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Context
Virtual testing aims at replacing (expensive) physical tests on large structures
(up to failure) by simulations.

Figure: A380 wing torsion test (supaero)

Figure: Delamination of
bolted composite plates

This implies several capabilities:
(Ensuring the quality of models).

Obtaining results in a reasonable time, with a correct exploitation of current
hardware, even if models are ugly (nonlinearity, softening, instabilities)

Generating and handling distributed data (pre/post).
ÝÑ Ensuring the quality of computations, adapting the discretizations
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Context

(a) (b)Figure: LEAP engine, combustion chamber (Safran)

Classical design practice

Mesh and model are based on engineer rules, continuous Galerkin finite element,
implicit time integration, Newton solver, direct sparse solver for the resulting
system.
+ huge safety factor (which accounts for both model and numerical errors).

The new designs and working regimes (e.g. T » 1500˝, extremely small
perforations) are almost beyond the domain of validity of current practices.

Error estimation enables to reduce the safety factor ÝÑ better performance.
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Classical linear elasticity problem

Ω open polyhedral domain of Rd (d “ 2 ou 3), H: Hooke’s tensor
Load: body force f P L2pΩq,
bcs: Neumann g P L2pBnΩq, Dirichlet ud P H1{2pBd Ωq.
Usual variational formulation
Kinematically admissible displacement (H1pΩq):
KApΩq “ tu P H1pΩq, u “ ub sur Bd Ωu

Find u P KApΩq s.t. @v P KA0pΩq,
ż

Ω
εpuq : H : εpvq dx “: apu, vq “ lpvq :“

ż

Ω
f ¨ v dx `

ż

BnΩ
g ¨ v dS

with ε the symmetric part of the gradient.

Formulation by the Error in constitutive relation1

Statically admissible stress (Hdiv pΩq)
SApΩq “ tσ P L2

sympΩq, @v P KA0pΩq,
ş

Ω σ : εpvq dx “
ş

Ω f ¨ v dx `
ş

BnΩ g ¨ v dSu

Find pu, σq P KApΩq ˆ SApΩq s.t. ecrpεpuq, σq :“ ~H´1 : σ ´ εpuq~Ω “ 0

~ε~Ω is the energy norm, in particular ~εpuq~Ω “ }u}a.

1Ladevèze, 1975.
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Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

σh is not smooth Ñ ZZ2 estimator,
σh R SApΩq Ñ explicit residuals,

Stein’s formula Ñ constant-free explicit residuals,
Error in constitutive relation (implicit residuals),

Lower bound by estimation of the residual,
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Classical approximation
continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

σh is not smooth Ñ ZZ2 estimator2,

σh R SApΩq Ñ explicit residuals,

Stein’s formula Ñ constant-free explicit residuals,
Error in constitutive relation (implicit residuals),

Lower bound by estimation of the residual,

Let σ̃ be a smoothing of σh,

ηZZ2 “ ~σh ´ σ̃~

Very often }u ´ uh}a » ηZZ2 but no warranty

2Zienkiewicz and Zhu, 1987.
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Classical approximation
continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

σh is not smooth Ñ ZZ2 estimator,
σh R SApΩq Ñ explicit residuals,2

Stein’s formula Ñ constant-free explicit residuals,
Error in constitutive relation (implicit residuals),

Lower bound by estimation of the residual,

η2 “
ř

T h2T } div σh ` f }20,T `
ř

E hE }rσhsE ¨ nE }
2
0,E

}u ´ uh}
2
a ď C1η

2

C2η
2 ď }u ´ uh}

2
a ` osc2

Oscillation term: osc2 “
ř

T }hT pf ´ f̄T q}20,T . . .
2Verfürth, 1996, review.
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Classical approximation
continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

σh is not smooth Ñ ZZ2 estimator,
σh R SApΩq Ñ explicit residuals,

Stein’s formula2 Ñ constant-free explicit residuals,

Error in constitutive relation (implicit residuals),

Lower bound by estimation of the residual,

η2new “
ř

T h2T p} div σh ` f }0,T ` CT
ř

EPBT

?
hE?
|T |
}rσhsE ¨ nE }0,E q

2

}u ´ uh}a ď Cηnew

all constants are computable

2Gerasimov, Stein, and Wriggers, 2015.
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Classical approximation
continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

