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Abstract

Let f be a holomorphic endomorphism of P2 of degree d ≥ 2. We estimate the
local directional dimensions of closed positive currents S with respect to ergodic
dilating measures ν. We infer several applications. The first one shows that the
currents S containing a measure of entropy hν > log d have a directional dimension
> 2, which answers a question by de Thélin-Vigny. The second application asserts
that the Dujardin’s semi-extremal endomorphisms are close to suspensions of one-
dimensional Lattès maps. Finally, we obtain an upper bound for the dimension of
the equilibrium measure, towards the formula conjectured by Binder-DeMarco.

Key words: dimension theory, positive closed currents, invariant measures, Lyapunov
exponents, normal forms.
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1 Introduction
This article concerns the ergodic properties of holomorphic endomorphisms of P2, see
[16]. Let f be an endomorphism of P2 of degree d ≥ 2. The Green current T is defined
as T := limn

1
dn f

n∗ω, where ω is the Fubini-Study form of P2. The equilibrium measure
is defined as µ := T ∧ T , this is an ergodic measure of entropy log d2, its Lyapunov
exponents are ≥ 1

2 log d, see [6, 16].
We say that an ergodic measure ν is dilating if its Lyapunov exponents are positive.

The ergodic measures of entropy hν > log d are dilating: their exponents are larger than
or equal to 1

2(hν − log d), see [11, 20]. It is known that the support of every ergodic
measure ν of entropy hν > log d is contained in the support of µ, see [10, 14]. The article
[20] constructs such measures by using coding techniques.

1.1 Directional dimensions

Let f be an endomorphism of P2 of degree d ≥ 2. The algebraic subsets of P2 do not
contain any ergodic measure ν of entropy hν > log d: this comes from the Gromov’s
iterated graph argument and from the relative variational principle, see [7] and [16, Sec-
tion 1.7]. In this Section, we quantify that property thanks to the Lyapunov exponents
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of the measures ν. We shall work in the more general setting of (1, 1) closed positive
currents S. Those currents are as big as the algebraic subsets, since we have:

∀x ∈ P2 , dS(x) := lim inf
r→0

logS ∧ ω(Bx(r))
log r ≥ 2,

which comes from S∧ω(Bx(r)) ≤ c(x)r2, see [13, Chapitre 3]. We shall use the notation
dS(x) for the lim sup. A drawback of the trace measure S∧ω is that it does not distinguish
any specific direction. If Z is a holomorphic coordinate in the neighbourhood of x ∈ P2,
one defines the lower local directional dimension of S with respect to Z by

dS,Z(x) := lim inf
r→0

log
[
S ∧ ( i2dZ ∧ dZ)(Bx(r))

]
log r ,

we shall denote the lim sup by dS,Z(x). Geometrically, the positive measure S∧( i2dZ∧dZ)
is the average with respect to Lebesgue measure of the slices of the current S transversaly
to the direction Z, see Proposition 9.4. If (Z,W ) are holomorphic coordinates near x,
the directional dimensions of S are related to the dimension of S by

dS(x) = min
{
dS,Z(x), dS,W (x)

}
, dS(x) = min

{
dS,Z(x), dS,W (x)

}
, (1.1)

see Proposition 9.2. We start with showing lower and upper bounds for the directional
dimensions of the Green current T (Theorems 1.1 and 1.2). Next we display our result
concerning the general closed positive currents S.

Directional dimensions of the Green current

The invariance property of the current T allows to obtain estimates on the directional
dimensions ν-almost everywhere. In what follows, the functions O(ε) only depend on ε,
the degree d of the endomorphism, the exponents and the entropy of ν. They tend to 0
when ε tends to 0 and are positive for ε small enough. We shall say that the exponents
of ν do not resonate if λ1 6= kλ2 for every k ≥ 2.

Theorem 1.1. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be an ergodic
diltating measure whose exponents λ1 > λ2 do not resonate. Then there exist functions
O1(ε), O2(ε) satisfying the following properties. For every ε > 0 and for ν-almost every
x, there exist holomorphic coordinates (Z,W ) in a neighbourhood of x such that

dT,Z(x) ≥ 2 + hν − log d
λ2

−O1(ε),

dT,W (x) ≥ 2λ2
λ1

+ hν − log d
λ2

−O2(ε).

This result applies to the measure µ and allows to improve a classical lower bound
concerning the dimension of the Green current T . This current has local γ-Hölder psh
potentials for every γ < γ0 := min{1, log d/ log d∞}, where d∞ := limn ||Dfn||1/n∞ , see
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[16, Proposition 1.18]. This implies that T ∧ω(Bx(r)) ≤ cγ(x)r2+γ for every x ∈ P2 and
every γ < γ0, see [24, Théorème 1.7.3]. We deduce that for every x ∈ P2 and for every
local holomorphic coordinates (Z,W ) in a neighbourhood of x:

min{dT,Z(x), dT,W (x)} = dT (x) ≥ 2 + γ0. (1.2)

Now, since hµ = log d2 and λ1 ≤ log d∞, we get:

hµ − log d
λ2

= log d
λ2

>
log d
λ1
≥ log d

log d∞
≥ γ0.

The lower bound in the direction Z provided by Theorem 1.1 is therefore better than
(1.2) when ε is small enough.

Now we show directional upper bounds for the current T with respect to every
dilating measure ν whose support is contained in the support of µ.

Theorem 1.2. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be an ergodic di-
lating measure whose exponents λ1 > λ2 do not resonate. We assume that the support of
ν is contained in the support of µ. Then there exist functions O3(ε), O4(ε) satisfying the
following properties. For every ε > 0 and for ν-almost every x, there exist holomorphic
coordinates (Z,W ) in a neighbourhood of x such that

dT,Z(x) ≤ log d
λ2

+ 2λ1
λ2

+O3(ε),

dT,W (x) ≤ log d
λ2

+ 2 +O4(ε).

By combining these two theorems, we manage to separate coordinates (Z,W ) in
terms of local dimensions.

Corollary 1.3. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be an ergodic
dilating measure whose exponents λ1 > λ2 do not resonate. For every ε > 0 and for
ν-almost every x, there exist holomorphic coordinates (Z,W ) in a neighbourhood of x
such that

dT,W (x) ≤ log d
λ2

+ 2 +O4(ε) ,
log d
λ2

+ 2−O1(ε) ≤ dT,Z(x).

In the three preceding results, the coordinates (Z,W ) come from a normal form
Theorem for the inverse branches of fn, see Section 2. They depend on x̂ in the natural
extension (f̂ , ν̂), we shall denote them by (Zεx̂,W ε

x̂). The coordinates (Z,W ) at a point
x are coordinates of type (Zεx̂,W ε

x̂) where π0(x̂) = x. The coordinate W ε
x̂ is always

invariant by the shift f̂ , Zεx̂ is invariant when the exponents do not resonate. Since
the current T is f -invariant, the functions dT,Z(x̂) and dT,W (x̂) are f̂ -invariant, hence
ν̂-almost everywhere constant, see Proposition 2.4. We shall denote them by dT,Z(ν)
and dT,W (ν). We have the same properties for the upper dimensions.
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Dimension of ergodic currents S

Theorem 1.4. Let f be an endomorphism of P2 of degree d ≥ 2. Let S be a (1, 1)-closed
positive current on P2. We assume that the support of S contains an ergodic measure ν
of entropy hν > log d whose exponents satisfy λ1 > λ2 and do not resonate. Then there
exists a function O5(ε) satisfying the following properties. For every ε > 0, there exist
x ∈ Supp ν and a holomorphic coordinate Z in the neighbourhood of x such that:

dS,Z(x) ≥ 2 + hν − log d
λ2

−O5(ε).

In particular, S has a local directional dimension > 2 at some x ∈ Supp ν.

This result is localized at a point x because S is not assumed to be f -invariant. For
every closed positive current S containing an ergodic dilating measure ν with exponents
λ1 ≥ λ2, de Thélin-Vigny proved in [12] that there exists x ∈ supp(ν) such that

dS(x) ≥ 2λ2
λ1

+ hν − log d
λ2

. (1.3)

Theorem 1.4 improves this estimate by replacing λ2/λ1 by 1 for a coordinate Z. When
λ1 = λ2, (1.1) shows that this substitution is valid for every coordinate Z. Our lower
bound answers a question of [12] in a directional way. In the framework of invertible
and meromorphic mappings, the preprint [9] gives a lower bound > 2 for the dimensions
of the Green currents T± by using coding techniques and laminar properties of T±.

1.2 Dimension of dilating measures

Let f be an endomorphism of P2 of degree d ≥ 2 and let ν be an ergodic measure. We
refer to [23] and [26] for the beginning of this Section. The dimension of ν is defined by

dimH(ν) := inf
{

dimH(A) , A Borel set of P2 , ν(A) = 1
}
.

The lower and upper local dimensions of ν are

dν := lim inf
r→0

log(ν(Bx(r)))
log r , dν := lim sup

r→0

log(ν(Bx(r)))
log r ,

these limits are ν-almost everywhere constant, by ergodicity of ν. If a ≤ dν ≤ dν ≤ b,
then a ≤ dimH(ν) ≤ b. If ν is dilating, we have the classical inequalities hν

λ1
≤ dν ≤

dν ≤ hν
λ2

where λ1 ≥ λ2 are the exponents of ν. For the equilibrium measure µ, Binder-
DeMarco [4] conjectured the formula:

dimH(µ) = log d
λ1

+ log d
λ2

(1.4)

which generalizes the one-dimensional Mañé’s formula [22]. The article [4] proves the
following upper bound for polynomial mappings

dimH(µ) ≤ 4− 2(λ1 + λ2)− log d2

λ1
, (1.5)
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the article [15] extends this upper bound in a meromorphic context. For every dilating
measure ν, we have at our disposal the following lower bound proved in [19]:

dimH(ν) ≥ dν ≥
log d
λ1

+ hν − log d
λ2

. (1.6)

We obtain a new upper bound which comes closer to Binder-DeMarco’s conjecture (1.4).

