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Stability of metric regularity with set-valued
perturbations and application to Newton’s method
for solving generalized equations

Samir Adly1 ·Huynh Van Ngai2 ·Nguyen Van Vu1

Abstract In this paper, we deal firstly with the question of the stability of the metric reg-
ularity under set-valued perturbation. By adopting the measure of closeness between two
multifunctions, we establish some stability results on the semi-local/local metric regular-
ity. These results are applied to study the convergence of iterative schemes of Newton-type
methods for solving generalized equations in which the set-valued part is approximated.
Some examples illustrating the applicability of the proposed method are discussed.

Keywords Generalized equation · Metric regularity · Newton’s method ·
Linear/superlinear convergence

1 Introduction

The metric regularity is a key ingredient in variational analysis and optimization. In recent
decades, many papers are devoted to study this property and its applications (see, e.g. [3,
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4, 11, 12, 17–20] and references given therein). Recently, the metric regularity was used to
investigate the convergence of the Newton type methods for solving generalized equations
[1–3, 7, 8, 16]. Historically, this concept of metric regularity goes back to the openness of
linear continuous mapping in the Banach Open Mapping Theorem and to the local openness
of smooth nonlinear operators in the Lyusternik-Graves Theorem. For a given set-valued
mapping Φ : X ⇒ Y between two metric spaces X, Y, which are endowed with metrics
both denoted by d(·, ·), and a given subset V ∈ X × Y, Φ is said to be metrically regular
on V with modulus τ > 0 if

d
(
x,Φ−1(y)

)
� τd

(
y, Φ(x)

)
, for all (x, y) ∈ V.

If for a given (x̄, ȳ) belonging to the graph of Φ, the inequality above holds for some
neighborhood V of (x̄, ȳ), then we say Φ is (locally) metrically regular at (x̄, ȳ).

In this paper, we are firstly concerned with the stability of the metric regularity when
the set-valued map under consideration is perturbed. When Y is a normed space, it was
shown by Ioffe [11], and by Dontchev-Lewis-Rockafellar [6] that, if Φ is metrically regular
at (x̄, ȳ) with modulus τ, then Φ + g is metrically regular with modulus τ/(1 − τL) at
(x̄, ȳ + g(x̄)) for any locally Lipschitz mapping g : X → Y at x̄ with Lipschitz modulus
L ∈ (0, τ−1). Unfortunately, without additional assumption, this stability property of the
local metric regularity does not hold in general when the function g : X → Y is replaced,
in the sum Φ + g, by some set-valued map Ψ : X ⇒ Y .

In [12], Ioffe considered the stability of metric regularity with respect to set-valued per-
turbations, and has established a stability result of the global metric regularity. In that paper,
instead of using perturbations of usual addition type, the author has made use of a quan-
tity to measure the closeness between two set-valued mappings. Then some related results
have been investigated in [1, 19]. In the present paper, by using the quantity to measuring
the closeness between two set-valued mappings, introduced by Ioffe, we firstly establish a
stability property of the semi-local metric regularity under set-valued perturbations. For the
local metric regularity, a weaker stability is presented. Secondly, we deal with generalized
equations in Banach space of the form

0 ∈ f (x) + F(x), (1)

where f : X −→ Y is a function between two Banach spaces X and Y , and F : X ⇒ Y

is a set-valued mapping. Throughout the paper, we assume that f is at least of class C1 and
that F has a closed graph.

Such a model (1) appears in a very wide range of problems in applied mathematics, engi-
neering and sciences, such as variational inequality, complementarity problem, optimization
[7, 16]. Because of its importance, this kind of problem have been studied extensively.

In some suitable situation, one can transform (1) into a nonlinear equation. If X = R
m,

Y = R
n, and F = NK is the normal cone mapping associated to a closed convex set K ⊂

R
n, (1) can be rewritten into an equation using for example the normal maps introduced by

Robinson [21]. Unfortunately, this strategy might not be possible in general. Some Newton-
type algorithms (exact and inexact) have been developed for solving inclusions (1) (see, e.g.
[1, 3, 5, 8, 13, 23, 24]). Much more surveys about Newton-type method for inclusion can be
found in [14, 15]. Up to our knowledge, in almost all existing algorithms in the literature,
the set-valued part of inclusion (1) is not considered to be approximated. In the recent paper
[9], the authors introduced an iterative scheme for which both f and F are approximated.
Then, local analysis of convergence results were proved under certain regularity criterion
at a solution as well as the differentiability (in a generalized sense) of F at that point.
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However, in that paper, throughout the algorithm, the multifunction F is approximated by a
fixed positively homogeneous multifunction H at the solution which is generally unknown.

In this work, we propose an iterative scheme for solving (1), in which the multifunction F

is approximated suitably at each iteration. Precisely, by PH(X, Y ), we mean the collection
of all positively homogeneous multifunction (cf. [9, 11, 20]) between two Banach spaces
X and Y . Given a map H : X −→ PH(X, Y ), suppose that for some open convex subset
� ⊂ X, the set-valued map F is H(x)-differentiable at x ∈ � in the sense of [20] (see
Section 2 for the definition). Choosing a starting point x0 nearby a solution, the proposed
algorithm generates a sequence (xk) by solving the following auxiliary problem

0 ∈ f (xk) + Df (xk)(xk+1 − xk) + H(xk)(xk+1 − xk) + F(xk). (2)

Here, the notation Df indicates the first-order derivative of f . It is clear that if H(x)(·) =
H(·) for every x, then (2) recovers the one studied in [9].

The rest of the paper is organized as follows. Section 2 presents the local/semi-local sta-
bility results for metric regularity property under set-valued perturbations. These stability
results are the key ingredients in the analysis of the convergence properties of the iterative
sequences generated by (2). In Section 3, we establish the local and semi-local conver-
gence results for iterative schemes of Newton-type methods of the form (2). Some practical
examples, which illustrate methodologically the proposed method, are reported in the last
section.

2 Stability of the Metric Regularity

Throughout the paper, all objects are always related to Banach spaces, which are usually
denoted by upper character X, Y , etc. Open and closed balls in X with center x and radius r

will be written as BX(x, r) and B̄X(x, r). When dealing with the open (closed) unit ball of
X, we use the notation BX (resp. B̄X). We will use the common notation ‖·‖ for the norm
of any Banach space.

Let C and D be two subsets of a space X, we denote their sum C + D = {
u + v : u ∈

C, v ∈ D
}
. If λ is a scalar, then the product λC is the set λC = {

λu : u ∈ C
}
. A cone in X

is any subset C such that λC ⊂ C whenever λ � 0.
As usual, the distance from a point z to a set K is defined by

d
(
z, K

) = inf
z′∈K

∥∥z − z′∥∥ .

ForK,K ′ ⊂ X, the quantity e
(
K ′, K

) = supz∈K ′ d
(
z, K

)
is called the excess fromK ′ to

K . Finally, we define dH(
K ′, K

) = max
{
e
(
K ′,K

)
, e

(
K,K ′)} as the Hausdorff distance

between K ′ and K .
Any set-valued map T : X ⇒ Y is totally determined by its graph Gr(T ) := {

(x, y) ∈
X × Y : y ∈ T (x)

}
. Corresponding to a set-valued map T , one defines its inverse through

the relation

(x, y) ∈ Gr(T ) ⇔ (y, x) ∈ Gr(T −1).

We says that T is closed provided that Gr(T ) is a closed set in X × Y . The mapping
T is called positively homogeneous, or shortly T ∈ PH(X, Y ), iff Gr(T ) is a cone. For a
mapping T ∈ PH(X, Y ), its outer norm is the following quantity [9, 20]

|T |+ = sup
‖v‖�1

sup
w∈T (v)

‖w‖ = inf
{
κ > 0 : T (BX) ⊂ κBY

}
, (3)
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where the conventions inf(∅) = +∞ and sup(∅) = −∞ are used. Note that in the case
|T |+ is finite, one has T (0) = {0} (see e.g. [9]).

Given a mapping S : X ⇒ Y and T ∈ PH(X, Y ). One says that S is strictly T –
differentiable at some point x̄ ∈ X if for each δ > 0, there exists a neighborhood V of x̄

such that
S(x ′) ⊂ S(x) + T (x′ − x) + δ

∥
∥x′ − x

∥
∥BY ,∀x, x′ ∈ V. (4)

If x is replaced by x̄ in (4) then S is said to be outer T -differentiable at x̄. For more details
about the differentiation of set-valued mapping, we refer to C.H.J. Pang [20].

The study of convergence analysis developed in this paper needs the notion of regularity
[4, 11]. Recall that a mappingΦ : X ⇒ Y is said to be metrically regular on a set V ⊂ X×Y

with a modulus τ > 0, iff

d
(
x,Φ−1(y)

)
� τd

(
y, Φ(x)

)
, for all (x, y) ∈ V. (5)

In this case, we write τ ∈ REG(Φ, V ).
Metric regularity property plays an important role in the analysis of convergence of algo-

rithm (2). The rest of current section is left to prove some stability results which will be
important for the study later. These developments are based on a concept of measuring the
closeness between two set-valued mappings. Specifically, given G1,G2 : X ⇒ Y , one
defines

σG1,G2(x, r) := sup
η2∈G2(x)

inf
η1∈G1(x)

sup
d(x,u)�r,
ζ1∈G1(u)

inf
ζ2∈G2(u)

‖η2 − η1 + ζ1 − ζ2‖ , (6)

for each x ∈ X and r > 0. Such a quantity was introduced in [12] (see also [19]).
Let us now present the main results of this section.

