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Abstract. On the basis of a software implementation of Kummer based
HECC over Fp presented in 2016, we propose new hardware architectures.
Our main objectives are: definition of architecture parameters (type, size
and number of units for arithmetic operations, memory and internal
communications); architecture style optimization to exploit internal par-
allelism. Several architectures have been designed and implemented on
FPGAs for scalar multiplication acceleration in embedded systems. Our
results show significant area reduction for similar computation time than
best state of the art hardware implementations of curve based solutions.
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1 Introduction

Reducing the cost of asymmetric cryptography is a challenge for hardware im-
plementation of embedded systems where silicon area is limited. Hyper-elliptic
curve cryptography (HECC [6]) is considered to be an interesting solution com-
pared to elliptic curve cryptography (ECC [12]). HECC requires smaller finite
fields than ECC at similar security level. For instance, size of field elements is
divided by two in genus-2 HECC solutions. But the number of field-level oper-
ations is larger in HECC per key/scalar bit. Then comparisons depend a lot on
curve parameters, algorithm optimizations and implementation efforts.

HECC solutions based on Kummer surfaces (see [10] for details) demonstrate
promising improvements for embedded software implementations. In 2016, Renes
et al. presented in [24] a new Kummer-based HECC (KHECC) solution and its
implementation on microcontrollers with 30 to 70 % clock cycles count reduction
compared to the best similar curve based solutions at equivalent security level.

To the best of our knowledge, there is no hardware implementation of this
recent KHECC solution. Below, we present hardware architectures for KHECC



adapted from [24] for scalar multiplication and their FPGA implementations.
We study and evaluate the impact of various architecture parameters on the
cost and performances: type, size and number of units (arithmetic, memory, in-
ternal communications); architecture topology; and exploitation of internal par-
allelism. We target embedded applications where the FPGA bitstream cannot
be changed easily (trusting the configuration system at application level is com-
plex) or prototyping for ASIC applications. Then to provide flexible circuits at
software level, our solutions are designed for Fp with generic primes (where [24]
only deals with p = 2127 − 1). Several architectures have been designed and im-
plemented on different FPGAs for various parameters, and compared in terms
of area and computation time.

Our paper outline is as follows. Section 2 recalls background on KHECC and
introduces notations. Section 3 presents major elements of the work [24] used as a
starting point and discusses required adaptations for hardware implementation.
Section 4 quickly presents our units selected for the architectures and our tools
used for design space exploration. Section 5 describes the proposed KHECC
architectures and their implementation results on different FPGAs. Section 6
reports comparisons. Finally, Section 7 concludes the paper.

2 State-of-the-Art

HECC was introduced by Koblitz in [14] as a larger set of curves compared to
ECC with a generalization of the class of groups obtained from the jacobians
of hyper-elliptic curves. Subsequently, many HECC improvements have been
proposed. See book [6] for a complete presentation on HECC and book [12] for
ECC. Broadly speaking, field elements in HECC are smaller than in ECC for
a similar security level (e.g. 128-bit HECC on genus-2 curves is equivalent to
256-bit ECC). This reduction should directly benefit to HECC since the width
of field elements has a major impact on circuit area. But HECC requires more
field operations to achieve operations at curve level such as point addition (ADD)
and point doubling (DBL) for each scalar/key bit.

Many efforts have been made to reduce the cost of curve level operations in
HECC. For genus-2, one can refer to Lange [18], Gaudry [10], Bos et al. [5] and
Renes et al. [24] for instance. Table 1 reports a few costs for HECC and ECC
solutions. There were many works on F2n solutions at low security levels (fields
with 80–90 bits) in the past but very few on Fp at 128-bit security level until
recently in software (our goal is hardware implementation).

KHECC solutions from [24] are based on a Kummer surface KC of an hyper-
elliptic curve C defined over Fp. Curve C is defined using constant parameters
among which the “squared theta constants” (a, b, c, d) used during scalar multi-
plications. Points are represented by tuples of four n-bit coordinates in Fp where
±P = (xP : yP : zP : tP ) is the projection of P from C on KC .

In (H)ECC primitives such as signature or key exchange, the main operation
is the scalar multiplication [k]Pb of a base point Pb by a m-bit scalar or key k. In
embedded systems, scalar multiplication must be protected against side channel



attacks (SCAs [20]). A popular protection against SCAs is the adaptation of
Montgomery ladder (ML) algorithm [22]. ML is constant time (i.e. computation
time of iterations does not depend on the key bit values) and uniform (i.e.
the exact same schedule of the exact same field operations is executed at each
iteration whatever the key bit values).

For KHECC hardware implementations (but also for more general HECC
solutions), designers have to face several questions. How one should exploit the
internal parallelism available at field level? Are few large and fast units more
efficient than several parallel small and slow units? How to select parameters in
a parallel architecture? Our work was related to those questions.

3 Hardware Adaptation of Renes et al. Solution

We based our work on the KHECC solution presented by Renes et al. at CHES
2016 [24] for software implementations of Diffie-Hellman key exchange and sig-
nature at 128-bit security level. Their solution optimizes the use of Kummer
surface of hyper-elliptic curve described by Gaudry [10].

