
HAL Id: hal-01613873
https://hal.science/hal-01613873

Submitted on 10 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AGENT: Automatic Generation of Experimental
Protocol Runtime

Gwendal Le Moulec, Ferran Argelaguet Sanz, Valérie Gouranton, Arnaud
Blouin, Bruno Arnaldi

To cite this version:
Gwendal Le Moulec, Ferran Argelaguet Sanz, Valérie Gouranton, Arnaud Blouin, Bruno Arnaldi.
AGENT: Automatic Generation of Experimental Protocol Runtime. ACM Symposium on Virtual
Reality Software and Technology (VRST), Nov 2017, Gothenburg, Sweden. �hal-01613873�

https://hal.science/hal-01613873
https://hal.archives-ouvertes.fr


AGENT: Automatic Generation of Experimental Protocol Runtime

Gwendal Le Moulec∗

INSA Rennes, IRISA, Inria

Ferran Argelaguet†

Inria, IRISA

Valérie Gouranton‡

INSA Rennes, IRISA, Inria, France

Arnaud Blouin§

INSA Rennes, IRISA, Inria

Bruno Arnaldi¶

INSA Rennes, IRISA, Inria

Abstract

Due to the nature of Virtual Reality (VR) research, con-
ducting experiments in order to validate the researcher’s
hypotheses is a must. However, the development of such
experiments is a tedious and time-consuming task. In this
work, we propose to make this task easier, more intuitive and
faster with a method able to describe and generate the most
tedious components of VR experiments. The main objective
is to let experiment designers focus on their core tasks: desig-
ning, conducting, and reporting experiments. To that end,
we propose the use of Domain-Specific Languages (DSLs)
to ease the description and generation of VR experiments.
An analysis of published VR experiments is used to iden-
tify the main properties that characterize VR experiments.
This allowed us to design AGENT (Automatic Generation of
ExperimeNtal proTocol runtime), a DSL for specifying and
generating experimental protocol runtimes. We demonstra-
ted the feasibility of our approach by using AGENT on two
experiments published in the VRST’16 proceedings.

1 Introduction

One of the focus of Virtual Reality (VR) researchers is the
analysis of how humans behave [27], perceive [15] and in-
teract [2] in VR environments. This research is bounded
to the design of user studies in order to validate the rese-
archer’s hypotheses. In particular, experiments in VR aim
at studying the effects of a system, application, interface,
algorithm, etc. on system or users. Indeed, according to
Andrew Colman [4], “experimental methods [...] [allow] ri-
gorous examination of causal effects”. For example, Lato-
schick et al. [17] designed a fake-mirror system that consists
of a screen displaying the picture of an avatar imitating the
movements of the user. They conducted an experiment to
study the effect of the avatar nature (more or less realistic)
on the feeling the users had they were standing before a real
mirror.

Experiments must conform to some requirements, such as
defining experimental conditions, dependent and indepen-
dent variables, and the experimental protocol [8]. Research
works were conducted to: guide experiment design in VR
and augmented reality [10, 16, 14]; help evaluating specific
concepts such as presence [25, 28], acceptability [3], or col-
laboration [13, 20]. Yet, experiment designers still have to
develop the experimental VR application, which is a tedious,
repetitive, and time-consuming task.

∗e-mail: gwendal.le-moulec@irisa.fr
†e-mail: fernando.argelaguet sanz@inria.fr
‡e-mail: valerie.gouranton@irisa.fr
§e-mail: arnaud.blouin@irisa.fr
¶e-mail: bruno.arnaldi@irisa.fr

In this work, we propose AGENT (Automatic Generation
of ExperimeNtal proTocol runtime) to ease the development
of experimental VR applications. AGENT automatically ge-
nerates experimental protocol runtimes letting experiment
designers focus on their core tasks: designing, conducting,
and reporting experiments. AGENT is based on the increa-
singly used Software Engineering concept of Domain-Specific
Language (DSL) [31, 9, 21]. DSLs ease software production
by using software languages designed to tackle specific pro-
blems. DSLs are indeed designed to have key-words, nota-
tions, and syntaxes familiar to the domain experts. DSLs
should remain small, simple, and easy to use. Their design
should be adapted to the organizational process of the final
users [32]. By fulfilling these criteria, DSLs allow to leverage
specific domain expertise of various stakeholders involved in
the development of software systems [10, 16, 14].

After an experimental protocol designed within an
AGENT model, this last is compiled into runnable code.
The runnable code is then integrated into an already exis-
ting VR project, provided by the experiment designer.

The paper is structured as follows. Section 2 presents the
state of the art of VR experiment design, the efforts made
to ease the task of experiment designers, and their limits. In
Section 3, an analysis of several existing and reported VR
experiments is presented to characterize VR experiments.
Based on this analysis, the proposed approach is detailed in
Section 4. Section 5 reports and discusses the usage of our
approach on two use cases. Finally, Section 6 concludes this
work and presents future works.

2 State of the Art

2.1 Basics of Experimentation

Designing experiments is based on a rigorous set of princi-
ples to follow [8]. According to Andrew Colman [4], an ex-
periment is “a research method whose defining features are
manipulation of an independent variable or variables and
control of extraneous variables that might influence the de-
pendent variable”. An independent variable is “a variable
that is varied by the experimenter independently of the ex-
traneous variables”. A dependent variable is “a variable that
is potentially liable to be influenced by one or more indepen-
dent variables”. The main idea behind experiments is to as-
sess what causality relations exist between different events or
facts [4], i.e., the potential effect independent variables have
on dependent variables. Dependent variables correspond to
the data collected during experiments and can be qualita-
tive or quantitative data [5]. Asserting the existence of an
apparent causal relation between independent and depen-
dent variables, i.e., ensure internal validity, is a necessary
step [26]. Generalizing results observed on small populati-
ons, i.e., ensure external validity, requires the use of statis-
tical methods [23, 7].



