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Directional dimensions of ergodic currents on CP (2)

Introduction

This article concerns the ergodic properties of holomorphic endomorphisms of P 2 , see [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]. Let f be an endomorphism of P 2 of degree d ≥ 2. The Green current T is defined as T := lim n 1 d n f n * ω, where ω is the Fubini-Study form of P 2 . The equilibrium measure is defined as µ := T ∧ T , this is an ergodic measure of entropy log d 2 , its Lyapunov exponents are ≥ 1 2 log d, see [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]. We say that an ergodic measure ν is dilating if its Lyapunov exponents are positive. The ergodic measures of entropy h ν > log d are dilating: their exponents are larger than or equal to 1 2 (h ν -log d), see [START_REF] De Thélin | Sur les exposants de Lyapounov des applications méromorphes[END_REF][START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF]. It is known that the support of every ergodic measure ν of entropy h ν > log d is contained in the support of µ, see [START_REF] De Thélin | Un phénomène de concentration de genre[END_REF][START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF]. The article [START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF] constructs such measures by using coding techniques.

Directional dimensions

Let f be an endomorphism of P 2 of degree d ≥ 2. The algebraic subsets of P 2 do not contain any ergodic measure ν of entropy h ν > log d: this comes from the Gromov's iterated graph argument and from the relative variational principle, see [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF] and [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]Section 1.7]. In this Section, we quantify that property thanks to the Lyapunov exponents 1 of the measures ν. We shall work in the more general setting of (1, 1) closed positive currents S. Those currents are as big as the algebraic subsets, since we have:

∀x ∈ P 2 , d S (x) := lim inf r→0 log S ∧ ω(B x (r)) log r ≥ 2,
which comes from S ∧ ω(B x (r)) ≤ c(x)r 2 , see [START_REF] Demailly | Complex Analytic and Differential Geometry[END_REF]Chapitre 3]. We shall use the notation d S (x) for the lim sup. A drawback of the trace measure S∧ω is that it does not distinguish any specific direction. If Z is a holomorphic coordinate in the neighbourhood of x ∈ P 2 , one defines the lower local directional dimension of S with respect to Z by

d S,Z (x) := lim inf r→0 log S ∧ ( i 2 dZ ∧ dZ)(B x (r)) log r ,
we shall denote the lim sup by d S,Z (x). Geometrically, the positive measure S∧( i 2 dZ∧dZ) is the average with respect to Lebesgue measure of the slices of the current S transversaly to the direction Z, see Proposition 9.4. If (Z, W ) are holomorphic coordinates near x, the directional dimensions of S are related to the dimension of S by d S (x) = min d S,Z (x), d S,W (x) , d S (x) = min d S,Z (x), d S,W (x) ,

(1.1) see Proposition 9.2. We start with showing lower and upper bounds for the directional dimensions of the Green current T (Theorems 1.1 and 1.2). Next we display our result concerning the general closed positive currents S.

Directional dimensions of the Green current

The invariance property of the current T allows to obtain estimates on the directional dimensions ν-almost everywhere. In what follows, the functions O( ) only depend on , the degree d of the endomorphism, the exponents and the entropy of ν. They tend to 0 when tends to 0 and are positive for small enough. We shall say that the exponents of ν do not resonate if λ 1 = kλ 2 for every k ≥ 2.

Theorem 1.1. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be an ergodic diltating measure whose exponents λ 1 > λ 2 do not resonate. Then there exist functions O 1 ( ), O 2 ( ) satisfying the following properties. For every > 0 and for ν-almost every x, there exist holomorphic coordinates (Z, W ) in a neighbourhood of x such that

d T,Z (x) ≥ 2 + h ν -log d λ 2 -O 1 ( ), d T,W (x) ≥ 2 λ 2 λ 1 + h ν -log d λ 2 -O 2 ( ).
This result applies to the measure µ and allows to improve a classical lower bound concerning the dimension of the Green current T . This current has local γ-Hölder psh potentials for every γ < γ 0 := min{1, log d/ log d ∞ }, where d ∞ := lim n ||Df n || 1/n ∞ , see [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]Proposition 1.18]. This implies that T ∧ ω(B x (r)) ≤ c γ (x)r 2+γ for every x ∈ P 2 and every γ < γ 0 , see [START_REF] Sibony | Dynamique des applications rationnelles de P k . In Dynamique et géométrie complexes[END_REF]Théorème 1.7.3]. We deduce that for every x ∈ P 2 and for every local holomorphic coordinates (Z, W ) in a neighbourhood of x: min{d T,Z (x), d T,W (x)} = d T (x) ≥ 2 + γ 0 .

(1.2)

Now, since h µ = log d 2 and λ 1 ≤ log d ∞ , we get:

h µ -log d λ 2 = log d λ 2 > log d λ 1 ≥ log d log d ∞ ≥ γ 0 .
The lower bound in the direction Z provided by Theorem 1.1 is therefore better than (1.2) when is small enough. Now we show directional upper bounds for the current T with respect to every dilating measure ν whose support is contained in the support of µ. Theorem 1.2. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be an ergodic dilating measure whose exponents λ 1 > λ 2 do not resonate. We assume that the support of ν is contained in the support of µ. Then there exist functions O 3 ( ), O 4 ( ) satisfying the following properties. For every > 0 and for ν-almost every x, there exist holomorphic coordinates (Z, W ) in a neighbourhood of x such that

d T,Z (x) ≤ log d λ 2 + 2 λ 1 λ 2 + O 3 ( ), d T,W (x) ≤ log d λ 2 + 2 + O 4 ( ).
By combining these two theorems, we manage to separate coordinates (Z, W ) in terms of local dimensions.

Corollary 1.3. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be an ergodic dilating measure whose exponents λ 1 > λ 2 do not resonate. For every > 0 and for ν-almost every x, there exist holomorphic coordinates (Z, W ) in a neighbourhood of x such that

d T,W (x) ≤ log d λ 2 + 2 + O 4 ( ) , log d λ 2 + 2 -O 1 ( ) ≤ d T,Z (x).
In the three preceding results, the coordinates (Z, W ) come from a normal form Theorem for the inverse branches of f n , see Section 2. They depend on x in the natural extension ( f , ν), we shall denote them by (Z x, W x). The coordinates (Z, W ) at a point x are coordinates of type (Z x, W x) where π 0 (x) = x. The coordinate W x is always invariant by the shift f , Z x is invariant when the exponents do not resonate. Since the current T is f -invariant, the functions d T,Z (x) and d T,W (x) are f -invariant, hence ν-almost everywhere constant, see Proposition 2.4. We shall denote them by d T,Z (ν) and d T,W (ν). We have the same properties for the upper dimensions.

Dimension of ergodic currents S

Theorem 1.4. Let f be an endomorphism of P 2 of degree d ≥ 2. Let S be a (1, 1)-closed positive current on P 2 . We assume that the support of S contains an ergodic measure ν of entropy h ν > log d whose exponents satisfy λ 1 > λ 2 and do not resonate. Then there exists a function O 5 ( ) satisfying the following properties. For every > 0, there exist x ∈ Supp ν and a holomorphic coordinate Z in the neighbourhood of x such that:

d S,Z (x) ≥ 2 + h ν -log d λ 2 -O 5 ( ).
In particular, S has a local directional dimension > 2 at some x ∈ Supp ν.

This result is localized at a point x because S is not assumed to be f -invariant. For every closed positive current S containing an ergodic dilating measure ν with exponents λ 1 ≥ λ 2 , de Thélin-Vigny proved in [START_REF] De Thélin | On the measures of large entropy on a positive closed current[END_REF] that there exists x ∈ supp(ν) such that

d S (x) ≥ 2 λ 2 λ 1 + h ν -log d λ 2 . (1.3)
Theorem 1.4 improves this estimate by replacing λ 2 /λ 1 by 1 for a coordinate Z. When

λ 1 = λ 2 , (1.1)
shows that this substitution is valid for every coordinate Z. Our lower bound answers a question of [START_REF] De Thélin | On the measures of large entropy on a positive closed current[END_REF] in a directional way. In the framework of invertible and meromorphic mappings, the preprint [START_REF] De Thélin | Minoration de la dimension de hausdorff du courant de Green[END_REF] gives a lower bound > 2 for the dimensions of the Green currents T ± by using coding techniques and laminar properties of T ± .

Dimension of dilating measures

Let f be an endomorphism of P 2 of degree d ≥ 2 and let ν be an ergodic measure. We refer to [START_REF] Pesin | Dimension theory in dynamical systems[END_REF] and [START_REF] Young | Dimension, entropy and Lyapunov exponents[END_REF] for the beginning of this Section. The dimension of ν is defined by

dim H (ν) := inf dim H (A) , A Borel set of P 2 , ν(A) = 1 .
The lower and upper local dimensions of ν are

d ν := lim inf r→0 log(ν(B x (r))) log r , d ν := lim sup r→0 log(ν(B x (r))) log r ,
these limits are ν-almost everywhere constant, by ergodicity of ν.

If a ≤ d ν ≤ d ν ≤ b, then a ≤ dim H (ν) ≤ b. If ν is dilating, we have the classical inequalities hν λ 1 ≤ d ν ≤ d ν ≤ hν λ 2
where λ 1 ≥ λ 2 are the exponents of ν. For the equilibrium measure µ, Binder-DeMarco [START_REF] Binder | Dimension of pluriharmonic measure and polynomial endomorphisms of C n[END_REF] conjectured the formula:

dim H (µ) = log d λ 1 + log d λ 2 (1.4)
which generalizes the one-dimensional Mañé's formula [START_REF] Mañé | The Hausdorff dimension of invariant probabilities of rational maps[END_REF]. The article [START_REF] Binder | Dimension of pluriharmonic measure and polynomial endomorphisms of C n[END_REF] proves the following upper bound for polynomial mappings

dim H (µ) ≤ 4 - 2(λ 1 + λ 2 ) -log d 2 λ 1 , ( 1.5) 
the article [START_REF] Dinh | Dimension de la mesure d'équilibre d'applications méromorphes[END_REF] extends this upper bound in a meromorphic context. For every dilating measure ν, we have at our disposal the following lower bound proved in [START_REF] Dupont | On the dimension of invariant measures of endomorphisms of CP(k)[END_REF]:

dim H (ν) ≥ d ν ≥ log d λ 1 + h ν -log d λ 2 . (1.6)
We obtain a new upper bound which comes closer to Binder-DeMarco's conjecture (1.4).

Theorem 1.5. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be an ergodic dilating measure, of exponents λ 1 > λ 2 and whose support is contained in the support of µ. Then

d ν ≤ log d λ 1 + log d λ 2 + 2 1 - λ 2 λ 1 .
Moreover, if the exponents do not resonate, then:

d ν ≤ log d λ 1 + log d λ 2 + 2 min 1 - λ 2 λ 1 ; λ 1 λ 2 -1 .
The proof extends the arguments of Theorem 1.2.

Dimension of semi-extremal endomorphisms

We say that f is extremal if the exponents λ 1 ≥ λ 2 of its equilibrium measure µ satisfy

λ 1 = λ 2 = 1 2 log d.
The articles [START_REF] Berteloot | Une caractérisation des endomorphismes de Lattès par leur mesure de Green[END_REF][START_REF] Berteloot | Une caractérisation géométrique des exemples de Lattès de P k[END_REF][START_REF] Dinh | Dimension de la mesure d'équilibre d'applications méromorphes[END_REF] characterize these endomorphisms by the equivalent properties: 4. f is a Lattès map: there exist a complex torus C 2 /Λ, an affine dilation D on this torus and a finite galoisian covering σ : C 2 /Λ → P 2 such that the following diagram commutes

1. dim H (µ) = 4.

µ << Leb

C 2 /Λ σ D / / C 2 /Λ σ P 2 f / / P 2
There exist such applications for every degree d ≥ 2, see for instance [START_REF] Dupont | Exemples de Lattès et domaines faiblement sphériques de C n[END_REF]. We say that f is semi-extremal if the exponents λ 1 ≥ λ 2 of its equilibrium measure µ satisfy λ 1 > λ 2 = 1 2 log d. Using (1.5) and (1.6) one sees that the Binder-DeMarco's conjecture (1.4) holds for these mappings:

dim H (µ) = 2 + log d λ 1 . (1.7)
Classical examples of semi-extremal endomorphisms are suspensions of one-dimensional Lattès maps, they satisfy µ << T ∧ ω. More generally, Theorem 1.6 (Dujardin [17]). If µ << T ∧ ω, then f is semi-extremal.

In [START_REF] Dujardin | Fatou directions along the Julia set for endomorphisms of CP k[END_REF] Dujardin asked if µ << T ∧ω implies the existence of a one-dimensional Lattès factor for f . Theorem 1.7 below provides one step in that direction. It shows that, from a theoritical dimensional point of view, these endomorphisms look like suspensions of one-dimensional Lattès maps: the dimension of T is maximal equal to 4 in a coordinate Z, and equal to 2 + log d/λ 1 (the dimension of µ, see (1.7)) in a coordinate W . The functions O 1 ( ), O 2 ( ) come from Theorem 1.1.

Theorem 1.7. Let f be an endomorphism of P 2 of degree d ≥ 2. We assume that µ << T ∧ ω and that d µ = d µ . We also assume that the exponents λ 1 > λ 2 = 1 2 log d of µ do not resonate. For every > 0 and for µ-almost every x ∈ P 2 , there exist holomorphic coordinates (Z, W ) in a neighbourhoord of x such that Acknowledgements: This article is part of the PhD thesis of the second author. We warmly thank Eric Bedford and Johan Taflin for their numerous comments which allow to improve the first version of this work. We got the supports of Lambda (ANR-13-BS01-0002) and Centre Henri Lebesgue (ANR-11-LABX-0020-01).

4 -O 1 ( ) ≤ d T,Z (x) and 2 + log d λ 1 -O 2 ( ) ≤ d T,W (x) ≤ 2 + log d λ 1 .

Organization of the article

Normal forms and Oseledec-Poincaré coordinates 2.1 Natural extension and normal forms

Let C f be the critical set of f , this is an algebraic subset of P 2 . If ν is an ergodic dilating measure, then

x → log |Jac f (x)| ∈ L 1 (ν), which implies ν(C f ) = 0. Let X be the f -invariant Borel set P 2 \ ∪ n∈Z f n (C f ) and let X := x = (x n ) n∈Z ∈ X Z , x n+1 = f (x n ) .
Let f be the left shift on X and π 0 (x) := x 0 . There exists a unique f -invariant measure ν on X such that (π 0 ) * ν = ν. We set xn := f n (x) for n ∈ Z. A function α : X → ]0, +∞] is -tempered if α( f ±1 (x)) ≥ e -α(x). For every x ∈ X we denote by f -n x the inverse branch of f n defined in a neighbourhood of x 0 with values in a neighbourhood of x -n . The articles [START_REF] Berteloot | Normalization of bundle holomorphic contractions and applications to dynamics[END_REF] and [START_REF] Jonsson | Stable manifolds of holomorphic diffeomorphisms[END_REF] provide normal forms for these mappings. Let ν be an ergodic dilating measure with exponents λ 1 > λ 2 . Let > 0.

There exists an f -invariant Borel set F ⊂ X such that ν( F ) = 1 and satisfying the following properties. There exist -tempered functions η , ρ : F → ]0, 1] and β , L , M : F → [1, +∞[ and for every x ∈ F , there exists an injective holomorphic mapping

ξ x : B x 0 (η (x)) → D 2 (ρ (x))
such that the following diagram commutes for every n ≥ n (x):

B x -n (η (x -n )) ξ x-n B x 0 (η (x)) f -n x o o ξ x D 2 (ρ (x -n )) D 2 (ρ (x)) R n,x o o
and such that

1. ∀(p, q) ∈ B x 0 (η (x)), 1 2 d(p, q) ≤ |ξ x(p) -ξ x(q)| ≤ β (x)d(p, q). 2. Lip(f -n x ) ≤ L (x)e -nλ 2 +n on B x 0 (η (x)). 3. if λ 1 ∈ {kλ 2 , k ≥ 2}, R n,x (z, w) = (α n,x z, β n,x w), if λ 1 = kλ 2 where k ≥ 2, R n,x (z, w) = (α n,x z, β n,x w) + (γ n,x w k , 0), with (a) e -nλ 1 -n ≤ |α n,x | ≤ e -nλ 1 +n and |γ n,x | ≤ M (x)e -nλ 1 +n , (b) e -nλ 2 -n ≤ |β n,x | ≤ e -nλ 2 +n .
Remark 2.2. The diagram commutes for every n ∈ {1, . . . , n (x)} for the germs of the mappings, see [START_REF] Berteloot | Normalization of bundle holomorphic contractions and applications to dynamics[END_REF]. The integer n (x) is the smallest integer such that L (x)e -nλ 2 +n ≤ e -n , so that

L (x)e -nλ 2 +n η (x) ≤ e -n η (x) ≤ η (x -n ). Item 2 thus ensures that f -n x (B x 0 (η (x)) ⊂ B x -n (η (x -n )).
We shall need the following Lemma. Let n 1 (L) be the smallest integer n satisfying L/4 ≤ e n . The first item uses the upper bound for Lip(f -n

x ) provided by Theorem 2.1. The second item comes from [START_REF] Dinh | Dimension de la mesure d'équilibre d'applications méromorphes[END_REF]Proposition 3.1].

Lemma 2.3. Let x ∈ F such that η (x) ≥ η and L (x) ≤ L. If n ≥ n 1 (L) and r ≤ η, 1. f -n xn (B xn (r/4)) ⊂ B x 0 (re -nλ 2 +3n ) and f -n x (B x 0 (r/4)) ⊂ B x -n (re -nλ 2 +3n ). 2. B x 0 (re -nλ 1 -4n ) ⊂ f -n xn (B xn ( r 4 e -2n
)).

Oseledec-Poincaré coordinates

Let ν be an ergodic dilating measure of exponents λ 1 > λ 2 . We assume that the exponents do not resonate, which means that λ 1 ∈ {kλ 2 , k ≥ 2}. Let > 0, and let us apply Theorem 2.1. For every x ∈ F we denote by (Z x, W x) the coordinates of ξ x.

The commutative diagram given by Theorem 2.1 implies:

Z x-n • f -n x = α n,x × Z x, W x-n • f -n x = β n,x × W x. (2.1)
Hence, f -n

x multiplies the first coordinate by e -nλ 1 ±n and multiplies the second coordinate by e -nλ 2 ±n . Let us note that the second property holds in the resonant case

λ 1 ∈ {kλ 2 , k ≥ 2}. We shall name the collection of local holomorphic coordinates (Z, W ) := (Z x, W x) x∈ F
Oseledec-Poincaré coordinates for (f, ν). Using (2.1) and the fact that the Green current is f -invariant, we obtain the following Proposition. Proposition 2.4. Let f be an endomorphism of P 2 of degree d ≥ 2 and let T be its Green current. Let ν be an ergodic dilating measure of exponents

λ 1 > λ 2 . Let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). Then there exists a f -invariant Borel set ΛT ⊂ F of ν-mesure 1 such that 1. x → d T,W (x) and x → d T,W (x) are f -invariant on ΛT . 2. x → d T,Z (x) and x → d T,Z (x) are f -invariant on ΛT if λ 1 ∈ {kλ 2 , k ≥ 2}.
In particular, if the exponents do not resonate, these functions are constant ν-almost everywhere. We shall denote them by

d T,Z (ν), d T,Z (ν), d T,W (ν), d T,W (ν).
Proof. We prove the invariance of d T,W (x), the same arguments hold for the other functions. For every z ∈ P 2 \ C f we denote

a(z) := 1 2 ||(D z f ) -1 || -1 , γ(z) := min{a(z) f -1 C 2 ,P 2 , 1}. Then [6, Lemme 2] asserts that f is injective on B z (γ(z)) and ∀r ∈ [0, γ(z)] , B f (z) (a(z)r) ⊂ f (B z (r)).
Let x ∈ F . Since x n ∈ C f for every n ∈ Z, we obtain for every r ≤ γ(x 0 ):

T ∧ i 2 dW f (x) ∧ dW f (x) B f (x 0 ) (a(x 0 )r) ≤ T ∧ i 2 dW f (x) ∧ dW f (x) [f (B x 0 (r))] . (2.2)
Since f is injective on B x 0 (r), we can change the variables to get:

T ∧ i 2 dW f (x) ∧ dW f (x) [f (B x 0 (r))] = Bx 0 (r) f * T ∧ f * i 2 dW f (x) ∧ dW f (x) . (2.3)
Now let us recall that

f * T = dT and f * i 2 dW f (x) ∧ dW f (x) = |c(x)| 2 i 2 dW x ∧ dW x, (2.4) 
where the second equality comes from (2.1) by setting c(x) -1 := β 1, f (x) , it is valid near x 0 according to Remark 2.2. By combining (2.2), (2.3) and (2.4) we deduce:

T ∧ i 2 dW f (x) ∧ dW f (x) B f (x 0 ) (a(x 0 )r) ≤ d|c(x)| 2 T ∧ i 2 dW x ∧ dW x [B x 0 (r)]
for every r small enough. Taking the logarithm and dividing by log(a(x 0 )r) < 0, we get d T,W ( f (x)) ≥ d T,W (x) by taking limits. Since ν is ergodic, the function d T,W (x) is constant on a Borel set ΛT of ν-measure 1 (see [START_REF] Walters | An introduction to ergodic theory[END_REF]Chapter 1.5]). One can replace it by n∈Z f n ( ΛT ) to obtain an invariant set.

Proposition 2.5. Let f be an endomorphism of P 2 and let T be its Green current. Let ν be an ergodic measure. Then the functions x → d T (x) and x → d T (x) are invariant, hence ν-almost everywhere constant. We denote them by d T (ν) and d T (ν).

Proof. The arguments follow the proof of Proposition 2.4. In this case we study the measure T ∧ ω, and we replace the second equality in (2.4) by f * ω ≤ ρ(x 0 )ω on B x 0 (γ(x 0 )), where ρ(x 0 ) > 0 is a large enough positive constant.

Geometry of the inverse branches and uniformizations

Let ν be an ergodic dilating measure of exponents λ 1 > λ 2 . Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). Our aim is to construct, for every δ > 0, a Borel set Λ ⊂ X satisfying ν( Λ ) ≥ 1 -δ/2 which provides convenient uniformizations.

Dynamical balls

The dynamical distance is defined by

d n (x, y) := max 0≤k≤n d(f k (x), f k (y)
). We denote by B n (x, r) the ball centered at x and of radius r for the distance d n .

Lemma 3.1. There exist r 0 > 0, n 2 ≥ 1 and C ⊂ P 2 such that ν(C) ≥ 1 -δ/8 and satisfying the following properties: for every x ∈ C and every n ≥ n 2 :

ν(B n (x, r 0 /8)) ≥ e -nhν -n . ∀r ≤ r 0 , ν(B n (x, 5r)) ≤ ν(B n (x, 5r 0 )) ≤ e -nhν + n .
Proof. Brin-Katok Theorem [START_REF] Brin | On local entropy[END_REF] ensures that there exists C 1 ⊂ P 2 of full ν-measure such that for every x ∈ C 1 :

lim r→0 lim inf n→+∞ -1 n log ν(B n (x, r)) = lim r→0 lim sup n→+∞ -1 n log ν(B n (x, r)) = h ν .
Hence, for every x ∈ C 1 there exists r 0 (x) such that r ≤ r 0 (x) implies

lim inf n→+∞ -1 n log(ν(B n (x, 5r))) ≥ h ν -/2 and lim sup n→+∞ -1 n log(ν(B n (x, r/8))) ≤ h ν + /2. Let r 0 such that C 2 := {x ∈ C 1 , r 0 (x) ≥ r 0 } satisfies ν(C 2 ) ≥ 1-δ/16. For every x ∈ C 2 , there exists n 2 (x) such that n ≥ n 2 (x) implies ν(B n (x, r 0 /8)) ≥ e -nhν -n . ∀r ≤ r 0 , ν(B n (x, 5r)) ≤ ν(B n (x, 5r 0 )) ≤ e -nhν + n . Let n 2 ≥ 1 such that C := C 2 ∩ {x ∈ C 1 , n 2 (x) ≤ n 2 } satisfies ν(C) ≥ 1 -δ/8.
For every L > 0, let m L be the smallest integer m such that Le -m(λ 2 + ) ≤ 1 and let n 3 (L) be the smallest integer larger than m L such that e -n ≤ M -m L , where

M := max{ Df ∞,P 2 , 1}. Lemma 3.2. Let x ∈ F such that η (x) ≥ η and L (x) ≤ L. For every n ≥ n 3 (L) and every r ≤ η, f -n xn (B xn (re -2n )) ⊂ B n (x 0 , r).
Proof. Let us observe that for every 0

≤ k ≤ n, f k is injective on f -n xn (B xn (re -2n )) and that f k f -n xn = f -n+k xn . By setting p = n -k, it suffices to show that ∀p ∈ 0, n f -p xn (B xn (re -2n )) ⊂ B x n-p (r). (3.1)
To simplify let us set m := m L et n 3 := n 3 (L). We immediately have

∀n ≥ n 3 , ∀p ∈ 0, n , f -p xn (B xn (re -2n )) ⊂ f -p xn (B xn ( r M m e -n )). (3.2)
To verify (3.1), we shall consider separately the cases p ≤ m and p > m. We know that for every p, Lip

f -p xn ≤ L(x n )e -pλ 2 +p ≤ Le n e -pλ 2 +p on B xn (η (x n )), which contains B xn (ηe -n ). Hence for every n ≥ n 3 ≥ m, p ∈ m, n and r ≤ η: f -p xn (B xn (re -n )) ⊂ B x n-p (re -n Le n e -pλ 2 +p ) = B x n-p (rLe -pλ 2 +p ) ⊂ B x n-p (r).
Since M m ≥ 1 this implies for every n ≥ n 3 ≥ m, p ∈ m, n and r ≤ η:

f -p xn (B xn ( r M m e -n )) ⊂ B x n-p ( r M m ). (3.3)
Thus, by using (3.2) and M m ≥ 1:

∀p ∈ m, n , f -p xn (B xn (re -2n )) ⊂ B x n-p (r). (3.4)
We have proved (3.1) for p ∈ m, n . Let us show this inclusion for p ∈ 0, m . For every p ∈ 0, m , let us set p = m -p where p ