)

year	ref.	target	\mathcal{P}	LUT	FF	logic slices	DSP slices	RAM blocks	freq. $[\mathrm{MHz}]$	time $[\mathrm{ms}]$
2008	[4]{}	XC4VFX12	NIST-256	-35%	$+46 \%$	$+26 \%$	-31%	-36%	-34%	-12%
		XC4VFX12	NIST-256	-95%	-91%	-91%	-96%	-96%	-14%	$+1000 \%$
2014	$[1]$	XC6VFX760	NIST-256	-96%	.n.a.	-91%	-92%	-95%	$+258 \%$	$+0 \%$
2012	[6]{}	XC4VFX12	GEN-256	n.a.	n.a.	-26%	$+57 \%$	n.a.	$+43 \%$	-60%
		XC5VLX110	GEN-256	n.a.	n.a.	-72%	$+120 \%$	n.a.	$+36 \%$	-53%
2013	[8]{}	XC4VLX100	GEN-256	-70%	-39%	-54%	-41%	-36%	$+30 \%$	$+0 \%$
		XC5VLX110T	GEN-256	-67%	-38%	-41%	-41%	-30%	$+23 \%$	$+5 \%$
2017	A4(w34)	XC4VLX100	GEN-128	1695	2950	2158	22	7	324	0.44
		XC5VLX110T	GEN-128	1370	2953	1013	22	7	358	0.40

Architecture Level Modeling

- Problems when exploring solutions space:
- Many parameters: type/number of units, communications, control, ...
- Description in VHDL and debug of accelerators is time consuming
- Proposed solution: hierarchical description of accelerators
- Allows fast exploration and validation of numerous solutions
- Based on a library of units, fully described and implemented in VHDL
- CCABA model defined for high-level description of accelerators

Units

- Multiplier Mult using HTMM_BRAM for multiplications and squares
- Adder-Subtractor AddSub
- Datapath width $w_{\text {arith }}=34$ bits selected for Mult and AddSub after experimentations
- Swapping unit CSWAP with local key management and uniform behavior
- Memory MEM based on dual port RAMs with width w to be selected between 34, 68 or 136 bits

Accelerator Control and Interconnect

- Instantiate requiered units
- Interconnect all units
- Based on multiplexors
- Width to be selected: $w=34,68$ or 136 bits
- Control
- Based on a tiny 36-bit instructions set architecture
- Scalar bits managed only in CSWAP unit: control signals do not handle or depends on secret key

Most interesting FPGA implementation results

archi.	$\begin{gathered} \begin{array}{c} w \\ {[\mathrm{bit}]} \end{array} \\ \hline \end{gathered}$	target	$\begin{gathered} \hline \text { logic } \\ \text { slices } \\ \hline \end{gathered}$	$\begin{gathered} \text { DSP } \\ \text { blocks } \end{gathered}$	RAM blocks	freq. [MHz]	$\begin{aligned} & \text { time } \\ & \text { [ms] } \\ & \hline \end{aligned}$
A2	34	V4	1121	11	4	330	0.56
A3	136		3660	22	9	285	0.42
A4	34		2158	22	7	324	0.44
A2	34	V5	541	11	4	360	0.51
A3	136		1594	22	9	348	0.34
A4	34		1013	22	7	358	0.40
A2	34	S6	381	11	4	293	0.63
A3	136		1131	22	9	225	0.53
A4	34		758	22	7	262	0.54

Instructions Set

instruc.	description
read	transfer operands from memory to target unit and start computation
write	transfer result from target unit to memory
wait	wait for immediate clock cycles
nop	no operation (1 clock cycle)
jump	change program counter (PC) to immediate code address
end	trigger the end of the scalar multiplication

4-bit opcode
3-bit unit index
2-bit operation mode two 9-bit memory addresses

9-bit immediate value.

Memory and Internal Communication Width Configurations

config.	w [bit]	s [word]	cycle(s) / mem. op.	BRAM(s)
$w 34$	34	4	4	1
$w 68$	68	2	2	2
$w 136$	136	1	1	4