3.1 Analysis of Renes et al. Solution

In [24], the prime for Fp is p = 2127−1 due to fast modular reduction algorithms
for Mersenne primes. The scalar size is m = 256 bits. ML algorithm starts
with most significant key bits first. Each iteration computes a couple of points
(±V1,±V2) of KC from the result of the previous iteration using curve level op-
erations CSWAP and xDBLADD. Using initial values ±V1 = (a : b : c : d) and ±V2 =
(xPb

: yPb
: zPb

: tPb
), the scalar multiplication computes (±[k]Pb,±[k + 1]Pb).

The core operation in ML iterations is the modified pseudo-addition xDBLADD

combined differential double-and-add (see [24]). Given points ±V1,±V2 on KC ,
and base point±Pb, it computes (±[2]V1,±(V1 + V2)) = xDBLADD(±V1,±V2,±Pb).
Based on the set of Fp operations described in Figure 1, xDBLADD has a constant
time and uniform behavior.

The CSWAP operation consists in swapping the 2 input points (IN) of xDBLADD
and the 2 resulting points (OUT) depending on the current key bit value (see
Algo. 7 in [24]). It does not involve any computation but it impacts SCA aspects.

Renes et al. performed a smart selection of optimized curve parameters
(from [10]) to determine constants with reduced size: 16 bits instead of 127.

solution & source field width [bit] ADD DBL

Fp ECC [4] `ECC 12M + 2S 7M + 3S

F2n HECC [18] `HECC ≈ 0.5`ECC 40M + 4S 38M + 6S

Fp KHECC [24] `HECC ≈ 0.5`ECC 19M + 12S

Table 1. Cost per key bit of curve level operations in various (H)ECC solutions (M
and S denote multiplication and square in the finite field).



Then they use a dedicated optimized function for modular multiplication by
this type of constants in the software implementation.

Their implementations target low-cost microcontrollers: 8-bit AVR AT Mega
and 32-bit ARM Cortex M0. They report significant improvements over the best
known solutions. On Cortex M0, the clock cycles count is reduced by 27 % for
key exchange and by 75 % for scalar multiplication in signature. On AT Mega,
the corresponding reductions are respectively 32 % and 71 %.

3.2 Objectives and Constraints for our Hardware Accelerators

Unlike Renes et al. [24], in the present paper we only propose hardware ac-
celeration for scalar multiplication since this is the main operation in terms of
performance, energy consumption and security against SCAs (when the scalar
is the private key). As is frequently the case in a complete embedded system, we
assume that our hardware accelerator is coupled to a software implementation
for high level primitives (which are out of scope of this paper).

In order to design flexible hardware accelerators and to report results in a
general case, we target KHECC on generic prime fields. In [24] the selected prime
p = 2127 − 1 leads to very cheap modular reduction but it is very specific (there
is no Mersenne prime for slightly different security levels). Currently, we only
deal with generic primes but we plan to derive versions for specific ones (e.g.
pseudo-Mersenne) in the future. Field characteristic impacts the choice of curve
parameters. We propose to use material presented in the work from Gaudry [10]
to derive curves parameters and implementation constants.

One of our goal is to study hardware accelerators for scalar multiplication
at architecture level. KHECC offers some internal parallelism as illustrated in
Figure 1. Groups of 4 to 8 Fp operations can be easily performed at the same
time with uniform and constant time schedules. In most of ECC solutions, fewer
operations can be performed in parallel. We will evaluate the impact of this
parallelism on the design of efficient accelerators with various trade-offs in terms
of area and computation time (see questions at end of Section 2).

This paper is not dedicated to protection against physical attacks. But we
target hardware accelerators where the execution of ML type of algorithms is ac-
tually constant time and uniform at low level. We will describe how we designed
some units to achieve this objective (not yet evaluated using real attacks).
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Fig. 1. Fp operations in xDBLADD from [24] (IN/OUT are ±V1, ±V2 coordinates).



In order to provide hardware accelerators that can be easily adapted to other
application constraints and algorithms, we use a modular type of architectures
based on independent units (for arithmetic operations and internal storage); a
microcoded control; and an internal communication system based on multiplex-
ors (between some units). This type of modular architectures allows us to easily
explore many solutions in design space: type, size and number of units; size of
internal communications; scheduling impact on performances and security. This
choice also comes from the type of dedicated resources available in modern FP-
GAs: small embedded multipliers (DSP slices/blocks), small embedded memory
(BRAM: block RAM), dedicated multiplexors in routing resources. Architecture
modularity also helps the debug and validation process of the proposed solutions
using a hierarchical method. First, we extensively and individually simulate in
HDL and evaluate on FPGAs all our units. Second, we extensively simulate in
HDL and evaluate on FPGAs the complete accelerator solutions.

4 Accelerator Units and Exploration Tools

Architecture modularity allows to explore a wide parameter space but it requires
huge efforts in terms of implementation and debug. First, we decided to design,
implement, validate, and optimize a small set of units for arithmetic operations,
memory and internal communications. They are presented in Section 4.1. Sec-
ond, based on this set of units, we designed specific tools for architecture level
exploration and evaluation. These tools are quickly described in Section 4.2.

4.1 Accelerator Units and Resources

There are several types of resources in our hardware accelerators:

– arithmetic units for field level operations (Fp addition, subtraction and mul-
tiplication with generic prime p in this work);

– memory unit(s) for storing intermediate values (Fp elements for points co-
ordinates), curve parameters and constants;

– a CSWAP unit in charge of scalar management and on-line schedule of operands
depending on scalar/key bit values;

– an internal communication system for data transfers between the units;
– a control based on a microcode running the architecture.