2.2 VR Experiment Design

Those general principles are applicable in every domain
where experiments are used. In Computer Science, dom-
ains related to human-centered design need experiments to
validate their approaches. Human-centered design indeed
often implies human-computer interactions: the influence of
the design properties on user-experience should be validated.
Gabbbard proposed guidelines and methods for designing
human-centered applications and experiments [10]. Other
works focus on augmented reality applications design and
evaluation [16, 14].

If the classic method consists in running experiments
where a population of participants uses the interfaces to
evaluate, other approaches have been proposed. Stanney et
al. use heuristics to guide and evaluate VR interfaces de-
sign [29]. Tromp et al. propose a usability inspection met-
hod [30], i.e., a simulation of the use of an application to
find users need.

In human-centered design and more specifically in VR,
some specific interface characteristics are evaluated. They
are often qualitative aspects, which are not easy to evaluate
because of their subjectivity [8]. Research have been done to
propose standard questionnaires. Congnitive loading indu-
ced by systems can be evaluated thanks to the NASA-TLX
questionnaire [12]. The Situation Present Assessment Met-
hod (SPAM) can be used to evaluate presence [6], so as ot-
her methods [25, 28, 33]. Brooke proposed an acceptability
questionnaire [3]. Evaluation of collaboration was studied
too: Hornbæk proposed metrics based on communication
(e.g., number of uttered words per person, number of que-
stions asked to collaborators, number of interruptions) [13].
Meier et al. completed these metrics by considering other
aspects of collaboration (e.g., coordination or motivation of
each actor) [20].

2.3 Easing Experiment Design

If these works focus on guiding experiment designers, imple-
menting experimental protocols to be integrated into run-
ning applications is a manual, time-consuming and tedious
task. Tools dedicated to facilitate this task exist. Field et
al. proposed IBM SPSS Statistics [7], a tool for performing
statistical analyses of data. Another example of such tools is
the R project1. Software solutions for designing experimen-
tal conditions (e.g., variables, populations) and registering
results can be used, e.g., EDA2 or Go-Lab3, but they are
mostly useful for other domains than VR (mostly biology,
physics, or chemistry). VR could benefit of some tools refe-
renced by the National Heritage Language Resource Center
(NHLRC, California)4 that are more human-centered. More
interestingly, the framework EVE was specifically designed
to ease experiment setup and implementation in Virtual En-
vironments [11]. EVE focuses on automating data gathering
and analysis but does not handle experimental protocol ge-
neration. No other solutions dedicated to VR exist.

In overall, the existing solutions are limited to experi-
ment conditions modeling and data management. There is
no code generation and the model are in general not meant to
be processed by programs. Furthermore, protocol definition
is often limited or nonexistent. The consequence we obser-
ved ourselves is that researchers end-up by developing their
own limited and ad hoc solutions. There are no libraries or
projects that generate running code for VR experiments.

1https://www.r-project.org/
2https://www.nc3rs.org.uk/experimental-design-assistant-eda
3http://www.golabz.eu/apps/experiment-design-tool
4http://international.ucla.edu/nhlrc/data/software

2.4 Model-Driven Engineering and Domain-Specific Lan-
guages

Software industry faces the constant increase of systems
complexity. Modelling aims at mastering this complexity
through the Model-Driven Engineering (MDE) domain [24].
In MDE, models focus on specific problems for a specific au-
dience to ease the software development process. MDE tools
help software engineers in developing and tooling languages
that are designed to answer specific problems; such langua-
ges are called domain-specific languages (DSL) [31, 9, 21].
DSLs provide a bridge between the problem space in which
domain experts (experiment designers in our case) work and
the implementation space. Developed DSLs usually come
with associated tools such as editors, code generators, simu-
lators.

3 VR Evaluations: a Preliminary Analysis

In this section we study recent research papers to draw up
a precise map of the concepts related to VR experiment de-
sign. The goal is to identify the properties that characterize
experiments in VR.

We have studied 15 papers and posters from the VRST’16
proceedings [1] where experiments are conducted on various
topics: displays, latency, training, presence, human beha-
vior simulation, haptics, tracking, cinematic VR, distance
perception, and 3D user interfaces. We focused on experi-
ment design: mathematical and statistical analysis of data
is not in the scope of this paper (but in future works). Obvi-
ously, the set of identified properties - obtained empirically
- can not cover all VR experiments. Though, we consider
that recent VRST papers are representative enough. Hence,
the drawn properties cover a large scope of VR experiments.

The first observation we made is that designing an expe-
riment can be divided into two main tasks: (1) experimental
conditions and variable design, and (2) protocol design. We
reported our analysis on two mind-maps, respectively for
the concept of variable and the concept of protocol (see Fi-
gures 1 and 2). This allowed us to quickly obtain a structure
of concepts specific to VR experiments. Figures 1 and 2 sum-
marizes the main concepts we identified. Section 3.1 discus-
ses experimental conditions and variable design. Section 3.2
discusses protocol design.

3.1 Variables

Two types of variables exist: dependent and independent
variables. Dependent variables can be quantitative: physio-
logical constants, e.g., blood pressure, time for performing
a task, performance of the subject, accuracy of a method.
They can also be subjective feelings, e.g., how the subject
appreciated a task, how comfortable it was. Questionnaires
like the ones presented in Section 2 can be used to record
these qualitative measures. Hence, data can come from
various sources: mainly physiological sensors, software
measurements, and forms. As a result, two first properties
can be drawn up to characterize VR experiments:

P1: dependent variables can be of different types
(integer, float, boolean, mark, customized types,
etc.)

P2: dependent variables correspond to three
types of data sources: sensors, software measure-
ments, and forms.

