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Stability of metric regularity with set-valued
perturbations and application to Newton’s method
for solving generalized equations

Samir Adly! - Huynh Van Ngai® - Nguyen Van Vu!

Abstract In this paper, we deal firstly with the question of the stability of the metric reg-
ularity under set-valued perturbation. By adopting the measure of closeness between two
multifunctions, we establish some stability results on the semi-local/local metric regular-
ity. These results are applied to study the convergence of iterative schemes of Newton-type
methods for solving generalized equations in which the set-valued part is approximated.
Some examples illustrating the applicability of the proposed method are discussed.

Keywords Generalized equation - Metric regularity - Newton’s method -
Linear/superlinear convergence

1 Introduction

The metric regularity is a key ingredient in variational analysis and optimization. In recent
decades, many papers are devoted to study this property and its applications (see, e.g. [3,
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4, 11, 12, 17-20] and references given therein). Recently, the metric regularity was used to
investigate the convergence of the Newton type methods for solving generalized equations
[1-3, 7, 8, 16]. Historically, this concept of metric regularity goes back to the openness of
linear continuous mapping in the Banach Open Mapping Theorem and to the local openness
of smooth nonlinear operators in the Lyusternik-Graves Theorem. For a given set-valued
mapping @ : X = Y between two metric spaces X, Y, which are endowed with metrics
both denoted by d(-, -), and a given subset V € X x Y, @ is said to be metrically regular
on V with modulus 7 > 0 if

d(x, @ '(») < td(y, @(x)), forall (x,y)eV.

If for a given (x, y) belonging to the graph of &, the inequality above holds for some
neighborhood V of (x, y), then we say @ is (locally) metrically regular at (x, y).

In this paper, we are firstly concerned with the stability of the metric regularity when
the set-valued map under consideration is perturbed. When Y is a normed space, it was
shown by Ioffe [11], and by Dontchev-Lewis-Rockafellar [6] that, if & is metrically regular
at (x, y) with modulus 7, then @ + g is metrically regular with modulus z/(1 — tL) at
(x,y + g(x)) for any locally Lipschitz mapping g : X — Y at x with Lipschitz modulus
L € (0, z~"). Unfortunately, without additional assumption, this stability property of the
local metric regularity does not hold in general when the function g : X — Y is replaced,
in the sum @ + g, by some set-valuedmap ¥ : X =2 Y.

In [12], Ioffe considered the stability of metric regularity with respect to set-valued per-
turbations, and has established a stability result of the global metric regularity. In that paper,
instead of using perturbations of usual addition type, the author has made use of a quan-
tity to measure the closeness between two set-valued mappings. Then some related results
have been investigated in [1, 19]. In the present paper, by using the quantity to measuring
the closeness between two set-valued mappings, introduced by loffe, we firstly establish a
stability property of the semi-local metric regularity under set-valued perturbations. For the
local metric regularity, a weaker stability is presented. Secondly, we deal with generalized
equations in Banach space of the form

0e f(x)+ Fx), ey

where f : X — Y is a function between two Banach spaces X and Y,and F : X =3 Y
is a set-valued mapping. Throughout the paper, we assume that f is at least of class C !and
that F has a closed graph.

Such a model (1) appears in a very wide range of problems in applied mathematics, engi-
neering and sciences, such as variational inequality, complementarity problem, optimization
[7, 16]. Because of its importance, this kind of problem have been studied extensively.

In some suitable situation, one can transform (1) into a nonlinear equation. If X = R"™,
Y = R", and F = N is the normal cone mapping associated to a closed convex set K C
R”, (1) can be rewritten into an equation using for example the normal maps introduced by
Robinson [21]. Unfortunately, this strategy might not be possible in general. Some Newton-
type algorithms (exact and inexact) have been developed for solving inclusions (1) (see, e.g.
[1,3,5,8, 13, 23, 24]). Much more surveys about Newton-type method for inclusion can be
found in [14, 15]. Up to our knowledge, in almost all existing algorithms in the literature,
the set-valued part of inclusion (1) is not considered to be approximated. In the recent paper
[9], the authors introduced an iterative scheme for which both f and F are approximated.
Then, local analysis of convergence results were proved under certain regularity criterion
at a solution as well as the differentiability (in a generalized sense) of F at that point.



However, in that paper, throughout the algorithm, the multifunction F' is approximated by a
fixed positively homogeneous multifunction H at the solution which is generally unknown.

In this work, we propose an iterative scheme for solving (1), in which the multifunction
is approximated suitably at each iteration. Precisely, by PH (X, Y), we mean the collection
of all positively homogeneous multifunction (cf. [9, 11, 20]) between two Banach spaces
X and Y. Given amap H : X — PH(X,Y), suppose that for some open convex subset
Q C X, the set-valued map F is H (x)-differentiable at x € € in the sense of [20] (see
Section 2 for the definition). Choosing a starting point xo nearby a solution, the proposed
algorithm generates a sequence (xx) by solving the following auxiliary problem

0 € f(xk) + Df (xp) (o1 — xx) + H () (k1 — xi) + F(xg). )

Here, the notation Df indicates the first-order derivative of f. It is clear that if H (x)(-) =
H (-) for every x, then (2) recovers the one studied in [9].

The rest of the paper is organized as follows. Section 2 presents the local/semi-local sta-
bility results for metric regularity property under set-valued perturbations. These stability
results are the key ingredients in the analysis of the convergence properties of the iterative
sequences generated by (2). In Section 3, we establish the local and semi-local conver-
gence results for iterative schemes of Newton-type methods of the form (2). Some practical
examples, which illustrate methodologically the proposed method, are reported in the last
section.

2 Stability of the Metric Regularity

Throughout the paper, all objects are always related to Banach spaces, which are usually
denoted by upper character X, Y, etc. Open and closed balls in X with center x and radius r
will be written as By (x, r) and Bx(x, r). When dealing with the open (closed) unit ball of
X, we use the notation By (resp. B x). We will use the common notation ||-|| for the norm
of any Banach space.

Let C and D be two subsets of a space X, we denote their sum C + D = {u +v:uce
C,ve D}. If X is a scalar, then the product AC is the set .C = {Au ‘u € C}. A cone in X
is any subset C such that A\C C C whenever A > 0.

As usual, the distance from a point z to a set K is defined by

d(z,K) = Z}Ielg |z =2

For K, K’ C X, the quantity e(K’, K) = SUp,ck d(z, K) is called the excess from K’ to
K. Finally, we define d*(K’, K) = max {e(K’, K), e(K, K')} as the Hausdorff distance
between K’ and K.

Any set-valued map 7 : X =2 Y is totally determined by its graph Gr(T) := {(x, y) €
XxY:ye T(x)}. Corresponding to a set-valued map T, one defines its inverse through
the relation

(x,y) € Gr(T) & (v,x) € Gr(T ™).
We says that T is closed provided that Gr(7T') is a closed set in X x Y. The mapping

T is called positively homogeneous, or shortly 7 € PH(X, Y), iff Gr(T) is a cone. For a
mapping T € PH(X, Y), its outer norm is the following quantity [9, 20]

IT|" = sup sup [lw|=inf{x >0:7 Bx) C«By}, 3)
lvI<1 weT (v)



where the conventions inf(J)) = 400 and sup(¥)) = —oo are used. Note that in the case
|T|* is finite, one has T'(0) = {0} (see e.g. [9]).

Given a mapping S : X = Y and T € PH(X,Y). One says that S is strictly 7—
differentiable at some point x € X if for each § > 0, there exists a neighborhood V of x
such that

S C S +TE —x)+8 |x' —x|By,Vx,x" € V. (4)

If x is replaced by x in (4) then S is said to be outer T-differentiable at x. For more details
about the differentiation of set-valued mapping, we refer to C.H.J. Pang [20].