Multiplier (Mult): Prime p is generic and can be programmed in our ar-
chitecture. Then, there is no low-cost modular reduction. We use the Mont-
gomery modular multiplication (MMM) proposed in [21]. Operands and product
are represented in Montgomery domain (MD)

{
(x × R) mod p, ∀x ∈ Fp

}
with

gcd(R, p) = 1 and R > p. We use MMM optimization methods from Orup [23]
and Koc et al. [15] where internal high-radix computations reduce the amount of
data dependencies and partial product/reduction steps are interleaved to speed
up the multiplication with a slightly larger internal datapath.



In our target Xilinx FPGAs (see Section 5), there are embedded multipliers
for 18×18 bits signed integers called DSP blocks/slices (in 2’s complement rep-
resentation). But for Fp computations, one can only use the 17 LSBs (all but the
“sign” bit). Then our datapath width must be a multiple of 17. We evaluated
that 34-bit word size for multiplication is interesting in our KHECC context
(smaller size leads to slow multipliers, larger size requires too many DSP slices).
For 34-bit words, operands and products are between 0 and 2p represented using
136 bits in MD (136 is the closest multiple of 17 and 34 larger than 127). Then
we can select R > 4p for speed purpose (as many works in state of the art).

For improving the efficiency of our accelerators, we used the hyper-threaded
multiplier version we proposed in [9] specially for KHECC. Hyper-threading
hides the latency in DSP slices at high frequency (when all internal registers are
activated). It computes 3 independent MMMs in parallel using 11 DSP slices
(17×17), 2 BRAMs and a few slices in 79 clock cycles at 360 MHz on Virtex 5.

Due to MD, all field elements, parameters and constants are 128-bit values
(contrary to [24] where shorter constants can be used). Using shorter constants
in hardware requires a specific unit and then a more complex control and smaller
overall frequency. Also for flexibility and frequency reasons, we only use generic
Fp multiplier Mult. For the same reasons, we avoid dedicated square units (for
generic p, MMM variants for square operation only lead to small improvements).

Similarly to state of the art solutions, final reduction from MD (0 ≤ x < 2p)
to “standard” Fp (0 ≤ x < p) is performed after the scalar multiplication (there
is no performance or security issue for this conversion).

Adder (AddSub): It performs both modular addition/subtraction ((x± y) mod
2p) in MD by setting a mode signal at operation start-up. Subtraction is im-
plemented by adding operand x with the 2’s complement of y operand (ȳ). The
reduced sum in MD (resp. difference), is obtained from the parallel computations
r = x + y (resp. r = x + ȳ) and rp = r + 2p (resp. rp = r + 2p). The output
is r if 0 ≤ r < 2p, else rp. The range of r is determined from the value of the
output carry bit of r + 2p for addition and of x + ȳ for subtraction. We evalu-
ated the impact of AddSub units for several word sizes: 34, 68 and 136 bits. The
two large ones significantly reduce the overall frequency of the accelerator (due
to longer carry propagations). It seems that our target FPGAs are optimized
to handle word sizes around 32 bits but not for larger widths without costly
pipeline schemes. To enforce short combinatorial paths and simplify the control,
we set AddSub internal datapath width to warith = 34 bits as in Mult.

Memory: The accelerator uses internal memory(ies) for storing intermediate
values (Fp elements of points coordinates), curve parameters and some con-
stants (e.g. initial values (a : b : c : d)). To fit the internal width of arithmetic
units (warith = 34 bits) and BRAM width in Xilinx FPGAs (configurable into
{1, 2, 4, 9, 18, 36} bits), we selected a memory configuration where words are
multiple of 34 bits to simplify the control and avoid interfaces. Due to the large
number of memory operations (read/write), we will show in Section 5 that a
wider memory reduces the number of clock cycles per memory operation of full
136-bit values. We tested 3 configurations for the memory width (and internal



config. w [bit] s [word] cycle(s) / mem. op. BRAM(s)

w34 34 4 4 1

w68 68 2 2 2

w136 136 1 1 4
Table 2. Memory and internal communication width configurations.

communications see below) described in Table 2. The main parameter w (in bits)
is the internal width of memory words (and communications). Related parame-
ter s is the number of words required for storing a complete 136-bit value. Our
BRAMs are configured into 512 lines of 36 bits words (2 unused bits per word).
Less than 512 words are required for KHECC even in w34 configuration. Table 2
also reports the clock cycles count of each memory operation and the memory
area (in BRAMs). For security reason, this internal memory in restricted to the
accelerator and cannot be accessed from outside (inputs and outputs are handled
by a specific very small unit which is mute during scalar multiplications).

Internal communications: The units are interconnected through a specific
internal communication system based on multiplexors (buses are not very effi-
cient in target FPGAs and lead to high capacitances switching which can be a
bad point for SCA protection). The communication system will be described in
Section 5. In order to explore cost and performance trade-offs, we used configura-
tions from Table 2 for the width in the internal communication system. Different
widths for memory and communications requires a very costly control. Then w is
shared for memory and communications. But for arithmetic units in this paper,
we evaluated that warith = 34 is the best choice for our KHECC accelerators.
For w68 and w136 configurations, small serial-parallel interfaces are added in the
arithmetic units to handle the width difference with communications.