Independent variables correspond to what is under eva-
luation or comparison: metaphors, navigation, interaction

https://www.r-project.org/
https://www.nc3rs.org.uk/experimental-design-assistant-eda
http://www.golabz.eu/apps/experiment-design-tool
http://international.ucla.edu/nhlrc/data/software


Figure 1: mind-map depicting the concept hierarchy under the concept of variables in VR experiments.

or rendering techniques, hardware setups, algorithms, en-
vironmental conditions, etc. Hence, independent variables
correspond to software or hardware features developed or
studied by the experiment designers. In experiments, two
usages are possible for independent variables:

• comparison, e.g., several metaphors are compared to
determine which one is the most appreciated,

• determining the effect of a single condition, e.g., one
specific environmental condition is activated and then
deactivated to determine the effect induced by its pre-
sence.

Independent variables can then be of two types: boolean
(compare presence / absence) and enumeration (comparison
of several conditions). The possible values of independent
variables are called “levels”. Two more properties can then
be added:

P3: two types are possible for independent
variables: boolean and enumeration.

P4: independent variables and their levels cor-
respond to software or hardware features that can
vary.

All possible levels are not necessarily presented to each
participant of an experiment. In some cases, several
groups of participants - exposed to different conditions
- are necessary. For example, to evaluate the effect of a
navigation technique on cybersickness, two groups could
be made: one group of subjects exposed to the navigation
technique under evaluation and one control group, exposed
to a known navigation technique that does not induce
abnormal cybersickness. Conditions that are evaluated
on all participants of a study are called “within-subject
factors”, whereas conditions that differ from one group to
another are called “between-subject factors”. One more
property can be drawn up:

P5: between-subject factors imply to make several
groups, each of them corresponding to a distinct pro-
tocol.

3.2 Protocol

The protocol is the process that participants follow during
a session. We consider that it begins when the participants
start to use the VR experimental application, i.e., we
consider the protocol starts after preliminary phases during
which the participants have to read and sign a consent form

and are associated to identifiers, for anonymity reasons. If
there are between-subject factors and hence several groups,
each group is associated to a different protocol, with the
only difference being at the level of the between-subject
factors. This is the statement of property P6:

P6: the protocols of each group differ only at the
level of between-subject factors.

The part of the protocol on which we focus is often sepa-
rated into two phases: (1) an acclimatization and / or cali-
bration phase and (2) a data acquisition phase. The accli-
matization phase role is to train the participants to the use
of the VR application: they should be used to the different
conditions they will experiment. During the acclimatization
phase, participants repeat several times the different condi-
tions, very often in a randomized order. During this phase,
it is possible to adapt the number of repetitions to the parti-
cipants. A calibration phase with similar characteristics can
be performed, e.g., if some sensors must be calibrated.

The data acquisition phase role is to record data, and
hence to evaluate the influence of the independent variables
on the dependent variables. Participants repeat also several
times the different conditions in a randomized order. The
number of repetitions is generally greater than in acclimati-
zation phase and must be the same for each participant. A
last property can be added:

P7: in acclimatization and calibration phases, the
subject perform tasks but no data is collected.

4 Approach

The properties that characterized VR experiments are now
used to propose an approach for easing their design and pro-
duction.

4.1 Overview

The proposed approach allows to design VR experiments
with the use of a DSL we designed based on the properties
identified in Section 3. This DSL is called AGENT (Automa-
tic Generation of ExperimeNtal proTocol runtime). Models
produced with this DSL are compiled into code to be inte-
grated into VR projects (e.g., Unity 3D projects). Figure 3
depicts the processing chain of the approach.

The use of AGENT produces an AGENT model that is
then compiled into runnable code integrable into a VR pro-
ject. An AGENT model is composed of two parts: an expe-
rimental conditions model and a protocol model . It is up to
the experiment designer to provide to AGENT all the VR



Figure 2: mind-map depicting the concept hierarchy under the concept of protocols in VR experiments.

Figure 3: processing chain of the approach.

components that are not directly related to the experiment
(i.e., 3D models, metaphors, interactions, etc.).

The remaining of Section 4 is organized as follows.
Section 4.2 introduces an illustrative example as a basis
for the detailed explanation of the approach. Section 4.3
presents the experimental conditions model structure.
Section 4.4 presents the protocol model structure. Section 4.5
ends the presentation of the approach by presenting the com-
pilation and integration steps.

4.2 Illustrative Example

Consider a VR experiment of which independent variables
are:

• Ib, a boolean variable (between-subject factor),

• Ie with two levels : L1 and L2 (within-subject factor).

The dependent variables are:

• Dq, answers to a questionnaire, in the form of Likert-
scale marks, for evaluating the task regarding indepen-
dent variables possible values,

• Ds, speed of execution of the task.

The protocol is as follows:

1. acclimatization phase : the subject executes the task
2 × 4 times, i.e., 4 times each condition among the
condition set Cb or C¬b, depending on the group (see
Equations (1) and (2)), no data being recorded,

2. data acquisition : the subject executes the task 2× 32
times, i.e., 32 times each condition among Cb or C¬b,
with Ds being recorded,

3. subjective evaluation : the subject answers the questi-
onnaire.

Figure 4: experimental conditions model UML class diagram.

Cb = {(Ib, L1), (Ib, L2)} (1)

C¬b = {(¬Ib, L1), (¬Ib, L2)} (2)

The two groups, respectively exposed to the conditions Cb

and C¬b are called Gb and G¬b.

4.3 Experimental Conditions Model

The experimental conditions model is the part of an AGENT
model that describes the independent and dependent varia-
bles. Figure 4 depicts the concepts of this DSL in the form
of a UML class diagram. Figure 5 shows the experimental
conditions model designed using AGENT that corresponds
to the example of Section 4.2.