Theorem 1.5. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be an ergodic
dilating measure, of exponents λ1 > λ2 and whose support is contained in the support of
µ. Then

dν ≤
log d
λ1

+ log d
λ2

+ 2
(

1− λ2
λ1

)
.

Moreover, if the exponents do not resonate, then:

dν ≤
log d
λ1

+ log d
λ2

+ 2 min
(

1− λ2
λ1

; λ1
λ2
− 1

)
.

The proof extends the arguments of Theorem 1.2.

1.3 Dimension of semi-extremal endomorphisms

We say that f is extremal if the exponents λ1 ≥ λ2 of its equilibrium measure µ satisfy
λ1 = λ2 = 1

2 log d. The articles [1, 3, 15] characterize these endomorphisms by the
equivalent properties:

1. dimH(µ) = 4.

2. µ << LebP2 := ω ∧ ω.

3. T is a (1, 1) positive smooth form on an open set of P2.

4. f is a Lattès map: there exist a complex torus C2/Λ, an affine dilation D on this
torus and a finite galoisian covering σ : C2/Λ→ P2 such that the following diagram
commutes

C2/Λ

σ
��

D // C2/Λ

σ
��

P2 f // P2

There exist such applications for every degree d ≥ 2, see for instance [18].
We say that f is semi-extremal if the exponents λ1 ≥ λ2 of its equilibrium measure

µ satisfy λ1 > λ2 = 1
2 log d. Using (1.5) and (1.6) one sees that the Binder-DeMarco’s

conjecture (1.4) holds for these mappings:

dimH(µ) = 2 + log d
λ1

. (1.7)

Classical examples of semi-extremal endomorphisms are suspensions of one-dimensional
Lattès maps, they satisfy µ << T ∧ ω. More generally,
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Theorem 1.6 (Dujardin [17]). If µ << T ∧ ω, then f is semi-extremal.

In [17] Dujardin asked if µ << T∧ω implies the existence of a one-dimensional Lattès
factor for f . Theorem 1.7 below provides one step in that direction. It shows that, from
a theoritical dimensional point of view, these endomorphisms look like suspensions of
one-dimensional Lattès maps: the dimension of T is maximal equal to 4 in a coordinate
Z, and equal to 2 + log d/λ1 (the dimension of µ, see (1.7)) in a coordinate W . The
functions O1(ε), O2(ε) come from Theorem 1.1.

Theorem 1.7. Let f be an endomorphism of P2 of degree d ≥ 2. We assume that
µ << T ∧ω and that dµ = dµ. We also assume that the exponents λ1 > λ2 = 1

2 log d of µ
do not resonate. For every ε > 0 and for µ-almost every x ∈ P2, there exist holomorphic
coordinates (Z,W ) in a neighbourhoord of x such that

4−O1(ε) ≤ dT,Z(x) and 2 + log d
λ1
−O2(ε) ≤ dT,W (x) ≤ 2 + log d

λ1
.

1.4 Organization of the article

Sections 2, 3 et 4 are devoted to normal forms, the geometry of inverse branches and
separated sets. Sections 5 et 6 establish Theorems 1.1, 1.4 and 1.7, the proofs rest on
Theorem 5.2 which relies on the lower local dimension dν (the lower bound (1.6) is there-
fore crucial to deduce these results). Theorems 1.2 and 1.5 are proved in Sections 7 and
8. Section 9 brings together technical results.

Acknowledgements: This article is part of the PhD thesis of the second author.
We warmly thank Eric Bedford and Johan Taflin for their numerous comments which
allow to improve the first version of this work. We got the supports of Lambda (ANR-
13-BS01-0002) and Centre Henri Lebesgue (ANR-11-LABX-0020-01).

2 Normal forms and Oseledec-Poincaré coordinates

2.1 Natural extension and normal forms

Let Cf be the critical set of f , this is an algebraic subset of P2. If ν is an ergodic dilating
measure, then x 7→ log |Jac f(x)| ∈ L1(ν), which implies ν(Cf ) = 0. Let X be the
f -invariant Borel set P2 \ ∪n∈Zfn(Cf ) and let

X̂ :=
{
x̂ = (xn)n∈Z ∈ XZ, xn+1 = f(xn)

}
.

Let f̂ be the left shift on X̂ and π0(x̂) := x0. There exists a unique f̂ -invariant measure
ν̂ on X̂ such that (π0)∗ν̂ = ν. We set x̂n := f̂n(x̂) for n ∈ Z. A function α : X̂ → ]0,+∞]
is ε-tempered if α(f̂±1(x̂)) ≥ e−εα(x̂). For every x̂ ∈ X we denote by f−nx̂ the inverse
branch of fn defined in a neighbourhood of x0 with values in a neighbourhood of x−n.
The articles [2] and [21] provide normal forms for these mappings.
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Theorem 2.1. ([2, Proposition 4.3]) Let f be an endomorphism of P2 of degree d ≥ 2.
Let ν be an ergodic dilating measure with exponents λ1 > λ2. Let ε > 0.

There exists an f̂ -invariant Borel set F̂ ⊂ X̂ such that ν̂(F̂ ) = 1 and satisfying the
following properties. There exist ε-tempered functions ηε, ρε : F̂ → ]0, 1] and βε, Lε,Mε :
F̂ → [1,+∞[ and for every x̂ ∈ F̂ , there exists an injective holomorphic mapping

ξεx̂ : Bx0(ηε(x̂))→ D2(ρε(x̂))

such that the following diagram commutes for every n ≥ nε(x̂):

Bx−n(ηε(x̂−n))
ξεx̂−n
��

Bx0(ηε(x̂))
f−nx̂oo

ξεx̂
��

D2(ρε(x̂−n)) D2(ρε(x̂))
Rn,x̂

oo

and such that

1. ∀(p, q) ∈ Bx0(ηε(x̂)), 1
2d(p, q) ≤ |ξεx̂(p)− ξεx̂(q)| ≤ βε(x̂)d(p, q).

2. Lip(f−nx̂ ) ≤ Lε(x̂)e−nλ2+nε on Bx0(ηε(x̂)).

3. if λ1 6∈ {kλ2, k ≥ 2}, Rn,x̂(z, w) = (αn,x̂z, βn,x̂w),
if λ1 = kλ2 where k ≥ 2, Rn,x̂(z, w) = (αn,x̂z, βn,x̂w) + (γn,x̂wk, 0), with

(a) e−nλ1−nε ≤ |αn,x̂| ≤ e−nλ1+nε and |γn,x̂| ≤Mε(x̂)e−nλ1+nε,
(b) e−nλ2−nε ≤ |βn,x̂| ≤ e−nλ2+nε.

Remark 2.2. The diagram commutes for every n ∈ {1, . . . , nε(x̂)} for the germs of the
mappings, see [2]. The integer nε(x̂) is the smallest integer such that Lε(x̂)e−nλ2+nε ≤
e−nε, so that Lε(x̂)e−nλ2+nεηε(x̂) ≤ e−nεηε(x̂) ≤ ηε(x̂−n). Item 2 thus ensures that
f−nx̂ (Bx0(ηε(x̂)) ⊂ Bx−n(ηε(x̂−n)).

We shall need the following Lemma. Let n1(L) be the smallest integer n satisfying
L/4 ≤ enε. The first item uses the upper bound for Lip(f−nx̂ ) provided by Theorem 2.1.
The second item comes from [15, Proposition 3.1].

Lemma 2.3. Let x̂ ∈ F̂ such that ηε(x̂) ≥ η and Lε(x̂) ≤ L. If n ≥ n1(L) and r ≤ η,

1. f−nx̂n (Bxn(r/4)) ⊂ Bx0(re−nλ2+3nε) and f−nx̂ (Bx0(r/4)) ⊂ Bx−n(re−nλ2+3nε).

2. Bx0(re−nλ1−4nε) ⊂ f−nx̂n (Bxn( r4e
−2nε)).
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2.2 Oseledec-Poincaré coordinates

Let ν be an ergodic dilating measure of exponents λ1 > λ2. We assume that the
exponents do not resonate, which means that λ1 6∈ {kλ2, k ≥ 2}. Let ε > 0, and let
us apply Theorem 2.1. For every x̂ ∈ F̂ we denote by (Zεx̂,W ε

x̂) the coordinates of ξεx̂.
The commutative diagram given by Theorem 2.1 implies:

Zεx̂−n ◦ f
−n
x̂ = αn,x̂ × Zεx̂, W ε

x̂−n ◦ f
−n
x̂ = βn,x̂ ×W ε

x̂. (2.1)

Hence, f−nx̂ multiplies the first coordinate by e−nλ1±nε and multiplies the second coor-
dinate by e−nλ2±nε. Let us note that the second property holds in the resonant case
λ1 ∈ {kλ2, k ≥ 2}. We shall name the collection of local holomorphic coordinates

(Z,W )ε := (Zεx̂,W ε
x̂)x̂∈F̂

Oseledec-Poincaré coordinates for (f, ν). Using (2.1) and the fact that the Green current
is f -invariant, we obtain the following Proposition.

Proposition 2.4. Let f be an endomorphism of P2 of degree d ≥ 2 and let T be its
Green current. Let ν be an ergodic dilating measure of exponents λ1 > λ2. Let (Z,W )ε
be Oseledec-Poincaré coordinates for (f, ν). Then there exists a f̂ -invariant Borel set
Λ̂T ⊂ F̂ of ν̂-mesure 1 such that

1. x̂ 7→ dT,W (x̂) and x̂ 7→ dT,W (x̂) are f̂ -invariant on Λ̂T .