σh is not smooth Ñ ZZ2 estimator,
σh R SApΩq Ñ explicit residuals,

Stein’s formula Ñ constant-free explicit residuals,
Error in constitutive relation2 (implicit residuals),

Lower bound by estimation of the residual,

Prager-Synge theorem: let û P KApΩq, σ̂ P SApΩq

}u ´ û}2a ` ~σ ´ σ̂~2 “ ecr
2pεpûq, σ̂q

Use û “ uh and compute σ̂ from σh (aka. equilibration). Better if σ̂ » σ:

}u ´ uh}a ď ecrpεpuhq, σ̂q

2Ladevèze and Leguillon, 1983.
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Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

σh is not smooth Ñ ZZ2 estimator,
σh R SApΩq Ñ explicit residuals,

Stein’s formula Ñ constant-free explicit residuals,
Error in constitutive relation (implicit residuals),

Lower bound by estimation of the residual,

@ŵ P KA0pΩq,
|ruh pŵq|
}ŵ}a

ď }u ´ uh}a

ŵ must be of high order. Better if ŵ » pu ´ uhq.
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Classical approximation

continuous Galerkin finite element
Find uh P KAhpΩq subspace of KApΩq of finite dimension, s.t. @vh P KAh0pΩq

ruh pvhq :“ apuh, vhq ´ lpvhq “ 0

and we define σh “ H : εpuhq

Error estimation

σh is not smooth Ñ ZZ2 estimator, easy to compute, often efficient but not
rigorous (in its early versions)

σh R SApΩq Ñ explicit residuals, perfect for adaptation, not for error
measurement
Stein’s formula Ñ constant-free explicit residuals, not tested
Error in constitutive relation (implicit residuals), computationally demanding
but constant free ÐÝ
Lower bound by estimation of the residual, computationally demanding but
constant free and by-product of equilibration2 ÐÝ

2Díez, Parés, and Huerta, 2003.
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Adaptation
For conforming elements

Given an error estimation with local (element) contributions pηT q, there are mainly
two strategies:

The nested discretization method, based on the chain:
SOLVE ÝÑ ESTIMATE ÝÑ MARK ÝÑ REFINE

MARK: select elements most contributing to the error (most famous: Dörfler’s
marking3)
REFINE: iterative or recursive bisection of elements (even local errors impact lots of
elements)

ÝÑ lots of interesting properties (error decrease, quasi-optimality)

The full remeshing technique based on the definition of map of characteristic
lengths computed using a priori estimators with the objective to have all
elements contributing identically to the error.

3Dörfler, 1996.
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Linear quantities of interest

Bounds on the energy norm of the error may not be interesting for an engineer who
may prefer the error on specific values (average stress in a region, SIF around a
crack, displacement of a node. . . ).
Extractor and adjoint problem

We consider continuous linear quantities of interest of the form l̃puq.
The adjoint problem writes:

Find ũ P KA0pΩq s.t. @v P KA0pΩq, apv , ũq “ l̃pvq

Let ũh be the finite element approximation of ũ, we have:

l̃pu ´ uhq “ apu ´ uh, ũ ´ ũhq

Cauchy-Schwarz bound

|̃lpu ´ uhq| ď }u ´ uh}a}ũ ´ ũh}a ď ecrẽcr
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Linear quantities of interest

Parallelogram bound

Let eh “ u ´ uh and ẽh “ ũ ´ ũh,

l̃pu ´ uhq “
1
4

¨

˚

˚

˝

}seh `
1
s

ẽh}a
looooooomooooooon

S`

´ }seh ´
1
s

ẽh}a
looooooomooooooon

S´

˛

‹

‹

‚

with s “ }ẽh}a{}eh}a

Let β`{´inf { sup be bounds for S`{´, we have:

β`inf ´ β
´
sup ď 4̃lpu ´ uhq ď β`sup ´ β

´
inf
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Sequential recovery of admissible fields

σ̂ P SApΩq Ă Hdiv pΩq
w P KA0pΩq

Element equilibration techniques
1. Compute face tractions from σh, optimize on closed loops4 or at least on

star-patches5.
2. Solve Neumann problems on elements with high order elements6.