CSWAP unit: In algorithm 7 from [24] (called crypto scalarmult), the CSWAP

operation manages the scalar/key bits by swapping, or not, points ±V1 and ±V2
at the beginning and end of each ML iteration. We designed a dedicated unit for
this purpose. It reads 2 Fp elements as inputs (corresponding to one coordinate
of ±V1 and ±V2) and swaps them, or not, depending on the actual key bit
value for the current iteration. At the last iteration, CSWAP triggers a “end of
scalar multiplication” signal. In our CSWAP unit, there is no variable addresses
or key management in the accelerator control for security reasons (instructions
decoding does not depend on secret bits). For SCA protection, our CSWAP unit has
been designed to ensure that there is always electrical activity in the pipelined
unit, communication system and memory between successive clock cycles even
if there is no swapping (read/write operations for one coordinate are interleaved
with those of the other coordinates). Our CSWAP unit (pipelined with internal
communications and memory) has a constant time and uniform behavior.

In the future, we will investigate the use of advanced scalar recoding schemes
on the performances and security against SCAs.

Accelerator control: We defined a tiny ISA (instruction set architecture).
Instructions, detailed in Table 3, are read from the code memory and decoded to



instruc. description

read transfer operands from memory to target unit and start computation

write transfer result from target unit to memory

wait wait for immediate clock cycles

nop no operation (1 clock cycle)

jump change program counter (PC) to immediate code address

end trigger the end of the scalar multiplication
Table 3. Instructions set for our accelerators.

provide control signals to/from units, communication system and memory. The
user program is stored into a small program memory (one BRAM). This type
of control provides flexibility, avoids long synthesis and place&route processes
(during modifications of user programs), and leads to fairly high frequencies on
the target FPGAs when using pipelined BRAMs and decoding.

Instructions are 36-bit wide and our KHECC programs fit into one single
BRAM (<512 instructions). Instructions contain: 4-bit opcode, 3-bit unit index,
2-bit operation mode, two 9-bit memory addresses and 9-bit immediate value.

We implemented hardware loops, using small finite state machines (FSMs),
to handle s cycles during communication and memory operations and duration of
wait instruction. Instruction decoding does not handle or depend on the scalar
bit values for SCA protection (only the CSWAP unit handles secret bits).

Control resources include a few w-bit registers dedicated to external commu-
nications and initialization of memory parameters. They are very small and not
involved during scalar multiplications, then we do not detail them here.

In the future, we plan to explore other types of control (e.g. distributed or
FSM based solutions without microcode) for ASIC implementations.

4.2 Tools for Exploration and Evaluation at Architecture Level

Several parameters must be specified at design time for each architecture:

– type and number of units (AddSub, Mult, CSWAP, memory);

– width w for internal memory and communications;

– topology of the architecture.

All units have been fully described in synthesizable VHDL for FPGA imple-
mentation (with optimizations for DSP slices and BRAMs). They can also be
tested and evaluated using cycle accurate and bit accurate (CABA) simulations.
Then the time model at every clock cycle and the hardware cost of each unit are
perfectly known (from implementation results).

Fully designing all possible architectures in VHDL is too time consuming. We
decided to define and use a hierarchical and heterogeneous method to efficiently
explore and validate numerous architectures.



Each architecture is described and simulated using a high-level model based
on a CCABA (critical CABA) specification4. The critical cycles at architecture
level are clock cycles where there are transitions in the control signals to/from
the units and their inputs/outputs. For functional units, this corresponds to
operands inputs, operation mode selection, start of computation, end of compu-
tation, and results outputs. The purely internal control signals inside the units
are not modeled in CCABA (since their behavior is perfectly determined in the
VHDL description and does not impact other parts of the accelerator).

A CCABA simulation tool has been developed in Python. Each unit is mod-
eled in Python to specify: a) its mathematical behavior and b) its behavior at
critical cycles based on the corresponding VHDL model (e.g. computation dura-
tion after start signal). For each unit, we need its complete VHDL and Python
CCABA models (both manually written). Our tool allows fast simulations of
complete scalar multiplications due to the hierarchical approach.

We also started the development of a tool to automatically schedule arith-
metic and memory operations as well as internal communications. Currently, it
uses a basic greedy algorithm to first feed the multipliers (due to their longer
latency). We plan to improve it in the future. The schedule gives the total clock
cycles count of a complete scalar multiplication.

We are able to quickly estimate the area and computation time of various
architectures. The estimated area sums up the VHDL results for all units in-
stantiated in the accelerator. The computation time is estimated by the total
number of clock cycles multiplied by the slowest unit period. We approximate
the impact of the control system (not yet designed in VHDL at this stage of the
exploration) based on our experience.

During the exploration, we perform this type of estimation for each accelera-
tor configuration to be evaluated. Then we select the most interesting solutions
for full implementation in VHDL, final validation, and accurate comparisons
(the corresponding results are presented in Section 5).

Once the accelerator has been fully implemented in VHDL, it is intensively
tested using both VHDL simulations and executions on FPGA cards against
reference values computed by SAGE mathematical software.