The study of convergence analysis developed in this paper needs the notion of regularity
[4, 11]. Recall that a mapping @ : X =2 Y is said to be metrically regularonaset V C X xY
with a modulus 7 > 0, iff

d(x, @ '(») < td(y, @(x)), forall (x,y)eV. Q)

In this case, we write T € REG(®, V).

Metric regularity property plays an important role in the analysis of convergence of algo-
rithm (2). The rest of current section is left to prove some stability results which will be
important for the study later. These developments are based on a concept of measuring the
closeness between two set-valued mappings. Specifically, given G;, G, : X = Y, one
defines

0G,,G,(x,r) := sup inf sup inf |lm—m+a—2al, (6)
12€G(x) MEG1) d(x,u)<r, £26G2(1)
¢1€G(u)

for each x € X and r > 0. Such a quantity was introduced in [12] (see also [19]).
Let us now present the main results of this section.

Theorem 1 (stability of semi-local metric regularity) Given two Banach spaces X, Y, and
let ® : X =Y and ¥ : X = Y are two mappings with closed graph. Letr, s, r', s', k and
W be positively real numbers such that

k< 1,7 + s’ <r s <s. (7

1—kun
Suppose
(i) @ is metrically regular on the set
Vis(@,5) :={(z,w) e X xY : |z =% <r.d(w, &) < s}

with a modulus «, B
(1) oy (x,p) < up, forallx € Bx(x,r) and p < ks.

Ifwe set t = l%wlc, then t € REG(lI/, Vi s (W, )E)), where

Vg, %) :={z,w) e X xY:lz—x| <r,dw ¥()<s'}.

Proof Pick (x,y) € Vw ¢(W,x) with y ¢ ¥(x) (the other case is trivial). We need to
establish the following inequality
d(x, 7' () < wd(y, ¥ (). ®)
Let§ > 0 and ¢ > 0 such that

k(uw+8) <1,r + '+e)<rs +e<s,

.k
1—k(u+9)



we shall claim

d(x, w7'(y) < v +e), ©)

K
1—k(u+9d)

where v = d(y, lI/()c)). To do this, let us first take some zg € ¥ (x) with ||y — zo]| < v +e.
Define pg = k(v + &) < (s’ + €) < ks, then assumption (1) implies op v (x, po) < Kpo.
Thus, there exists wy € @ (x) satisfying

sup inf ||20—wo+g“ —§’|| < (1 + 8)po- (10)
d(x,u)< po,L€P (u) '€V W)

If we set xog = x and yg = y + wo — zo, then from |xg — x|| < r’ < r and
d(yo. @(x0)) = d(y0, 2(x)) < llyo —woll = ly —zoll <v+e <,
the pair (xp, yo) belongs to V, (@, x). By applying condition (1) we get
d(x0, @' (30)) < xd(yo, P(x0)) < K (v + &) = po,
which ensures By (xq, po) N @ ! (yo) # ¥. Taking x1 € Bx (xg, po) N @~ (y9), (10) give us

sup inf |zo—wo+¢ — ¢’ < (u+8)po.
ced(xy) /e ()

This allows us to select a point z; € ¥ (x;) possessing property below
lzo — wo + yo — z1ll < (1 + 8)po.

Due to the choice of ¢ and §, we have

- - K
X —x1ll < I% = xoll + llxo —x1ll <7’ +xw+e) <r' 4+ ————("+e),
1 —k(u+96)
so xp is inside By (x, r). By virtue of hypothesis (1), we obtain
inf sup inf |z —w+n—7'| <oowxi. o)< por,
w€¢(x1)d(X|,u)§p1, n' eV (u)
ned(u)

where p; := k(i + 8)po < po. Therefore, @ (x1) contains some element w; for which the
following assertion is fulfilled

sup inf |z —wi+n—7] <@+8pi. (11)
d(xr,u)<pr,ned () 1'EY @)

Let us define y; = y + w; — 21, then it holds that
d(y1, (1)) < llyr —will = lly — z1ll = llzo — wo + yo — 21l
< (u+38)po = [k +8)Iv+e) <s.

Thus, the inclusion (x1, y1) € V, (P, X) is now clear. By making use of condition (1) in
the statement of Theorem 1, we arrive

d(x1, @' () < wd(y1, (1)) < k(e +8)po = pr.

The latter shows that there is some x; € @1 (y1) with ||x; — x2|| < p1. Under assign-
ment u = x2, (11) ensures the existence of a point, written as z, belonging to ¥ (x3)
and

lzi —wi +y1 — 22/l < (u+8)p1.



Passing to the inductive step, suppose the iterations xi, ..., x, in X are known for some
n > 2. As suggested by the arguments above, let us involve wo € @ (xg), ..., wWy—1 €
@D (xp—1) and z9 € ¥ (x9), .., Zn € ¥ (x,) for which the following conditions are satisfied

- xj € d5’1(yj_1),whereyj_1 =y+wj1—-zj-1,.j=1,...,m
- ij—xj'+1” <Pjs |Zj—wj+yj —Zj+1|| <(u+38pj,j=0,....,n—1;
- pj=lk(@w+8Vpo,j=0,....n—1.

Due to the triangle inequality, one has

n—1 n—1
e — %I < Y [l = x5 + llxo = £l < D k(e + 8)1 po + 7/
j=0 j=0
< ——«@+e)+r <r
1 — k(i +9) +e)

Define a new parameter p, := [k (it +8)]" po. By invoking the hypothesis (1) once more,
we can write

inf sup inf Hzn —&4+v— U/” < 0o,y (Xn, Pn) < WPy
£€D(xn) d(x,,u) < pp, V'EY W)
ved(u)

Let us take w, € @ (x,) such that

sup inf [z0 —wp +v =0 < (w+8)pn. (12)
d(ena0) < pn.ve® (u) V'EW (W)

In order to proceed to the construction, we put y, = y + w, — z,. Then, it is possible to
estimate the distance d(y,, ®(x,)) as follows
d(yn» ¢(xn)) < yn —wall =11y — zall = llzn—1 — wn—1 + Yu—1 — zZall
< (U+8)pno1 = (1 + Ok +I""po
[k +&I"(v+e) <s.

Combining with ||x, — x|| < r, we conclude (x,,, y) € V, (@, x). As aresult,
d(xn, @7 (yn)) < kd (Y, P(xn)) < k(4 8) a1 = [k (1t + 8)1" p0 = -

Hence, the set @ ! (y») must contain at least one element, saying x,+1, which satisfies
lxp — Xp+1l < pn. After substituting u = x,,41, (12) tells us

inf lzn — wyn + yu — vl < (1 + 8)pn.

VeV (Xy41)

From this, we can find z,,+1 € ¥ (x,,41) such that

lzn — wn + yn — Zut1ll < (0 + 8)on.

Repeating the current process, all sequences (x,), (y,), (z,) and (w,) are well-defined
by induction.