2. x̂ 7→ dT,Z(x̂) and x̂ 7→ dT,Z(x̂) are f̂ -invariant on Λ̂T if λ1 6∈ {kλ2, k ≥ 2}.

In particular, if the exponents do not resonate, these functions are constant ν̂-almost
everywhere. We shall denote them by

dT,Z(ν), dT,Z(ν), dT,W (ν), dT,W (ν).

Proof. We prove the invariance of dT,W (x̂), the same arguments hold for the other func-
tions. For every z ∈ P2 \ Cf we denote

a(z) := 1
2 ||(Dzf)−1||−1 , γ(z) := min{a(z) ‖f‖−1

C2,P2 , 1}.

Then [6, Lemme 2] asserts that f is injective on Bz(γ(z)) and

∀r ∈ [0, γ(z)] , Bf(z) (a(z)r) ⊂ f(Bz(r)).

Let x̂ ∈ F̂ . Since xn 6∈ Cf for every n ∈ Z, we obtain for every r ≤ γ(x0):

T ∧
(
i

2dW
ε
f̂(x̂) ∧ dW

ε
f̂(x̂)

) [
Bf(x0) (a(x0)r)

]
≤ T ∧

(
i

2dW
ε
f̂(x̂) ∧ dW

ε
f̂(x̂)

)
[f(Bx0(r))] .

(2.2)
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Since f is injective on Bx0(r), we can change the variables to get:

T ∧
(
i

2dW
ε
f̂(x̂) ∧ dW

ε
f̂(x̂)

)
[f(Bx0(r))] =

∫
Bx0 (r)

f∗T ∧ f∗
(
i

2dW
ε
f̂(x̂) ∧ dW

ε
f̂(x̂)

)
. (2.3)

Now let us recall that

f∗T = dT and f∗
(
i

2dW
ε
f̂(x̂) ∧ dW

ε
f̂(x̂)

)
= |c(x̂)|2 i2dW

ε
x̂ ∧ dW ε

x̂, (2.4)

where the second equality comes from (2.1) by setting c(x̂)−1 := β1,f̂(x̂), it is valid near
x0 according to Remark 2.2. By combining (2.2), (2.3) and (2.4) we deduce:

T ∧
(
i

2dW
ε
f̂(x̂) ∧ dW

ε
f̂(x̂)

) [
Bf(x0) (a(x0)r)

]
≤ d|c(x̂)|2 T ∧

(
i

2dW
ε
x̂ ∧ dW ε

x̂

)
[Bx0(r)]

for every r small enough. Taking the logarithm and dividing by log(a(x0)r) < 0, we
get dT,W (f̂(x̂)) ≥ dT,W (x̂) by taking limits. Since ν̂ is ergodic, the function dT,W (x̂) is
constant on a Borel set Λ̂T of ν̂-measure 1 (see [25, Chapter 1.5]). One can replace it by⋂
n∈Z f̂

n(Λ̂T ) to obtain an invariant set.

Proposition 2.5. Let f be an endomorphism of P2 and let T be its Green current. Let
ν be an ergodic measure. Then the functions x 7→ dT (x) and x 7→ dT (x) are invariant,
hence ν-almost everywhere constant. We denote them by dT (ν) and dT (ν).

Proof. The arguments follow the proof of Proposition 2.4. In this case we study the mea-
sure T ∧ ω, and we replace the second equality in (2.4) by f∗ω ≤ ρ(x0)ω on Bx0(γ(x0)),
where ρ(x0) > 0 is a large enough positive constant.

3 Geometry of the inverse branches and uniformizations
Let ν be an ergodic dilating measure of exponents λ1 > λ2. Let ε > 0 and let (Z,W )ε
be Oseledec-Poincaré coordinates for (f, ν). Our aim is to construct, for every δ > 0, a
Borel set Λ̂ε ⊂ X̂ satisfying ν̂(Λ̂ε) ≥ 1− δ/2 which provides convenient uniformizations.

3.1 Dynamical balls

The dynamical distance is defined by dn(x, y) := max0≤k≤n d(fk(x), fk(y)). We denote
by Bn(x, r) the ball centered at x and of radius r for the distance dn.

Lemma 3.1. There exist r0 > 0, n2 ≥ 1 and C ⊂ P2 such that ν(C) ≥ 1 − δ/8 and
satisfying the following properties: for every x ∈ C and every n ≥ n2:

ν(Bn(x, r0/8)) ≥ e−nhν−εn.

∀r ≤ r0 , ν(Bn(x, 5r)) ≤ ν(Bn(x, 5r0)) ≤ e−nhν+εn.
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Proof. Brin-Katok Theorem [8] ensures that there exists C1 ⊂ P2 of full ν-measure such
that for every x ∈ C1:

lim
r→0

(
lim inf
n→+∞

−1
n

log ν(Bn(x, r))
)

= lim
r→0

(
lim sup
n→+∞

−1
n

log ν(Bn(x, r))
)

= hν .

Hence, for every x ∈ C1 there exists r0(x) such that r ≤ r0(x) implies

lim inf
n→+∞

−1
n

log(ν(Bn(x, 5r))) ≥ hν − ε/2 and lim sup
n→+∞

−1
n

log(ν(Bn(x, r/8))) ≤ hν + ε/2.

Let r0 such that C2 := {x ∈ C1 , r0(x) ≥ r0} satisfies ν(C2) ≥ 1−δ/16. For every x ∈ C2,
there exists n2(x) such that n ≥ n2(x) implies

ν(Bn(x, r0/8)) ≥ e−nhν−εn.

∀r ≤ r0 , ν(Bn(x, 5r)) ≤ ν(Bn(x, 5r0)) ≤ e−nhν+εn.

Let n2 ≥ 1 such that C := C2 ∩ {x ∈ C1 , n2(x) ≤ n2} satisfies ν(C) ≥ 1− δ/8.

For every L > 0, let mL be the smallest integer m such that Le−m(λ2+ε) ≤ 1 and
let n3(L) be the smallest integer larger than mL such that e−nε ≤ M−mL , where M :=
max{‖Df‖∞,P2 , 1}.

Lemma 3.2. Let x̂ ∈ F̂ such that ηε(x̂) ≥ η and Lε(x̂) ≤ L. For every n ≥ n3(L) and
every r ≤ η,

f−nx̂n (Bxn(re−2nε)) ⊂ Bn(x0, r).

Proof. Let us observe that for every 0 ≤ k ≤ n, fk is injective on f−nx̂n (Bxn(re−2nε)) and
that fkf−nx̂n = f−n+k

x̂n
. By setting p = n− k, it suffices to show that

∀p ∈ J0, nK f−px̂n (Bxn(re−2nε)) ⊂ Bxn−p(r). (3.1)

To simplify let us set m := mL et n3 := n3(L). We immediately have

∀n ≥ n3, ∀p ∈ J0, nK , f−px̂n (Bxn(re−2nε)) ⊂ f−px̂n (Bxn( r

Mm
e−nε)). (3.2)

To verify (3.1), we shall consider separately the cases p ≤ m and p > m. We know that
for every p, Lip f−px̂n ≤ L(x̂n)e−pλ2+pε ≤ Lenεe−pλ2+pε on Bxn(ηε(x̂n)), which contains
Bxn(ηe−nε). Hence for every n ≥ n3 ≥ m, p ∈ Jm,nK and r ≤ η:

f−px̂n (Bxn(re−nε)) ⊂ Bxn−p(re−nεLenεe−pλ2+pε) = Bxn−p(rLe−pλ2+pε) ⊂ Bxn−p(r).

Since Mm ≥ 1 this implies for every n ≥ n3 ≥ m, p ∈ Jm,nK and r ≤ η:

f−px̂n (Bxn( r

Mm
e−nε)) ⊂ Bxn−p(

r

Mm
). (3.3)
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Thus, by using (3.2) and Mm ≥ 1:

∀p ∈ Jm,nK , f−px̂n (Bxn(re−2nε)) ⊂ Bxn−p(r). (3.4)

We have proved (3.1) for p ∈ Jm,nK. Let us show this inclusion for p ∈ J0,mK. For every
p ∈ J0,mK, let us set p = m− p′ where p′ ∈ J0,mK. Then

f−px̂n (Bxn( r

Mm
e−nε)) = fp

′(f−mx̂n (Bxn( r

Mm
e−nε)) ⊂ fp′(Bxn−m( r

Mm
)),

where the inclusion comes from (3.3) with p = m. We deduce:

∀p ∈ J0,mK , f−px̂n (Bxn(re−2nε)) ⊂ Bxn−m+p′ (
r

Mm
Mp) ⊂ Bxn−p(r). (3.5)

We finally obtain (3.1) by combining (3.4) and (3.5).

3.2 Pullback of the Fubini-Study form ω

Let ν be an ergodic dilating measure of exponents λ1 > λ2. Let (Z,W )ε be Oseledec-
Poincaré coordinates for (f, ν). Let n4(β) be the smallest integer n such that e−nε ≤ β−1.

Proposition 3.3. Let x̂ ∈ F̂ such that ηε(x̂) ≥ η and βε(x̂) ≤ β. If n ≥ max{n4(β), nε(x̂n)}
and if r ≤ η, then we have on f−nx̂n (Bxn(re−nε)):

1. (fn)∗ω ≥ e−4nε+2nλ1
(
i
2dZ

ε
x̂ ∧ dZεx̂

)
if the exponents do not resonate.

2. (fn)∗ω ≥ e−4nε+2nλ2
(
i
2dW

ε
x̂ ∧ dW ε

x̂

)
.

The remainder of this Section is devoted to the proof. Theorem 2.1 gives

(fn)∗ω = (ξεx̂)∗((Rn,x̂n)−1)∗((ξx̂n)−1)∗ω

on f−nx̂n (Bxn(re−nε)). Let ω0 := i
2dz ∧ dz + i

2dw ∧ dw be the standard form on D2.