An experimental conditions model has a tree-like struc-
ture. The tree is composed of three mandatory nodes: (1)
the root that defines the name of the model, and its two
child nodes; (2) the “independent variables” node; (3) the
“dependent variables” node. The independent and depen-
dent variables are respectively to be defined under the nodes
(2) and (3), as their child nodes.



Figure 5: experimental conditions model based on the exam-
ple of Section 4.2.

According to P3, there are two types of independent va-
riables: boolean and enumeration variables. Enumeration
variables are constituted of possible levels, each level being
defined under the node corresponding to their variable (e.g.,
see Figure 5).

There are two types of dependent variables: objective and
subjective variables. Objective variables are data collected
from software or hardware sources (physiological sensors and
software measurements of P2) and can be of various types
(e.g., boolean, integer, enumeration, float, customized types,
etc.), according to P1. The linkage of objective dependent
variables to their data source is managed by the integration
module (see Section 4.5), not by the experimental conditi-
ons model , where only the names of the variables can be
provided (e.g., Ds). Subjective variables are questions as-
ked to participants and their answers, gathered into special
forms designed by the experimenters (see P2). In the ex-
perimental conditions model , the experiment designer can
define forms with an identifier (e.g., Dq) and a hyperlink al-
lowing to access the form. In the remaining of the paper, all
the leaves of an experimental conditions model (i.e., boolean
independent variables, variable levels, questionnaires, and
objective dependent variables) will be called features.

4.4 Protocol Model

4.4.1 Description

Figure 6 depicts the concepts that are presents in protocol
models in the form of a class UML diagram. It shows that
AGENT allows to define experimental protocols as lists. Fi-
gure 7 shows such a list, that contains three elements separa-
ted by arrows. Some elements are composed, e.g., the second
element in Figure 7 is composed of Condition1, Condition2,
and Acclim. Figure 7 shows the protocol model designed
using AGENT that corresponds to the group Gb of the ex-
ample presented in Section 4.2. The protocol of group G¬b
is the same, but feature Ib is not present (set to false). Note
that between-subject and within-subject factors are impli-
citly defined in AGENT. The distinction is made if several
groups (hence several protocol models) exist: variables cor-
responding to between-subject factors are the ones that vary
from a protocol model to another. Properties P5 and P6 are
then satisfied.

A protocol model is a states list with five types of state:
(1) start state (green disk on Figure 7), end state (red disk),
simple state (yellow rectangle), random-loop state (purple
rectangle), and customized-loop state (orange rectangle, see
Figure 11). The core idea behind protocol models is that
each phase of the experiment (simple, random-loop, and
customized-loop states) corresponds to the selection of a
subset of the features defined by an experimental conditi-
ons model . Let’s consider the protocol given the example
of Section 4.2. First, the subject goes through an acclima-
tization phase where he has to perform the task 8 times,
covering 2 conditions that are combinations of the indepen-

Figure 6: protocol model UML class diagram.

Figure 7: protocol model of group Gb, from the example
presented in Section 4.2.

dent variables possible values. Second, he does the same
thing but with 64 repetitions, and with data being recorded,
i.e., considering the effect of the independent variables on
the dependent variable Ds. Third, he completes the que-
stionnaire corresponding to the set of dependent variables
identified by Dq. Hence, each step corresponds to the se-
lection of several features from the experimental conditions
model of Figure 5. For each step of a protocol model , the
selected features are listed under the “Features” label (see
Figure 7). For example, in the simple state SubjectiveEval,
there is only one feature selected: Dq.

The case of loop states (random-loop and customized-
loop) is more complex. A loop state models the repetition of
a task under different conditions. The number of repetitions
for each condition, i.e., the multiplicity (see Figure 6), is
indicated at the top-right corner of each loop state (see Fi-
gure 7). Conditions are modeled as blue rectangles linked to
the loop state that cover them. Conditions make references
to features, so as loop states do. If a feature is held by the
loop state itself, then it means that this feature is active for
all repetitions and conditions. For example, in the DataAcq
state corresponding to the step (2) of the illustrative proto-



col, data is recorded whatever the current condition. The
between-subject factor Ib is also set to true for the group Gb

in all cases. Hence, the feature Ds is held by the random-
loop state (as so as Ib for Gb). If a feature is held by a
condition, then it means that the feature is active only for
repetitions where the condition is active.

Random-loop states allow to model repetitions where con-
ditions come in a random order. The multiplicity is an inte-
ger (see Figure 6) that represents the number of times each
condition will be repeated. Customized-loop states allow to
model other kinds of repetitions, e.g., deterministic or based
on the participants choice. Sometimes experiment designers
indeed propose phases where participants can repeat condi-
tions on demand [19]. To handle this case, the multiplicity
of customized-loop states is not an integer but an interval
(see Figure 6). This way, the experiment designer can make
the number of loops be: constant (notation “n”), limited
(notation “n..N”), or unlimited (notation “n..∗”).

Note that differentiating acclimatization and data acqui-
sition phases is illustrated here: acclimatization phases are
loop states where data recording is deactivated (no depen-
dent variable in the feature list of the loop state). Data
acquisition phases are on the contrary loop states (in gene-
ral random-loop states) where data recording is activated.
In our approach, acclimatization and calibration phases are
represented the same way: extraneous calibrations of any
kinds are not managed by AGENT. P7 is then satisfied.

4.4.2 Discussion

The choice of modeling protocols as lists comes from the pre-
liminary study (see Section 3). Lists are sufficient because
of the nature of VR experiments: protocols do not allow
alternatives. However, when there are between-subject va-
riables, the protocol varies from one group to another. In
our approach, the experiment designer simply has to make
one protocol model per group. The only variations between
the different protocols are at the level of the features cor-
responding to between-subject variables. That is why the
concepts of between-subject and within-subject variables do
not appear explicitly in AGENT.