Flux-free technique7
Using partition of unity, directly solve the error equation apeh, vq “ rhpvq with high
order on star-patches.
Automatically provides both σ̂ and ŵ (for the lower bound).

The recovery involves many localized operations. Evaluating the error roughly
doubles the computational cost.

In the following we assume we have a recovery procedure pσ̂,wq “ Fpσh, f , gq.
It works for pure Neumann problems if rigid body balance is satisfied by pf , gq.

4V. Rey, Gosselet, and C. Rey, 2014.
5Pled, Chamoin, and Ladevèze, 2011.
6Babuška et al., 1994.
7Parés, Díez, and Huerta, 2006.
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Distributed admissible fields
Let ω Ă Ω

Subspace of kinematically admissible fields (KA)

KApωq “
!

u P
`

H1pωq
˘d
, u “ ud on Bω

č

BuΩ
)

Subspace of statically admissible fields(SA)

SApωq “
#

τ P
`

L2pωq
˘dˆd
sym ; @v P KA00pωq,

ż

ω

τ : εpvq dx “
ż

ω

f ¨ v dx `
ż

Bg Ω
Ş

Bω

g ¨ v dS
+

Global admissibility

u P KApΩq ô

ˇ

ˇ

ˇ

ˇ

ˇ

us P KApΩsq, @s

trpusq “ trpus1 q on Γps,s
1q

σ P SApΩq ô

ˇ

ˇ

ˇ

ˇ

ˇ

σs P SApΩsq, @s

σs ¨ ns ` σps
1q ¨ nps

1q “ 0 on Γps,s
1q
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FETI
[Farhat et Roux 91, 94]

Global system on domain Ω

Ku “ f

K is SPD
Substructured formulation
N non-overlapping subdomains,
conforming mesh)

Ksus “ fs ` tsT
BsT

λ
ÿ

s
Bstsus “ 0

λ = Lagrange multipliers that
connect subdomains
Classical FETI system

ˆ

F G
GT 0

˙ˆ

λ
α

˙

“

ˆ

d
e

˙

Topology

ts = trace operators
Bs = signed Boolean assembly operators

Local operators

Ss “ Ks
bb ´ Ks

biK
s´1
ii Ks

ib Schur complement
Fs “ pSsq` “ tsKs` tsT Dual Schur
Rs “ kerpKsq basis of rigid body modes

Global operators

e “ ´
´

. . . , fsT
Rs , . . .

¯T

G “ p. . . ,BstsRs , . . .q

F “
ÿ

s
BsFsBsT

d “ ´
ÿ

s
BstsKs` fs

P. Gosselet Error and DD 20



FETI
Preconditioner and projector

Rigid body constraint

λ0 “ AGpGTAGq´1e

P “ I´ AGpGTAGq´1GT

Matrix A is a SPD matrix, A » S̃ approximates the preconditioner.

λ is sought as λ “ λ0 ` Pλ̃ where λ̃ is a solution of:

PTFPλ̃ “ PT pd´ Fλ0q “ PT

˜

ÿ

s
BsKs` pfs ´ BsT

λ0q

¸

Dirichlet preconditioner

This system is solved by an iterative solver, the preconditioner S̃ being

S̃ “
ÿ

s

rBsSs
rBsT

rBs are scaled8 assembling operators / r. . . rBs . . .sT “ r. . .Bs . . .s`

Ss are the Schur complements

8Klawonn and Widlund, 2001; Rixen and Charbel Farhat, 1999.
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Illustration of local equilibrium
Dirichlet and Neumann bcs

Continuous displacement at the interface

û2b ´ û1b “ 0 ñ û2b “ û1b

Balanced reactions at the interface
λ̂

2
N ` λ̂

1
N “ 0 ñ λ̂

2
N “ ´λ̂

1
N

Dirichlet problem on Ωs

out of balance reactions

Neumann problem on Ωs

discontinuous displacements
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Interface iterations
Dual (FETI)9 and primal (BDD)10 approaches