Recall that x (u+8) < 1, the series Z,@O Ok = Zk>0[/c (n+8)1¥ po converges. Because
of ||x, — xp+1l < pn, (x,) is Cauchy sequence. Consequently, x; converges in X to a limit
x*. In order to attain the necessary conclusion, we just verify y € ¥ (x*) and ||x — x*| <

m (v + ¢). Indeed, according to the construction z,, € ¥ (x;). But since

ly = znll = llzn—1 — Wp—1 + Yn—1 — Zull < (L + 8 pp—1,



z, converges to y as n — 0o. By passing to the limit in the inclusion z,, € ¥ (x,), and note
that ¥ has closed graph, we obtain y € ¥ (x*). For the error bound, one has

=] = o = "] = | Z (o — x| < Z o — xirt | <Y o

k=0

1
= D e+l o=k +e).
Pt 1 —k(u+9)

Taking into account y € ¥ (x*), (9) is valid as well. Finally, let ¢ — 0 and § — 0 in (9)
we obtain (8). The proof is done. O

When studying the local convergence of the scheme in (2), we may need a stability result
related to the local metric regularity property for set-valued map. The following statement
is in this sense.

Theorem 2 Let @, ¥ : X == Y be two closed set-valued maps, and (x, y) € Gr®. Consider
some positive parameters k, r and s such that k € REG((P, V) for V.= Byx(x,r) x
By(y,s). Let uw > 0,8 > 0 and v > 0 satisfy

Kk <1,

K v<r,d+(14+xkpnv<s.
— K
In addition, assume that there is 7 € ¥ (x) with

inf sup [(w—2)—(@W=WI<3 Jfor xeBx(x,r). (13)
ved(x) wew (x)

If
opw(x,e) < ue, when x e€Bx(x,r) and € <r, (14)
then one has
d(x ¥ '(2) < td(z, W (%)), whenever zeBy(Z,v), (15)
where T = ﬁ/{.

Proof Let’s pick ¥’ > « and i/ > p which fulfill

K'n <1, %K/M/v < r,8—|—(1—|—/c’;ﬂ)v <s.
Fix z € By(z,v) and let xo = X. The case z € W¥(x) is trivial. Otherwise, denoting
C = d(z, lI/()E)) > (. Observe that C < ||z —z|| < v, so for some @ > 0 small enough,
we can select wg € ¥ (x) with ||z — wo|| < C + o < v. Putrg = k(C + ), the inequality
ro < kv < r is evident. Thus, assumption (14) implies
sup inf sup inf || —&"+¢—¢'| =06.wx0.r0) < pro.

gew (xp) §'€P(0) |x—xg||<ro, §'EY )
ed(x)

Since wgy € ¥ (xg), we have

inf sup inf Jwo — &'+ ¢ =" < pro < wro,
§’€¢(XO) lx—xolI<ro, §'€¥ ()
{ed(x)

which ensures the existence of vg € @ (x() such that

sup inf [wo—vo+¢—1¢'| < uro. (16)
llx—x0ll<ro,t €@ (x) §'€¥ ()



By setting yp = z — wg + vg, we claim ||yg — ¥|| < s. Indeed, the triangle inequality in
Y tells us
lyo =yl < llz =zl + lwo —vo + y — Zl
<lz=zl+fwo—vo+¢ =& +[|¢ - - =P,
where ¢ varies in @ (x) and ¢’ in ¥ (xg). Thus,

lvo— 31 < lz—Zll+ sup  inf [wo—vo+¢ —¢’|
Ced(xp) §'€¥ (x0)

+ f — -y
{egl(xo) I :;I()xo) H (§ ==y H

<v+urg+8 <A +xp)v+68<s.
Using metric regularity property of @, we find
d(xo. ' (y0)) < kd(y0. @ (x0)) <k [lyo — voll =k llz — wol| < x(C +a).

Therefore, there exists x| € @ ! (yo) such that |[x¢g — x1|| < k(C + &) = rp.
Next, invoking (16)
d(wo — vo + yo, ¥ (x1)) < sup inf [wo —vo+¢ —¢'|| < w'ro.
llx—x0 /| <ro.s €@ (x) §'€¥ ()
which permit us to determine an element w; in ¥(x;) obeying the inequality
lwo — vo + yo — will < u'rg. Let r; = k’u'rg. After substituting x = x| and & = ry into
the left-hand side of (14), we deduce

inf sup inf |wi—v+&—¢&| <opwlxi,r) <pur.
ved(x1) lx—x1 |1<r1 Eelw(x) ” ”
Eed(x

This shows that, there is v; in the set @ (x1) such that

sup inf |wi—vi+&—&| <ur.
lx—x11<ry g€ (x) §' €V (X)

Setting now y; = z — wj + vy, we require (x1, y;) lying into the set V. In fact, the
choice of x| above have affirmed x; € By (x, r). Moreover, as similar as the case of yg, the
following estimation holds

Iyt =31 < llz=zl+ sup inf [wi—vi+&—§|
ged(x)) §'e¥x)

inf  sup | -2 —¢E -

§€P(x1) g/ew (x)
<v+ur+8<v+p/Wpkv+8 < (14+c'w)v+68 <s.
This implies the inclusion (xg, y;) € V. As a result,
d(x1, 7 () < kd(y1. @) < llyr —vill =« llz — wi .

Recalling z = yo + wo — vg, which gives us ||z — w1 || = |lwo — vo + yo — w1l < u'ro.
Hence,

d(x1, @7 (1) < kp'ro < ('w)ro.
Consequently, the set ¢! (y1) contains a point xp such that ||x; — x3|| < («'u)ro.

The construction continues with the inductive process. Suppose that the iterations
X0 = X, X1, , X, are given for n > 2. Alternatively, we include some points vy €



D(x0),..., -1 € P(x,—1) along with wg € ¥(xp),...,wy—1 € ¥(x,_1) satisfying
simultaneously the conditions below:

- X4l € ¢_l(yk) foryy =z—wr+uvrandk <n

} k
llxk — xpq1ll < ri, with rg = (k') ros

— Jlwg—1 — vkt + ye—1 — will < wW'rg_g holdsfork =1,...,n—1;
— Uy < ved () INfurew (o |wk — vk + v = V|| < @

With the goal of generating x,1, we exploit the hypothesis « € REG(@, V). To do this,
let’s first notice that x, is not out of the ball Bx(x, r), which is a consequence of the
following estimations

n—1
1
= i
b — %Il < ank — el < > (i) ro < e <"
k=0
Recall that ||x,—1 — x|l < r—1 and y,—1 € @ (x,), we deduce
d(wn—l — Un—1 + Yn—1, "p(xn)) < sup inf ”wn 1= Up—1+V— U/” .
flx—xn—1 || rasy, VEY )
ved(x)

In other words, d(wn—1 — Vn—1 + Yn—1, ¥ (x4)) < w'ry—1. We take a point w,, in ¥ (x,,)
fulfilling inequality [|wy—1 — va—1 + Yu—1 — wall < w'ra—i. Put r, := (')" ro. By
involving the hypothesis (14) once again, we derive

inf sup inf ||w,, —v+¢—¢ H 0w (Xn, Tn) < Uin.
VEP (xn) [l —xn [ <7 s ¢'ew ()
{ed(x)

Thanks to this, it is possible to find an element v, € @ (x,) such that

sup inf Jwa —va+¢—¢'| < wra.
x—xp || <1, €P (x) §EP (X)

Define now y, = z — wy, + v,,. After repeating analogous arguments as n = 0, one gets

lyen =31 < llz=2zl+ sup inf fw, — v+ —o
we(p(xn)weq/(x)

+ inf  sup [(@ —2) —(@—))|

WEP(Xn) o e (x)
<v+purm+d<v+p/ 6 w)'kv+8 < (1+&'n)v+68 <s.
In summary, (x,, y,) belongs to V. Including the fact k € REG(®, V), we find
d (v, @' (y)) < ied (s @ () < &y = vall = &z = wall -
Observing y,—1 = z — wy—1 + vy—1, the latter implies
d(xn, @~ () < llz = wall =k lwpot = Va1 + a1 = wall < &'W'racs.