Other variations may appear at the task level. The sub-
ject could indeed have the choice to execute some actions in
the order he wants. For example, consider a task consisting
in selecting multiple objects in the Virtual Environment, the
subject could chose in which order he selects the objects. Ho-
wever, these variations are at the level of the use-case and
do not correspond to variations of the protocol in itself. Va-
riations in the use-case are out of the scope of this paper and
that is why AGENT does not manage them. It is up to the
experiment designer to manage these variations and provide
them to AGENT along with the VR elements not related to
the experiment in itself (see Figure 3).

4.5 Code Generation and Integration

After an experiment protocol was modeled, runnable code
can be generated through the use of the AGENT compiler .
The generated runnable code can be integrated into the VR
project through the AGENT integration module. The run-
nable code is characterized in Section 4.5.1. The transfor-
mation operations that allow to compile AGENT models to
runnable code are precised in Section 4.5.2. The integration
module is presented in Section 4.5.3.

4.5.1 Generated Runnable Code Characterization

As Figure 3 shows, the generated runnable code can be cha-
racterized by a runtime model . The runtime model is a state

Figure 8: runtime model generated from the example of
Section 4.2 (group Gb).

machine. For example, the runtime model generated from
the example of Section 4.2 (group Gb) is represented in Fi-
gure 8.

On the figure, The rounded rectangle is a state containing
itself a state machine. Conditions triggering a transition are
indicated between brackets. Actions resulting from the trig-
gering of a transition follow the slash. The variable t.nb is
the number of executed trials. The variable f is the set of se-
lected features. The [r] condition means that the transition
is triggered randomly. Final states are marked by a cross.

4.5.2 Compilation: from AGENT Model to Runnable Code

Figure 8 already gives the intuition of the transformation
algorithm (from protocol model to runtime model). The for-
mal algorithm will not be given for the sake of simplicity
and concision. We will only give the intuition of it.

Transformation of Start, End, and Simple States The
transformation operator applied to the start, end, and sim-
ple states is the identity: they are respectively transformed
to initial, final, and standard states of the runtime model .

Transformation of Transitions Two possibilities exist:

1. the origin state of the transition is a start, end, or sim-
ple state. In that case, the transformation operator is
the identity.

2. the origin state of the transition is a loop state. In
that case, the generated transition is conditional: the
condition for going through the generated transition is
that the number of loops defined in the loop state where
ran.

In all cases, the generated transitions must trigger events:
the deselection of the features held by the origin state and
the selection of the features held by the target state.

Transformation of Loop States Loop states are transfor-
med to sub-state-machines. Each condition is transformed
to a state. The sub-state-machine must loop on each of these
states a number of time conform to the multiplicity of the
loop state. Obviously features held by the conditions must
be selected or deselected adequately.



4.5.3 Code Integration

The integration module is composed of 3 libraries that the
experiment designer has to use in order to integrate pro-
perly the generated runnable code to the VR project. This
section presents conceptually these libraries. Concrete usage
of them is presented in Section 5.

Feature Binding Library The experiment designer must
bind the experimental conditions model features to runtime
features (e.g., metaphors, interactions, virtual objects, etc.),
that he provides (see Figure 3). For example, the feature L1

represented in Figure 5 could be bound to a virtual object
(runtime feature). The selection (resp. deselection) of L1

in the runtime model would make the virtual object appear
(resp.disappear). Conceptually, the feature binding library
is a map that links experimental conditions model features
to runtime features, with two functions to implement for
specifying what happens at each selection / deselection of
a feature. Objective dependent variables are associated to
their data source (e.g., a field in a class, the output of a me-
asurement tool, etc.), that can be of various types. Property
P1, P2, and P4 are then satisfied.

Condition Sequencing Library This library provides se-
veral algorithms for sequencing the conditions in the case
of loop states: random with constant seed, random with
time-based seed, deterministic with fixed number of loops,
controlled by the user, etc..

Trial Completion Management Library Trial completion is
managed by the runtime model at the experiment level, i.e.,
loop conditions are changed after each trial completion. Ho-
wever, trial completion must be detected and the resulting
effects on the Virtual Environment must be triggered. Con-
sider for example a task consisting in going from a departure
point D to an arrival point A. Trial completion should be
detected when the arrival point A is reached and the trigge-
red effect would be to make the avatar automatically return
to the departure point D, for starting a new trial with ot-
her conditions. The experiment designer can use the trial
completion management library to add conditions and ef-
fects corresponding to trial completion to the transitions of
the runtime model .

4.6 Properties Fulfilling

Our approach satisfies the properties listed in Section 3.

• P1: the type of an experimental conditions model fe-
ature is the type of its bound runtime feature, which
is freely determined by the experiment designer (see
Section 4.5.3).

• P2: Questionnaire dependent variables are bound to
forms thanks to an hyperlink (see Figures 4 and 5). Va-
lueSource dependent variables are bound to data sour-
ces which nature is determined by the experiment de-
signer.

• P3: the boolean and enumeration types are defined
(Figure 4).

• P4: binding experimental conditions model features to
runtime features is ensured (see Section 4.5.3).

• P5 and P6: between and within subject factors are
implicitly defined (see Section 4.4).

• P7: acclimatization phases are loop states where data
recording is deactivated (see Section 4.4).

4.7 Implementation

AGENT was developed using DSL Tools5, a Visual Studio
20156 extension for creating DSLs. The AGENT compiler
has been developed in C#. Once an AGENT model desig-
ned by an experiment designer, code can be automatically
generated from this model by the compiler. The generated
code consists of XML files that implement the state machine
structure of the runtime model . It comes along with pre-
coded C# classes and an interpreter, provided with AGENT,
that implements the dynamic aspect of the runtime model .
The generated classes and the interpreter are meant to be
used with Unity 3D (we discuss adaptation of AGENT for
other VR platforms in Section 5.3). The integration module
is a Unity library, presented in more details in Section 5.1.