=

= -

Resolutions of
  Dirichlet problems

Resolutions of 
Neumann problems

SplittingSplitting

Kinematic admissibility

Static admissibility

//

//

+ coarse problem

BDD

FETI

+ no stationarity, Krylov solver is mandatory

9C. Farhat and Roux, 1994.
10Mandel, 1993.
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Algorithm 1: FETI: main unknown Λ
Λ “ Initializepfs q

Local reactions λs
N “ BsT

Λ
pus

N q “ SolveN pλ
s
N , f

s q

Compute residual r “ PT
2 p

ř

s B
s tsus

N q

Define local displacement ũs
b “

rBsT
r;

pλ̃s , ũs q “ SolveDpũs
b , 0q //

us
D “ us

N ´ ũs

λ
s
D “ λ

s
N ´ λ̃

s

Preconditioned residual z “ P2p
ř

s
rBs λ̃s

q

Search direction w “ z
while

a

pr, zq ą ε
a

pr0, z0q do
pδus

N q “ SolveN pBsT
w, 0q

p “ PT
2 p

ř

s B
s tsδus

N q
α “ pr, zq{pp,wq

Λ Ð Λ ` αw //
us

N Ð us
N ` αδu

s
N

λ
s
N “ BsT

Λ
r Ð r ´ αp

ũs
b “

rBsT
r

pλ̃s , ũs q “ SolveDpũs
b , 0q //

us
D “ us

N ´ ũs

λ
s
D “ λ

s
N ´ λ̃

s

z “ P2p
ř

s
rBs λ̃s

q

wÐ z ´ pp, zq{pp,wqw
end
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Construction of global admissible fields
At each iteration of FETI(DP)/BDD(C)11

uD P H1pΩq continuous everywhere and in equilibrium inside subdomains,

uN P H1pYΩsq in equilibrium inside subdomains, with associated interface
nodal reactions λs

N in balance between subdomains λsT
N “ BsT Λ and in

balance wrt rigid body motions and external load. Let σN be the associated
FE stress field.

Figure: Subdomain and its surrounding Figure: Preprocessing before recovery

Once we have a L2 representation of interface traction, we can compute in parallel:
σ̂s

N “ FpσN , f , g , pg s,i qi q with σ̂N “ pσ̂
s
Nqs P SApΩq

For the construction of w P KA0pΩq we use 0-Dirichlet bc on the interface.

11A. Parret-Fréaud et al., 2010.
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The little difficulty of multiple points12
For Ωs , g s,i is typically developed on the FE basis.
Its nodal components are adjusted in order to develop the same work as λs,i

N .

At multiple points, we first need to define pλs,i
N qi from λs

N .
pλs,i

N qi is defined up to an effect-less “cyclic” stress in kerpBsT
q.

Optimization is necessary, it must take heterogeneity into account.
One neighbor communication is required.
This is equivalent to what is encountered in the Element Equilibration Technique.

Figure: Methodology for parallel stress recovery / equivalent sequential star-patch

12Augustin Parret-Fréaud et al., 2016.
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First bounds

Direct transcription of the chosen bounds

ř

s Rs
Dpŵ

sq
b

ř

s }ŵ s}2a

ď }u ´ uD}a ď

d

ÿ

s
e2crpus

D , σ̂
s
Nq

with

Rs
Dpŵ

sq :“

¨

˚

˝

ż

Ωs

f ¨ ŵ sdΩ`
ż

Bg Ωs

g ¨ ŵ sdS ´
ż

Ωs

εpus
Dq : H : εpŵ sqdΩs

˛

‹

‚

we recall that ŵ s is 0 on the interface.
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Γ-shaped structure — first upper bound13

Parallel error estimator:
}u ´ uD}a ď

b

ř

seCRpus
D , σ̂

s
NqΩs

Fast convergence of the
estimator

Fast convergence of error maps

The solver converges but the error stagnates
13A. Parret-Fréaud et al., 2010.
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Bounds with separated contributions
Lemma14

For FETI(DP) and BDD(C), we have:

}uD ´ uN}a “ }r}S̃ “: |r |

The energy norm of the gap between uN and uD equals the preconditioner-norm of
the residual which is naturally computed at each iteration. It can be chosen to
control the iterative solver.
Usually iterations stop when }ri}S̃ ď ε}r0}S̃ and typically ε “ 10´6.