5 Proposed Architectures

We explored various configurations for parameters and architectures. We selected
4 architectures summarized in Table 4 and fully implemented them in VHDL on
several FPGAs. The corresponding results are reported in sub-sections below. We
began with a small and basic architecture A1 embedding the minimum number
of units. Then we explored optimizations and more parallel architectures. Archi-
tecture A2 uses an optimization of CSWAP unit (V2). Architecture A3 embeds 2
operators for each arithmetic operation (± and ×) to reach a higher parallelism

4 Our CCABA model is inspired by Transaction Level Modeling (TLM) with full cycle
accuracy for all control signals at the architecture level but not inside the units (when
there is no input/output impact).



architectures
resources A1 (Sec. 5.1) A2 (Sec. 5.2) A3 (Sec. 5.3) A4 (Sec. 5.4)

AddSub 1 1 2 2

Mult 1 1 2 2

CSWAP 1 V1 1 V2 1 V2 1 V3

Data Memory 1 1 1 2

Communication System 1 1 1 2 with bridge

Program Memory 1 1 1 1

Control 1 1 1 1
Table 4. Main characteristics of the 4 implemented and evaluated architectures.

short model techno. slice content fmaxDSP BRAM
name [nm] LUT flip-flop [MHz] capacity

V4 Virtex 4 VLX100 90 2 LUT4 2 500 18 Kb

V5 Virtex 5 LX110T 65 4 LUT6 4 550 36 Kb

S6 Spartan 6 SLX75 45 4 LUT6 4 390 18 Kb

Table 5. Target FPGAs with some characteristics (fmax is the maximum frequency).

(notice that a single Mult already handles 3 sets of operands in parallel using
hyper-threading, see [9]). Architecture A4 is a cluster of parallel units for both
arithmetic operations and data memory operations, and V3 of CSWAP unit.

The Xilinx FPGAs listed in Table 5 were our implementation targets. ISE 14.7
tools were used for synthesis and place&route, as well as SmartXplorer. V4/V5
FPGAs were used for comparison with state of the art. FPGA S6 was used for
low-cost solutions and imminent SCA evaluation on SAKURA card [16]. In order
to fairly compare area results, it should be remembered that slice and look-up
table (LUT) definition strongly depends on the FPGA family, see examples in
Table 5. Flip-flop (FF) means a 1-bit register. One LUT6 is equivalent to 4
LUT4. Then slices in V4 or in V5/S6 should not be compared directly.

For architectures A1–4, we report below implementation results for w34, w68,
w136 configurations on V4, V5, S6 FPGAs using 100 SmartXplorer runs.

5.1 Architecture A1: Base Solution

Architecture A1, depicted in Figure 2, corresponds to a basic Harvard processor
dedicated to the scalar multiplication derived from [24] with our modifications
detailed in Section 3.2. This is the smallest accelerator with only one instance
of each type of unit (AddSub, Mult, and CSWAP-V1 described in Section 4.1).

Architecture A1 was fully implemented in VHDL for the 3 widths w ∈
{34, 68, 136} on 3 FPGAs {V4, V5, S6}. The corresponding results are reported
in Table 6. Intensive VHDL simulations were used for validation.

Table 6 reveals a few trends:

– Width w has a small impact (at most 5 % reduction) on the clock cycles
count since most of the time is spent into the single AddSub and Mult.
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– Width w strongly impacts the area in LUTs (+50–70 % for w68 compared
to w34, and +80–110 % for w136 compared to w34 depending on the FPGA).
Clearly, enlarging the datapath requires more logic cells.

– The link between w and flip-flops numbers seems tricky. This is partly due to
the cost of serial-parallel interfaces between arithmetic operators (warith =
34) and memory/communications (w68 the most complex case, and w136).

– The increase in BRAMs comes from the wider memory for configurations
w68 and w136 (see Table 2).

– Frequency decreases when w increases due to longer combinatorial delays
and larger fanout. Depending on the FPGA, the reduction varies about 5–
20 %. On V5, 360 MHz is the frequency for both the slowest unit and the
complete accelerator (the control does not impact the overall frequency for
a small accelerator which uses a small part of the complete FPGA).

FPGA w LUT FF logic DSP RAM freq. clock time
[bit] slices blocks blocks [MHz] cycles [ms]

V4
34 1010 1833 1361 11 4 322 194,614 0.60
68 1750 3050 2251 11 5 305 186,911 0.61
136 2281 3028 1985 11 7 266 184,337 0.69

V5
34 757 1816 603 11 4 360 194,614 0.54
68 1264 3033 908 11 5 360 186,911 0.52
136 1582 3008 940 11 7 360 184,337 0.51

S6
34 1064 1770 408 11 4 278 194,614 0.70
68 1555 2970 705 11 5 252 186,911 0.74
136 1910 2994 747 11 7 221 184,337 0.83

Table 6. FPGA implementation results for architecture A1 (all BRAMs are 18 Kb
ones, only 17×17 multipliers were used in DSP slices for all FPGAs).



As a conclusion for our smallest architecture, using large w is not interesting.
The reduction of the clock cycles count is canceled by the frequency drop for
w68 or w136. Hence, the best solution is always w34 for A1 on all tested FPGAs.

5.2 Architecture A2: CSWAP Optimization

Architecture A2 is similar to A1 where we modified the CSWAP unit, version V2
(the architecture schematic is the same as Figure 2). The ML algorithm proposed
in [24] uses one CSWAP operation at the end of each iteration and another CSWAP
at the beginning of the next iteration with the same key bit operands. As there
is no computation between these 2 consecutive CSWAP operations, we propose to
merge them (this halves the calls to the CSWAP unit).