Theorem 1 (stability of semi-local metric regularity) Given two Banach spaces X, Y , and
let Φ : X ⇒ Y and Ψ : X ⇒ Y are two mappings with closed graph. Let r , s, r ′, s′, κ and
μ be positively real numbers such that

κμ < 1, r ′ + κ

1 − κμ
s′ < r, s′ < s. (7)

Suppose

(i) Φ is metrically regular on the set

Vr,s(Φ, x̄) := {
(z, w) ∈ X × Y : ‖z − x̄‖ � r, d

(
w,Φ(z)

)
� s

}

with a modulus κ ,
(ii) σΦ,Ψ (x, ρ) � μρ, for all x ∈ B̄X(x̄, r) and ρ � κs.

If we set τ = 1
1−κμ

κ , then τ ∈ REG
(
Ψ,Vr ′,s′(Ψ, x̄)

)
, where

Vr ′,s′(Ψ, x̄) := {
(z, w) ∈ X × Y : ‖z − x̄‖ � r ′, d

(
w,Ψ (z)

)
� s′} .

Proof Pick (x, y) ∈ Vr ′,s′(Ψ, x̄) with y /∈ Ψ (x) (the other case is trivial). We need to
establish the following inequality

d
(
x, Ψ −1(y)

)
� τd

(
y, Ψ (x)

)
. (8)

Let δ > 0 and ε > 0 such that

κ(μ + δ) < 1, r ′ + κ

1 − κ(μ + δ)
(s′ + ε) < r, s′ + ε < s,
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we shall claim

d
(
x, Ψ −1(y)

)
� κ

1 − κ(μ + δ)
(ν + ε), (9)

where ν = d
(
y, Ψ (x)

)
. To do this, let us first take some z0 ∈ Ψ (x) with ‖y − z0‖ < ν + ε.

Define ρ0 = κ(ν + ε) � κ(s′ + ε) < κs, then assumption (1) implies σΦ,Ψ (x, ρ0) � μρ0.
Thus, there exists w0 ∈ Φ(x) satisfying

sup
d(x,u)�ρ0,ζ∈Φ(u)

inf
ζ ′∈Ψ (u)

∥
∥z0 − w0 + ζ − ζ ′∥∥ < (μ + δ)ρ0. (10)

If we set x0 = x and y0 = y + w0 − z0, then from ‖x0 − x̄‖ � r ′ < r and

d
(
y0, Φ(x0)

) = d
(
y0, Φ(x)

)
� ‖y0 − w0‖ = ‖y − z0‖ < ν + ε < s,

the pair (x0, y0) belongs to Vr,s(Φ, x̄). By applying condition (1) we get

d
(
x0, Φ

−1(y0)
)
� κd

(
y0, Φ(x0)

)
< κ(ν + ε) = ρ0,

which ensures BX(x0, ρ0)∩Φ−1(y0) �= ∅. Taking x1 ∈ BX(x0, ρ0)∩Φ−1(y0), (10) give us

sup
ζ∈Φ(x1)

inf
ζ ′∈Ψ (x1)

∥
∥z0 − w0 + ζ − ζ ′∥∥ < (μ + δ)ρ0.

This allows us to select a point z1 ∈ Ψ (x1) possessing property below

‖z0 − w0 + y0 − z1‖ < (μ + δ)ρ0.

Due to the choice of ε and δ, we have

‖x̄ − x1‖ � ‖x̄ − x0‖ + ‖x0 − x1‖ < r ′ + κ(ν + ε) < r ′ + κ

1 − κ(μ + δ)
(s′ + ε),

so x1 is inside BX(x̄, r). By virtue of hypothesis (1), we obtain

inf
w∈Φ(x1)

sup
d(x1,u)�ρ1,

η∈Φ(u)

inf
η′∈�(u)

∥∥z1 − w + η − η′∥∥ � σΦ,Ψ (x1, ρ1) � μρ1,

where ρ1 := κ(μ + δ)ρ0 < ρ0. Therefore, Φ(x1) contains some element w1 for which the
following assertion is fulfilled

sup
d(x1,u)�ρ1,η∈Φ(u)

inf
η′∈Ψ (u)

∥
∥z1 − w1 + η − η′∥∥ < (μ + δ)ρ1. (11)

Let us define y1 = y + w1 − z1, then it holds that

d
(
y1, Φ(x1)

)
� ‖y1 − w1‖ = ‖y − z1‖ = ‖z0 − w0 + y0 − z1‖
< (μ + δ)ρ0 = [κ(μ + δ)](ν + ε) < s.

Thus, the inclusion (x1, y1) ∈ Vr,s(Φ, x̄) is now clear. By making use of condition (1) in
the statement of Theorem 1, we arrive

d
(
x1, Φ

−1(y1)
)
� κd

(
y1, Φ(x1)

)
< κ(μ + δ)ρ0 = ρ1.

The latter shows that there is some x2 ∈ Φ−1(y1) with ‖x1 − x2‖ < ρ1. Under assign-
ment u = x2, (11) ensures the existence of a point, written as z2, belonging to Ψ (x2)

and

‖z1 − w1 + y1 − z2‖ < (μ + δ)ρ1.
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Passing to the inductive step, suppose the iterations x1, . . . , xn in X are known for some
n � 2. As suggested by the arguments above, let us involve w0 ∈ Φ(x0), . . . , wn−1 ∈
Φ(xn−1) and z0 ∈ Ψ (x0), . . . , zn ∈ Ψ (xn) for which the following conditions are satisfied

– xj ∈ Φ−1(yj−1), where yj−1 = y + wj−1 − zj−1, j = 1, . . . , n;
–

∥
∥xj − xj+1

∥
∥ < ρj ,

∥
∥zj − wj + yj − zj+1

∥
∥ < (μ + δ)ρj , j = 0, . . . , n − 1;

– ρj = [κ(μ + δ)]j ρ0, j = 0, . . . , n − 1.

Due to the triangle inequality, one has

‖xn − x̄‖ �
n−1∑

j=0

∥
∥xj+1 − xj

∥
∥ + ‖x0 − x̄‖ <

n−1∑

j=0

[κ(μ + δ)]j ρ0 + r ′

<
1

1 − κ(μ + δ)
κ(ν + ε) + r ′ < r.

Define a new parameter ρn := [κ(μ+δ)]nρ0. By invoking the hypothesis (1) once more,
we can write

inf
ξ∈Φ(xn)

sup
d(xn,u)�ρn,

υ∈Φ(u)

inf
υ ′∈Ψ (u)

∥
∥zn − ξ + υ − υ ′∥∥ � σΦ,Ψ (xn, ρn) � μρn.

Let us take wn ∈ Φ(xn) such that

sup
d(xn,u)�ρn,υ∈Φ(u)

inf
υ ′∈Ψ (u)

∥∥zn − wn + υ − υ ′∥∥ < (μ + δ)ρn. (12)

In order to proceed to the construction, we put yn = y + wn − zn. Then, it is possible to
estimate the distance d

(
yn,Φ(xn)

)
as follows

d
(
yn, Φ(xn)

)
� ‖yn − wn‖ = ‖y − zn‖ = ‖zn−1 − wn−1 + yn−1 − zn‖
< (μ + δ)ρn−1 = (μ + δ)[κ(μ + δ)]n−1ρ0

= [κ(μ + δ)]n(ν + ε) < s.

Combining with ‖xn − x̄‖ < r , we conclude (xn, yn) ∈ Vr,s(Φ, x̄). As a result,

d
(
xn,Φ

−1(yn)
)
� κd

(
yn,Φ(xn)

)
< κ(μ + δ)ρn−1 = [κ(μ + δ)]nρ0 = ρn.

Hence, the set Φ−1(yn) must contain at least one element, saying xn+1, which satisfies
‖xn − xn+1‖ < ρn. After substituting u = xn+1, (12) tells us

inf
υ∈Ψ (xn+1)

‖zn − wn + yn − υ‖ < (μ + δ)ρn.

From this, we can find zn+1 ∈ Ψ (xn+1) such that

‖zn − wn + yn − zn+1‖ < (μ + δ)ρn.

Repeating the current process, all sequences (xn), (yn), (zn) and (wn) are well-defined
by induction.

Recall that κ(μ+δ) < 1, the series
∑

k�0 ρk = ∑
k�0[κ(μ+δ)]kρ0 converges. Because

of ‖xn − xn+1‖ < ρn, (xn) is Cauchy sequence. Consequently, xk converges in X to a limit
x∗. In order to attain the necessary conclusion, we just verify y ∈ Ψ (x∗) and ‖x − x∗‖ �

κ
1−κ(μ+δ)

(ν + ε). Indeed, according to the construction zn ∈ Ψ (xn). But since

‖y − zn‖ = ‖zn−1 − wn−1 + yn−1 − zn‖ < (μ + δ)ρn−1,
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zn converges to y as n → ∞. By passing to the limit in the inclusion zn ∈ Ψ (xn), and note
that Ψ has closed graph, we obtain y ∈ Ψ (x∗). For the error bound, one has

∥
∥x − x∗∥∥ = ∥

∥x0 − x∗∥∥ =
∥
∥
∥

∑

k�0

(xk − xk+1)

∥
∥
∥ �

∑

k�0

‖xk − xk+1‖ �
∑

k�0

ρk

=
∑

k�0

[κ(μ + δ)]kρ0 = 1

1 − κ(μ + δ)
κ(ν + ε).

Taking into account y ∈ Ψ (x∗), (9) is valid as well. Finally, let ε → 0 and δ → 0 in (9)
we obtain (8). The proof is done.

When studying the local convergence of the scheme in (2), we may need a stability result
related to the local metric regularity property for set-valued map. The following statement
is in this sense.