Bounds

}u ´ uN}a ď

d

ÿ

s
e2crpus

N , σ̂
s
Nq ` |r |

ř

s Rs
Npŵ

sq
a

ř

s }ŵ s}a
´ |r | ď }u ´ uD}a ď

d

ÿ

s
e2crpus

N , σ̂
s
Nq ` |r |

The first bound is adapted from Vohralik. The second bounds simply uses
triangular inequality.

|r | only depends on iterations, other quantities depend on the discretization and
(very) weakly on the iterations.
14Augustin Parret-Fréaud et al., 2016; V. Rey, C. Rey, and Gosselet, 2014.
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Unbiased stopping criterion

Figure: Pre-cracked structure: forward and adjoint load, decomposition into 16 sd
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101
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|r|

θdiscr
ρdiscr

Er
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100

101
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|r|

θdiscr
ρdiscr

Er
re
ur

Figure: Envelop of the error due to the discretization and evolution of the residual
P. Gosselet Error and DD 33



Practical considerations

When to compute bounds

Evaluate discretization bounds at iteration 1 (avoid 0).

Iterate until residual is smaller than the inf bound.
Reevaluate the discretization bounds if they changed to much go on with
iterations.
If needed prepare for adaptation (compute remeshing map)

Quantities of interest

Solve forward and adjoint problem at the same time using a block solver.
Also use block computations for the recovery of admissible fields.
Stop when both residuals are less than their inf bounds.
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Strategy for adaptation with recycling

Contributions à l'erreur Directions de recherche

Nouveau maillage

Maillage initial

Espace de recherche réduit

Résolution

Raffinement local parallèle

discrétisation 
de l'interface inchangée

Utilisation directe des 
directions de recherche

Gestion des incompatibilités 
aux interfaces

1

2
2

3

1

2

1
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Strategy for adaptation with recycling
We select subdomains most contributing to the errors.
We use hierarchical refinement (at least on the interface)so that the building of
admissible fields remains easy.

1 2 3 4 5 6 7 8 9 10111213141516

0

50

100

e “ 26.215
re “ 0.98905

ηs

rηs

(a) Initial mesh

1 2 3 4 5 6 7 8 9 10111213141516

0

0.5

1

e “ 16.662
re “ 0.51378

ηs

rηs

(b) Locally refined mesh

Figure: Distribution of error within subdomains

Mesh e re IH IHH,2
1
2 ere

Uniform 26.215 0.98905 2.4915 3.1935 12.964
Locally refined 16.662 0.51378 3.2165 0.086055 4.2803

Table: Performance of local refined for the cracked structure
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Adaptation and recycling
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Figure: Erreurs de discrétisation et résidus au cours des itérations
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Conclusion

The recovery of admissible fields can be fully parallel (after just one neighbor
communication).

There are inf and sup bounds of the error which separates the contribution of
the solver and of the discretization.
We can stop the iterative solver based on an unbiased criterion. In practice
the discretization error quickly dominates.
If quantity of interest are wanted, block solvers can be used.
For the adaptation, hierarchical refinement of interfaces allows to reuse the
numerical information.

Ongoing and future work:
Real implementation for HPC, with improved sequential recovery techniques.
Error estimation for nonlinear problems15 with separation of sources16 with
nonlinear DD solvers17.
More evolved marking and refinement techniques with good load balancing
Ñ adaptation of the mesh and of the decomposition.

15Ladevèze, 2008.
16El Alaoui, Ern, and Vohralik, 2010; Moës, 1996.
17Dolean et al., 2015; Klawonn, Lanser, and Rheinbach, 2014; Negrello et al., 2016.
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