5 Creating an Experiment Using AGENT

In this section, we explain step by step the usage of AGENT
to produce an experiment. Section 5.2 presents the use of
AGENT on two real use-cases reported in the ACM VRST
2016 proceedings [1]. We end this section with a discussion
(Section 5.3).

5.1 Usage

The usage of AGENT is composed of three main steps: mo-
deling, code generation, and code integration.

5.1.1 Modeling

In our implementation, the experimental conditions model
and the protocol model are made using AGENT, developed
as Visual Studio extensions. To produce one of the models,
the experiment designer has first to create a new Visual Stu-
dio project with the appropriate model type. He can then
create the model by drag-and-dropping the different compo-
nents (e.g., experimental conditions model features, protocol
model states, transitions, etc.) on a conception area. The
text fields and features lists can be edited directly on the
created components. Figures 5, 7, 10 and 11 show examples
(screen captures) of models built using the AGENT DSL
within Visual Studio. Once the models are conceived they
are saved into XML files that are the input data for the code
generation step.

5.1.2 Code Generation

The compiler takes as entry the XML files and generates an
output XML file that represents the structure of the state
machine. The output XML makes reference to C# classes
we pre-coded and that are provided with AGENT. These
classes are responsible of transitions implementation.

5.1.3 Code Integration

All the integration is done in Unity at the level of one pro-
vided prefab with three child nodes: one for each library
defined in Section 4.5.3. They are each composed of Unity
scripts that have to be inherited to produce new scripts to
attach to the nodes of the provided prefab.

Feature Binding Library Figure 9 shows an example of fe-
ature binding in Unity, based on the example of Section 4.2.
This library contains several scripts, each of them allowing
to bind a feature to a special kind of Unity resource (e.g.,
GameObject, script, field, etc.). Each of these script de-
fine at least two fields: one for specifying the feature name,
and another for specifying the Unity resource it is bound

5https://msdn.microsoft.com/en-us/library/bb126259.

aspx
6https://www.visualstudio.com

https://msdn.microsoft.com/en-us/library/bb126259.aspx
https://msdn.microsoft.com/en-us/library/bb126259.aspx
https://www.visualstudio.com


Figure 9: Unity feature binding library node attached
scripts, based on the example of Section 4.2.

to. They also define two methods to be implemented by the
experiment designer, for managing feature selection and de-
selection. To bind features to external data sources (e.g.,
physiological sensors), the experiment designer can bind the
desired features to a Unity script which reads the external
data.

Condition Sequencing Library This library is composed of
two scripts, corresponding to the two types of loop states.
They allow to associate a loop state to sequencing algorithms
we provide. The customized-loop script allows in particular
to detect user requests to either end the loop or switch con-
ditions.

Trial Completion Management Library This library is com-
posed of one script that defines two functions to implement,
for specifying the trial completion condition and the trial
completion effect. A field allows to reference the protocol
model state it is bound to.

5.2 Use-cases

We used our approach on two experiments. The first use-
case is an experiment we reported [18]. The AGENT model
was made, the code was generated, and then integrated to
the Unity project of the associated VR application. (ob-
viously, the former code parts that were responsible of the
protocol runtime were removed). The refactored experiment
is fully functional.

The second use-case was the experiment reported by Mos-
sel et al. [22]. In this experiment, Mossel et al. compare two
segmentation and selection techniques (Raycast and Cut-
Plane). They evaluate their effects on user efficiency in
function of the difficulty of the selection task. The AGENT
model was made and the code was generated. Section 5.2.1
presents the models we made from this work (Figures 10
and 11). Section 5.2.2 presents the code integration process
for producing the complete experiment.

5.2.1 Modeling

Figure 10 shows the experimental conditions model made
with AGENT, from the work of Mossel et al.. In the pre-
sentation of their experiment, Mossel et al. give clearly the
independent variables “The participants had to use both Ray-
cast and [...] CutPlane [...] in combination with all three

Figure 10: experimental conditions model from the
experiment of Mossel et al. [22].

Figure 11: protocol model from the experiment of Mossel et
al. [22].



scenarios”. The three scenarios each correspond to a level
of difficulty: selecting a Fully visible, Partially occluded, or
Fully occluded object. Hence, there are two enumeration va-
riables (Vis and Sel on Figure 10) with respectively two and
three values: Raycast, CutPlane; and visible, partOccl, fu-
lOccl. The dependent variables are then explicitly given by
Mossel et al.. The “Objective Performance Measures” are:
TaskDuration, WalkDistance, SegmentationMiss, Selection-
Miss. The “Subjective Performance Measures” are gathered
in a post-questionnaire we identified by postQ in Figure 10.

Figure 11 shows the protocol model . The phases are: “trai-
ning phase, [...] experiment, and [...] a post-questionnaire”.
The three phases are represented with the three states of
the protocol model in Figure 11: Training, Experiment, Pos-
tQuestionnaire. PostQuestionnaire is a simple state because
the participant only has to answer to the questions. The
Experiment state is a random-loop of multiplicity 1 with six
conditions combining the values of the two independent va-
riables (see Figure 11). The justification can be found in
two sentences from Mossel et al.: “The participants had to
use both Raycast and CutPlane in combination with all three
scenarios. That results in total in six different tasks which
the participants perform in random order”. Training corre-
sponds to an acclimatization phase. Mossel et al. give this
description: “[Participants] were freely interacting in a test
environment, which comprised a simple Unity3D scene with
some artificial virtual objects that could be segmented and
selected and where objects’ visibility ranged from visible to
fully occluded. As soon as the user reported to feel confident,
the experiment stage [...] started”. Hence, Training is a
customized-loop state with unlimited multiplicity (0..∗). All
visibility conditions are presents in the Virtual Environment
(visible, partOccl, fulOccl). The user can switch between the
two selection techniques, which explains the two conditions
TrainingC1 and TrainingC2 in Figure 11.