Hence, the set @ ~! (yn) contain some element x,, 1 so that ||x, — x,4+1]| < ry, is fulfilled.
Induction step is done.
According to the construction, it holds that

k—1
lx, — x'H»k” Z ||xn+j Xn+j+1 || < Z( ' /)’l+j ro
j=0 j=0 (r7)

K
< ('w)" m(c +a).



Since '/ < 1, (17) yields lim sup || x,,, — x,,|| = 0. Thus, the limit x* = lim x,, exists.
n—oo

m,n— 00
By fixing n = 0 and letting k — o0, we derive ||X — x*| < #,M,(C + «). On the
other hand, recalling ||z — w,|| = ||wp—1 — Vn—1 + Yn—1 — wy ||, and taking into account

lwp—1 — V1 + yn—1 — wull < wW'ry_1, we conclude w, — z asn — oo. But w, is in
¥ (x,), s0 z € ¥ (x*) due to the closedness of Gr(¥). Consequently,

d(F v (@) < |7 -2 < #,M,(c +a).

1

Since « is arbitrarily small, and both parameters «’, i’ are chosen independently of z,

we obtain d ()E, gyl (z)) < 17"/(# C. This completes the proof. O

3 Convergence of the Newton-Type Algorithm Using Set-Valued
Differentiation

We start with the following definition, that will be useful later.

Definition 1 Let H : X — PH(X,Y) be a given map, and let 2 C X be a nonempty
open subset.

(i) A mapping @ : X =2 Y is said to be pointwise strictly differentiable with respect to
H on Q if and only if for any x € 2 and ¢ > 0, there exists § = 6(x, €) > 0 such that

D) C PR+ HW)(E —2)+e|d —z|By; V2.2 € Bx(x,)NQ.  (18)

(i) @ : X =2 Y is differentiable with respect to H uniformly on 2 providing for all ¢ > 0
there is § > O satisfying

D) C D)+ Hx)(x' —x) + ¢ |x' — x| By, (19)
whenever x, x’ € Q and ||x’ - x|| <34.

On the other hand, with the aim of studying the convergence of the scheme (2), we assign
toeachmap H : X — PH(X, Y) afunction defined as follows

Ap(x,x' 1) = sup e(H@x)(w)+ H(x)(—u),0);x,x" € X, 1 > 0. (20)
lull <

Remark 1 Suppose that both |H (x)|* and |H (x") ‘Jr are finite. From the definition of outer
norm one has H(x)(u) C |H@)|T llul| By as well as H(x)(—u) < |[H|T [lull By.
Consequently,

e(Hx) ) + H)(—u),0) < (IH@IT + |HE)| ) llull -

That is, when | H (-)|" is bounded, all real-valued functions A g (x, x’, -) can be majorized
by one linear map.

Returning back to the main results, a semi-local convergence analysis for (2) is presented
in the next theorem.



Theorem 3 (semi-local analysis) Let Q2 be an open convex subset of X on which Df is
Lipschitz continuous with a modulus L > 0. Given amap H : X — PH(X,Y) so that
F is differentiable with respect to H uniformly on Q2. Let’s fix some x € Q and r > 0 with
Q. = Bx(x,r) C Q. Suppose that py and g are some positive numbers satisfying

F(Z) C F(2) + H@) (' —2) + pollz’ — zIBy 2D
when 7',z € Qy and ||7 — z|| < &o. Additionally, we also assume the following hypotheses:
(i) it holds that T € REG(lI/X, Vr,s(lllx)), where Wy () := Df(x)(-) + H(x)(:) and
Vs (&) = {(w, w) : o] < r.d(w, ¥ (v)) <s};
(i) d(0, f(x)+ F(x)) < min{s, t7e};
(iii) there exists some constant A > 0 such that
OH(x),H(z) U, 8) < Allx —z]|8, (22)
forz € Bx(x,r), lul <rands < ts;
iv) |Hx)|'T < ooand Ap(z,7,t) < w(t) forall 7,7 € Qy and t < g, where w :
R, —> R is a nondecreasing convex function with w(0%) = 11\1})60(0 =0
t

() t(L+Mr <landKo:= SLeg+ po + 2E2 < 1 — (L +nyr.

€0

. 1—t(L+Mr 1—1(L+M)r . . . .
If either TRyt (L 177 50 <ror T=Ry—r (L1 T8 < r is valid, then there exists a solution

x* of problem (1) such that

1—t(L+Mr .
Jx —x*| < ( ) min {ts, 0} <r.
1—tKg—t(L+AM)r
Furthermore, the scheme (2) produces a sequence (xx) which starts at xo = x and

converges to x* at least R-linearly, i.e.,

limsup |xx — x*||1/k < 1.
k— 00

For the proof of this theorem, the next technical lemmas will be useful.

Lemma 1 Keep in mind the assumptions of Theorem 3. For each 7 in Bx (x, r) set ¥, (-) :=
Df(z)(-) + H(z)(:). Then one has

ow w, (u,8) < (L+2) [lx —zl| 6, (23)

where u € rBy and 8 < ts.

Proof Fixu € rBy and 8 < ts. Due to the definition of oy, v, (u, §), and by using triangle
inequality, we deduce

oy, v, (1, 8) < H Suﬁ)<(; ILDf(z) — Df ()] — v)||

+ sup inf sup inf |¢—-¢ +&—¢
ceH @) u) §'€HM)W) |y—y| <8, §'€H@®D) ” H
§eH (x)(v)

< sup [[Df(z) = DO lu = vl + 01 ), 1) (1, )
lu—vl|<8

< Lz —x||8 + Allx — z]|8.

This implies the conclusion of Lemma 1. O



Lemma 2 Let y; = %‘L’L, y2 = pot and y3 = t(L + A)r < 1, where L, t, py, A and r are
in statement of Theorem 3. Let w be the function appeared in the same theorem. Considering
h(t) = l—1y3 (y1t2 + vt + ra)(t))fort > 0. Then under initial constraint h(cg) < g, the
recurrence a1 = h(ag) produces a sequence converging at least linearly.

Proof The case h(ag) = «g is trivial, because (o) is a stationary sequence. Suppose
h(ap) < ap. Itis clear that & is convex and increasing, with 4(0) = 0. The convexity of &

implies that ¢t € (0, ap] —> @ is an increasing function (see [10]). Thus

h(o
0<1<ay= hin) < " — g1,
o
where ¢ = %’;‘)) € [0, 1). By induction we can prove that () is well-defined and satisfies
ar < gog—1, so the linear convergence is followed. O

We are now in a position to prove Theorem 3.

Proof of Theorem 3 We will subdivide the proof in several steps.

Stepl: Construction of a Sequence At the beginning, we denote xog = x, ¥ = ¥,,
79 = 7,0 = r and sp = s. Then ¥ is metrically regular on the set Vo = V. (¥y)
with modulus 79. From assumption (3), we can select yg € F(xg) for which the inequality
|I— f(x0) — yoll < min{s, r_]so} holds. Let zo = — f (x0) — yo, we derive

d(z0, %(0)) = d(z0, H(x)(0)) = |lzoll <'s.
This means (0, zo) € Vp, which guarantees the validity of
d(0, %5 (z0)) < wd(z0, ¥0(0)) = 10 llzoll < min{zs, &o}.
Hence, there exists an element, says vy, in the set 11/0_1 (zo) such that
lvoll < min{zs, &o}.
Define x; = x¢ + vg, we get
—f(x0) — yo € Wo(vo) = Yo(x1 — x0) = Df (x0)(x1 — x0) + H (x0)(x1 — x0),
which is equivalent to
0 € f(x0) + Df (x0)(x1 — x0) + H (x0)(x1 — x0) + Yo
C f(x0) + Df (x0)(x1 — x0) + H (x0)(x1 — x0) + F(x0).