Lemma 3.4. Let x̂ ∈ F̂ such that ηε(x̂) ≥ η and βε(x̂) ≤ β. For every n ≥ n4(β) and
r ≤ η, we have on ξεx̂n(Bxn(re−nε)):

e−2nεω0 ≤ ((ξεx̂n)−1)∗ω ≤ 2ω0.

Proof. For every p = (z, w) and p′ = (z′, w′) in ξεx̂n(Bxn(re−nε)), we have

e−nεβ−1d(p, p′) ≤
∣∣∣(ξεx̂n)−1(p)− (ξεx̂n)−1(p′)

∣∣∣ ≤ 2d(p, p′).

This implies for every n ≥ n4(β) and (z, w) ∈ ξεx̂n(Bxn(re−nε)):

∀u ∈ C2, e−2nε |u| ≤
∣∣∣D(z,w)(ξεx̂n)−1(u)

∣∣∣ ≤ 2 |u| .

This provides the desired estimates.
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Lemma 3.5. Let x̂ ∈ F̂ . If n ≥ nε(x̂n), then

1. ((Rn,x̂n)−1)∗ω0 ≥ e2(nλ1−nε) i
2dz ∧ dz if the exponents do not resonate.

2. ((Rn,x̂n)−1)∗ω0 ≥ e2(nλ2−nε) i
2dw ∧ dw.

Proof. We use the fact that the linear part ofRn,x̂n is diagonal with coefficients e−nε−nλ1 ≤
|αn,x̂n | ≤ enε−nλ1 and e−nε−nλ2 ≤ |βn,x̂n | ≤ enε−nλ2 (see Theorem 2.1) and the fact that
the (1, 1)-forms i

2dz ∧ dz and i
2dw ∧ dw are positive.

To end the proof of Proposition 3.3, we observe that for every x̂ ∈ F̂ :

(ξεx̂)∗( i2dz ∧ dz) = ( i2dZ
ε
x̂ ∧ dZεx̂) (ξεx̂)∗( i2dw ∧ dw) = ( i2dW

ε
x̂ ∧ dW ε

x̂)

which follows from the definitions of Zεx̂ and W ε
x̂.

3.3 Uniformizations

Let ν be an ergodic dilating measure of exponents λ1 > λ2 and let δ > 0. Let ε > 0 and
let (Z,W )ε be Oseledec-Poincaré coordinates for (f, ν).

Measure of dynamical balls
We apply Lemma 3.1. There exist r0 > 0, n2 ≥ 1 and C ⊂ P2 such that ν(C) ≥

1− δ/8 and for every x ∈ C and n ≥ n2:

ν(Bn(x, r0/8)) ≥ e−nhν−εn,

∀r ≤ r0 , ν(Bn(x, 5r)) ≤ ν(Bn(x, 5r0)) ≤ e−nhν+εn.

We denote Λ(1) := π−1
0 (C) ∩ F̂ .

Control of the functions nε, ρε, Lε, ηε, βε of Theorem 2.1
Let n0, ρ0 > 0, L0 > 0, η0 > 0 and β0 > 0 such that

Λ(2) :=
{
x̂ ∈ F̂ , nε(x̂) ≤ n0, ρε(x̂) ≥ ρ0, Lε(x̂) ≤ L0, ηε(x̂) ≥ η0, βε(x̂) ≤ β0

}
(3.6)

satisfies ν̂(Λ(2)) ≥ 1− δ/8.

Uniformization of the dimension of the current.
Let S be a positive closed current on P2 whose support contains the support of ν.

Let r1 > 0 such that

Λ(3) :=
{
x̂ ∈ F̂ , ∀r ≤ r1,

rdS,Z(x̂)+ε ≤ (S ∧ ( i2dZ
ε
x̂ ∧ dZεx̂))(Bx0(r)) ≤ rdS,Z(x̂)−ε

(S ∧ ( i2dW
ε
x̂ ∧ dW ε

x̂))(Bx0(r)) ≤ rdS,W (x̂)−ε

}

satisfies ν̂(Λ(3)) ≥ 1− δ/8. In the case of the Green current T , the functions dT,Z , dT,Z
and dT,W are ν̂-almost everywhere constant and denoted dT,Z(ν), dT,Z(ν) and dT,W (ν).
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Uniformization of the dimension of the measure
The lower dimension dν is defined in Section 1.4. Let r2 > 0 such that

D := {x ∈ P2 , ∀r ≤ r2, ν(Bx(r)) ≤ rdν−ε}

satisfies ν(D) ≥ 1− δ/8. We set Λ(4) := π−1
0 (D) ∩ F̂ .

Definition of Λ̂ε, η1 and Nε.
The integers n1(L), n3(L) and n4(β) were defined before Lemma 2.3, 3.2 and Propo-

sition 3.3. Let n5 be the smallest integer n such that e−nε ≤ 1/2 and 2e−n(λ1+ε) < 1.

Λ̂ε := Λ(1) ∩ Λ(2) ∩ Λ(3) ∩ Λ(4),

η1 := min{η0, r0, r1, r2},

Nε := max{n0, n1(L0), n2, n3(L0), n4(β0), n5}.

We have ν̂(Λ̂ε) ≥ 1− δ/2.

Definition of ∆̂n
ε .

We set

∀n ≥ Nε , ∆̂n
ε := F̂ ∩ f̂−n{nε(x̂) ≤ n} = {x̂ ∈ F̂ , nε(x̂n) ≤ n}.

Since ν̂ is f̂ -invariant and Λ(3) ⊂ {nε(x̂) ≤ n}, we have ν̂(∆̂n
ε ) ≥ ν̂(Λ(3)) ≥ 1 − δ/8.

Hence
∀n ≥ Nε , ν̂(Λ̂ε ∩ ∆̂n

ε ) ≥ 1− δ.

4 Separated sets
A subset {x1, . . . , xN} ⊂ P2 is r-separated if d(xi, xj) ≥ r for every i 6= j. For A ⊂ P2,
a subset {x1, . . . , xN} ⊂ A is maximal r-separated with respect to A if it is r-separated
and if for every y ∈ A, there exists i ∈ {1, . . . N} such that d(y, xi) < r. We use similar
definitions for the distance dn, in which case we say that the subsets are (n, r) separated.

4.1 Elementary separation

Lemma 4.1. Let f be an endomorphism of P2 of degree d ≥ 2 and let ν be an ergodic
measure. Let A ⊂ π0(Λ̂ε) such that ν(A) > 0 and let c ∈ ]0, 1]. Let n ≥ Nε and let
{x1, . . . xNn} ⊂ A be maximal (n, c η1)-separated with respect to A. Then

1. for every i 6= j, Bn(xi, c η1/2) ∩Bn(xj , c η1/2) = ∅.

2. A ⊂ ∪Nni=1Bn(xi, c η1).

3. ν(Bn(xi, c η1)) ≤ e−nhν+nε.
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4. e−nhν−nε ≤ ν(Bn(xi, c η1)) si c ≥ 1/8.

5. Nn ≥ ν(A)enhν−nε.

Proof. Item 1 comes from separation, Item 2 from the maximal property, Items 3 and
4 from Section 3.3, because n ≥ Nε, c η1 ≤ η1 and xi ∈ C. Items 2 and 3 then imply
ν(A) ≤

∑Nn
i=1 ν(Bn(xi, c η1)) ≤ Nne

−nhν+nε, which gives Item 5.

4.2 Concentrated separation

Lemma 4.1 applied with c = 1/4 gives ν(Bn(xi, η1/4)) ≥ e−nhν−nε for every xi in a
maximal (n, η1/4)-separated subset of A. We shall see that it is possible to select a large
number of xi such that

ν(Bn(xi, η1/4) ∩A) ≥ e−nhν−2nε.

We take the arguments of de Thélin-Vigny in [12, Section 6]. Let nδ be the smallest
integer n such that e−nε ≤ δ/2.

Lemma 4.2. Let A ⊂ π0(Λ̂ε) such that ν(A) ≥ δ. For every n ≥ max{Nε, nδ}, there
exists a (n, η1/4)-separated subset {x1, . . . , xNn,2} of A such that

1. for every i 6= j, Bn(xi, η1/8) ∩Bn(xj , η1/8) = ∅.

2. for every 1 ≤ i ≤ Nn,2, ν(Bn(xi, η1/4) ∩A) ≥ e−nhν−2εn.

3. Nn,2 ≥ ν(A)enhν−2nε.

4. e−nhν−nε ≤ ν(Bn(xi, cη1)) si c ≥ 1/8.

Proof. Let us apply Lemma 4.1 with c = 1/4 and n ≥ max{Nε, nδ}. There exists a
maximal (n, η1/4)-separated subset {x1, . . . , xNn,1} of A satisfying:

- for every i 6= j, Bn(xi, η1/8) ∩Bn(xj , η1/8) = ∅,
- A ⊂ ∪Nn,1i=1 Bn(xi, η1/4),
- e−nhν−nε ≤ ν(Bn(xi, η1/8)),
- Nn,1 ≥ ν(A)enhν−nε .
Let us set I :=

{
1 ≤ i ≤ Nn,1 , ν(Bn(xi, η1/4) ∩A) ≥ e−nhν−2εn

}
. Let Nn,2 be the

cardinality of I, and assume that I = J1, Nn,2K (we may adapt the sums below if Nn,2 =
0). We want to bound Nn,2 from below. We know that A ⊂ ∪Nn,1i=1 Bn(xi, η1/4), hence

ν(A) ≤
Nn,2∑
i=1

ν(Bn(xi, η1/4) ∩A) +
Nn,1∑

i=Nn,2+1
ν(Bn(xi, η1/4) ∩A).