5.2.2 Code Integration

With the feature binding library , the experiment designers
can bind the independent variables to the Unity components
that manage them. In the state Training, the three visibi-
lity conditions are selected at the same time. It just means
that they coexist at the same time in the test environment.
The objective independent variables (TaskDuration, Walk-
Distance, SegmentationMiss, SelectionMiss) are to be bound
to numeric calculated fields (i.e., fields in Unity scripts) that
are updated automatically by the VR application and that
correspond to the task duration, the walk distance, the num-
ber of inappropriate segmentation attempts, and the number
of inappropriate selection attempts, for each trial.

With the condition sequencing library , the experiments
designers can chose the implementation they want for the
random-loop state. They can also make the Training loop
state end by detecting the user request, performed on the
UI. Switching between the conditions TrainingC1 and Trai-
ningC2 is also made by detecting a user request.

With the trial completion management library , the experi-
ment designers can precise the trial end condition: the user
performed the segmentation and selection task. It can be
for example detected through a Unity script. The action to
perform to begin the new trial is to reset the position of the
user to the start position.

5.3 Discussion

AGENT is made to work with Unity. However it is possible
to adapt it to other VR platforms (e.g., CRYENGINE, Un-
real, etc.). The modeling part of AGENT does not need to

be modified. We estimate that the compiler needs to be par-
tially re-implemented. The integration module needs to be
totally re-implemented. Nevertheless we estimate that the
induced effort is minimal. These re-developed components
are indeed reusable and they remain small.

The compiler needs only to translate the protocol model
to a state machine. Estimating the effort for implementing
The integration module is more difficult because it highly
depends on the target platform. However, if we base our
estimation on our implementation, the only task is to deve-
lop a dozen of classes, each one containing no more than ten
lines of fields and functions definitions.

Furthermore, producing an experiment with our imple-
mentation can be done in few hours. To integrate the code,
some functions must be implemented (see Section 5.1.3). We
estimate that five lines of code for each of them in average
is a maximum.

6 Conclusion and Future Works

In this paper, we presented an approach for the automatic
generation of experimental protocol runtime. We conducted
a study on fifteen experiments reported in the VRST’16 pro-
ceedings [1], to determine the properties our approach should
satisfy. Seven properties could be drawn up. These proper-
ties define the main concepts our approach has to take into
consideration: independent and dependent variables; bet-
ween and within subject factors; acclimatization, calibra-
tion, and data acquisition phases of the protocol. They also
highlight the diversity of the independent and dependent
variables in experiments: variables can be software or har-
dware features, measurements or subjective analysis, data
can be produced by very specific devices, e.g., for measuring
physiological constants.

We designed an approach conform to these properties. We
then introduced the AGENT DSL, that generates the ex-
perimental protocol runtimes. More particularly, AGENT
allows to write experimental conditions models and protocol
models. These models are then compiled into runnable code,
for integration in a VR project.

We demonstrated that our approach is conform the se-
ven properties deduced from the preliminary analysis. The
experimental conditions model indeed allows to define in-
dependent and dependent variables, and the protocol model
allows to define acclimatization, standardization, and data
acquisition phases. Between and within subject factors are
implicitly defined by the use of several protocol models. Fi-
nally, the integration module allows to bind independent and
dependent variables to any hardware or software resource,
hence allowing to handle their potential diversity.

We demonstrated the feasibility of our approach by using
AGENT on two reported experiments. One of them was
completely rebuilt and for the other one we generated the
code. The 15 experiments reported in the VRST’16 procee-
dings [1] can be generated with the usage of AGENT.

In future works, we have the intention to submit AGENT
to a user-study to evaluate its efficiency over manual imple-
mentation. We also plan to evaluate its replicability with
engines different from Unity. Moreover, we plan to extend
this work to the statistical analysis step, by performing it au-
tomatically after the experiment was conducted. Finally, we
plan to investigate further the automatic production of VR
applications. In other domains than experiments, the pro-
duction of VR applications is indeed done manually, without
code or concept reuse. In particular, we plan to propose an
approach for automatically generating VR applications for
training.



References

[1] VRST ’16: Proceedings of the 22Nd ACM Conference on
Virtual Reality Software and Technology, New York, NY,
USA, 2016. ACM.

[2] D. A. Bowman, D. B. Johnson, and L. F. Hodges. Test-
bed Evaluation of Virtual Environment Interaction Techni-
ques. In VRST ’99: Proceedings of the ACM symposium on
Virtual reality software and technology, pages 26–33. ACM,
1999.

[3] J. Brooke et al. Sus-a quick and dirty usability scale. Usa-
bility evaluation in industry, 189(194):4–7, 1996.

[4] A. M. Colman. A dictionary of psychology. Oxford Univer-
sity Press, USA, 2015.

[5] J. W. Creswell. Research design: Qualitative, quantitative,
and mixed methods approaches. Sage publications, 2013.

[6] F. T. Durso, A. R. Dattel, S. Banbury, and S. Tremblay.
Spam: The real-time assessment of sa. A cognitive approach
to situation awareness: Theory and application, 1:137–154,
2004.

[7] A. Field. Discovering statistics using SPSS. Sage publicati-
ons, 2009.

[8] A. Field and G. Hole. How to design and report experiments.
Sage, 2002.

[9] M. Fowler. Domain-specific languages. Pearson Education,
2010.