As a summary, x; obeys the scheme (2) and

lx1 — xoll = llvoll < min{zs, &o}.

Let / be the function defined as in Lemma 2. It follows from assumption (3) that %20) =
mﬂ(o < 1. Setting 9 = min{zs, g9} > 0, the monotonicity of function @ shows
that

h(ag) < TEQ ! K (24)
ap) < ay = qgap, = ——1K).
S T T AT

Using Lemma 2, the sequence (o) produced by k1 = h(ay) is well-defined such that
o < qkozo.



We shall continue by induction. Assume that k + 1 iterations xg, X1, ..., X are known
for some k > 1. Moreover, the following conditions are also supposed to be valid:

- 0€ f(xj))+Df(xj)(xjr1 —xj) + H(xj)(xj41 — xj) + F(xj), for j <k —1;
- ||xj+] —x.,-|| <aj,j=0,..., k-1

Since

k—1 k—1

: 1 1—17(L+A
Zaj<2q1a0< ) = T+ Mr min {7s, g0} <r,
— = 1—gq 1—t(L+Mr—1Kp

all known points x; are in By (x, 7). If x; = x4 then we simply take xx11 = X, and
pass directly to the second step. Otherwise, we set Ui (-) = Df (xz)(-) + H (xx)(-) and write
vj = xjy1 — x; for each j < k — 1. By the inductive hypothesis, there is yx—1 € F(x¢—1)
such that wi_1 € H(xg—1)(vk—1), where
wi—1 = — f (xk=1) — Df (k—1) (Vk—1) — V1.

Noticing a1 < g¥ap < eo, the supposition (21) can be used here. This implies that

there exist some elements y; € F(x;) and w,’F1 € H(xy)(—vg—1) with
Yk—1 — Yk — Wy_; € po llvk—1]l By.
Define zx = — f (xx) — yx, we have
2k = [—f )+ fOk—1) + Df kD) r—1) ] + wi—1 + (y—1 — vk — wp_y) + wp_;.

The Taylor’s expansion at the reference point xx_1
1

FOw) = flaon) + /0 Df (xaer + toe_n)(ui1) dt

yields
=/ ) + f (xk—1) + Df Gek—1) (V-1 |l

1
= H—/O [Df (xx—1 + tvk—1) — Df (xx—1)] (vk—1) dt

1
2 _ 1 2
< [ LhuelPrd = SLu P,
0 2
Taking into account wy_1 + wl,’{fl € H(xg—1)(vg—1) + H(xx)(—vg—1), one obtains

1
Izl < =L g1 1?4 po llok—1 1l + Ap (Xk—1, Xk, —1)
2

1
< ELa,f_l + pos—1 + w(@x_1).

By virtue of x; € Bx(x, r), Lemma 1 tells us
owy, v (u, 8) < (L +A) llxo — xkll 8 < (L 4 2)ré.
Setting now Br = ||xo — x|l < r, we check that
T(L+ M) < 1,
g |3 LoR s + st + o] <7, (25)
%Laﬁ_l + podk—1 + w(ap—1) <.



The first inequality of (25) is an immediate consequence of supposition (3). The second
one is inferred from the following estimates
;(ELQI%_] + podk—1 + a)(Oék—l)) = M}l(“k—l)
1 —t(L+M)Br\2 1 —t(L+M)pBk
< h(ag—1) = o < kol() < minfts, g} <.

Finally, we check the last inequality

1 1—t(L+Mr 1—t(L+Mr
ELOé;%,l + pootk—1 + w(ag—1) = f”l(ak—l) l—
1—t(L+A 1—t(L+A
< quao < Mmin{‘rs, g0} < s.

T
Due to (25), we can add some parameters rx > 0 and s > 0 such that

T |
e+ ——————sp <r,=La;_; + poaip—1 + w(op—1) < s < S.
k l—r(L—l—k),Bkk 5 L1+ otk w(ag—1) < Sk

Invoking Theorem 1, the relation 7z € REG (W%, Vi) holds with 7 and

= l—r(Lr-‘r)»)ﬁk
Vi ={, w) : vl <r,d(w, Tr(v)) < e}
Because of d(zk, '4% (O)) = ||z« ||, we conclude (0, zx) € Vi. Consequently,

d(0, ¥, " (z0) < wd(zk. Y(0) = w Nzl

T 1
S S Ly S
STt 0po 2 aj_y + poox—1 + w(og—1)
Thus, there exists vg € lllk_l(zk) such that
o L (S L+ poakos + @) = he1)
|l < —————— (=L« a1 +w(ag_1)) = h(og_1) = ag.
k 1—2(L+nr\2 k—1 T PO%k—1 k—1 k—1 k

Let us define xz4+1 = xx + vg. The choice of v implies

—f k) — vk = 2k € Y(xpy1 — xk) = Df () (k1 — xk) + H (xx) (o1 — xp).

In other words, x;41 clearly satisfies (2), since y; belongs to F(xi). As a result, the
sequence (xi) is completely determined by algorithm (2).

Step2: Convergence Because ) ;o is a convergent series, the sequence (xx) con-
verges. Denoting x* = klim Xk, we claim that x* solves (1). In fact, recalling
—00

0 € f(xp) + Df () (up) + H () () + F(x), g = Xpe1 — Xk (26)
for each index k. Taking into account ||x — xx|| = Bx < r and |lvk|| < ax < & when k is
large enough, hypothesis (3) implies

k
e(H (x)(—v) + H () (), 0) < Ap (g, x, ) < (o) ——> 0.

(Here, condition (07) = 0 in (3) was used.) Since |[H(x)|" < 400, the fact that
H(x)(u) C |H@)|" [lug || By gives us

k—00

e(H @) (=vg), 0) < [H @)™ ol — 0.

Hence, e(H (xx) (vr), O) tends to 0 as k — oo. Consequently, by passing to the limit in
(26), we obtain 0 € f(x*) + F(x™).



To finish the proof, we verify [|[x — x*| < r as well as lim sup ||xx — x*|| 17k < 1. Indeed,
k—00
we infer from the construction

b=l <D0 ey =] < ey <aF Y gloo = g* 1
ik ik j>0 1

27

Substituting k£ = 0 in (27), we deduce

o) 1—7(L+Mr
l—qg 1—tKoy—t(L+1)r

|x = x*| = [xo — x*| < min {ts, g0} < r.

Furthermore, extracting the k-th root in (27), and letting X — oo we find

1/k
lim sup ka—x*||l/k<limsup q< 0 > =q <1,
k—00 k— 00 l—gq

the proof of Theorem 3 is completed. O

We end this section by studying the local behavior of the scheme (2).

Theorem 4 (local convergence) Suppose that problem (1) admits x* € X as a solution.
Given a map H : X — PH(X,Y) so that F is pointwise strictly differentiable with
respect to H on a neighborhood of x*. Associated with such a map H, we assume there are
two increasing continuous functions p, ¢ : Ry —> Ry and a radius r > 0 satisfying

- F&HCFx+HX (& —x)+ ,0(||x’ — x||)IB3y whenever x, x' € Bx(x*, r),

- oy, 8) <@ (Ix —x*)e forallu € rBy and e < r,

p@)

0% = limsup &~ < +o0.

t—0

In addition, the assumptions below are supposed to be fulfilled:

(1) Pux(-) := Df(x*)() + H(x*)(-) is metrically regular on the neighborhood V* =
rBx x sBy with a modulus t* > 0;
(i) T (0" +9(0) < 1;
(iii) Df is Lipschitz continuous while |H ()| is finite on the ball Bx (x*, r).