If i 6∈ J1, Nn,2K, we have ν(Bn(xi, η1/4) ∩ A) < e−nhν−2εn by definition of I. Otherwise,
ν(Bn(xi, η1/4)) ≤ e−nhν+εn since xi ∈ C. This implies

ν(A) ≤ Nn,2e
−nhν+εn + (Nn,1 −Nn,2)e−nhν−2εn. (4.1)
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Let us give an upper bound for Nn,1. Since the balls Bn(xi, η1/8) are pairwise disjoint
and since ν(Bn(xi, η1/8)) ≥ e−nhν−εn, we get

enhν+εn ≥ Nn,1 ≥ Nn,1 −Nn,2.

Combining this and (4.1), we obtain

ν(A) ≤ Nn,2e
−nhν+εn + e−εn.

Since n ≥ nδ, we have e−nε ≤ δ/2 ≤ ν(A)/2, and hence Nn,2 ≥ ν(A)enhν−εn/2. Finally
Nn,2 ≥ ν(A)enhν−2εn since n ≥ Nε ≥ n5.

Now we put in Bn(x, η1/2) a lot of balls whose centers are in Bn(x, η1/4) ∩A.

Lemma 4.3. Let A ⊂ π0(Λ̂ε) such that ν(A) > 0. Let x ∈ A and let n ≥ Nε such that

ν(Bn(x, η1/4) ∩A) ≥ e−nhν−2nε.

Let {y1, . . . , yMn} be a maximal 2η1e
−nλ1−4nε-separated subset in Bn(x, η1/4) ∩A.

1. for every i 6= j, B(yi, η1e
−nλ1−4nε) ∩B(yj , η1e

−nλ1−4nε) = ∅.

2. Bn(x, η1/4) ∩A ⊂ ∪Mn
i=1B(yi, 2η1e

−nλ1−4nε).

3. B(yi, η1e
−nλ1−4nε) ⊂ Bn(x, η1/2).

4. Mn ≥ e−nhν−2nε
(

1
2η1
enλ1+4nε

)dν−ε
.

Proof. Item 1 comes from separation, Item 2 from the maximal property. Lemmas 2.3
then 3.2 give

B(yi, η1e
−nλ1−4nε) ⊂ f−nŷi,n(Byi,n(η1e

−2nε/4) ⊂ Bn(yi, η1/4).

Since yi ∈ Bn(x, η1/4), we have Bn(yi, η1/4) ⊂ Bn(x, η1/2), which yields Item 3. Item 2
implies

ν(Bn(x, η1/4) ∩A) ≤
Mn∑
i=1

ν(B(yi, 2η1e
−nλ1−4nε)).

By assumption, the left hand side is larger than e−nhν−2nε. For the right hand side, since
n ≥ Nε ≥ n5, we have 2η1e

−nλ1−nε < η1 ≤ r2 and thus

ν(B(yi, 2η1e
−nλ1−4nε)) ≤ (2η1e

−nλ1−4nε)dν−ε

by using yi ∈ A ⊂ π0(Λ̂ε) ⊂ D. This shows e−nhν−2nε ≤Mn(2η1e
−nλ1−4nε)dν−ε.



16

5 Lower bounds for the directional dimensions of T

Let ν be an ergodic dilating measure whose exponents λ1 > λ2 do not resonate. Let ε > 0
and let (Z,W )ε be Oseledec-Poincaré coordinates for (f, ν). We have dT,Z(ν) := dT,Z(x̂)
and dT,W (ν) = dT,W (x̂) for ν̂-almost every x̂ (see Proposition 2.4). In this Section we
prove Theorems 5.1 and 5.2. These results specify in a directional way Theorems A and
B of de Thélin-Vigny [12] concerning the dimension of T . We use below arguments of
[12] by replacing the lower bound (obtained in [12] by slicing arguments)

(fn)∗ω ≥ e2nλ2e−nεω

by the two lower bounds (obtained by normal forms Theorem 2.1)

(fn)∗ω ≥ e2nλ1e−nεdZ ∧ dZ and (fn)∗ω ≥ e2nλ2e−nεdW ∧ dW.

Theorem 5.1 uses elementary separation (Lemma 4.1), Theorem 5.2 uses concentrated
separation (Lemmas 4.2 and 4.3). Theorem 5.2 implies Theorem 1.1 (via the lower bound
(1.6) for dν) and Theorem 1.7.

5.1 First lower bounds for the upper dimensions dT,Z et dT,W

Theorem 5.1. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be an er-
godic dilating measure whose exponents λ1 > λ2 do not resonate. There exist functions
O5(ε), O6(ε) satisfying the following properties. Let ε > 0 and let (Z,W )ε be Oseledec-
Poincaré coordinates for (f, ν). Then

dT,Z(ν) ≥ 2 + hν − log d
λ1

−O5(ε)

dT,W (ν) ≥ 2λ2
λ1

+ hν − log d
λ1

−O6(ε).

Proof. Let us denote dT,Z := dT,Z(ν). For first estimate, we are going to show

(λ1 + 4ε)(dT,Z − 2 + ε) + 13ε ≥ hν − log d (5.1)

which provides

dT,Z ≥ 2 + hν − log d− 13ε
λ1 + 4ε − ε =: 2 + hν − log d

λ1
−O5(ε).

Let δ > 0. Let Λ̂ε and Nε be given by Section 3.3. For every n ≥ Nε we set An :=
π0(Λ̂ε ∩ ∆̂n

ε ), it satisfies ν(An) ≥ ν̂(Λ̂ε ∩ ∆̂n
ε ) ≥ 1− δ > 0. Lemma 4.1 applied with c = 1

yields a maximal (n, η1)-separated subset {x1, . . . , xNn} of An with

Nn ≥ ν(An)enhν−nε ≥ (1− δ)enhν−nε. (5.2)
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For every i, let us choose x̂i ∈ Λ̂ε ∩ ∆̂n
ε such that π0(x̂i) = xi. From Proposition 9.3, we

get dn =
∫
P2((fn)∗T ) ∧ ω. Therefore

dn ≥
Nn∑
i=1

∫
P2

(fn)∗(1Bn(xi,η1/2)T ) ∧ ω ≥
Nn∑
i=1

∫
P2

(1Bn(xi,η1/2)T ) ∧ (fn)∗ω.

By using Lemmas 2.3 and 3.2 with x̂i ∈ Λ̂ε, we get

Bxi(
η1
2 e
−nλ1−4nε) ⊂ f−nx̂i,n(Bxi,n(η1

8 e
−2nε)) ⊂ Bn(xi,

η1
8 ). (5.3)

Since T ∧ (fn)∗ω is a positive measure, we deduce

dn ≥
Nn∑
i=1

∫
P2

(1Bxi ( η1
2 e
−nλ1−4nε)T ) ∧ (fn)∗ω.

Thanks to the first inclusion of (5.3) and x̂i ∈ ∆̂n
ε (which implies n ≥ nε(x̂i,n)), we can

use Proposition 3.3 to bound (fn)∗ω from below. We obtain

dn ≥
Nn∑
i=1

e2nλ1−4nε
(
T ∧ i

2dZ
ε
x̂i ∧ dZ

ε
x̂i

)
(Bxi(

η1
2 e
−nλ1−4nε)).

Since x̂i ∈ Λ̂ε ⊂ Λ(3) and η1 ≤ r1, we deduce

dn ≥
Nn∑
i=1

e2nλ1−4nε
(
η1
2 e
−nλ1−4nε

)dT,Z+ε
.

Finally, we use the estimate (5.2):

dn ≥ ν(An)
(
η1
2

)dεT,Z+ε
en(hν−(λ1+4ε)(dεT,Z−2+ε)−13ε),

where ν(An) ≥ (1 − δ). By taking logarithm and dividing by n, we get (5.1) when
n → ∞. The second estimate concerning the coordinate W is proved in a similar way,
by using Proposition 3.3 to bound (fn)∗ω from below. We precisely get

(λ1 + 4ε)(dT,W + ε) + 5ε ≥ hν − log d+ 2λ2 (5.4)

which yields

dT,W ≥
2λ2

λ1 + 4ε + hν − log d− 5ε
λ1 + 4ε − ε =: 2λ2

λ1
+ hν − log d

λ1
−O6(ε).

This completes the proof of Theorem 5.1.
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5.2 Proof of Theorem 1.1

Theorem 1.1 is a consequence of Theorem 5.2 below and of the lower bound (1.6).

Theorem 5.2. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be an er-
godic dilating measure whose exponents λ1 > λ2 do not resonate. There exist functions
O1(ε), O2(ε) satisfying the following properties. Let ε > 0 and let (Z,W )ε be Oseledec-
Poincaré coordinates for (f, ν). Then

dT,Z(ν) ≥ 2 + dν −
log d
λ1
−O1(ε),

dT,W (ν) ≥ 2λ2
λ1

+ dν −
log d
λ1
−O2(ε).

Proof. Let us set dT,Z := dT,Z(ν). We are going to show

(λ1 + 4ε)(dT,Z − dν + 2ε) + 8ε ≥ 2λ1 − log d. (5.5)

This yields as desired

dT,Z − dν ≥
2λ1

λ1 + 4ε −
log d− 8ε
λ1 + 4ε − 2ε =: 2− log d

λ1
−O1(ε). (5.6)

Let δ > 0. Let Λ̂ε and Nε be given by Section 3.3. For every n ≥ Nε we set An :=
π0(Λ̂ε ∩ ∆̂n

ε ), it satisfies ν(An) ≥ 1 − δ. Let {x1, . . . , xNn,2} be a (n, η1/4)-separated
subset of An provided by Lemma 4.2. Then for every xi, we set a 2η1e

−nλ1−4nε-separated
subset {yi1, . . . , yiMn

} given by Lemma 4.3. For every i we choose x̂i ∈ Λ̂ε ∩ ∆̂n
ε such that

π0(x̂i) = xi, and for every j we choose ŷij ∈ Λ̂ε ∩ ∆̂n
ε such that π0(ŷij) = yij . According

to Proposition 9.3, we have dn =
∫
P2(fn)∗T ∧ ω, thus

dn ≥
Nn,2∑
i=1

Mn∑
j=1

∫
P2

(fn)∗(1B(yij ,η1e−nλ1−4nε)T ) ∧ ω =
Nn,2∑
i=1

Mn∑
j=1

∫
B(yij ,η1e−nλ1−4nε)

T ∧ (fn)∗ω.

Lemma 2.3 with ŷij ∈ Λ̂ε implies

B(yij , η1e
−nλ1−4nε) ⊂ f−n

ŷij,n
(B(yij,n,

η1
4 e
−2nε)). (5.7)

Since ŷij ∈ ∆̂n
ε , we can apply Proposition 3.3 to bound (fn)∗ω from below:

dn ≥
Nn,2∑
i=1

Mn∑
j=1

e2nλ1−4nε
(
T ∧ i

2dZ
ε
ŷij
∧ dZε

ŷij

)(
Byij

(η1e
−nλ1−4nε)

)
. (5.8)

Now ŷij ∈ Λ̂ε ⊂ Λ(3) and n ≥ Nε, hence

dn ≥
Nn,2∑
i=1

Mn∑
j=1

e2nλ1−4nε(η1e
−nλ1−4nε)d

ε
T,Z+ε.
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Finally, we use the lower bounds for Mn (Lemma 4.3) and for Nn,2 (Lemma 4.2). We
obtain for every n ≥ max{Nε, n1−δ}:

dn ≥ (1− δ)enhν−2nε · e−nhν−2nε
( 1

2η1
enλ1+4nε

)dν−ε
· e2nλ1−4nε(η1e

−nλ1−4nε)d
ε
T,Z+ε.

Let us note that the entropy hν disappear for the benefit of dν , and we get

dn ≥ c e−8nε
(
enλ1+4nε

)dν−dεT,Z−2ε
e2nλ1 , (5.9)

where c := (1−δ)ηdT,Z+ε
1 /(2η1)dν−ε. Taking logarithm and then dividing by n, we obtain

(5.5) when n→ +∞. Similarly, we can prove

(λ1 + 4ε)(dT,W − dν + 2ε) + 8ε ≥ 2λ2 − log d

by using again Proposition 3.3 to bound (fn)∗ω from below.

6 Currents S and semi-extremal endomorphisms

6.1 Proof of Theorem 1.4

Let S be a (1, 1) closed positive current of P2. If S does not satisfy f∗S = dS, the
directional dimensions may be not ν̂-almost everywhere constant (see Proposition 2.4).
In this case, in the manner of de Thélin-Vigny [12], we take on an adapted definition
and obtain the following result. The functions O5(ε), O6(ε) were defined in Theorem 5.1.

Theorem 6.1. Let f be an endomorphism of P2 of degree d ≥ 2. Let S be a (1, 1) closed
positive current of P2, of mass 1. Let ν be an ergodic dilating measure whose exponents
λ1 > λ2 do not resonate. We assume that Supp(ν) ⊂ SuppS. Let ε > 0 and let (Z,W )ε
be Oseledec-Poincaré coordinates for (f, ν). For every Λ̂ ⊂ F̂ such that ν̂(Λ̂) > 0, we set

dS,Z(Λ̂) := sup
x̂∈Λ̂

dS,Z(x̂), dS,W (Λ̂) := sup
x̂∈Λ̂

dS,W (x̂).

Then
dS,Z(Λ̂) ≥ 2 + hν − log d

λ1
−O5(ε),

dS,W (Λ̂) ≥ 2λ2
λ1

+ hν − log d
λ1

−O6(ε).

Proof. Let 2δ := ν̂(Λ̂). We construct Λ̂ε et Nε for the current S as in Section 3.3. We
have ν̂(Λ̂ε ∩ ∆̂n

ε ) ≥ 1 − δ for every n ≥ Nε, thus ν̂(Λ̂ ∩ Λ̂ε ∩ ∆̂n
ε ) ≥ δ > 0. We follow

the arguments of Theorem 5.1. Lemma 4.1 applied to An := π0(Λ̂ ∩ Λ̂ε ∩ ∆̂n
ε ) and c = 1

provides a maximal (n, η1)-separated subset {x1, . . . , xNn} of An. For every i, let us
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choose x̂i ∈ Λ̂ ∩ Λ̂ε ∩ ∆̂n
ε such that π0(x̂i) = xi. According to Proposition 9.3 we have

dn =
∫
P2(fn)∗S ∧ ω, hence

dn =
∫
P2

((fn)∗S) ∧ ω ≥
Nn∑
i=1

∫
P2

(1Bn(xi,η1/2)S) ∧ (fn)∗ω.

Then we use the inclusions and the lower bound for (fn)∗ω to obtain:

dn ≥
Nn∑
i=1

e2nλ1−4nε
(
S ∧ i

2dZ
ε
x̂i ∧ dZ

ε
x̂i

)
(Bxi(

η1
2 e
−nλ1−4nε)).

Since x̂i ∈ Λ̂ε and n ≥ Nε, we get

dn ≥
Nn∑
i=1

e2nλ1−4nε
(
η1
2 e
−nλ1−4nε

)dS,Z(x̂i)+ε
.

Now we use the adapted definition of dS,Z(Λ̂) and the lower estimate (5.2) to obtain

dn ≥ ν(An)
(
η1
2

)dS,Z(Λ̂)+ε
enhν−13nε−n(λ1+4ε)(dS,Z(Λ̂)−2+ε), (6.1)

where ν(An) ≥ δ. The lower bound concerning W is proved in a similar way.

Remark 6.2. Theorem 6.1 is the counterpart of Theorem 5.1 for currents S. Similarly,
the counterpart of Theorem 5.2 can be proved with n ≥ max{Nε, nδ} in the proof.

6.2 Proof of Theorem 1.7

Since T is f -invariant and ν is ergodic, we have dT (x) = dT (µ) for µ-almost every x, see
Proposition 2.5. According to Proposition 9.1, µ << σT implies

dT (µ) ≤ dµ. (6.2)

Let us analyse these quantities. On the one hand, Proposition 9.2 yields dT (µ) =
min

{
dT,Z(x), dT,W (x)

}
for µ-almost every x ∈ P2 and for every holomorphic coordinates

(Z,W ) near x. On the other hand, since dµ = dµ, then dµ = dµ = dimH(µ), which is
equal to 2 + log d

λ1
by (1.7). One deduces from (6.2) that if µ << σT , then

min
{
dT,Z(x), dT,W (x)

}
≤ 2 + log d

λ1
. (6.3)

Now we use Theorem 5.2. Let ε > 0 such that 4−O1(ε) > 2 + log d
λ1

, where the function
O1(ε) is defined by (5.6). Let (Z,W )ε Oseledec-Poincaré coordinates for (f, µ).



21

First we bound dT,Z(µ) from below, then we establish the formula for dT,W (µ) modulo
the function O2(ε). If µ << σT , then λ2 = 1

2 log d by Theorem 1.6. We deduce from
(1.6) that 2 + log d

λ1
≤ dµ. Theorem 5.2 then provides

dT,Z(µ) ≥ 4−O1(ε) , dT,W (µ) ≥ 2 + log d
λ1
−O2(ε).

Finally, using 4−O1(ε) > 2+ log d
λ1

and (6.3) with Oseledec-Poincaré coordinates (Z,W )ε,
we get dT,W (µ) ≤ 2 + log d

λ1
as desired.

7 Upper bounds for the directional dimensions of T

In this Section we show Theorem 1.2. Let ν be an ergodic dilating measure such that
Supp(ν) ⊂ Supp(µ) and whose exponents λ1 > λ2 do not resonate. Let ε > 0 and let
(Z,W )ε be Oseledec-Poincaré coordinates for (f, ν). We want to prove

dT,Z(ν) ≤ log d
λ2

+ 2λ1
λ2

+O3(ε) and dT,W (ν) ≤ log d
λ2

+ 2 +O4(ε).

We shall directly obtain these upper bounds for ν̂-almost every x̂, by using the jacobians
of T ∧ dZεx̂ ∧ dZεx̂ and T ∧ dW ε

x̂ ∧ dW ε
x̂ with respect to f . In particular, we shall not use

separated subsets. The Monge-Ampère equation µ = T ∧ T will be crucial.

7.1 Dimensions of the Green current on the equilibrium measure

The following Proposition is proved in Section 7.3.

Proposition 7.1. Let f be an endomorphism of P2 of degree d ≥ 2 and let T be its
Green current. Let x ∈ Suppµ and let Z be a local holomorphic coordinate (submersion)
in a neighbourhood V of x. Then T ∧ ( i2dZ ∧ dZ) is not the zero measure on V .

This implies:

Proposition 7.2. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be an ergodic
dilating measure of exponents λ1 > λ2 and whose support is contained in the support of
µ. Let ε > 0 and let (Z,W )ε be Oseledec-Poincaré coordinates for (f, ν). We recall that
for every x̂ ∈ F̂ , (Zεx̂,W ε

x̂) is defined on Bx0(ηε(x̂)). Then, for every 0 < r < ηε(x̂),[
T ∧ i

2dZ
ε
x̂ ∧ dZεx̂

]
(Bx(r)) > 0 and

[
T ∧ i

2dW
ε
x̂ ∧ dW ε

x̂

]
(Bx(r)) > 0.

In particular, for every δ > 0, there exist m0 ≥ 1, L0 ≥ 1 and q0 ≥ 1 such that

Ω̂ε :=

ηε(x̂) ≥ 1
4m0

, L(x̂) ≤ L0 ,

[
T ∧ i

2dZ
ε
x̂ ∧ dZεx̂

]
(Bx( 1

4m0
)) ≥ 1

q0[
T ∧ i

2dW
ε
x̂ ∧ dW ε

x̂

]
(Bx( 1

4m0
)) ≥ 1

q0


satisfies ν̂(Ω̂ε) ≥ 1− δ.
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Proof. The first part immediately follows from Proposition 7.1. To prove the second
part, let m0 ≥ 1 and L0 ≥ 1 be such that ν̂

{
ηε ≥ 1

4m0

}
∩ {L ≤ L0} ≥ 1− δ/2. Then we

choose q0 large enough so that ν̂(Ω̂ε) ≥ 1− δ.

We define for every n ≥ 1:

Ω̂n
ε := Ω̂ε ∩ f̂−n(Ω̂ε).

Since ν̂ is invariant, we have:
ν̂(Ω̂n

ε ) ≥ 1− 2δ. (7.1)

The following Proposition will be useful to prove Theorems 1.2 and 1.5. L0 is defined
in Proposition 7.2 and n1(L0) ≥ 1 is defined before Lemma 2.3.

Proposition 7.3. Let f be an endomorphism of P2 of degree d ≥ 2. Let ν be a ergodic
dilating measure of exponents λ1 > λ2 and such that Supp(ν) ⊂ Supp(µ). For every
n ≥ n1(L0) and x̂ ∈ Ω̂n

ε , we have:[
T ∧ i

2dZ
ε
x̂ ∧ dZεx̂

](
Bx

( 1
m0

e−nλ2+3nε
))
≥ 1
dn
e−2nλ1−2nε 1

q0
if λ1 6∈ {kλ2, k ≥ 2} ,

[
T ∧ i

2dW
ε
x̂ ∧ dW ε

x̂

](
Bx

( 1
m0

e−nλ2+3nε
))
≥ 1
dn
e−2nλ2−2nε 1

q0
for every λ1 > λ2.

Proof. Let x̂ ∈ Ω̂n
ε and let

En := f−nx̂n (Bxn( 1
4m0

)).

The inverse branch f−nx̂n is well defined on Bxn( 1
4m0

) since x̂n ∈ Ω̂ε. Let gn be the
restriction of fn on En. By using f−nx̂n ◦ gn = IdEn and T = 1

dn g
∗
nT on En, we obtain

T ∧ i

2dZ
ε
x̂ ∧ dZεx̂ = 1

dn
g∗nT ∧ g∗n(f−nx̂n )∗( i2dZ

ε
x̂ ∧ dZεx̂)

= 1
dn
g∗n

[
T ∧ i

2(dZεx̂ ◦ (f−nx̂n )) ∧ d(Zεx̂ ◦ (f−nx̂n ))
]

on the open subset En. Now we use (2.1) to write Zεx̂ ◦ (f−nx̂n ) = αn,x̂nZx̂n . Since
|αn,x̂n |

2 ≥ e−2nλ1−2nε, we get on En:

T ∧ i

2dZ
ε
x̂ ∧ dZεx̂ ≥

1
dn
e−2nλ1−2nεg∗n

[
T ∧ i

2dZ
ε
x̂n ∧ dZ

ε
x̂n

]
. (7.2)

We are going to bound from above the left hand side and to bound from below the right
hand side (applied to En). Using Lemma 2.3 with r = 1/m0 and n ≥ L0 we obtain
En ⊂ Bx

(
1
m0
e−nλ2+3nε

)
, hence

T ∧ i

2dZ
ε
x̂ ∧ dZεx̂

(
Bx

( 1
m0

e−nλ2+3nε
))
≥ T ∧ i

2dZ
ε
x̂ ∧ dZεx̂(En) (7.3)
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For the right hand side, since gn is injective on En and gn(En) = Bxn

(
1

4m0

)
, we get

g∗n

[
T ∧ i

2(dZεx̂n ∧ dZεx̂n)
]

(En) =
[
T ∧ i

2(dZεx̂n ∧ (dZεx̂n)
]

(Bxn( 1
4m0

)) ≥ 1
q0
, (7.4)

where the inequality comes from x̂n ∈ Ω̂ε. By combining (7.2), (7.3) and (7.4) we obtain[
T ∧ i

2dZ
ε
x̂ ∧ dZεx̂

](
Bx

( 1
m0

e−nλ2+3nε
))
≥ 1
dn
e−2nλ1−2nε 1

q0
.

We useW ε
x̂◦(f

−n
x̂n

) = βn,x̂Wx̂n et |βn,x̂|2 ≥ e−2nλ2−2nε to prove the other lower bound.

7.2 Proof of Theorem 1.2

We take the notations of Section 7.1. Let

Ω̂ε := lim sup
n∈N

Ω̂ε ∩ f̂−n(Ω̂ε) = lim sup
n∈N

Ω̂n
ε .

We have ν̂(Ω̂ε) ≥ 1− 2δ according to (7.1). Let x̂ ∈ Ω̂ε. Then there exists an increasing
sequence of intergers (lp)p such that

x̂ ∈ Ω̂ε ∩ f̂−lp(Ω̂ε) = Ω̂lp
ε

for every p ≥ 0. Proposition 7.3 then asserts for p large enough:[
T ∧ i

2dZ
ε
x̂ ∧ dZεx̂

](
Bx

( 1
m0

e−lpλ2+3lpε
))
≥ 1
dlp

e−2lpλ1−2lpε 1
q0
.

If p is also large enough so that elpε ≥ 1
m0

and 1
q0
≥ e−lpε, we obtain with rp := e−lp(λ2−4ε):[

T ∧ i

2dZ
ε
x̂ ∧ dZεx̂

]
(Bx (rp)) ≥ e−lp(log d+2λ1+3ε) = r(log d+2λ1+3ε)/(λ2−4ε)

p .

Since (rp)p tends to 0 and ν̂(Ω̂ε) > 0, we get

dT,Z(ν) ≤ log d+ 2λ1 + 3ε
λ2 − 4ε =: log d

λ2
+ 2λ1

λ2
+O3(ε).

One can prove
dT,W (ν) ≤ log d+ 2λ2 + 3ε

λ2 − 4ε =: log d
λ2

+ 2 +O4(ε)

in a similar way.
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7.3 Monge-Ampère mass

We prove Proposition 7.1. Let x ∈ Suppµ, let V be a neighbourhood of x and let
Z : V → C be a holomorphic coordinate (submersion) on V . We want to prove that the
positive measure T ∧ i

2dZ ∧ dZ is not the zero measure on V . With no loss of generality,
we can assume that x = (0, 0), V = D(2)× D(2) and Z(z, w) = z. Let also T = 2i∂∂G
on V , where G is a continuous psh function. We denote σz(u) := (z, u).

Lemma 7.4. If (T ∧ i
2dZ ∧ dZ)(D(2) × D(2)) = 0, then G ◦ σz is harmonic on D for

every z ∈ D.

Proof. Let z0 ∈ D and let ϕ ∈ C∞0 (D) be a test function. Let ψ ∈ C∞0 (D2) such that
ψ ◦ σz0 = ϕ on D. According to Proposition 9.4, we have(

T ∧ i

2dZ ∧ dZ
)

(ψ) =
∫
z∈D

(∫
w∈D

(G ◦ σz)(w)×∆(ψ ◦ σz)(w) d Leb(w)
)

dLeb(z),

which is equal to zero by our assumption. Since the measurable function

z 7→
∫
w∈D

(G ◦ σz)(w)×∆(ψ ◦ σz)(w) d Leb(w)

is non negative, there exists A ⊂ D such that Leb(A) = Leb(D) and

∀z ∈ A,
∫
w∈D

(G ◦ σz)(w)×∆(ψ ◦ σz)(w) d Leb(w) = 0. (7.5)

Let us extend this property to every z ∈ D. Since A is a dense subset of D, there exists
a sequence (zn)n of points in A which converges to z. Using (7.5), we get

∀n ≥ 1,
∫
w∈D

(G ◦ σzn)(w)×∆(ψ ◦ σzn)(w) d Leb(w) = 0. (7.6)

Since G is continuous on D2 and ψ is smooth on D2, G and 2i∂∂ψ are uniformly con-
tinuous on D2. This implies that G ◦ σzn uniformly converges to G ◦ σz on D and that
∆(ψ ◦ σzn) uniformly converges to ∆(ψ ◦ σz) on D. Taking the limits in (7.6), we get

∀z ∈ D,
∫
w∈D

(G ◦ σz)(w)×∆(ψ ◦ σz)(w) d Leb(w) = 0.

In particular, we obtain using ψ ◦ σz0 = ϕ:∫
w∈D

(G ◦ σz0)(w)×∆ϕ(w) d Leb(w) = 0.

This holds for every ϕ ∈ C∞0 (D), hence the function G ◦ σz0 is harmonic on D.

Now we use the following result, see [5, Lemme IV.1.1] and [24, Section A.10].

Theorem 7.5 (Briend). Let G be a continuous psh function on D(2)× D(2). Let E be
the set of points p ∈ D(1

4) × D(1
4) such that there exists a holomorphic disc σp : D →

D(2)× D(2) satisfying
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1. the boundary of σp is outside D(1
2)× D(1

2),

2. G ◦ σp is harmonic D.

Then (2i∂∂G ∧ 2i∂∂G)(E) = 0.

In our situation, D(1
4) × D(1

4) = E since one can take for σp the discs σz : D →
D × D, u 7→ (z, u). Indeed, the boundary of σz is contained in {z} × ∂D and G ◦ σz is
harmonic on D according to Lemma 7.4. Theorem 7.5 then gives:

(2i∂∂G ∧ 2i∂∂G)(D(1
4)× D(1

4)) = 0, (7.7)

which contradicts x = 0 ∈ Suppµ = Supp(2i∂∂G ∧ 2i∂∂G).