[10] J. L. Gabbard, D. Hix, and J. E. Swan. User-centered de-
sign and evaluation of virtual environments. IEEE computer
Graphics and Applications, 19(6):51–59, 1999.

[11] J. Grübel, R. Weibel, C. Hölscher, and V. R. Schinazi. EVE:
A Framework for Experiments in Virtual Environments. In
Proceedings of Spatial Coginition 2016, 2016.

[12] S. G. Hart and L. E. Staveland. Development of nasa-tlx
(task load index): Results of empirical and theoretical rese-
arch. Advances in Psychology, 52:139 – 183, 1988. Human
Mental Workload.

[13] K. Hornbæk. Current practice in measuring usability: Chal-
lenges to usability studies and research. International Jour-
nal of Human-Computer Studies, 64(2):79 – 102, 2006.

[14] W. Huang, L. Alem, and M. A. Livingston. Human fac-
tors in augmented reality environments. Springer Science &
Business Media, 2012.

[15] V. Interrante, B. Ries, and L. Anderson. Distance Percep-
tion in Immersive Virtual Environments, Revisited. In IEEE
Virtual Reality, pages 3–10. IEEE, 2006.

[16] S. Julier, S. Feiner, and L. Rosenblum. Mobile augmented
reality: a complex human-centered system. Springer Science
& Business Media, 2001.

[17] M. E. Latoschik, J.-L. Lugrin, and D. Roth. Fakemi: A fake
mirror system for avatar embodiment studies. In Proceedings
of the 22Nd ACM Conference on Virtual Reality Software
and Technology, VRST ’16, pages 73–76, New York, NY,
USA, 2016. ACM.

[18] G. Le Moulec, F. Argelaguet, A. Lécuyer, and V. Gouranton.
Take-over control paradigms in collaborative virtual environ-
ments for training. In Proceedings of the 22Nd ACM Con-
ference on Virtual Reality Software and Technology, VRST
’16, pages 65–68, New York, NY, USA, 2016. ACM.

[19] D. Medeiros, M. Sousa, D. Mendes, A. Raposo, and J. Jorge.
Perceiving depth: Optical versus video see-through. In Pro-
ceedings of the 22Nd ACM Conference on Virtual Reality
Software and Technology, VRST ’16, pages 237–240, New
York, NY, USA, 2016. ACM.

[20] A. Meier, H. Spada, and N. Rummel. A rating scheme for as-
sessing the quality of computer-supported collaboration pro-
cesses. International Journal of Computer-Supported Colla-
borative Learning, 2(1):63–86, Mar 2007.

[21] M. Mernik, J. Heering, and A. M. Sloane. When and how
to develop domain-specific languages. ACM Comput. Surv.,
37(4):316–344, Dec. 2005.

[22] A. Mossel and C. Koessler. Large scale cut plane: An occlu-
sion management technique for immersive dense 3d recon-
structions. In Proceedings of the 22Nd ACM Conference on
Virtual Reality Software and Technology, VRST ’16, pages
201–210, New York, NY, USA, 2016. ACM.

[23] J. Pearl, E. Bareinboim, et al. External validity: From do-
calculus to transportability across populations. Statistical
Science, 29(4):579–595, 2014.

[24] D. C. Schmidt. Model-driven engineering. COMPUTER-
IEEE COMPUTER SOCIETY, 39(2):25, 2006.

[25] T. Schubert, F. Friedmann, and H. Regenbrecht. The expe-
rience of presence: Factor analytic insights. Presence: Tele-
operators and Virtual Environments, 10(3):266–281, 2001.

[26] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experi-
mental and quasi-experimental designs for generalized causal
inference. Wadsworth Cengage learning, 2002.

[27] M. Slater. Place illusion and plausibility can lead to realistic
behaviour in immersive virtual environments. Philosophi-
cal transactions of the Royal Society of London. Series B,
Biological sciences, 364(1535):3549–3557, 2009.

[28] M. Slater, M. Usoh, and A. Steed. Depth of presence in
virtual environments. Presence: Teleoperators and Virtual
Environments, 3(2):130–144, 1994.

[29] K. M. Stanney, M. Mollaghasemi, L. Reeves, R. Breaux, and
D. A. Graeber. Usability engineering of virtual environments
(ves): identifying multiple criteria that drive effective ve
system design. International Journal of Human-Computer
Studies, 58(4):447 – 481, 2003.

[30] J. G. Tromp, A. Steed, and J. R. Wilson. Systematic usa-
bility evaluation and design issues for collaborative virtual
environments. Presence: Teleoperators and Virtual Envi-
ronments, 12(3):241–267, 2003.

[31] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. SIGPLAN Not.,
35(6):26–36, June 2000.

[32] D. Wile. Lessons learned from real dsl experiments. Science
of Computer Programming, 51(3):265 – 290, 2004.

[33] B. G. Witmer and M. J. Singer. Measuring presence in vir-
tual environments: A presence questionnaire. Presence: Te-
leoperators and Virtual Environments, 7(3):225–240, 1998.


	Introduction
	State of the Art
	Basics of Experimentation
	VR Experiment Design
	Easing Experiment Design
	Model-Driven Engineering and Domain-Specific Languages

	VR Evaluations: a Preliminary Analysis
	Variables
	Protocol

	Approach
	Overview
	Illustrative Example
	Experimental Conditions Model
	Protocol Model
	Description
	Discussion

	Code Generation and Integration
	Generated Runnable Code Characterization
	Compilation: from AGENT Model to Runnable Code
	Code Integration

	Properties Fulfilling
	Implementation

	Creating an Experiment Using AGENT
	Usage
	Modeling
	Code Generation
	Code Integration

	Use-cases
	Modeling
	Code Integration

	Discussion

	Conclusion and Future Works

