
HAL Id: hal-01613798
https://hal.science/hal-01613798

Submitted on 25 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pi-CEP: Predictive Complex Event Processing using
Range Queries over Historical Pattern Space

Syed Gillani, Abderrahmen Kammoun, Kamal Deep Singh, Julien Subercaze,
Christophe Gravier, Jacques Fayolle, Frederique Laforest

To cite this version:
Syed Gillani, Abderrahmen Kammoun, Kamal Deep Singh, Julien Subercaze, Christophe Gravier,
et al.. Pi-CEP: Predictive Complex Event Processing using Range Queries over Historical Pattern
Space. International Conference on Data Mining (ICDM) , Nov 2017, NEw Orleans, United States.
�hal-01613798�

https://hal.science/hal-01613798
https://hal.archives-ouvertes.fr

Pi-CEP: Predictive Complex Event Processing using
Range Queries over Historical Pattern Space

Syed Gillani, Abderrahmen Kammoun, Kamal Singh, Julien Subercaze,
Christophe Gravier, Jacques Fayolle and Frédérique Laforest

Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, F-42023
Saint Étienne, France

firstname.lastname@univ-st-etienne.fr

Abstract—Predictive Complex Event Processing (CEP) consti-
tutes the next phase of CEP evolution and provides future pre-
dictive states of the partially matched complex sequences. In this
paper, we demonstrate our novel predictive CEP system and show
that this problem can be solved while leveraging existing data
modelling, query execution and optimisation frameworks. We
model the predictive detection of events over an N-dimensional
historical matched sequence space. Hence, a predictive set of
events can be determined by answering the range queries over
the historical sequence space. In order to take advantage of
range search over 1-dimensional data structures, we transform
the N-dimensional space into 1-dimension using space filling z-
order curve. We propose a compressed index structure to store 1-
dimensional data and execute customised range query techniques.
Furthermore, we propose an approximate summarisation tech-
nique, over the historical space of top-k most infrequent range
queries, to cater catastrophic forgetting of older matches. Two
real-world datasets are used to demonstrate the feasibility of
our proposed techniques. We demonstrate that our system can
efficiently predict complex events and it equips a user-friendly
interface to fulfil the requirements of user-computer interaction
in a real-time.

Index Terms—Complex Event Processing, Prediction, Z-curve,
Range Queries

I. INTRODUCTION

With the proliferation of applications producing data in
a streaming manner, Complex Event Processing (CEP) has
become a de facto standard to support use cases ranging from
fraud detection, stock market analysis to health care analyt-
ics [17]. Given a pattern query Q, a stream S = {e1, e2, . . . }
– where each event forms a tuple e = (A, τ) of attribute values
A = {a1, a2, . . . , al} associated with a timestamp τ – the ob-
jective of the CEP system is to detect chronologically ordered
sequences of events, each of the form −→e f = 〈e1, . . . , em〉
m > 0, that occur in the event stream and are correlated
based on the values of the attributes and defined temporal
operators in the pattern query Q. The pattern query Q over
S is evaluated in a progressive way. That is, partial matches
−→e p = 〈e1, . . . , ei〉, where i < m, are formed before a full
match is detected.

Today, the analytics are moving towards a model of proac-
tive computing [7] and the CEP also requires a paradigm shift
towards proactive and predictive computations. That is, given
a partial match −→e p, a predictive CEP provides the possible
future events of the partially matched sequences which can

turn it into a full match −→e f . This would enable the users
to mitigate or eliminate undesired future events or states and
identify future opportunities.

The problem of predictive CEP shows remarkable similari-
ties with the sequence pattern mining and prediction. In this
context, a large body of sequence prediction models have been
proposed including: Prediction By Partial Matching (PPM) [5],
All-K-Order-Markov [13] and Probabilistic Suffix Tree [3].
These models are based on the Markov property and suffer
from the catastrophic forgetting of older sequences, where
only the k recent items of training sequences are used to
perform prediction: increasing k often induces a very high
state complexity and consequently such techniques become
impractical for many real-life applications [9].

This paper studies the problem of sequence prediction in
the context of CEP systems. However, our techniques are also
relevant in the context of general multidimensional sequence
prediction. We propose a new view of this problem with the
main aim to push the real-time predictive CEP capabilities,
to the database layer, so as to take advantage of and extend
existing data structures, query execution and optimisation
techniques.

Our Contributions: Our approach leverages two key obser-
vations: (a) the historical matches can give an “expert” view of
the future matches; (b) summarising the older matches accord-
ing to their observed importance can avoid the catastrophic
forgetting, while operating in the main memory for a real-time
response.

To administer the first observation, we propose a novel N
dimensional (N-D) historically matched sequence space Hs.
Based on this, we design an index structure that leverages the
embedding of fractal-based space-filling curve, the Z-order
curve [12], to map the coordinates of the N-D space into a
1-D space, while preserving the locality of points. In order to
query 1-D points, we propose a novel range query algorithm
that caters the unbalanced nature of the partial matches, and
locates the nearby points for predictive analysis.

To administer the second observation, since the index size
expands proportionally to the number of matched sequences,
we need to compress the older matches while preserving their
importance. To summarise older points in Hs, we first gather
the points covered by top-k most infrequent range queries in a
streaming manner, second, we use the weighted average mean

to summarise the points that are closer to each other. The
weights of the points are determined by their frequency in
Hs. This not only provides an efficient way for summarising
older data but also offers an efficient way of keeping the older
matched sequences according to their importance.

Our experimental evaluation over two real-world datasets
shows the significance of our indexing, querying and sum-
marising techniques. Our system outperforms the competitor
by a considerable margin in terms of accuracy and perfor-
mance.

Integrating the contributions specified above, we demon-
strate a system for predictive CEP, called Pi-CEP (Predictive
Complex Event Processing). It provides the aforementioned
complementary functionalities and can be integrated with ex-
isting general purpose CEP systems. Additionally, we provide
a user-friendly interface for users to interact and visualise the
results. Moreover, we provide customised search components
to meet the demands of advanced users.

This paper is organised as follows. Section II presents the
related work, then our approach is presented in Section III
followed by section IV which shows some results. Finally,
Section V describes our demonstration and Section VI con-
cludes the paper.

II. RELATED WORKS

Sequence Pattern Mining and Prediction: A large number
of sequence prediction methods [3], [5], [9], [13] come from
the field of temporal/time-series pattern mining, where patterns
are defined using association rules or as frequent episodes.
These methods employ variants of decision trees and proba-
bilistic data structures. Most of them are based on the Markov
property and suffer from the problem of forgetting older
models and high computation costs. Recently, two methods
CPT and CPT+ [9] are proposed that keep all the data from the
history in a compressed format and offer increased accuracy.
It is based on the prefix tree (aka trie) data structure and
only support one dimensional sequences. Furthermore, these
models are not optimised for streaming applications, where the
training dataset is unknown; a large number of events arrive
with a high rate; events occur at random arrival times rather
than at the regular tick-tock intervals of traditional time series
and a real-time response is required.

Machine Learning-based Predictions: Further directions
for tackling this problem are incremental (online) ma-
chine learning algorithms that learn incrementally over event
streams, such as Support Vector Machines, recurrent Neural
Networks, Bayesian Networks [1], [8], [11]. For these algo-
rithms, the classifiers are updated each time a new training
instance is found to provide a predictive response. The main
disadvantages of these algorithms in the context of CEP are as
follows: (i) they are use case specific and require considerable
efforts (and training datasets) to model each dataset, e.g. a
model can either be based on the recent history or is updatable
based on the older values; (ii) they do not provide any
performance guarantees in terms of error bounds, which brings
additional difficulties on actions such as performance tracking

and regular maintenance: since the learned parameters keep
on changing dynamically [11]. Our approach goes beyond the
simple sequence prediction, and prediction is made on the
multidimensional and variable length sequences.

III. OUR APPROACH

We are given a collection {−→e f1 ,−→e f2 , . . . ,−→e fs} of fully
matched sequences arrived in a chronological manner. Then
for a partially matched sequence −→e p, our task is to predict
future events that can turn −→e p into −→e f using the universe of
fully matched sequences. That is, if m is the length of the
fully matched sequence then for a partially matched sequence
−→e p = 〈e1, . . . , ei〉 (i < m), we would like to predict the
future events from ei to em. To attain this, we model our
solution based on an N-D historical matched event database
called historical space Hs. Hence, using Hs, we can employ
range queries for the partially matched sequences to determine
the predictive events.

Let Hs = {A1 × A2×, . . . , An} be an N-D lattice for
the universe of fully matched sequences, where an n-tuple
X = (x1, x2, . . . , xn) defines a point in Hs and xi ∈ Ai ∀i ∈
n. Then with the arrival of a partially matched sequence −→e p,
we answer N-D range queries on Hs, which in turn is detailed
later in this section. The points lying within the range queries
or its neighbours form the predictive events for a partially
matched sequence −→e p.

A large number of works (such as Quad Trees, KD-Trees,
etc.) [10], [12], [16] have been proposed for encoding N-
D space. Considering the large number of dimensions in
our context, and the effectiveness of space-filling curves in
spatial domains [16], we use the Z-order curve [12] for N-
D space encoding. The Z-order curve preserves the proximity
properties among the points, while leveraging the effectiveness
of linear data structures (such as B+tree) for range queries. The
construction of the Z-order curve, i.e. Z-values generations, is
accomplished by the simple process of bit-shuffling and this is
one of its main advantages over other space-filling curves. An
example of a 2D Z-curve and bit shuffling process is shown
in Figure 1.

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

11
1 7

11
0 6

10
1 5

10
0 4

01
1 3

01
0 2

00
1 1

00
0 0

Z(6,5) = 57
Z(110,101) = 111001

0:63

0:31 32:63

0:3 4:9 10:31 32:35 36:47 48:63

(a) (b)

Fig. 1: (a) Z-order curve for a 2-D space, (b) Z-value encoded B+tree

We leverage the Z-order curve with B+tree for our indexing
scheme [14]. The nodes of the B+tree are sequentialised
using Z-order curve to retrieve a given region efficiently (see
Figure 1). In order to provide the compact representation

of encoded dimensions, we employ compressed bitmaps [4]
to store large Z-values and to compress the sequence of
homogeneous 1’s and 0’s within the Z-values. This not only
provides a good compression ratio but also simplifies the
comparison of Z-values by using fast bitwise operations over
the bitmaps which are supported by the hardware. The Z-value,
the timeline of the Z-value and the number of time it appears
in the history form the basic of our indexing scheme. We call
it temporal Z-value.

Definition 1. (Temporal Z-value). A temporal Z-value
Zτ = (Z, T, f) contains a Z-value Z, a set of timestamps T
to denote its timeline, and a frequency f times Z appears in
the historical space Hs.

The essence of the temporal Z-value is that, due to the
iterative nature of the underlying fractal, it imposes the re-
quired sequential order of matched sequences on Hs. One
other attractive feature of our indexing technique is that Hs
can be efficiently stored and retrieved from the main-memory
due to the linear properties of B+trees.

A. Querying Historical Space for Prediction

Pre-processing Stage: We first consider the case when all
the matched sequences in Hs are of equivalent length (i.e.
of same dimensions). In the pre-processing stage, we first
construct the range queries and their corresponding Z-values.
For this task, we maintain an inverted index to record minimum
and maximum values of all dimensions in Hs. That is, if there
are dp known dimensions in −→e p and dm is the expected total
dimensions of the −→e f , the minimum and maximum values of
the range query are defined as follows:

Xmin =
(
x1, . . . , xdp ,min(xdp+1), . . . ,min(xdm)

)
Xmax =

(
x1, . . . , xdp ,max(xdp+1), . . . ,max(xdm)

)
,

where ∀xi ∈ Ai,min(xi) ≤ xi ∧max(xi) ≥ xi and note
that x1, . . . , xdp are already known as they correspond to the
already known points in the partially matched sequence. The
range query points are then mapped onto the Z-values, i.e.
Zmin = Zval(Xmin) and Zmax = Zval(Xmax). These range
query points are used to traverse in the B+tree. Furthermore,
since both have the same values for known dimensions, any
of them can be used to determine if a point in Hs can be
enclosed by the range query points.

The case of determining range queries when Hs contains
variable length (dimensions) matched sequences is different.
For example, if −→e f1= 〈e1, e2, e3〉 and −→e f2= 〈e1, e2, e3, e4〉 are
two matched sequences in Hs, a single range query will not
cover both of them. One, and rather expensive, solution for
this problem would be to create a set of range queries each
covering the matched sequences of specific dimensions. We,
on the other hand, employ an adaptive technique during the
post-processing stage, while searching for the points covered
by a range query. Given the known dimensions in the range
query, we exclusively check if a point having the variable
dimensions can be covered by the known dimensions or not.

Post-processing Stage: In this stage, we search over the
nodes of the B+tree that are intersected by a range query,
which is constructed in the pre-processing stage. This is done
by checking the bits, of known dimensions, of tree node’s Z-
value Z and either the Zmin or Zmax value of the range query
that we call Zr. Let g be a function mapping the Z-value to a
bitstring (or binary number), we use gst (z) (small caps for Z-
value’s bitstring for brevity) to denote all the t most significant
bits of g(z) each skipped by s bits; e.g. g12(z) = 1010 for z =
101101. We say that for two bitstrings z1 and z2 , z1 is a t1-
prefix-s1 of z2 , iff z1 is identical to all the highest t1 bits in z2
each skipped by s1 bits ; e.g. 1010 is a 2-prefix-1 of 101101.
Hence for a tree node’s Z-value bitstring g(z) and given query
range bitstring g(zr), we compute gst (z), gst (zr) and if z is a
t-prefix-s of zr, it shows that z is enclosed by the given range
query. The values of t and s are the number of known and
unknown dimensions in the given −→e p respectively. Thus, using
fast bitwise operations, we can easily find the contender set of
points in Hs for prediction. Figure 2 shows the computation
of gst (z) and the range query point gst (zr).

010101100

010 100 011

110001100

010 100 101

d1 d2 d3 d’
1 d’

2
d’

3

z zr

Two know
dimensions

10 010 0

g1
2 (z) g1

2 (zr)
10 010 0

Computing
Z-value

Computing
gs

t

Two know
dimensions

Fig. 2: Z-value encoding and calculation of gst over a point z in
Hs (left) and the range query point zr (right) with two known
dimensions.

The same gst function is also used to match variable length
sequence points in Hs and the range query point. However, in
this case the values of t and s are adjusted both for the points
z and zr. For instance, if there are two unknown dimensions
and one known dimension in z and there are three unknown
dimensions and one known dimension in zr, the functions are
as follows: g21(z) and g31(zr). The skipping factor caters the
variability of length between points in Hs and the range query
point.

Reaching out to the Neighbours: The comparison of range
query and the points in Hs is initially strict for each prediction
task. For a given partial match sequence −→e p, if the post-
processing stage cannot find similar sequences to generate a
prediction, we assume that the partial match contains some
noise and the post-processing stage is dynamically relaxed.
That is, first we get the neighbouring points of the range query
Zr that lies under the same B+tree node; second we check
the similarity on sequence of most significant bits (MSB)
of the neighbouring point’s bitstrings gst (z) and gst (zr), we
call it MSB similarity. Let h(gst (z), gst (zr)) be a function that
determines the length of the similar MSB of two points;
e.g. h(gst (z1), gst (z2)) = 4 for gst (z1) =011000 and gst (z2) =
011011. Given two points zi and zj , if h(gst (zi), gst (zr)) <
h(gst (zj), gst (zr)), it shows that zj is closer to zr compared

with zi. Note that the above similarity measures are designed
by considering the nature of Z-order curves and techniques
such as Hamming distance would not be appropriate in our
context. Furthermore, similarity measures are used to add the
± error margins. The set of neighbours with the highest MSB
similarity according to the defined error margins are then
chosen for the predictive response.

B. Summarisation of Historical Space Points

The process of summarisation is divided into the following
two tasks: (1) continuously evaluate and update top-k most
infrequent range queries generated by the system; (2) approx-
imate summarisation of the older points in Hs, covered by
the top-k most infrequent range queries, that are closer to
each other in Hs. This procedure is incremental and applied
continuously over the system’s life-time. The first task is well-
studied and we employ a sketch and a heap structure to provide
approximate frequencies and ordering of range queries. Our
sketch stems from a count-min sketch [6], but we modify
it to incorporate range query information. Once a defined
window expires for a pattern query, we extract the top-k most
infrequent range queries in the sketch.

For the second task, recall from earlier, the Z-order curve
preserves the proximity of points in Hs. Hence, points under
the same parent node in B+tree are inherently closer to
each other. We use an approximate temporal Z-value Ẑτ to
summarise points under the same B+tree node which fall in
the top-k most infrequent range queries. Our approximation
technique is based on the weighted linear combinations (WLC)
of Z-values: while other options exist, WLC has a strong
history in successfully modelling the irregular and continuous
characteristics of the data according to the observed weights.
We compute Ẑnτ as a WLC of points closer to each other, i.e.
under the same B+tree node:

Ẑnτ =

n∑
i = 0

wi · Ziτ , and wi =
f (Ziτ)∑n
i=0 f (Ziτ)

where 0 < wi ≤ 1 denotes the weight given to a Ziτ . It is
calculated from the set of points to be summarised together:
we assign higher weights to the points having high frequency
f in Hs and f (Ziτ) is the frequency of the ith point to be
summarised.

QR QR in Top-k

No

Yes Increase QR
frequency in
Top-k and get

results

Top-k reaches
threshold

Yes

Summarise the
results of Top-k

queries in B+tree

Update QR
results in Top-k

from B+tree

Return
results

No
Search B+tree

and upate Top-k

Return
results

Fig. 3: Range Query Processing with Summarisation

The complete evaluation of range query with summarisation
is described in Figure 3. Given an incoming range query QR,
we first check whether QR exists in top-k or not. If not, we
employ the usual range query search in B+tree and update
the top-k for QR. Otherwise, we update the frequency of QR
in top-k and return the result of QR. Furthermore, we check
if the frequency of the top-k range queries has reached the
defined threshold. If so we generate the summary of range
queries points and update the B+tree index. Otherwise, we
update the results of QR, if any, from the B+tree. Finally, the
result generator (in Figure 6) processes the results from the
range query processor and sends it to the user interface in an
appropriate format.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance and precision
of our proposed techniques.

Experiment Setup: Our algorithms are implemented using
Java and evaluated on an Intel Xeon E3 1246v3 processor
with 32GB of main memory and a 256Gb PCI Express SSD.
It runs a 64-bit Linux 3.13.0 kernel with Oracle’s JDK 8u112.
For robustness, we performed 10 independent runs and we
report the median values.

Datasets and CEP Queries: We use two real-world datasets
for evaluation. All the datasets are first processed using
SASE+ [17] CEP system to generate partially matched se-
quences (PM) and fully matched sequences (FM) streams.
These streams are then chronologically fed to our system.
The two real-world datasets include: Activity Dataset [15]
(1 million FM, 500K PM) and Credit Card Transactions
Dataset [2] (500K FM, 600K PM). The queries to generate
these datasets are as follows: (i) cardiac arrhythmia detection:
if the heart rate gradually increases until it doubles compared
to the first measurement despite passive physical activity; (ii)
credit card fraud: if a credit card is used to take large sums
of money in a sequence at different locations within a time
window.

Accuracy Metrics: We provide the accuracy metrics as
follows: # of correctly predicted PM

of PM . We keep the predicted PM until
a FM arrives. Once a FM is detected, we compare if the
predicted PM satisfies the FM. Furthermore, k = 10 is
empirically chosen for all the experiments and an error of
±5% is considered for the correctly predicted PM.

Precision of Prediction with Summarisation: The first
question we investigate is “How useful is the summarisation
process w.r.t deleting older fully matched sequences?” This
measures the effect of forgetting older matched sequences
on prediction. Figure 4(a) and (b) shows the prediction ac-
curacy of both datasets by varying the matched sequences.
To showcase the effectiveness of summarisation, we forget
the older matches after a window expires. From Figure 4,
our summarisation technique results in better accuracy as the
time passes, since older values aid in predicting the future
matches. However, forgetting the history with the expiration
of a window results in reduced precision and only recently
matched sequences are used for prediction. Furthermore, since

similar matched sequences repeat for the activity dataset
(Figure 4(b)), its evaluation provides better accuracy measures.

Fig. 4: (a) Credit Card Dataset (b) Activity Dataset: Accuracy
comparison of prediction for the number of matched sequence;

Comparison with other Techniques: Next, we investigate
“How our techniques are compared to the existing sequence
prediction techniques (i.e. CPT+ [9]) both in terms of per-
formance and accuracy?” For this task, we extend CPT+ to
work on streams, i.e. FM sequences are inserted in a streaming
fashion and PM sequences are used to predict the sequences
in a streaming manner. Note that CPT+ only supports se-
quences with one-dimension, therefore, we use the Credit
Card Transactions Dataset with 1-dimensional sequences. Fig-
ure 5(a) shows the accuracy comparison of both systems,
while Figure 5(b) shows the performance of inserting matched
sequences and querying predictive sequences, while varying
the number of fully matched sequences. From Figure 5, our
system outperforms CPT+ both in terms of accuracy and
performance. The reasons are summarised as follows: (i) CPT+
identifies frequent sequences in training phase for efficient
compression and prediction, this however is not efficient in
streaming settings; (ii) due to the non-linear nature of CPT+
trie structure, it requires m comparisons for a sequence of
length m and for n distinct sequences, the cost is O(m× n):
B+tree requires O(logb n), with branching factor b, for the
lookup and insertion using fast bitwise operations.

Fig. 5: (a) Accuracy comparison of prediction for the number of
matched 1-dimensional sequences (Credit Card Dataset); (b) Execu-
tion time in seconds for the insertion and prediction using Credit
Card Dataset

V. DEMONSTRATION

In this section, we would like to demonstrate how Pi-CEP
provides predictive analysis using aforementioned techniques
and customised parameters.

System Architecture for Demonstration: As mentioned
already, the core functionality of Pi-CEP is implemented in
Java, while the user interface is implemented in HTML and

Z-Value
Generator

Range Query
Generator

B+Tree
Based Index

Range Query
Processor

Top-k
Cache

Top-k Range
Query Index

CEP Engine

Match
Buffer

Fully Matched
Patterns

Partially Matched
Patterns

Trigger Range
Query

Search
Index

Update
Top-k Query

Results

Summarise
Index

Update
Range Query

Frequency

Return Results
from Cache

Result
Generator

Generate
Results
for UI

Pattern
Query

Data
Streams

Customised
Parameters

Insert
Full Matches

Fig. 6: System Architecture of Pi-CEP

JavaScript. The high-level system architecture of the Pi-CEP
is shown in Figure 6. The event streams and pattern queries
are fed to the CEP engine, while customised parameters for
the range queries, i.e. value of k are fed to the range query
processor. For our current implementation, we are using the
SASE+ CEP engine [17]. The CEP engine produces the fully
and partial matches that are delegated to the Z-value generator
and range query generator respectively. The Z-values of the
fully matched sequences are stored in B+tree index, while
generated range queries are delegated to the range query
processor.

User Interface: The user interface is shown in Figure 7. It is
used to provide the interactive results of fully matched patterns
and predictive events for the partially matched patterns. It
consists of three main parts: the control panel (left); the graph
display panel (bottom right); and a fully/predictive matched
pattern panel (top right). The control panel is used to let
users specify the input pattern queries, select datasets and
customised parameters for the range queries, such as k value.
The graph display panel shows two real-time graphs: the fully
matched and predictive patterns; and the change in the size
of the underlying B+tree index with the arrival of events and
after the summarisation process. The matched pattern panel
shows the real-time matched set of events for a defined pattern
and the predictive events provided by our system. We use
different coloured schemes for both of them to visualise it
in an aesthetic fashion. Moreover, the system can be paused
and resumed to compare each produced result.

We plan to demonstrate the three main features of Pi-
CEP. (1) Our system can provide predictive events. (2) Pi-
CEP can efficiently evaluate and update top-k most infrequent
range queries generated by the system and then summarise
the older points in Hs. The summarisation measures can be
customised using different values of k. (3) Pi-CEP equips

Fig. 7: Interface of Pi-CEP

a user-friendly interface to fulfil user-computer interaction
requirements in a real-time. During the demonstration, we
will explain the details and nuances of our system, discuss
the presented statistics and the decision taken by the system
that yielded these outcomes. In particular, we will discuss
why certain behaviours are shown by our system for different
pattern queries and explain the effects of various customised
parameters.

VI. CONCLUSION

Pi-CEP facilitates the predictive analysis over partially
matched sequences. It employs efficient indexing techniques
to store multi-dimensional fully matched sequences and
extract the predictive matches using customised range
queries. Furthermore, it provides efficient techniques to
summarise the older fully matched sequences based on their
importance. This enables us to keep track of both recent and
older history for predictive analysis. We demonstrate these
characteristics of Pi-CEP using an interactive interface.

Acknowledgements. This work is partially supported by ITEA
3 project Water-M with the funding from DGE France.

REFERENCES

[1] M. Akdere, U. Çetintemel, and E. Upfal. Database-support for contin-
uous prediction queries over streaming data. VLDB, 2010.

[2] A. Artikis, N. Katzouris, I. Correia, C. Baber, N. Morar, I. Skarbovsky,
F. Fournier, and G. Paliouras. A prototype for credit card fraud
management: Industry paper. In DEBS, pages 249–260, 2017.

[3] R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable
order markov models. J. Artif. Int. Res., 22(1):385–421, Dec. 2004.

[4] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap
performance with roaring bitmaps. CoRR, 2014.

[5] J. G. Cleary and I. H. Witten. Data compression using adaptive coding
and partial string matching. IEEE Transactions on Communications,
32(4):396–402, 1984.

[6] G. Cormode. Sketch techniques for approximate query processing. In
Foundations and Trends in DB, 2011.

[7] Y. Engel and O. Etzion. Towards proactive event-driven computing. In
DEBS, pages 125–136, 2011.

[8] L. J. Fülöp and Beszédes. Predictive complex event processing: A
conceptual framework for combining complex event processing and
predictive analytics. In BCI, 2012.

[9] T. Gueniche, P. Fournier-Viger, R. Raman, and V. S. Tseng. CPT+:
Decreasing the time/space complexity of the compact prediction tree.
In PAKDD, pages 625–636, 2015.

[10] D. Hilbert. Ueber stetige abbildung einer linie auf ein flachenstuck.
Mathematische Annalen. 1891.

[11] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine
Learning. MIT Press, 2012.

[12] G. M. Morton. A computer oriented geodetic data base; and a new
technique in file sequencing. In IBM, 1966.

[13] J. Pitkow and P. Pirolli. Mining longest repeating subsequences to
predict world wide web surfing. In USENIX Symposium on Internet
Technologies and Systems, pages 13–13, 1999.

[14] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer.
Integrating the ub-tree into a database system kernel. In VLDB, 2000.

[15] A. Reiss and D. Stricker. Creating and benchmarking a new dataset for
physical activity monitoring. In PETRA, pages 40:1–40:8, 2012.

[16] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann Publishers Inc., 2005.

[17] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In SIGMOD, 2006.