8 Upper bound for the dimension of dilating measures
We prove Theorem 1.5. We shall take the proof of Theorem 5.2 and use Proposition 7.3.
Let ε > 0 and let Λ̂ε and ∆̂n

ε be the sets defined in Section 3.3. The set Ω̂n
ε has been

defined in Section 7.1, it satisfies ν̂(Ω̂n
ε ) ≥ 1−2δ. Hence we have ν̂(Λ̂ε∩∆̂n

ε ∩Ω̂n
ε ) ≥ 1−3δ

for every n ≥ Nε. Now let Kn be the unique integer satisfying

η1e
−nλ1−4nεe−λ2+3ε ≤ 1

m0
e−Knλ2+3Knε ≤ η1e

−nλ1−4nε. (8.1)

so that Kn ' nλ1/λ2. Let {x1, · · · , xNn,2} be a (n, η1/4)-separated subset of An :=
π0(Λ̂ε ∩ ∆̂n

ε ∩ Ω̂Kn
ε ) provided by Lemma 4.2. We have for every n ≥ max{Nε, n1−3δ}:

Nn,2 ≥ ν(An)enhν−2nε ≥ (1− 3δ)enhν−2nε. (8.2)

Then, for every xi, let {yi1, . . . , yiMn
} be a 2e−nλ1−4nε-separated subset of Bn(xi, η1/4)∩

An provided by Lemma 4.3. The cardinality of this set satisfies:

Mn ≥ e−nhν−2nε
( 1

2η1
enλ1+4nε

)dν−ε
. (8.3)

For every j ∈ {1, . . . ,Mn}, we set ŷij ∈ Λ̂ε ∩ ∆̂n
ε ∩ Ω̂Kn

ε such that yij = π0(ŷij). Then we
follow the proof of Theorem 5.2 until the inequality (5.8):

dn ≥
Nn,2∑
i=1

Mn∑
j=1

e2nλ1−4nε
[
T ∧ ( i2dZ

ε
ŷij
∧ dZε

ŷij
)
]

(Byij (η1e
−nλ1−4nε)). (8.4)

We want to apply Proposition 7.3. According to (8.1),

Byij
(η1e

−nλ1−4nε) ⊃ Byij

( 1
m0

e−Knλ2+3Knε
)
.
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We apply the positive measure T ∧ ( i2dZ
ε
ŷij
∧ dZε

ŷij
) to this inclusion. Since ŷij ∈ Ω̂Kn

ε , we
deduce from Proposition 7.3 that for every n satisfying n ≥ Nε and Kn ≥ Nε:[

T ∧ ( i2dZ
ε
ŷi,j ∧ dZ

ε
ŷi,j

)
]

(Byij (η1e
−nλ1−4nε)) ≥ 1

dKn
e−2Knλ1−2Knε 1

q0
.

We infer from (8.4) that for every n satisfying n ≥ Nε and Kn ≥ Nε,

dn ≥ Nn,2 ·Mn · e2nλ1−4nε 1
dKn

e−2Knλ1−2Knε 1
q0
. (8.5)

Now we use the upper bounds for Nn,2 and Mn given by (8.2) and (8.3):

dn+Kn ≥ (1− 3δ)enhν−2nε · e−nhν−2nε
( 1

2η1
enλ1+4nε

)dν−ε
· e2nλ1−4nεe−2Knλ1−2Knε 1

q0
.

If C1(ε) := (1− 3δ)/q0(2η1)dν−ε, we get:

log d+ Kn

n
log d ≥ 1

n
logC1(ε)− 8ε+ (λ1 + 4ε)(dν − ε) + 2λ1 − 2Kn

n
(λ1 + ε).

By using (8.1), we have

log d+ λ1 + 4ε
λ2 − 3ε log d ≥ 1

n
logC2(ε)− 8ε+ (λ1 + 4ε)(dν − ε) + 2λ1 − 2λ1 + 4ε

λ2 − 3ε(λ1 + ε),

where C2(ε) is another constant. Letting n tend to +∞ and then ε to 0, we get

dν ≤
log d
λ1

+ log d
λ2

+ 2
(
λ1
λ2
− 1

)
.

To obtain the other upper bound, we use the analogue of (8.4) for W . Applying Propo-
sition 7.3 with respect to W , we obtain instead of (8.5):

dn ≥ Nn,2 ·Mn · e2nλ2−4nε 1
dKn

e−2Knλ2−2Knε 1
q0
.

Then we get
dν ≤

log d
λ1

+ log d
λ2

+ 2
(

1− λ2
λ1

)
,

which completes the proof of Theorem 1.5.

9 Appendix

9.1 Dimension of measures

Proposition 9.1. Let ν1 and ν2 be two probability measures on P2 such that ν1 << ν2.
Then for ν1-almost every x ∈ P2, we have:

dν1(x) ≥ dν2(x) and dν1(x) ≥ dν2(x).
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Proof. Let ϕ ∈ L1(ν2) such that ν1(A) =
∫
A ϕν2 for every Borel set A of P2. Using the

dominated convergence Theorem,

lim
M→∞

∫
P2

1{ϕ≤M}ϕ dν2 =
∫
P2
ϕ dν2 = 1.

For every n ≥ 1, we let Mn satisfy
∫
P2 1{ϕ≤Mn}ϕdν2 ≥ 1 − 1

n . By the Lebesgue density
Theorem, for ν1-almost every x in {ϕ ≤Mn}, we have

lim
r→0

ν1(Bx(r) ∩ {ϕ ≤Mn})
ν1(Bx(r)) = 1.

Then for every r small enough, we have

1
2ν1(Bx(r)) ≤ ν1(Bx(r) ∩ {ϕ ≤Mn}) =

∫
Bx(r)∩{ϕ≤Mn}

ϕdν2 ≤Mn

∫
Bx(r)

dν2.

And thus ν1(Bx(r)) ≤ 2Mnν2(Bx(r)). We deduce that

dν1(x) ≥ dν2(x) and dν1(x) ≥ dν2(x)

for ν1-almost every x ∈ {ϕ ≤Mn}. We end with ν1(∪n∈N {ϕ ≤Mn}) = 1.

Now we take the notations of Section 1.1.

Proposition 9.2. Let S be a (1, 1)-closed positive current on P2. Let x ∈ P2 and let
(Z,W ) be holomorphic coordinates near x. Then

dS(x) = min
{
dS,Z(x), dS,W (x)

}
, dS(x) = min

{
dS,Z(x), dT,W (x)

}
.

Proof. Let us set σS,Z = S ∧ ( i2dZ ∧ dZ) and σS,W = S ∧ ( i2dW ∧ dW ). There exists
c > 0 such that 1

c (σS,Z +σS,W ) ≤ σS ≤ c(σS,Z +σS,W ) on a neighbourhood of x, see [13]
Chapter III, §3. We deduce for every r small enough

1
c

max [σS,Z(Bx(r)), σS,W (Bx(r))] ≤ σS(Bx(r)) ≤ 2cmax [σS,Z(Bx(r)), σS,W (Bx(r))] .

We finish by observing that the local dimension of the maximum of two measures is equal
to the minimum of these two dimensions, since one divides by log r which is negative.

9.2 Cohomology and slices

We refer to Sections 1.2 and A.3 of Dinh-Sibony’s book [16].

Proposition 9.3. Let S be a (1, 1)-closed positive current of P2 of mass 1. Let ω be the
Fubini-Study form on P2 and let f : P2 → P2 be an endomorphism of degree d. Then,∫

P2
(fn)∗S ∧ ω =

∫
P2
S ∧ (fn)∗ω = dn.
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Proof. The first equality comes from the definition of duality. We show the second one.
By using f∗ω = d·ω+2i∂∂u, where u is a smooth function on P2, we obtain by induction

(fn)∗ω = dnω + 2i∂∂vn,

where vn := (dn−1 · u+ · · ·+ d · u ◦ fn−2 + u ◦ fn−1). Hence∫
P2
S ∧ (fn)∗ω =

∫
P2
S ∧

(
dnω + 2i∂∂vn

)
.

Since S is a closed current of mass 1, we have
∫
P2 S∧2i∂∂vn = 0 and

∫
P2 S∧dnω = dn.

Proposition 9.4. Let G be a continuous psh function on D2 and let S = 2i∂∂G. Let
(Z,W ) be the coordinates on D2 and let φ ∈ C∞0 (D2). Then

S∧ i2dZ∧dZ(φ) =
∫
z∈D

(∫
w∈D

Gz(w)×∆φz(w) dLeb(w)
)

dLeb(z) =
∫
z∈D

(σ∗zS)(φz)dLeb(z),

where σz : u 7→ (z, u), Gz := G ◦ σz and φz := φ ◦ σz.

Proof. By definition,

S ∧ i

2dZ ∧ dZ(φ) = 2i∂∂G(φ i2dZ ∧ dZ) =
∫
D2
G.2i∂∂(φ× i

2dZ ∧ dZ).

The computation

2i∂∂(φ× i

2dZ ∧ dZ) = 4( ∂2φ

∂w∂w
) i2dW ∧ dW ∧

i

2dZ ∧ dZ = 4( ∂2φ

∂w∂w
) d Leb(z, w)

allows to write

S ∧ i

2dZ ∧ dZ(φ) =
∫

(z,w)∈D2
G(z, w)× 4 ∂2φ

∂w∂w
(z, w) d Leb(z, w)

=
∫
z∈D

(∫
w∈D

Gz(w)×∆φz(w) d Leb(w)
)

dLeb(z).

Finally, the quantity in brackets is equal to (∆Gz)(φz) = (σ∗zS)(φz).
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