Then, there exists a constant 0 < o < r for which the following statement holds. Given
x € Bx(x*, @), it has a sequence (xi) generated by our scheme (2) such that xo = x and
xx — x* as k — oo at least linearly.

Before proving this theorem, we note that the function p above may quite often appear
when F is pointwise strictly differentiable with respect to H. Besides that, the assumption
related to the function ¢ might be valid in many situations, for instance, when H is induced
by a set-valued map from X into the space £(X,Y) of all linear and continuous maps
between X and Y.

Let us present the proof of Theorem 4. For this purpose, the next lemmas will be useful.

Lemma 3 Suppose that all statements of Theorem 4 are satisfied. Given x € Bx (x*, r) and
set Wy« () := Df(x*)(- = %) + H&™)(- — x), ¥z () :== Df () —X) + HX) (- — X). If L
is a Lipschitz continuity modulus for Df on Bx (x*, r), then

ow (0, 8) < [L ¥ —x*| + o (| —x*|)]e. Vx € Bx (&, r),e <r.  (28)



Proof Based on triangle inequality, the definition of oy, y; (x, €) gives us

0w (x,8) < sup [|[DFE) = DFH] (x = x|

[[x"—x|I<e

+  sup inf sup l¢ —¢ +&-¢|

e e £ EH D) [l x| <e. éeH(x)(x’—')
E€H(x")(x'—X)

= sup | [Df(X) = Df(x")] (x —x") | +onen, e (x — %, €)

llx'—xlI<e

sup H Df(x) — Df(x*)” ||x — x’|| + o), HE (X — X, €)
X' —xlI<e

|Df @) = DF )| &+ onie, mim (x = %, ).
Thanks to the Lipschitz continuity of Df as wellasu = x—x € rBy, we attain (28). U

N

Lemma 4 Given 0 < 8 < rand 0 < 8 < s. Let x € Bx(x*,r — 8) and consider
i () = Df(x*) (- —X) + Hx*) (- — X). If 2 € Wz (x*) satisfying ||z*|| < s — &, then one
has T € REG(¥z, V), for V = Bx (x*, §) x By (z*, §).

Proof Given (x,z) € V, and set u = x — x. It is possible to check that llli_l(z) =X+
cDX_*l (z), where @, is in assumption of Theorem 4. Hence,
dx, ¥ @) =d(x, ¥ + 2. (2)) = d(u, 1 (2)).

But (u, z) is in the neighborhood V*, since ||x — || < [lx — x*|| + [|x* — X|| < r and
Izl < llz = z*Il + lz*|l < s. Thus, we obtain

d(x, 7' @) =d(u, @' (2) < T7d(z, Dy (x — X)) = 77 (2, ¥ (x)),
and the proof is done. O

Lemma 5 Keep in mind all assumptions of Theorem 4. If x € Bx (x*, r) and ||u|| < r then
one has

H@@ < (|[HEO[" + @) lul By, 29)

where ||x — x*|| < a < r. In particular, we infer from (29) the following estimation

inf sup (W' =) —(w-0)| < (2 |H(’C*)|Jr + Ma)) lull + 5" = o]
ueH(X*)(u)v €H (x)(u)
(30

forveYandd' €Y.

Proof Pick b > 0 with |lu]l < b < r. Using the condition o+, 7 (x) (4, &) < @(a)e for
&= z(b + [lull) > llull, we get

sup inf sup inf |
neH (x) ) MEHE)W) ||y —y||<e, gertow)

EeH X))

Fix n € H(x)(u). Then there is n” € H (x*)(u) such that
n—1'+&—&| < @b 3D

n—n+&—¢&| <ep@e < pb.

sup inf
o' —ul<e,E€H(x*) ') S’GH(X)(M’)



Substituting #’ = 0, and noticing that H (x*)(0) = H(x)(0) = {0}, (31) permits us to
write ||n — n’H < @(a)b. Since b does not depend on 1 and n’, one deduces Hr; — n’” <
@(a) ||u|| by letting b — ||ul|. In other words,

H(x)(u) C H(x")(u) + ¢(a) ||ul| By.
Finally, taking into account
H(x*)u) € [HE)| " |lu) By, (32)

the inclusion (29) is thereby valid. Upon relation (30), we have just to apply (29) and invoke
(32) again. O

Proof of Theorem 4 Under assumptions of Theorem 4, it is possible to take 6§ > 6* and
0 < a < r/2 which fulfill the constraints below

p(t) <01, Vi < «,
T* (%La—i—(p(oz)-i—@) <1, (33)
2L +3p@) + 4 HET + 0] +2 (3L + p@) <35,
where v* = || Df (x*)||+|H (x*)|*, and L > 01is a Lipschitz modulus for Df on By (x*, r).
Let’s fix x € Bx(x*, @) and denote xo = x. Set ug = xo — x*, ag = |lugl < «,

mo = Lag + ¢(ao), and @o(-) = Df(x*)(- — x0) + H(x*)(- — x0). By assumptions of
Theorem 4,

—f(x*) € F(x*) C F(xo) + H(x0)(x* — x0) + p (| x* — xo[) By.
so we can select yg € F(xp) and wg € H (xp)(—ug) such that
— f(x*) = yo —wo € p (|x* — x0[|) By = p (o) By. (34)

Moreover, observe that the relation

inf sup inf  |wo—&4+v—1|
§€H (x*)(=10) || z4ug | oo, V' EH (x0)(2)
veH (x*)(z)

< OH (), H(xg) (—10, @0) < @(ap)ag
holds. Due to this relation, we choose wg € H (x*)(—uo) for which

sup inf  [wo—wji+v—0| <g@a (35)
llz+uoll o veH (x*)(z) V' E€H (x0)(2)

is valid as well. Both |H (x*)|" and |H (xo)|T are finite, so H(x*)(0) = H (x0)(0) = {0}.
Taking z = 0 in the left-hand side of (35), we conclude ‘ wy — w(")‘ || < p(a)a.

Define zo = — f(x0) — Yo, 2o = —Df (x0)(uo) + wo and z5 = —Df (x*)(uo) + wy.
Since w € H(x*)(—up) C [H (x*)|* luo|| By, one has

Izl < [P Huoll + [H @[T lluoll = v*ao.

According to (33), v¥ap < v*a < s. On the other hand, by @gp < « < r/2, it holds that
r —a > ap. Using Lemma 4 for § = @ and 8’ = s — v*ap, the mapping @ is metrically
regular on Vo = Bx (x*, &) x By (2§, s — v*ap) with modulus 7*.



To obtain the next iteration x;, we are going to apply Theorem 2. Let ¥p(-) :=
Df (x0)(- — x0) + H(x0)(- — x0), we get zg € Wo(x™). If x € Bx(x™*, «), then we find

y(x,x0) == inf sup [ —Zo)— (v —2zp)|
UE¢0(X) U’Elp()(x)

< [[Df (o) = DF NI — 29
inf —wo) — (w—wd)| .
UEH(XIP)(X—XU) weH(it)l)szfxo) H (w=wo) = WO)H

Thanks to Lemma 5, one infers from the Lipschitz continuity of Df that
y(exo) <L xo =] v =5 + [2[HGO[T + o @] I = xol
+ | wo — wi|| (36)
< 2Laog +2 [2 |H(x*)|+ + o (a)] a+ ().