Our modified CSWAP-V2 uses 2 consecutive key bits: ki and ki−1 (scalar k
is used starting MSB first). There is no swapping when ki = ki−1, and swap-
ping when ki 6= ki−1 (we just need one xor gate). The very first CSWAP-V2 call
is computed using bits 0 (current bit) and km−1 (“next” bit and MSB of k).
The proposed modification does not change security aspects against SCAs. The
accelerator is still constant-time and uniform. As for CSWAP in A1, we designed
CSWAP-V2 with a uniform activity pipeline (see CSWAP description in Section 4.1).

Complete implementation results for A2 are reported in Table 7. A2 shows
a similar behavior than A1 with respect to w variations. A few elements can be
noticed for A2 as summarized below:

– Clock cycles count in A2 is slightly smaller than A1 due to reduced number
of CSWAP operations.

– Frequency is slightly higher for large w compared to A1. Frequency variations
are smaller in A2 than A1.

– Computation time in A2 is slightly smaller than A1: -5–10 % depending on
the FPGA. The best solution is obtained for small w (the 0.8 % speed-up for
w68/w136 in V5 is not relevant due to the large area increase).

– Area (LUTs, FFs and slices) in A2 is slightly smaller than A1 due to a sim-
plified management of CSWAP operations: -5–13 % depending on the FPGA.

FPGA w LUT FF logic DSP RAM freq. clock time
[bit] slices blocks blocks [MHz] cycles [ms]

V4
34 872 1624 1121 11 4 330 184,374 0.56
68 1556 2637 1978 11 5 290 183,071 0.63
136 2161 3027 2100 11 7 327 183,057 0.56

V5
34 722 1605 541 11 4 360 184,374 0.51
68 1196 2620 840 11 5 360 183,071 0.51
136 1419 3009 944 11 7 360 183,057 0.51

S6
34 940 1559 381 11 4 293 184,374 0.63
68 1503 2565 553 11 5 262 183,071 0.70
136 1890 2981 667 11 7 283 183,057 0.65

Table 7. FPGA implementation results for architecture A2 (all BRAMs are 18 Kb
ones, only 17×17 multipliers were used in DSP slices for all FPGAs).
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Fig. 3. Architecture A3 with its main units (arithmetic and memory), internal com-
munication system, and control (warning: areas of boxes are not on a real scale).

– DSP slices and BRAMs are identical in A2 and A1 (not related to CSWAP-V2).

As a conclusion for architecture A2, the best configuration is always w34

for all tested FPGAs. This optimization is interesting since A2 is slightly more
efficient than A1 in terms of both speed and area (about 10 %).

5.3 Architecture A3: Large Architecture

Architecture A3, depicted in Figure 3, embeds more arithmetic units: 2 AddSub

and 2 Mult units. It can perform up to 6 Fp multiplications in parallel (only 3
for A1/A2) using our hyper-threaded Mult unit (see Section 4.1 and [9]).

Complete implementation results for A3 are reported in Table 8. A3 behaves
quite differently from A1/A2.

FPGA w LUT FF logic DSP RAM freq. clock time
[bit] slices blocks blocks [MHz] cycles [ms]

V4
34 1462 2611 1783 22 6 294 188,218 0.64
68 2802 4367 3468 22 7 282 124,191 0.44
136 3768 5017 3660 22 9 285 119,057 0.42

V5
34 1262 2607 921 22 6 358 188,218 0.53
68 2290 4403 1409 22 7 345 124,191 0.36
136 2737 4978 1594 22 9 348 119,057 0.34

S6
34 1527 2503 668 22 6 265 188,218 0.71
68 2421 4267 1020 22 7 225 124,191 0.55
136 3007 4877 1131 22 9 225 119,057 0.53

Table 8. FPGA implementation results for architecture A3 (all BRAMs are 18 Kb
ones, only 17×17 multipliers were used in DSP slices for all FPGAs).



– Adding 1 AddSub and 1 Mult increases LUTs by 60–90 % depending on the
FPGA and w. The second Mult adds 11 DSP slices and 2 BRAMs. This
confirms that Fp units constitute the largest resources in the accelerator.

– Frequency is slightly smaller in A3 than A2 due to larger fanout and more
complex control. The frequency drop for increasing w values is very small
for V4/V5 (less than 4 %), and about 15 % for S6.

– Unlike A1/A2, w has a large impact on the clock cycles count in A3: 34 %
reduction for w68 compared to w34 and 36 % for w136. More arithmetic op-
erations in parallel put pressure on the memory and communication system.
A larger w allows to actually exploit more parallelism.

– Computation time benefits from the reduction of clock cycles count for large
values of w: 25 to 35 % reduction for w136 depending on the FPGA.

– A3 is faster than A2: from 16 to 35 % depending on the FPGA. But this
speed-up comes at the expense of a larger area.

As a conclusion for architecture A3, there is no best solution but various
compromises in terms of area and speed. When area is limited, w34 is interesting
but computation time is 25–33 % larger. When speed is the main objective, w68
and w136 lead to the fastest solutions but the area overhead is important.

5.4 Architecture A4: Clustered Architecture

A closer look at Figure 1 shows that xDBLADD can be decomposed into 2 clusters
of Fp operations with few dependencies using the red dashed horizontal line (i.e.
one cluster above, one cluster below). Only 4 values have to be transferred from
bottom cluster to top one at each ML iteration.