Theorem 2 LetΦ,Ψ : X ⇒ Y be two closed set-valued maps, and (x̄, ȳ) ∈ GrΦ. Consider
some positive parameters κ , r and s such that κ ∈ REG

(
Φ,V

)
for V = BX(x̄, r) ×

BY (ȳ, s). Let μ > 0, δ > 0 and ν > 0 satisfy

κμ < 1,
κ

1 − κμ
ν < r, δ + (1 + κμ) ν < s.

In addition, assume that there is z̄ ∈ Ψ (x̄) with

inf
v∈Φ(x)

sup
w∈Ψ (x)

‖(w − z̄) − (v − ȳ)‖ � δ, for x ∈ BX(x̄, r). (13)

If
σΦ,Ψ (x, ε) � με, when x ∈ BX(x̄, r) and ε < r, (14)

then one has

d
(
x̄, Ψ −1(z)

)
� τd

(
z, Ψ (x̄)

)
, whenever z ∈ BY (z̄, ν), (15)

where τ = 1
1−κμ

κ .

Proof Let’s pick κ ′ > κ and μ′ > μ which fulfill

κ ′μ′ < 1,
κ

1 − κ ′μ′ ν < r, δ + (
1 + κ ′μ′) ν < s.

Fix z ∈ BY (z̄, ν) and let x0 = x̄. The case z ∈ Ψ (x̄) is trivial. Otherwise, denoting
C = d

(
z, Ψ (x̄)

)
> 0. Observe that C � ‖z − z̄‖ < ν, so for some α > 0 small enough,

we can select w0 ∈ Ψ (x̄) with ‖z − w0‖ < C + α < ν. Put r0 = κ(C + α), the inequality
r0 < κν < r is evident. Thus, assumption (14) implies

sup
ξ∈Ψ (x0)

inf
ξ ′∈Φ(x0)

sup
‖x−x0‖�r0,

ζ∈Φ(x)

inf
ζ ′∈Ψ (x)

∥∥ξ − ξ ′ + ζ − ζ ′∥∥ = σΦ,Ψ (x0, r0) � μr0.

Since w0 ∈ Ψ (x0), we have

inf
ξ ′∈Φ(x0)

sup
‖x−x0‖�r0,

ζ∈Φ(x)

inf
ζ ′∈Ψ (x)

∥∥w0 − ξ ′ + ζ − ζ ′∥∥ � μr0 < μ′r0,

which ensures the existence of v0 ∈ Φ(x0) such that

sup
‖x−x0‖�r0,ζ∈Φ(x)

inf
ζ ′∈Ψ (x)

∥∥w0 − v0 + ζ − ζ ′∥∥ < μ′r0. (16)
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By setting y0 = z − w0 + v0, we claim ‖y0 − ȳ‖ < s. Indeed, the triangle inequality in
Y tells us

‖y0 − ȳ‖ � ‖z − z̄‖ + ‖w0 − v0 + ȳ − z̄‖
� ‖z − z̄‖ + ∥

∥w0 − v0 + ζ − ζ ′∥∥ + ∥
∥(ζ ′ − z̄) − (ζ − ȳ)

∥
∥ ,

where ζ varies in Φ(x0) and ζ ′ in Ψ (x0). Thus,

‖y0 − ȳ‖ � ‖z − z̄‖ + sup
ζ∈Φ(x0)

inf
ζ ′∈Ψ (x0)

∥
∥w0 − v0 + ζ − ζ ′∥∥

+ inf
ζ∈Φ(x0)

sup
ζ ′∈Ψ (x0)

∥
∥(ζ ′ − z̄) − (ζ − ȳ)

∥
∥

< ν + μ′r0 + δ < (1 + κμ′)ν + δ < s.

Using metric regularity property of Φ, we find

d
(
x0, Φ

−1(y0)
)
� κd

(
y0, Φ(x0)

)
� κ ‖y0 − v0‖ = κ ‖z − w0‖ < κ(C + α).

Therefore, there exists x1 ∈ Φ−1(y0) such that ‖x0 − x1‖ < κ(C + α) = r0.
Next, invoking (16)

d
(
w0 − v0 + y0, Ψ (x1)

)
� sup

‖x−x0‖�r0,ζ∈Φ(x)

inf
ζ ′∈Ψ (x)

∥∥w0 − v0 + ζ − ζ ′∥∥ < μ′r0,

which permit us to determine an element w1 in Ψ (x1) obeying the inequality
‖w0 − v0 + y0 − w1‖ < μ′r0. Let r1 = κ ′μ′r0. After substituting x = x1 and ε = r1 into
the left-hand side of (14), we deduce

inf
v∈Φ(x1)

sup
‖x−x1‖�r1

ξ∈Φ(x)

inf
ξ ′∈Ψ (x)

∥∥w1 − v + ξ − ξ ′∥∥ � σΦ,Ψ (x1, r1) � μr1.

This shows that, there is v1 in the set Φ(x1) such that

sup
‖x−x1‖�r1,ξ∈Φ(x)

inf
ξ ′∈Ψ (x)

∥∥w1 − v1 + ξ − ξ ′∥∥ < μ′r1.

Setting now y1 = z − w1 + v1, we require (x1, y1) lying into the set V . In fact, the
choice of x1 above have affirmed x1 ∈ BX(x̄, r). Moreover, as similar as the case of y0, the
following estimation holds

‖y1 − ȳ‖ � ‖z − z̄‖ + sup
ξ∈Φ(x1)

inf
ξ ′∈Ψ (x1)

∥∥w1 − v1 + ξ − ξ ′∥∥

+ inf
ξ∈Φ(x1)

sup
ξ ′∈Ψ (x1)

∥∥(ξ ′ − z̄) − (ξ − ȳ)
∥∥

< ν + μ′r1 + δ < ν + μ′(κ ′μ′)κν + δ <
(
1 + κ ′μ′) ν + δ < s.

This implies the inclusion (x1, y1) ∈ V . As a result,

d
(
x1, Φ

−1(y1)
)
� κd

(
y1, Φ(x1)

)
� κ ‖y1 − v1‖ = κ ‖z − w1‖ .

Recalling z = y0 + w0 − v0, which gives us ‖z − w1‖ = ‖w0 − v0 + y0 − w1‖ < μ′r0.
Hence,

d
(
x1, Φ

−1(y1)
)

< κμ′r0 < (κ ′μ′)r0.

Consequently, the set Φ−1(y1) contains a point x2 such that ‖x1 − x2‖ < (κ ′μ′)r0.
The construction continues with the inductive process. Suppose that the iterations

x0 = x̄, x1, . . . , xn are given for n � 2. Alternatively, we include some points v0 ∈
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Φ(x0), . . . , vn−1 ∈ Φ(xn−1) along with w0 ∈ Ψ (x0), . . . , wn−1 ∈ Ψ (xn−1) satisfying
simultaneously the conditions below:

– xk+1 ∈ Φ−1(yk) for yk = z − wk + vk and k � n;
– ‖xk − xk+1‖ < rk , with rk = (

κ ′μ′)k
r0;

– ‖wk−1 − vk−1 + yk−1 − wk‖ < μ′rk−1 holds for k = 1, . . . , n − 1;
– sup‖x−xk‖�rk,υ∈Φ(x) infυ ′∈Ψ (x)

∥
∥wk − vk + υ − υ ′∥∥ < μ′rk .

With the goal of generating xn+1, we exploit the hypothesis κ ∈ REG
(
Φ,V

)
. To do this,

let’s first notice that xn is not out of the ball BX(x̄, r), which is a consequence of the
following estimations

‖xn − x̄‖ �
n−1∑

k=0

‖xk − xk+1‖ <

n−1∑

k=0

(
κ ′μ′)k

r0 <
1

1 − κ ′μ′ κν < r.

Recall that ‖xn−1 − xn‖ < rn−1 and yn−1 ∈ Φ(xn), we deduce

d
(
wn−1 − vn−1 + yn−1, Ψ (xn)

)
� sup

‖x−xn−1‖�rn−1,

υ∈Φ(x)

inf
υ ′∈Ψ (x)

∥
∥wn−1 − vn−1 + υ − υ ′∥∥ .

In other words, d
(
wn−1 − vn−1 + yn−1, Ψ (xn)

)
< μ′rn−1. We take a point wn in Ψ (xn)

fulfilling inequality ‖wn−1 − vn−1 + yn−1 − wn‖ < μ′rn−1. Put rn := (
κ ′μ′)n

r0. By
involving the hypothesis (14) once again, we derive

inf
v∈Φ(xn)

sup
‖x−xn‖�rn,

ζ∈Φ(x)

inf
ζ ′∈Ψ (x)

∥∥wn − v + ζ − ζ ′∥∥ � σΦ,Ψ (xn, rn) � μrn.

Thanks to this, it is possible to find an element vn ∈ Φ(xn) such that

sup
‖x−xn‖�rn,ζ∈Φ(x)

inf
ζ ′∈Ψ (x)

∥∥wn − vn + ζ − ζ ′∥∥ < μ′rn.

Define now yn = z − wn + vn. After repeating analogous arguments as n = 0, one gets

‖yn − ȳ‖ � ‖z − z̄‖ + sup
ω∈Φ(xn)

inf
ω′∈Ψ (xn)

∥
∥wn − vn + ω − ω′∥∥

+ inf
ω∈Φ(xn)

sup
ω′∈Ψ (xn)

∥
∥(ω′ − z̄) − (ω − ȳ)

∥
∥

< ν + μ′rn + δ < ν + μ′(κ ′μ′)nκν + δ <
(
1 + κ ′μ′) ν + δ < s.

In summary, (xn, yn) belongs to V . Including the fact κ ∈ REG
(
Φ, V

)
, we find

d
(
xn, Φ

−1(yn)
)
� κd

(
yn, Φ(xn)

)
� κ ‖yn − vn‖ = κ ‖z − wn‖ .

Observing yn−1 = z − wn−1 + vn−1, the latter implies

d
(
xn,Φ

−1(yn)
)
� κ ‖z − wn‖ = κ ‖wn−1 − vn−1 + yn−1 − wn‖ < κ ′μ′rn−1.

Hence, the setΦ−1(yn) contain some element xn+1 so that ‖xn − xn+1‖ < rn is fulfilled.
Induction step is done.

According to the construction, it holds that

‖xn − xn+k‖ �
k−1∑

j=0

∥∥xn+j − xn+j+1
∥∥ <

k−1∑

j=0

(
κ ′μ′)n+j

r0

<
(
κ ′μ′)n κ

1 − κ ′μ′ (C + α).

(17)
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Since κ ′μ′ < 1, (17) yields lim sup
m,n→∞

‖xm − xn‖ = 0. Thus, the limit x∗ = lim
n→∞ xn exists.

By fixing n = 0 and letting k → ∞, we derive ‖x̄ − x∗‖ � κ
1−κ ′μ′ (C + α). On the

other hand, recalling ‖z − wn‖ = ‖wn−1 − vn−1 + yn−1 − wn‖, and taking into account
‖wn−1 − vn−1 + yn−1 − wn‖ < μ′rn−1, we conclude wn → z as n → ∞. But wn is in
Ψ (xn), so z ∈ Ψ (x∗) due to the closedness of Gr(Ψ ). Consequently,

d
(
x̄, Ψ −1(z)

)
�

∥
∥x̄ − x∗∥∥ � κ

1 − κ ′μ′ (C + α).

Since α is arbitrarily small, and both parameters κ ′, μ′ are chosen independently of z,
we obtain d

(
x̄, Ψ −1(z)

)
� κ

1−κμ
C. This completes the proof.

3 Convergence of the Newton-Type Algorithm Using Set-Valued
Differentiation

We start with the following definition, that will be useful later.

Definition 1 Let H : X −→ PH(X, Y ) be a given map, and let � ⊂ X be a nonempty
open subset.

(i) A mapping Φ : X ⇒ Y is said to be pointwise strictly differentiable with respect to
H on � if and only if for any x ∈ � and ε > 0, there exists δ = δ(x, ε) > 0 such that

Φ(z′) ⊂ Φ(z) + H(x)(z′ − z) + ε
∥∥z′ − z

∥∥BY ; ∀z, z′ ∈ BX(x, δ) ∩ �. (18)

(ii) Φ : X ⇒ Y is differentiable with respect to H uniformly on � providing for all ε > 0
there is δ > 0 satisfying

Φ(x′) ⊂ Φ(x) + H(x)(x′ − x) + ε
∥∥x′ − x

∥∥BY , (19)

whenever x, x′ ∈ � and
∥∥x′ − x

∥∥ � δ.

On the other hand, with the aim of studying the convergence of the scheme (2), we assign
to each map H : X −→ PH(X, Y ) a function defined as follows

ΛH (x, x′, t) := sup
‖u‖�t

e
(
H(x)(u) + H(x′)(−u), 0

); x, x′ ∈ X, t � 0. (20)

Remark 1 Suppose that both |H(x)|+ and
∣∣H(x′)

∣∣+ are finite. From the definition of outer

norm one has H(x)(u) ⊂ |H(x)|+ ‖u‖ B̄Y as well as H(x′)(−u) ⊂ ∣
∣H(x′)

∣
∣+ ‖u‖ B̄Y .

Consequently,

e
(
H(x)(u) + H(x′)(−u), 0

)
�

( |H(x)|+ + ∣
∣H(x′)

∣
∣+ ) ‖u‖ .

That is, when |H(·)|+ is bounded, all real-valued functionsΛH (x, x′, ·) can be majorized
by one linear map.

Returning back to the main results, a semi-local convergence analysis for (2) is presented
in the next theorem.
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Theorem 3 (semi-local analysis) Let � be an open convex subset of X on which Df is
Lipschitz continuous with a modulus L > 0. Given a map H : X −→ PH(X, Y ) so that
F is differentiable with respect to H uniformly on �. Let’s fix some x ∈ � and r > 0 with
�x = B̄X(x, r) ⊂ �. Suppose that ρ0 and ε0 are some positive numbers satisfying

F(z′) ⊂ F(z) + H(z)(z′ − z) + ρ0‖z′ − z‖BY (21)

when z′, z ∈ �x and ‖z′ − z‖ � ε0. Additionally, we also assume the following hypotheses:

(i) it holds that τ ∈ REG
(
Ψx, Vr,s(Ψx)

)
, where Ψx(·) := Df (x)(·) + H(x)(·) and

Vr,s (Ψx) = {
(v, w) : ‖v‖ � r, d

(
w,Ψx(v)

)
� s

}
;

(ii) d
(
0, f (x) + F(x)

)
< min

{
s, τ−1ε0

}
;

(iii) there exists some constant λ > 0 such that

σH(x),H(z)(u, δ) � λ‖x − z‖δ, (22)

for z ∈ B̄X(x, r), ‖u‖ � r and δ � τs;
(iv) |H(x)|+ < ∞ and ΛH (z, z′, t) � ω(t) for all z, z′ ∈ �x and t � ε0, where ω :

R+ −→ R+ is a nondecreasing convex function with ω(0+) = lim
t↘0

ω(t) = 0;

(v) τ(L + λ)r < 1 and K0 := 1
2Lε0 + ρ0 + ω(ε0)

ε0
< 1

τ
− (L + λ)r .

If either 1−τ(L+λ)r
1−τK0−τ(L+λ)r

ε0 � r or 1−τ(L+λ)r
1−τK0−τ(L+λ)r

τ s � r is valid, then there exists a solution
x∗ of problem (1) such that

∥∥x − x∗∥∥ � 1 − τ(L + λ)r

1 − τK0 − τ(L + λ)r
min

{
τs, ε0

}
� r.

Furthermore, the scheme (2) produces a sequence (xk) which starts at x0 = x and
converges to x∗ at least R-linearly, i.e.,

lim sup
k→∞

∥∥xk − x∗∥∥1/k
< 1.

For the proof of this theorem, the next technical lemmas will be useful.

Lemma 1 Keep in mind the assumptions of Theorem 3. For each z in BX(x, r) set Ψz(·) :=
Df (z)(·) + H(z)(·). Then one has

σΨx,Ψz (u, δ) � (L + λ) ‖x − z‖ δ, (23)

where u ∈ rB̄X and δ � τs.

Proof Fix u ∈ rB̄X and δ � τs. Due to the definition of σΨx,Ψz (u, δ), and by using triangle
inequality, we deduce

σΨx,Ψz (u, δ) � sup
‖u−v‖�δ

‖[Df (z) − Df (x)](u − v)‖

+ sup
ζ∈H(z)(u)

inf
ζ ′∈H(x)(u)

sup
‖u−v‖�δ,
ξ∈H(x)(v)

inf
ξ ′∈H(z)(v)

∥∥ζ − ζ ′ + ξ − ξ ′∥∥

� sup
‖u−v‖�δ

‖Df (z) − Df (x)‖ ‖u − v‖ + σH(x),H(z)(u, δ)

� L‖z − x‖δ + λ‖x − z‖δ.
This implies the conclusion of Lemma 1.
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Lemma 2 Let γ1 = 1
2τL, γ2 = ρ0τ and γ3 = τ(L + λ)r < 1, where L, τ , ρ0, λ and r are

in statement of Theorem 3. Let ω be the function appeared in the same theorem. Considering
h(t) = 1

1−γ3

(
γ1t

2 + γ2t + τω(t)
)
for t � 0. Then under initial constraint h(α0) � α0, the

recurrence αk+1 = h(αk) produces a sequence converging at least linearly.

Proof The case h(α0) = α0 is trivial, because (αk) is a stationary sequence. Suppose
h(α0) < α0. It is clear that h is convex and increasing, with h(0) = 0. The convexity of h

implies that t ∈ (0, α0] �−→ h(t)
t

is an increasing function (see [10]). Thus

0 < t � α0 =⇒ h(t) � h(α0)

α0
t = qt,

where q = h(α0)
α0

∈ [0, 1). By induction we can prove that (αk) is well-defined and satisfies
αk � qαk−1, so the linear convergence is followed.

We are now in a position to prove Theorem 3.

Proof of Theorem 3 We will subdivide the proof in several steps.

Step1: Construction of a Sequence At the beginning, we denote x0 = x, Ψ0 = Ψx ,
τ0 = τ , r0 = r and s0 = s. Then Ψ0 is metrically regular on the set V0 = Vr,s(Ψx)

with modulus τ0. From assumption (3), we can select y0 ∈ F(x0) for which the inequality
‖−f (x0) − y0‖ < min{s, τ−1ε0} holds. Let z0 = −f (x0) − y0, we derive

d
(
z0, Ψ0(0)

) = d
(
z0, H(x)(0)

) = ‖z0‖ < s.

This means (0, z0) ∈ V0, which guarantees the validity of

d
(
0, Ψ −1

0 (z0)
)
� τ0d

(
z0, Ψ0(0)

) = τ0 ‖z0‖ < min{τs, ε0}.
Hence, there exists an element, says v0, in the set Ψ −1

0 (z0) such that

‖v0‖ < min{τs, ε0}.
Define x1 = x0 + v0, we get

−f (x0) − y0 ∈ Ψ0(v0) = Ψ0(x1 − x0) = Df (x0)(x1 − x0) + H(x0)(x1 − x0),

which is equivalent to

0 ∈ f (x0) + Df (x0)(x1 − x0) + H(x0)(x1 − x0) + y0

⊂ f (x0) + Df (x0)(x1 − x0) + H(x0)(x1 − x0) + F(x0).

As a summary, x1 obeys the scheme (2) and

‖x1 − x0‖ = ‖v0‖ < min{τs, ε0}.
Let h be the function defined as in Lemma 2. It follows from assumption (3) that h(ε0)

ε0
=

1
1−τ(L+λ)r

τK0 < 1. Setting α0 = min{τs, ε0} > 0, the monotonicity of function h(t)
t

shows
that

h(α0) �
h(ε0)

ε0
α0 = qα0, q = 1

1 − τ(L + λ)r
τK0. (24)

Using Lemma 2, the sequence (αk) produced by αk+1 = h(αk) is well-defined such that
αk � qkα0.
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We shall continue by induction. Assume that k + 1 iterations x0, x1, . . . , xk are known
for some k � 1. Moreover, the following conditions are also supposed to be valid:

– 0 ∈ f (xj ) + Df (xj )(xj+1 − xj ) + H(xj )(xj+1 − xj ) + F(xj ), for j � k − 1;
–

∥
∥xj+1 − xj

∥
∥ < αj , j = 0, . . . , k − 1.

Since
k−1∑

j=0

αj �
k−1∑

j=0

qjα0 <
1

1 − q
α0 = 1 − τ(L + λ)r

1 − τ(L + λ)r − τK0
min

{
τs, ε0

}
� r,

all known points xj are in BX(x, r). If xk = xk−1 then we simply take xk+1 = xk , and
pass directly to the second step. Otherwise, we set Ψk(·) = Df (xk)(·)+H(xk)(·) and write
vj = xj+1 − xj for each j � k − 1. By the inductive hypothesis, there is yk−1 ∈ F(xk−1)

such that wk−1 ∈ H(xk−1)(vk−1), where

wk−1 = −f (xk−1) − Df (xk−1)(vk−1) − yk−1.

Noticing αk−1 � qkα0 � ε0, the supposition (21) can be used here. This implies that
there exist some elements yk ∈ F(xk) and w′

k−1 ∈ H(xk)(−vk−1) with

yk−1 − yk − w′
k−1 ∈ ρ0 ‖vk−1‖BY .

Define zk = −f (xk) − yk , we have

zk = [−f (xk) + f (xk−1) + Df (xk−1)(vk−1)
] + wk−1 + (

yk−1 − yk − w′
k−1

) + w′
k−1.

The Taylor’s expansion at the reference point xk−1

f (xk) = f (xk−1) +
∫ 1

0
Df (xk−1 + tvk−1)(vk−1) dt

yields

‖−f (xk) + f (xk−1) + Df (xk−1)(vk−1)‖

=
∥∥∥
∥∥
−

∫ 1

0

[
Df (xk−1 + tvk−1) − Df (xk−1)

]
(vk−1) dt

∥∥∥
∥∥

�
∫ 1

0
L ‖vk−1‖2 t dt = 1

2
L ‖vk−1‖2 .

Taking into account wk−1 + w′
k−1 ∈ H(xk−1)(vk−1) + H(xk)(−vk−1), one obtains

‖zk‖ � 1

2
L ‖vk−1‖2 + ρ0 ‖vk−1‖ + ΛH (xk−1, xk, αk−1)

� 1

2
Lα2

k−1 + ρ0αk−1 + ω(αk−1).

By virtue of xk ∈ BX(x, r), Lemma 1 tells us

σΨ0,Ψk
(u, δ) � (L + λ) ‖x0 − xk‖ δ < (L + λ)rδ.

Setting now βk = ‖x0 − xk‖ < r , we check that
⎧
⎪⎨

⎪⎩

τ(L + λ)βk < 1,
τ

1−τ(L+λ)βk

[
1
2Lα2

k−1 + ρ0αk−1 + ω(αk−1)
]

< r,

1
2Lα2

k−1 + ρ0αk−1 + ω(αk−1) < s.

(25)
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The first inequality of (25) is an immediate consequence of supposition (3). The second
one is inferred from the following estimates

τ

1 − τ(L + λ)βk

(1
2
Lα2

k−1 + ρ0αk−1 + ω(αk−1)
)

= 1 − τ(L + λ)r

1 − τ(L + λ)βk

h(αk−1)

� h(αk−1) = αk � qkα0 � min{τs, ε0} < r.

Finally, we check the last inequality

1

2
Lα2

k−1 + ρ0αk−1 + ω(αk−1) = 1 − τ(L + λ)r

τ
h(αk−1) = 1 − τ(L + λ)r

τ
αk

� 1 − τ(L + λ)r

τ
qkα0 �

1 − τ(L + λ)r

τ
min{τs, ε0} < s.

Due to (25), we can add some parameters rk > 0 and sk > 0 such that

rk + τ

1 − τ(L + λ)βk

sk < r,
1

2
Lα2

k−1 + ρ0αk−1 + ω(αk−1) < sk < s.

Invoking Theorem 1, the relation τk ∈ REG (Ψk, Vk) holds with τk = τ
1−τ(L+λ)βk

and

Vk = {
(v, w) : ‖v‖ � rk, d

(
w,Ψk(v)

)
� sk

}
.

Because of d
(
zk, Ψk(0)

) = ‖zk‖, we conclude (0, zk) ∈ Vk . Consequently,

d
(
0, Ψ −1

k (zk)
)
� τkd

(
zk, Ψk(0)

) = τk ‖zk‖
� τ

1 − τ(L + λ)βk−1

(1
2
Lα2

k−1 + ρ0αk−1 + ω(αk−1)
)
.

Thus, there exists vk ∈ Ψ −1
k (zk) such that

‖vk‖ <
τ

1 − τ(L + λ)r

(1
2
Lα2

k−1 + ρ0αk−1 + ω(αk−1)
)

= h(αk−1) = αk.

Let us define xk+1 = xk + vk . The choice of vk implies

−f (xk) − yk = zk ∈ Ψk(xk+1 − xk) = Df (xk)(xk+1 − xk) + H(xk)(xk+1 − xk).

In other words, xk+1 clearly satisfies (2), since yk belongs to F(xk). As a result, the
sequence (xk) is completely determined by algorithm (2).

Step2: Convergence Because
∑

k�0 αk is a convergent series, the sequence (xk) con-
verges. Denoting x∗ = lim

k→∞ xk , we claim that x∗ solves (1). In fact, recalling

0 ∈ f (xk) + Df (xk)(vk) + H(xk)(vk) + F(xk), vk = xk+1 − xk (26)

for each index k. Taking into account ‖x − xk‖ = βk < r and ‖vk‖ < αk � ε0 when k is
large enough, hypothesis (3) implies

e
(
H(x)(−vk) + H(xk)(vk), 0

)
� ΛH (xk, x, αk) � ω(αk)

k→∞−−−→ 0.

(Here, condition ω(0+) = 0 in (3) was used.) Since |H(x)|+ < +∞, the fact that
H(x)(u) ⊂ |H(x)|+ ‖uk‖ B̄Y gives us

e
(
H(x)(−vk), 0

)
� |H(x)|+ ‖vk‖ k→∞−−−→ 0.

Hence, e
(
H(xk)(vk), 0

)
tends to 0 as k → ∞. Consequently, by passing to the limit in

(26), we obtain 0 ∈ f (x∗) + F(x∗).
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To finish the proof, we verify ‖x − x∗‖ � r as well as lim sup
k→∞

‖xk − x∗‖1/k < 1. Indeed,

we infer from the construction
∥
∥xk − x∗∥∥ �

∑

j�k

∥
∥xj − xj+1

∥
∥ �

∑

j�k

αj � qk
∑

j�0

qjα0 = qk α0

1 − q
. (27)

Substituting k = 0 in (27), we deduce

∥
∥x − x∗∥∥ = ∥

∥x0 − x∗∥∥ � α0

1 − q
= 1 − τ(L + λ)r

1 − τK0 − τ(L + λ)r
min

{
τs, ε0

}
� r.

Furthermore, extracting the k-th root in (27), and letting k → ∞ we find

lim sup
k→∞

∥
∥xk − x∗∥∥1/k � lim sup

k→∞

{

q

(
α0

1 − q

)1/k
}

= q < 1,

the proof of Theorem 3 is completed.

We end this section by studying the local behavior of the scheme (2).

Theorem 4 (local convergence) Suppose that problem (1) admits x∗ ∈ X as a solution.
Given a map H : X −→ PH(X, Y ) so that F is pointwise strictly differentiable with
respect to H on a neighborhood of x∗. Associated with such a map H , we assume there are
two increasing continuous functions ρ, ϕ : R+ −→ R+ and a radius r > 0 satisfying

– F(x′) ⊂ F(x) + H(x)(x′ − x) + ρ(
∥∥x′ − x

∥∥)BY whenever x, x′ ∈ BX(x∗, r),
– σH(x∗),H(x)(u, ε) � ϕ (‖x − x∗‖) ε, for all u ∈ rB̄X and ε � r ,

– θ∗ = lim sup
t→0

ρ(t)
t

< +∞.

In addition, the assumptions below are supposed to be fulfilled:

(i) Φx∗(·) := Df (x∗)(·) + H(x∗)(·) is metrically regular on the neighborhood V ∗ =
rBX × sBY with a modulus τ ∗ > 0;

(ii) τ ∗ (θ∗ + ϕ(0)) < 1;
(iii) Df is Lipschitz continuous while |H(·)|+ is finite on the ball BX(x∗, r).

Then, there exists a constant 0 < α < r for which the following statement holds. Given
x ∈ BX(x∗, α), it has a sequence (xk) generated by our scheme (2) such that x0 = x and
xk → x∗ as k → ∞ at least linearly.

Before proving this theorem, we note that the function ρ above may quite often appear
when F is pointwise strictly differentiable with respect to H . Besides that, the assumption
related to the function ϕ might be valid in many situations, for instance, when H is induced
by a set-valued map from X into the space L(X, Y ) of all linear and continuous maps
between X and Y .

Let us present the proof of Theorem 4. For this purpose, the next lemmas will be useful.

Lemma 3 Suppose that all statements of Theorem 4 are satisfied. Given x̄ ∈ BX(x∗, r) and
set Ψx∗(·) := Df (x∗)(· − x̄) + H(x∗)(· − x̄), Ψx̄(·) := Df (x̄)(· − x̄) + H(x̄)(· − x̄). If L
is a Lipschitz continuity modulus for Df on BX(x∗, r), then

σΨx∗ ,Ψx̄
(x, ε) �

[
L

∥
∥x̄ − x∗∥∥ + ϕ

(∥∥x̄ − x∗∥∥)]
ε,∀x ∈ BX(x̄, r), ε � r. (28)
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Proof Based on triangle inequality, the definition of σΨx∗ ,Ψx̄
(x, ε) gives us

σΨx∗ ,Ψx̄
(x, ε) � sup

‖x′−x‖�ε

∥
∥[

Df (x̄) − Df (x∗)
]
(x − x′)

∥
∥

+ sup
ζ∈H(x̄)(x−x̄)

inf
ζ ′∈H(x∗)(x−x̄)

sup
‖x′−x‖�ε,

ξ∈H(x∗)(x′−x̄)

inf
ξ ′∈H(x̄)(x′−x̄)

∥
∥ζ − ζ ′ + ξ − ξ ′∥∥

= sup
‖x′−x‖�ε

∥
∥[

Df (x̄) − Df (x∗)
]
(x − x′)

∥
∥ + σH(x∗),H(x̄)(x − x̄, ε)

� sup
‖x′−x‖�ε

∥
∥Df (x̄) − Df (x∗)

∥
∥

∥
∥x − x′∥∥ + σH(x∗),H(x̄)(x − x̄, ε)

= ∥
∥Df (x̄) − Df (x∗)

∥
∥ ε + σH(x∗),H(x̄)(x − x̄, ε).

Thanks to the Lipschitz continuity ofDf as well as u = x−x̄ ∈ rBX , we attain (28).

Lemma 4 Given 0 < δ < r and 0 < δ′ < s. Let x̄ ∈ B̄X(x∗, r − δ) and consider
Ψx̄(·) = Df (x∗)(· − x̄) + H(x∗)(· − x̄). If z∗ ∈ Ψx̄(x

∗) satisfying ‖z∗‖ � s − δ′, then one
has τ ∗ ∈ REG

(
Ψx̄, V

)
, for V = BX(x∗, δ) × BY (z∗, δ′).

Proof Given (x, z) ∈ V , and set u = x − x̄. It is possible to check that Ψ −1
x̄ (z) = x̄ +

Φ−1
x∗ (z), where Φx∗ is in assumption of Theorem 4. Hence,

d
(
x, Ψ −1

x̄ (z)
) = d

(
x, x̄ + Φ−1

x∗ (z)
) = d

(
u,Φ−1

x∗ (z)
)
.

But (u, z) is in the neighborhood V ∗, since ‖x − x̄‖ � ‖x − x∗‖ + ‖x∗ − x̄‖ < r and
‖z‖ � ‖z − z∗‖ + ‖z∗‖ < s. Thus, we obtain

d
(
x, Ψ −1

x̄ (z)
) = d

(
u,Φ−1

x∗ (z)
)
� τ ∗d

(
z, Φx∗(x − x̄)

) = τ ∗d
(
z, Ψx̄(x)

)
,

and the proof is done.

Lemma 5 Keep in mind all assumptions of Theorem 4. If x ∈ BX(x∗, r) and ‖u‖ < r then
one has

H(x)(u) ⊂
(∣
∣H(x∗)

∣
∣+ + ϕ(a)

)
‖u‖ B̄Y , (29)

where ‖x − x∗‖ < a < r . In particular, we infer from (29) the following estimation

inf
υ∈H(x∗)(u)

sup
υ ′∈H(x)(u)

∥
∥(υ ′ − ῡ ′) − (υ − ῡ)

∥
∥ �

(
2

∣
∣H(x∗)

∣
∣+ + ϕ(a)

)
‖u‖ + ∥

∥ῡ ′ − ῡ
∥
∥

(30)
for ῡ ∈ Y and ῡ ′ ∈ Y .

Proof Pick b > 0 with ‖u‖ < b < r . Using the condition σH(x∗),H(x)(u, ε) � ϕ(a)ε for
ε = 1

2 (b + ‖u‖) > ‖u‖, we get
sup

η∈H(x)(u)

inf
η′∈H(x∗)(u)

sup
‖u′−u‖�ε,

ξ∈H(x∗)(u′)

inf
ξ ′∈H(x)(u′)

∥∥η − η′ + ξ − ξ ′∥∥ � ϕ(a)ε < ϕ(a)b.

Fix η ∈ H(x)(u). Then there is η′ ∈ H(x∗)(u) such that

sup
‖u′−u‖�ε,ξ∈H(x∗)(u′)

inf
ξ ′∈H(x)(u′)

∥∥η − η′ + ξ − ξ ′∥∥ < ϕ(a)b. (31)
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Substituting u′ = 0, and noticing that H(x∗)(0) = H(x)(0) = {0}, (31) permits us to
write

∥
∥η − η′∥∥ < ϕ(a)b. Since b does not depend on η and η′, one deduces

∥
∥η − η′∥∥ �

ϕ(a) ‖u‖ by letting b → ‖u‖. In other words,

H(x)(u) ⊂ H(x∗)(u) + ϕ(a) ‖u‖ B̄Y .

Finally, taking into account

H(x∗)(u) ⊂ ∣
∣H(x∗)

∣
∣+ ‖u‖ B̄Y , (32)

the inclusion (29) is thereby valid. Upon relation (30), we have just to apply (29) and invoke
(32) again.

Proof of Theorem 4 Under assumptions of Theorem 4, it is possible to take θ > θ∗ and
0 < α < r/2 which fulfill the constraints below

⎧
⎪⎪⎨

⎪⎪⎩

ρ(t) � θt, ∀t � α,

τ ∗
(
3
2Lα + ϕ(α) + θ

)
< 1,

[
2Lα + 3ϕ(α) + 4 |H(x∗)|+ + ν∗] α + 2

(
1
2Lα2 + ρ(α)

)
< s,

(33)

where ν∗ = ‖Df (x∗)‖+|H(x∗)|+, and L > 0 is a Lipschitz modulus forDf on BX(x∗, r).
Let’s fix x ∈ BX(x∗, α) and denote x0 = x. Set u0 = x0 − x∗, α0 = ‖u0‖ < α,

μ0 = Lα0 + ϕ(α0), and Φ0(·) = Df (x∗)(· − x0) + H(x∗)(· − x0). By assumptions of
Theorem 4,

−f (x∗) ∈ F(x∗) ⊂ F(x0) + H(x0)(x
∗ − x0) + ρ

(∥∥x∗ − x0
∥∥)

BY ,

so we can select y0 ∈ F(x0) and w0 ∈ H(x0)(−u0) such that

− f (x∗) − y0 − w0 ∈ ρ
(∥∥x∗ − x0

∥∥)
BY = ρ (α0)BY . (34)

Moreover, observe that the relation

inf
ξ∈H(x∗)(−u0)

sup
‖z+u0‖�α0,
υ∈H(x∗)(z)

inf
υ ′∈H(x0)(z)

∥
∥w0 − ξ + υ − υ ′∥∥

� σH(x∗),H(x0)(−u0, α0) � ϕ(α0)α0

holds. Due to this relation, we choose w∗
0 ∈ H(x∗)(−u0) for which

sup
‖z+u0‖�α0,υ∈H(x∗)(z)

inf
υ ′∈H(x0)(z)

∥∥w0 − w∗
0 + υ − υ ′∥∥ < ϕ(α)α (35)

is valid as well. Both |H(x∗)|+ and |H(x0)|+ are finite, so H(x∗)(0) = H(x0)(0) = {0}.
Taking z = 0 in the left-hand side of (35), we conclude

∥
∥w0 − w∗

0

∥
∥ < ϕ(α)α.

Define z0 = −f (x0) − y0, z̄0 = −Df (x0)(u0) + w0 and z∗
0 = −Df (x∗)(u0) + w∗

0 .
Since w∗

0 ∈ H(x∗)(−u0) ⊂ |H(x∗)|+ ‖u0‖ B̄Y , one has
∥
∥z∗

0

∥
∥ �

∥
∥Df (x∗)

∥
∥ ‖u0‖ + ∣

∣H(x∗)
∣
∣+ ‖u0‖ = ν∗α0.

According to (33), ν∗α0 < ν∗α < s. On the other hand, by α0 < α < r/2, it holds that
r − α > α0. Using Lemma 4 for δ = α and δ′ = s − ν∗α0, the mapping Φ0 is metrically
regular on V0 = BX(x∗, α) × BY (z∗

0, s − ν∗α0) with modulus τ ∗.
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To obtain the next iteration x1, we are going to apply Theorem 2. Let Ψ0(·) :=
Df (x0)(· − x0) + H(x0)(· − x0), we get z̄0 ∈ Ψ0(x

∗). If x ∈ BX(x∗, α), then we find

γ (x, x0) := inf
υ∈Φ0(x)

sup
υ ′∈Ψ0(x)

∥
∥(υ ′ − z̄0) − (υ − z∗

0)
∥
∥

�
∥
∥[Df (x0) − Df (x∗)](x − x∗)

∥
∥

+ inf
v∈H(x∗)(x−x0)

sup
w∈H(x0)(x−x0)

∥
∥(w − w0) − (v − w∗

0)
∥
∥ .

Thanks to Lemma 5, one infers from the Lipschitz continuity of Df that

γ (x, x0) � L
∥
∥x0 − x∗∥∥ ∥

∥x − x∗∥∥ +
[
2

∣
∣H(x∗)

∣
∣+ + ϕ (α)

]
‖x − x0‖

+ ∥
∥w0 − w∗

0

∥
∥

� 2Lαα0 + 2
[
2

∣
∣H(x∗)

∣
∣+ + ϕ (α)

]
α + ϕ(α)α.

(36)

In (36), the last estimation is followed by ‖x − x0‖ � ‖x − x∗‖ + ‖x∗ − x0‖ < 2α.
Furthermore, the choice of z0 and z̄0 provides

z0 − z̄0 = f (x∗) − f (x0) − Df (x0)(−u0) − f (x∗) − y0 − w0.

Writing down the Taylor expansion for f at x0, we deduce

f (x∗) = f (x0) +
∫ 1

0
Df (x0 − tu0)(−u0) dt

= f (x0) + Df (x0)(−u0) +
∫ 1

0
[Df (x0 − tu0) − Df (x0)] (−u0) dt.

As a consequence,

‖z0 − z̄0‖ �
∫ 1
0

∥
∥∥ [Df (x0 − tu0) − Df (x0)] (−u0)

∥
∥∥ dt

+ ‖−f (x∗) − y0 − w0‖
<

∫ 1
0 L ‖u0‖2 t dt + ρ(α0) = 1

2Lα2
0 + ρ(α0).

(37)

In (37), the fact −f (x∗) − y0 − w0 ∈ ρ (α0)BY was used. We are now going to prove
the inequalities below

⎧
⎪⎪⎨

⎪⎪⎩

μ0τ
∗ = [Lα0 + ϕ(α0)] τ ∗ < 1,

τ∗
1−μ0τ

∗
(
1
2Lα2

0 + ρ(α0)
)

< α,

(1 + μ0τ
∗)

(
1
2Lα2

0 + ρ(α0)
)

+ sup‖x−x∗‖<α γ (x, x0) < s − ν∗α0.

(38)

In fact, if we set β = 1
2Lα2 + ρ(α) and β0 = 1

2Lα2
0 + ρ(α0), the first and second

conditions in (33) gives us

τ ∗μ0 � τ ∗[Lα + ϕ(α)] < 1 − τ ∗
(
1

2
Lα + θ

)
� 1 − τ ∗α−1β < 1 − τ ∗α−1β0. (39)

Taking into account (33), (36) and (39), the constraints in (38) are valid as well. This
permits us to add a parameter s0 > 1

2Lα2
0 + ρ(α0) satisfying

τ ∗

1 − μ0τ ∗ s0 < α,
(
1 + μ0τ

∗) s0 + sup
‖x−x∗‖<α

γ (x, x0) < s − ν∗α0.
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Define τ0 = τ∗
1−μ0τ

∗ . Let’s apply Theorem 2 with the corresponding data x̄ = x∗, ȳ =
z∗
0, V = BX(x∗, α) × BY (z∗

0, s − ν∗α0), z̄ = z̄0, ν = s0. By virtue of (37), we obtain
‖z0 − z̄0‖ < s0, which implies that

d
(
x∗, Ψ −1

0 (z0)
)
� τ0d

(
z0, Ψ0(x

∗)
)
� τ0 ‖z0 − z̄0‖ <

τ ∗

1 − μ0τ ∗

(
1

2
Lα2

0 + ρ(α0)

)
.

Hence, the set Ψ −1
0 (z0) contains some x1 such that

∥
∥x∗ − x1

∥
∥ <

τ ∗

1 − μ0τ ∗

(
1

2
Lα2

0 + ρ(α0)

)

= 1

1 − [τ ∗Lα0 + τ ∗ϕ(α0)]

[
1

2
τ ∗Lα2

0 + τ ∗ρ(α0)

]
.

(40)

The function ψ(t) = 1
1−[τ∗Lt+τ∗ϕ(t)]

[
1
2τ

∗Lt + τ ∗θ
]
is well-defined and nondecreasing

on the interval [0, α]. The choice of α gives us ψ(α) < 1. Due to (33) and (40), we get
∥
∥x∗ − x1

∥
∥ < ψ(α0)α0 � ψ(α)α0 � α0,

which yields x1 ∈ BX(x∗, α). Consequently, we can apply all previous arguments for the
new starting point x1 instead of x0.

Recall that x1 ∈ Ψ −1
0 (z0), or equivalently, z0 = −f (x0) − y0 ∈ Ψ0(x1). Thus,

0 ∈ f (x0) + y0 + Df (x0)(x1 − x0) + H(x0)(x1 − x0)

⊂ f (x0) + Df (x0)(x1 − x0) + H(x0)(x1 − x0) + F(x0).

In other words, x1 is generated by (2).
Repeating this process, we obtain a sequence (xk) which is produced by (2) and

∥∥x∗ − xk+1
∥∥ � ψ

(∥∥x∗ − xk

∥∥) ∥∥x∗ − xk

∥∥ � ψ(α)
∥∥x∗ − xk

∥∥ . (41)

The proof is thereby done.

In the previous theorem, the rate of convergence for (xk) seems to concern the behavior
of the function t �−→ ρ(t) around t = 0. If a stronger condition is imposed on ρ (i.e., on the
order of approximation for F ), then Theorem 4 can be refined a little bit. The next corollary
is in this sense.

Corollary 1 (local convergence revisited) Suppose all assumptions of Theorem 4 are ful-
filled with θ∗ = lim sup

t→0

ρ(t)
t

= 0. Then, the constant α can be chosen such that the sequence

(xk) in Theorem 4 converges to the solution x∗ of (1) superlinearly.

Proof Let’s write ρ(t) = ρ1(t)t where ρ1 : R+ −→ R+ is a function satisfying
lim sup

t→0
ρ1(t) = 0. Then there exists α ∈ (0, r/2) such that

{ 3
2Lα + ϕ(α) + sup0�t�α ρ1(t) < 1

τ∗ ,∀t � α,
[
2Lα + 3ϕ(α) + 4 |H(x∗)|+ + ν∗] α + 2

(
1
2Lα2 + ρ(α)

)
< s.

(42)

Here, ν∗ is again the quantity ‖Df (x∗)‖ + |H(x∗)|+. Indeed, (42) can be subsumed as a
particular case of (33), where sup0�t�α ρ1(t) plays the same role as θ .
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Now, let x be in BX(x∗, α). Repeating the construction as in the proof of Theorem 4, the
algorithm (2) generates a sequence (xk) for which x0 = x and

∥
∥x∗ − xk+1

∥
∥ � ψ1

(∥∥x∗ − xk

∥
∥) ∥

∥x∗ − xk

∥
∥ , k = 0, 1, . . . (43)

where ψ1(t) := 1
1−[τ∗Lt+τ∗ϕ(t)]

[
1
2τ

∗Lt + τ ∗ρ1(t)
]
, t ∈ [0, α]. By induction, we can prove

‖x∗ − xk‖ � α and 0 � supk ψ1 (‖x∗ − xk‖) < 1. Particularly, (43) ensures that xk

converges to x∗ as k → ∞. Finally, by taking into account

lim sup
t→0

ψ1(t) = lim sup
t→0

{
1

1 − [τ ∗Lt + τ ∗ϕ(t)]

[
1

2
τ ∗Lt + τ ∗ρ1(t)

]}
= 0,

the superlinear convergence follows, which completes the proof of Corollary 1.

4 Some Illustrative Examples

Example 1 The purpose of this example is to give a simple comparison between (2) and the
well-known Josephy-Newton method. Consider X = Y = R

f (x) = −(x − 1)3 + x − 1 and F(x) =
{ [exp(−2x), +∞), if x � 0,

∅, otherwise.
(44)

Figure 1 depicts the graphs of −f and F , respectively. Choose H(x)(u) =
{−2u exp(−2x)} and define

ρ(t) = exp(2t) − 2t − 1, �(t) = 2
[
exp(2t) − 1

]
, ω(t) = 4t. (45)

If we set g(x) = exp(−2x), then H(x)(u) = {
g′(x)u

}
, which permits us to prove that

e
(
F(x′), F (x) + H(x)(x′ − x)

)

= e
([

g(x′), +∞)
,
[
g(x) + g′(x)(x′ − x), +∞))

�
∣∣g(x′) − [

g(x) + g′(x)(x′ − x)
]∣∣ ; x′ � 0, x � 0.

(46)

Denote u = x′ − x, we infer from (46) that

e
(
F(x′), F (x) + H(x)(x′ − x)

)
� exp(−2x) |exp(−2u) + 2u − 1|
�

∑

n�2

(2 |u|)n
n! = exp(2 |u|) − 2 |u| − 1

= ρ
(∣∣x′ − x

∣∣) ; x � 0, x′ � 0.

Fig. 1 Graphs of −f and F in
Example 1
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On the other hand, we have

ΛH (x, x′, t) = 2
∣
∣exp(−2x) − exp(−2x′)

∣
∣ t � ω(t).

According to the definition of H , we obtain

σH(x),H(x′)(u, r) � �
(∣∣x − x′∣∣) r, for all u � 0 and r > 0. (47)

Since lim
t→0

ρ(t)

t2
= 2 and lim

t→0

�(t)
t

= 4, both the local and semi-local convergence theorems

(i.e. Theorems 3 and 4) can be applied to the current case.
Recall that the Josephy-Newton scheme for generalized equation 0 ∈ f (x) + F(x) is of

the form
0 ∈ f (xk) + Df (xk)(xk+1 − xk) + F(xk+1), k = 0, 1, . . . , (48)

with f and F given in (44). Clearly, (48) is equivalent to solve the following nonlinear
inequality

find x ∈ R+ s.t.

− (xk − 1)3 + xk − 1 +
[
−3 (xk − 1)2 + 1

]
(x − xk) + exp(−2x) � 0.

(49)

On the other hand, the scheme (2) simply reads

find x ∈ R+ s.t. f (xk) + [
f ′(xk) + g′(xk)

]
(x − xk) + g(xk) � 0. (50)

The linear inequality (50) is much easier to solve than the nonlinear one in (49). This
example shows that (2) could be much practical to use in some situation (where the com-
putation of H is easy) than the classical Josephy-Newton method. Each approach has its
advantages and drawbacks.

Example 2 (An application in finite dimensional spaces) Consider the inclusion (1) with
X = R

n, Y = R
m and

F(x) = {
g(x)w : w ∈ K

} = g(x)K. (51)

Here and in what follows, both f : Rn −→ R
m and g : Rn −→ R

m×p are assumed to
be C1,1, while K ⊂ R

p is a closed and bounded nonempty subset.
Let x̄ ∈ R

n be a fixed point and let Lf and Lg be the Lipschitz moduli for f and g,
respectively. We set

Hz
x̄ (u) = [

Dg(z)u − Dg(x̄)u
]
K,Hx̄(z)(u) = [Dg(x̄)u]K + Hz

x̄ (u). (52)

Then, one has Hx̄(z) = Hx̄(x̄) + Hz
x̄ , and hence,

σHx̄(x̄),Hx̄ (z)(u, ε) � sup
‖v−u‖�ε

e
(
Hz

x̄ (u),Hz
x̄ (v)

)
. (53)

If η is a positive constant such that K ⊂ ηB, then by the definition of Hz
x̄ , we derive

e
(
Hz

x̄ (u),Hz
x̄ (v)

)
� sup

w∈K

∥∥(
Dg(z) − Dg(z̄)

)
(u − v)

∥∥‖w‖
� η‖Dg(z) − Dg(x̄)‖‖u − v‖.

This implies that
σH(x̄),H(z)(u, ε) �

(
ηLg

) ‖z − x̄‖ε. (54)

On the other hand, due to the definition of Hx̄(z), it is not difficult to verify that

|Hx̄(z)|+ � η‖Dg(x̄)‖ + ηLg‖z − x̄‖. (55)
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As a result, the extended real-valued function z �−→ |Hx̄(z)|+ is bounded in some neigh-
borhood U of x̄. Thus, it is possible to take ω(t) = 2

(
supz∈U |Hx̄(z)|+

)
t where U is a

neighborhood of x̄.
Finally, let’s check that theH(·)-differentiability assumptions (Definition 1) are satisfied.

Let z and z′ be in a neighborhood U = B(x̄, r). Using Taylor’s expansion for g at z, we get

g(z′) − g(z) − Dg(z)(z′ − z) =
∫ 1

0
[Dg(z + t (z′ − z)) − Dg(z)](z′ − z) dt,

which gives us

g(z′) − g(z) − Dg(z)(z′ − z) ∈ Lg

2
‖z′ − z‖2B̄.

Therefore,

g(z′)K ⊂ g(z)K + [Dg(z)(z′ − z)]K + 1

2
ηLg‖z′ − z‖2B̄. (56)

Nevertheless, by setting u = z′ − z, we are able to claim that [Dg(z)(u)]K ⊂
[Dg(x̄)u]K + [

Dg(z)u − Dg(x̄)u
]
K , and this allows us to write

F(z′) ⊂ F(z) + Hx̄(z)(z
′ − z) + 1

2
ηLg‖z′ − z‖2B̄; ∀z′, z ∈ U. (57)

Consequently, our semi-local result (resp. local result) might be applied by setting x̄ = x0
in Theorem 3 (resp. x̄ = x∗ in Theorem 4 and Corollary 1). All assumptions of those cor-
responding results are satisfied except the metric regularity property that we must establish
for each specific implementation.

As an illustration, let’s consider a simple example with m = n = p = 1, K = [1, 2] and
f (x) = −0.5x2 − 1, g(x) = exp(x) − 0.5, F (x) = g(x)K; x ∈ R, (58)

where exp(·) indicates the usual exponential function exp(x) = ex, x ∈ R. Figure 2 depicts
−f and F .

It is easy to prove that x∗ = 0 is a solution of the inclusion 0 ∈ f (x) + F(x). The
mapping Ψx∗(v) = g′(x∗)v[1, 2] is metrically regular around (0, 0) with a modulus being
not less than

τ ∗ = max
λ∈[1,2]

{∣
∣f ′(x∗) + λg′(x∗)

∣
∣−1

}
= exp(−x∗) = 1.

For these aforementioned data, we have Lf = 1, Lg = exp(x∗ + r), r > 0. The
assumptions of Theorem 4 (and also Corollary 1) are satisfied with ρ(t) = 2Lgt

2 and
ϕ(t) = 2Lgt . Some numerical computations are shown in Table 1.

Example 3 (An application in mathematical programming) Let φ0 : R
n −→ R and

φ1 : Rn −→ R
m be given smooth maps. Consider the following constrained optimization

problem
min φ0(x) s.t. x ∈ R

n, φ1(x) ∈ C (59)
where ∅ �= C ⊂ R

m is a closed convex set. The first-order optimality condition for (59)
reads

0 ∈ ∇φ0(x) + N
φ−1
1 (C)

(x). (60)

Here, ∇φ0 and NS respectively denote the Jacobian of φ0 and the normal cone mapping
to S. Suppose that x∗ is a solution of (60), and that ∇φ1(x

∗) is surjective. Then one has
N

φ−1
1 (C)

(x∗) = ∇φ1(x
∗)T NC

(
φ1(x

∗)
)
(see [22]), which implies

0 ∈ ∇φ1(x
∗)∇φ0(x

∗) + ∇φ1(x
∗)∇φ1(x

∗)T NC

(
φ1(x

∗)
)
. (61)
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Fig. 2 Graph of −f and F in
Example 2

As a result,

0 ∈ (∇φ1(x
∗)∇φ1(x

∗)T
)−1∇φ1(x

∗)∇φ0(x
∗) + NC

(
φ1(x

∗)
)
. (62)

The map x �−→ (∇φ1(x)∇φ1(x)T
)−1∇φ1(x)∇φ0(x) is well-defined and bounded

around x∗. Thus, it follows from (61) and (62) that x∗ can be viewed as a solution of the
derived inclusion

0 ∈ ∇φ1(x)∇φ0(x) + ∇φ1(x)∇φ1(x)T
(
NC

(
φ1(x)

) ∩ ηB
)

(63)

for some suitable η > 0. If we set f (x) = ∇φ1(x)∇φ0(x), g(x) = ∇φ1(x)∇φ1(x)T ,
G(x) = NC

(
φ1(x)

) ∩ ηB and F(x) = g(x)G(x), then (63) is of the form (1).
Note that G(x) ⊂ ηB, so it is possible to subsume the problem studied in Example 2

to the current case. In some applications, we are able to obtain the informations related to
G(x∗) even if x∗ is unknown. An important illustration for such a situation appears when C

is defined via a system of equalities and inequalities

C =
{
z ∈ R

m
∣∣∣ ci(z) = 0, i ∈ E, cj (z) � 0, j ∈ I,

}

associated with smooth functions ci , i ∈ E ∪ I . Under certain constraint qualification cri-
teria, the normal cone NC might be totally determined through the active set A(z) := {

i ∈
E ∪ I : ci(z) = 0

}
as follows

NC(z) =
{

v =
∑

i∈E∪I
λi∇ci(z)

∣
∣∣ λi � 0, i ∈ A(z), λi = 0, i �∈ A(z)

}

.
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Table 1 Numerical illustrations,
ek = ∣

∣xk − x∗∣∣ xk ek

(a)

8.0000e-02 8.0000e-02

6.1031e-02 6.1031e-02

3.1055e-02 3.1055e-02

6.7082e-03 6.7082e-03

2.7588e-04 2.7588e-04

4.5241e-07 4.5241e-07

− −
(b)

−7.6898e-02 7.6898e-02

5.4080e-02 5.4080e-02

2.3311e-02 2.3311e-02

3.6245e-03 3.6245e-03

7.9337e-05 7.9337e-05

3.7380e-08 3.7380e-08

− −

In other words, the set G(x∗) might be approximated without involving so many
informations about x∗. For such a case, let’s consider the following correspondence

H(x)(u) = [Dg(x0)(u)]G(x∗) + [Dg(x)(u) − Dg(x0)(u)]G(x∗). (64)

Since G(x∗) ⊃ G(x) whenever x is nearby x∗, we can mimic the arguments in Example
2 to conclude that H(·) could produce a reasonable approximation for F around x0. And
therefore, a similar strategy to the one in Example 2 can be applied.

Finally, let us also mention that an other choice for the set-valued approximation H

which does not depend on the solution x∗ is

H(x)(u) = Dg(x)(u)G(x), x ∈ X, u ∈ X.

For this approximation H , under some suitable assumptions on the metric regularity of
the multifunctions Df (x)(·) + H(x)(·) uniformly in x , one can establish the convergence
properties of the Newton-type scheme (2) for solving (60) as in Theorems 3 and 4.

The preceding examples illustrate the applicability of our theoretical results. There are
many applications in practice that are covered by generalized equations, and that can poten-
tially use our Newton-type scheme proposed in this paper. Many open questions need further
investigations. As noticed by one of the referees, it should be interesting to test the current
schemes in concrete problems dealing for example with variational inequalities or comple-
mentarity problems. This is out of the scope of the current paper and will be the subject of
an other research project in the future.
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