In (36), the last estimation is followed by [lx — xg|| < [lx — x*|| + [|x* — x0ll < 2c.
Furthermore, the choice of zg and zg provides

20 — 20 = f(x™) — f(x0) — Df (x0)(—up) — f(x*) — yo — wo.

Writing down the Taylor expansion for f at xo, we deduce

1

fGx*) = fxo) +/(; Df (xo — tuo)(—uo) dt

1
= f(x0) + Df (x0)(—uo) +/(; [Df (xo — tug) — Df (x0)] (—uo) dt.
As a consequence,

lzo = Zoll < fy | [Df (o = tug) = D (xo)] (—uo) | de
+ 1= () = yo — woll @37
< Jo Lol t dt + p(ag) = JLag + (o).
In (37), the fact — f (x*) — yo — wo € p (ap) By was used. We are now going to prove
the inequalities below
pot* = [Lag + @)l T < 1,
* 1
I,LM* <§Loz(2) + ,0(010)) <a, (38)
(1 + pot™) (%Laé + p(ao)) + SUP|x x| <a ¥ (X, X0) < 5 — V¥ ap.

In fact, if we set B = %Loz2 + p(a) and By = %Laé + p(ap), the first and second
conditions in (33) gives us

1
T o < tF[La + ¢(@)] < 1 —t* <§La +0) <l-tra 'B<1—t"a"1By. (39)

Taking into account (33), (36) and (39), the constraints in (38) are valid as well. This
permits us to add a parameter so > %Lag + p () satisfying

T*

———% <«, (1+mot™)so+ sup  y(x,x) <s—vap.
1 — pot lx—x*]| <a



Define 19 = Let’s apply Theorem 2 with the corresponding data x = x*, y =

- 1- /L T
z(’g, V = Bx(x*, a) x IB%y(zo,s —v¥*ag), Z = Zo, v = so. By virtue of (37), we obtain
lzo — Zoll < so, which implies that

k

T |
d(x*, %5 ' (20)) < 70d (20, Yo (x™)) < 10120 — Z0ll < ——— | 5Legg + p(e0) | -
1 —puot* \ 2
Hence, the set lIIO_1 (zo) contains some x; such that
T* IL 2 (@0
—— | - L« o
1 — puot* \ 2 0 T ploo

1 1,
T 1—[t"Lag + ¢* o(ap)] [ vLeg T p(aO)]

" = xf <
(40)

The function ¥ (t) = W [ T*Lt + 1—*9] is well-defined and nondecreasing

on the interval [0, «]. The choice of @ gives us ¥ () < 1. Due to (33) and (40), we get

|x* = x1]| < ¥ (@)oo < ¥ (@ao < ag.

which yields x; € By (x*, o). Consequently, we can apply all previous arguments for the
new starting point x instead of xp.
Recall that x| € lIIO_1 (zo), or equivalently, zo = — f(x0) — Yo € Wo(x1). Thus,

0 € f(xo0) + yo+ Df (x0)(x1 — x0) + H (x0)(x1 — x0)
C f(x0) + Df(x0)(x1 — x0) + H (x0)(x1 — x0) + F(x0).

In other words, x is generated by (2).
Repeating this process, we obtain a sequence (x;) which is produced by (2) and

et = sear| < (" —xel) I =] < w@ =] @D
The proof is thereby done. O

In the previous theorem, the rate of convergence for (x;) seems to concern the behavior
of the function t —— p(¢) around ¢ = 0. If a stronger condition is imposed on p (i.e., on the
order of approximation for F'), then Theorem 4 can be refined a little bit. The next corollary
is in this sense.

Corollary 1 (local convergence revisited) Suppose all assumptions of Theorem 4 are ful-

filled with 6* = lim sup @ = 0. Then, the constant a can be chosen such that the sequence
t—0

(xx) in Theorem 4 converges to the solution x* of (1) superlinearly.

Proof Let’s write p(t) = pi(t)t where p; : Ry — Ry is a function satisfying
lim sup p1 () = 0. Then there exists « € (0, r/2) such that
t—0

{ %La + @) + supgs <o 01 () < IL*, Vi<« “2)

2L+ 3¢(a) + 4 1H T+ v¥] e +2 (%Laz + p(a)) <s

Here, v* is again the quantity | Df (x*)|| + |H (x*)|*. Indeed, (42) can be subsumed as a
particular case of (33), where supy, <, £1(f) plays the same role as 6.



Now, let x be in By (x*, ). Repeating the construction as in the proof of Theorem 4, the
algorithm (2) generates a sequence (xx) for which xo = x and

|x* = xeq1 || < v (] = xe|) |x* — x| L k=0.1, ... (43)

where ¥ () 1= m [%r*Lt + t*pl(t)], t € [0, «]. By induction, we can prove
lx* —xill < o and O < supg 1 (lx* — xk|l) < 1. Particularly, (43) ensures that x

converges to x* as k — oo. Finally, by taking into account

1 1
lim su t) = limsu —t*Lt+ 1t p1(¢ “ =0,
A Hop{l—[r*uﬂ*w(z)} [2 oo
the superlinear convergence follows, which completes the proof of Corollary 1. O

4 Some Illustrative Examples

Example 1 The purpose of this example is to give a simple comparison between (2) and the
well-known Josephy-Newton method. Consider X =Y = R

o 1y3 _ | [exp(=2x), +00), if x > 0,
fx)=—x—-1+x—1land F(x) = { . otherwise. (44)
Figure 1 depicts the graphs of —f and F, respectively. Choose H(x)(u) =
{—2u exp(—2x)} and define
p(t) =exp(2t) — 2t — 1, 0(t) = 2[exp(2t) — 1], (1) = 4. (45)

If we set g(x) = exp(—2x), then H (x)(u) = {g’(x)u}, which permits us to prove that
e(F(x'), F(x) + H(x)(x" — x))
:e([g(x/), +OO), [g(x)_'—g/(x)(x/_x)v +OO)) (46)
<g) — [g() + &' ) —x)]|5x" = 0,x >0.

Denote u = x’ — x, we infer from (46) that

e(F(x), F(x) + Hx)(x' —x)) < exp(—2x) |exp(—2u) + 2u — 1|

< 2 vl 24l - 1

|
n>=2 -
= p(|x’—x );x >0,x >0.
Fig. 1 Graphs of — f and F in yk
Example 1
//////
7,
F(2)7
| H -
- (@)
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On the other hand, we have
Ap(x,x' 1) =2 |exp(—2x) — exp(—2x")| 1 < 0(1).

According to the definition of H, we obtain

one,Hen W, 1) <o (|x —x'|)r, forallu>0andr > 0. (47)
Since lim &2’) =2and lim 22 = 4, both the local and semi-local convergence theorems
t—0 1 t—0 !

(i.e. Theorems 3 and 4) can be applied to the current case.
Recall that the Josephy-Newton scheme for generalized equation 0 € f(x) + F(x) is of
the form

0 € fxx) + Df (xp) (g1 — xk) + Fxeq1), k=0,1, ..., (48)

with f and F given in (44). Clearly, (48) is equivalent to solve the following nonlinear
inequality

find x € Ry s.t.

49
=1 -1+ [—3 O —1)% + 1] (x — x) + exp(—2x) < 0. “9)

On the other hand, the scheme (2) simply reads
find x € Ry s.t. f () + [f/ () + 8" () ] (v = xx) + g(xx) <0. (50

The linear inequality (50) is much easier to solve than the nonlinear one in (49). This
example shows that (2) could be much practical to use in some situation (where the com-
putation of H is easy) than the classical Josephy-Newton method. Each approach has its
advantages and drawbacks.

Example 2 (An application in finite dimensional spaces) Consider the inclusion (1) with
X =R", Y =R" and

Fx)={gxw:we K} =gxK. (51

Here and in what follows, both f : R” — R™ and g : R® — R™*? are assumed to
be C!'!, while K C R is a closed and bounded nonempty subset.

Let x € R" be a fixed point and let L s and L, be the Lipschitz moduli for f and g,
respectively. We set

Hi(u) = [Dg(z)u — Dg(X)u]K, Hx(2)(u) = [Dg(X)ulK + HE(u). (52)
Then, one has Hx(z) = Hz(x) + H;, and hence,
OH (), Hy () (U, €) < ” suﬁ)< e (H:(u), H: (v)). (53)

If n is a positive constant such that K C nB, then by the definition of H f we derive
e (Hi(u), H;(v)) < sup | (Dg(z) — Dg(@)u — v)||wl
wekK

< nllDg(z) — Dg) [Hju — vl
This implies that

OHG), H W, €) < (nLg) ||z — X]le. (54
On the other hand, due to the definition of H;(z), it is not difficult to verify that
|Hz ()" < nllDg@)|l + nLgllz — X|I. (55)

21



As aresult, the extended real-valued function z — | H;z(z)|" is bounded in some neigh-
borhood U of x. Thus, it is possible to take w(t) = 2( sup.cy |He (2)|T )t where U is a
neighborhood of x.

Finally, let’s check that the H (-)-differentiability assumptions (Definition 1) are satisfied.
Let z and 7’ be in a neighborhood U = B(x, r). Using Taylor’s expansion for g at z, we get

1
8(Z) —g() - D) —2) = /0 [Dg(z+1(z' —2)) — Dg(D)1(Z' — 2) dt,
which gives us

/ / Lg / 2m
8(Z)—gk) —Dgx)(z —2) € 7|Iz —z|I”B.

Therefore,
1 _
2K C g(2)K +[Dg(z)(z — 2)1K + 5nLgnz’ — z||I’B. (56)

Nevertheless, by setting u = 7' — z, we are able to claim that [Dg(z)®)]K C
[Dg(x)ulK + [Dg(z)u — Dg()?)u]K, and this allows us to write

, 1 =
F(Z)CFQ)+ Hi ()@ —2) + 7L Iz — z|I’B; V7', z € U. (57)

Consequently, our semi-local result (resp. local result) might be applied by setting x = xg
in Theorem 3 (resp. X = x™ in Theorem 4 and Corollary 1). All assumptions of those cor-
responding results are satisfied except the metric regularity property that we must establish
for each specific implementation.

As an illustration, let’s consider a simple example withm =n = p =1, K =[1, 2] and

fx) = —0.5x% — 1,g(x) =exp(x) — 0.5, F(x) = g(x)K; x € R, (58)

where exp(-) indicates the usual exponential function exp(x) = e*, x € R. Figure 2 depicts
—fand F.

It is easy to prove that x* = 0 is a solution of the inclusion 0 € f(x) + F(x). The
mapping ¥, (v) = g’ (x*)v[1, 2] is metrically regular around (0, 0) with a modulus being
not less than

*= ! * A., * _1]= _ * =1
v A1;1[:11’)§][|f(x)+ 20| = exp(—x®)

For these aforementioned data, we have Ly = 1, Ly = exp(x* +r), r > 0. The
assumptions of Theorem 4 (and also Corollary 1) are satisfied with p(¢) = 2Lgt2 and
@(t) = 2Lgt. Some numerical computations are shown in Table 1.

Example 3 (An application in mathematical programming) Let ¢9 : R"” — R and
¢1 : R" — R™ be given smooth maps. Consider the following constrained optimization
problem
min ¢o(x) st. x eR", ¢1(x) e C (59)
where ) # C C R™ is a closed convex set. The first-order optimality condition for (59)
reads
0 e Vgo(x) + N¢1_1(C)(x). (60)
Here, V¢ and Ng respectively denote the Jacobian of ¢y and the normal cone mapping
to S. Suppose that x* is a solution of (60), and that V¢, (x*) is surjective. Then one has
Nyt (o) () = V1 (x*)T Ne(¢1(x*)) (see [22]), which implies

0 € Vi (x*) Vo (x*) + Vo1 (x*) Vo (x*)" N (¢1 (x*)). (61)
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Fig.2 Graph of — f and F in
Example 2

As a result,
0¢€ (V¢1(X*)V¢1(X*)T)_1V¢1(X*)V¢O(X*) + Ne(p1(x)). (62)

The map x +—— (V(,bl(x)VqSl(x)T)_lV¢>1(x)V¢o(x) is well-defined and bounded
around x*. Thus, it follows from (61) and (62) that x* can be viewed as a solution of the
derived inclusion

0 € Vo1 (x)Veo(x) + Vb1 (x)Vp1 (x)" (N (¢1(x)) N nB) (63)

for some suitable n > 0. If we set f(x) = V@1 (x)Veo(x), g(x) = Vo (x)Ver (0T,
G(x) = N¢(¢1(x)) N B and F(x) = g(x)G(x), then (63) is of the form (1).

Note that G(x) C 7B, so it is possible to subsume the problem studied in Example 2
to the current case. In some applications, we are able to obtain the informations related to
G (x*) even if x* is unknown. An important illustration for such a situation appears when C
is defined via a system of equalities and inequalities

C=[ZGR’"

(@) =0,i €&, ¢;(z) <0, eI,}

associated with smooth functions ¢;, i € £ U Z. Under certain constraint qualification cri-
teria, the normal cone N¢ might be totally determined through the active set A(z) := {i €
EUT:ci() = 0} as follows

Nc(z) = :v = Z AiVei(2) ‘A,- <0,i e A(z), A =0,i 9{./4(2)}.

ieEUT

23



Table 1 Numerical illustrations,

ex = |xk 7x*| Xk ek

(a)

8.0000e-02 8.0000e-02
6.1031e-02 6.1031e-02
3.1055e-02 3.1055e-02
6.7082e-03 6.7082¢-03
2.7588e-04 2.7588e-04
4.5241e-07 4.5241e-07
(b)

—7.6898¢-02 7.6898e-02
5.4080e-02 5.4080e-02
2.3311e-02 2.3311e-02
3.6245e-03 3.6245e-03
7.9337e-05 7.9337e-05
3.7380e-08 3.7380e-08

In other words, the set G(x*) might be approximated without involving so many
informations about x*. For such a case, let’s consider the following correspondence

H (x)(u) = [Dg(x0) )]G (x*) + [Dg(x)(u) — Dg(xo) ()]G (x™). (64)

Since G(x*) D G(x) whenever x is nearby x*, we can mimic the arguments in Example
2 to conclude that H (-) could produce a reasonable approximation for F around xo. And
therefore, a similar strategy to the one in Example 2 can be applied.

Finally, let us also mention that an other choice for the set-valued approximation H
which does not depend on the solution x* is

Hx)(w) =Dgx)(u)G(x), x € X, u € X.

For this approximation H, under some suitable assumptions on the metric regularity of
the multifunctions Df (x)(-) + H(x)(-) uniformly in x , one can establish the convergence
properties of the Newton-type scheme (2) for solving (60) as in Theorems 3 and 4.

The preceding examples illustrate the applicability of our theoretical results. There are
many applications in practice that are covered by generalized equations, and that can poten-
tially use our Newton-type scheme proposed in this paper. Many open questions need further
investigations. As noticed by one of the referees, it should be interesting to test the current
schemes in concrete problems dealing for example with variational inequalities or comple-
mentarity problems. This is out of the scope of the current paper and will be the subject of
an other research project in the future.
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