Architecture A4, depicted in Figure 4, was designed to exploit this decom-
position using a clustered accelerator. It also embeds a new optimization of the
CSWAP unit described below. To lighten Figure 4, control signals are not com-
pletely drawn but represented by small circles. Constants values are duplicated
in each cluster memory when necessary (at no cost in BRAMs).

We added a new modification of the CSWAP behavior (V3). CSWAP operation
is replaced by 2 new swapping operations CS0 and CS1 (with 4 Fp operands):

– CS0(A,B,C,D) returns (A,B,C,B) if ki = 0, else it returns (C,D,A,D)
– CS1(A,B,C,D) returns (A,B,C,D) if ki = 0, else it returns (C,D,A,B).

The modification of the CSWAP behavior (V3) was associated to a new schedule
for xDBLADD presented in Figure 5. This figure is simplified, each black line now
represents the communication of 4 operands from Figure 1. H box represents a
set of 8 Fp additions/subtractions, and M box a set of 4 Fp multiplications (only 3
in the top right upper box of Figure 5). CS0 and CS1 are respectively in charge of
the first and last CSWAP-V3 of the original ML iteration. Square operations of the
original xDBLADD have been replaced by multiplications in the new solution (i.e.
A2×B is now A×B×A) since we do not implement dedicated square units. This
does not change the mathematical behavior nor the operations count compared
to A2/A3, but it allows to use A4 more efficiently. CS0 and CS1 operations also
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act as “bridge” to exchange data between the 2 clusters when shared into a single
CSWAP-V3 unit as illustrated in Figure 4.
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Fig. 5. Modified xDBLADD formula for architecture A4 with the new CSWAP behavior.

Architecture A4 (Figure 4) is based on two identical clusters. Each cluster
contains: 1 AddSub, 1 Mult, 1 data memory and 1 local communication sys-
tem. The shared CSWAP-V3 unit uses a 2-bit control mode to select the relevant
swapping pattern according to the dependency graph in Figure 5. The con-
trol is shared for the 2 clusters, management of ML iterations and external
inputs/outputs (at beginning/end of scalar multiplication).

Complete implementation results for A4 are reported in Table 9. A few ele-
ments are summarized below:

– Clock cycles count is reduced for w34 but slightly increased for w68 and w136

compared to A3. This is due to additional constraints on the scheduler for
A4 since all units do not share a common memory and clusters can only
exchange data during the new modified CSWAP-V3.

– Frequency is higher in A4 compared to A3 in most of case (and very similar
in the other cases). This is due to a more local control and a smaller fanout
(most of signals are local to each cluster).



FPGA w LUT FF logic DSP RAM freq. clock time
[bit] slices blocks blocks [MHz] cycles [ms]

V4
34 1695 2950 2158 22 7 324 142,119 0.44
68 2804 4282 3184 22 9 290 128,021 0.44
136 3171 4994 3337 22 13 299 125,456 0.42

V5
34 1370 2953 1013 22 7 358 142,119 0.40
68 2095 4259 1358 22 9 337 128,021 0.38
136 2514 4952 1589 22 13 313 125,456 0.40

S6
34 1564 2089 758 22 7 262 142,119 0.54
68 2387 4030 1060 22 9 239 128,021 0.54
136 3181 4786 1136 22 13 251 125,456 0.50

Table 9. FPGA implementation results for architecture A4 (all BRAMs are 18 Kb
ones, only 17×17 multipliers were used in DSP slices for all FPGAs).

– Computation time is significantly reduced for small w values. For instance,
w34 leads to a similar speed than A3 but with much smaller architecture.

– On V5, the fastest solution is the intermediate configuration w68.
– DSP slices amount is exactly the same in A4 and A3 (both use 2 Mult units).
– BRAMs amount is larger in A4 than A3 due to the 2 local memories (one

in each cluster). The number of BRAMs increases with w accordingly to
Table 2 configurations.

– Area results in terms of LUTs are quite different from previous architectures.
It increases for w34 (up to +15 %) but decreases for w136 (up to -16 %)
compared to A3.

– Adding a second memory unit allows parallel read/write accesses and helps
to quickly extract more parallel operations.

As a conclusion for architecture A4, selecting the right set of parameters
depends a lot on the objective (high speed or low cost) and the FPGA family.
When the main objective is selecting the absolute smallest accelerator, A4 is less
interesting then A3. When the main objective is selecting the absolute fastest
accelerator, A4 is interesting for low-cost S6 FPGA (but A3 is better for V4/V5).
But in practice, A4 is interesting for accelerators almost as fast as the fastest
A3 but for much smaller area. For instance on V4, w34 configuration is only 5 %
slower than the absolute fastest A3 solution with an area reduced by 55 % in
LUTs and 22 % in BRAMs.

6 Comparisons

Figure 6 reports all the implementation results for the 4 proposed architectures
and w configurations on 3 different FPGAs. This figure only reports LUTs for
area since there are only a very few different numbers of BRAMs and DSP slices
given in Table 10. The best configuration (architecture type, w) depends on the
objective (high speed or low area) and target FPGA. Then exploration tools
at architecture level are helpful for designers and users. For low-area solution,
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Fig. 6. Trade-offs for our architectures A1–4 in terms of area (LUTs) and computation
time for all w configurations and FPGAs (legend is top figure).

archi. w target logic DSP RAM freq. time
[bit] slices blocks blocks [MHz] [ms]

A2 34
V4

1121 11 4 330 0.56
A3 136 3660 22 9 285 0.42
A4 34 2158 22 7 324 0.44

A2 34
V5

541 11 4 360 0.51
A3 136 1594 22 9 348 0.34
A4 34 1013 22 7 358 0.40

A2 34
S6

381 11 4 293 0.63
A3 136 1131 22 9 225 0.53
A4 34 758 22 7 262 0.54

Table 10. Summary of our most interesting FPGA implementation results (those on
Pareto front from Figure 6).

A2 is always the best one. For high speed, A4 is a very good cost-performance
trade-off on V4 and S6 (A3 is the fastest on V5 but with a large area).

Most of hardware HECC implementations use curves over F2n with low se-
curity levels (typically 81–89 bits fields). Table 11 reports some of them. None of
those HECC implementations embed hardware level protections against SCAs.
Some of them use algorithmic protections for scalar multiplication such as the
Montgomery ladder. Our Fp accelerators show similar computation times but
for a much higher security level (128 bits) on more recent FPGAs. To the best
of our knowledge, we found only one hardware implementation of HECC over
Fp in [1]. It is an 0.13µm ASIC implementation for 81-bit generic prime p with
502.8 ms computation time for scalar multiplication at 1 MHz. The very low
reported frequency makes comparisons quite difficult.



ref. year target n LUT FF logic RAM freq. time
slices blocks [MHz] [ms]

[3] 2006 Virtex 2 Pro 83 20999 n.a. 11296 n.a. 166 0.5
[8] 2008 XC2V4000 83 n.a. n.a. 2316 6 125 0.31

[13] 2004
XC2V4000 89 8451 2178 4995 1 54 1.02
XC2V4000 89 16459 4437 9950 0 57 0.44

[25] 2006
Virtex 2 Pro 83 n.a. n.a. 2446 1* 100 0.99
Virtex 2 Pro 83 n.a. n.a. 6586 3* 100 0.42

[26] 2016
Virtex 2 83 n.a. n.a. 5734 n.a. 145 0.3

XC5V240 83 n.a. n.a. 5086 n.a. 175 0.29

[27] 2004

Virtex 2 Pro 81 n.a. n.a. 4039 1 57 0.79
Virtex 2 Pro 81 n.a. n.a. 7737 0 61 0.39
XC2V4000 81 n.a. n.a. 3955 1 54 0.83
XC2V4000 81 n.a. n.a. 7785 n.a. 57 0.42

[7] 2007 XC2V8000 113 n.a. n.a. 25271 n.a. 45 2.03
Table 11. FPGA implementation results for various HECC solutions over F2n from
state of the art (warning: security levels are much lower than our solutions). For F2n

DSP slices cannot be used. Values with a “*” are estimated number of RAM blocks
based on paper explanations.

ref. year target p LUT FF logic DSP RAM freq. time
slices blocks blocks [MHz] [ms]

[2] 2014 XCV6FX760 NIST-256 32900 n.a. 11200 289 128 100 0.4

[11] 2008
XC4VFX12 NIST-256 2589 2028 1715 32 11 490 0.5
XC4VFX12 NIST-256 34896 32430 24574 512 176 375 0.04

[17] 2012
XC4VFX12 GEN-256 n.a. n.a. 2901 14 n.a. 227 1.09
XC5VLX110 GEN-256 n.a. n.a. 3657 10 n.a. 263 0.86

[19] 2013
XC4VLX100 GEN-256 5740 4876 4655 37 11 250 0.44
XC5LX110T GEN-256 4177 4792 1725 37 10 291 0.38

Table 12. FPGA implementation results for various ECC solutions over Fp and 128-bit
security level from state of the art.

Directly comparing our accelerators with implementations of HECC over F2n

for much lower security level is not possible. Then, in Table 12, we report some of
the best FPGA implementations results we found in the state of the art for ECC
solutions over Fp and 128 bits security level. In practice using hundred of DSP
blocks and BRAMs may not be a realistic solution for embedded systems. In [2]
several SCAs protections have been presented: DBL&ADD-always, ML, scalar
randomization, units with uniform behavior, randomization of memory addresses
and noise addition. Those protections impact the number of logic slices but not
those of DSPs and BRAMs (very huge is this work).

Compared to [19], a very optimized fast and compact solution from state
of the art using randomized Jacobian coordinates, our accelerator have a very
similar computation time (0.44 ms) but with 40 % reduction in DSP and RAM
blocks and 53 % reduction of logic slices on V4 FPGA (similar for V5).



7 Conclusion and Future Prospects

We proposed the first hardware implementation of Kummer based HECC solu-
tion for 128-bit security level. Various architectures and parameters have been
explored using in-house tools. Several architectures with different amount of
internal parallelism have been optimized and fully implemented on 3 different
FPGAs. The obtained results lead to similar speed than the best curve based
solutions for embedded systems but with an area almost divided by 2 (-40 % for
DSP and RAM blocks and -60 % for logic slices). Those results were obtained
with generic prime fields and fully programmable architectures (which is not the
case in most of state of the art implementations).

In the future, we plan to optimize our tools and architectures, evaluate the
security against SCAs using real measurement setup, automate the control gen-
eration of the accelerator, and publish our architectures as open source hardware.
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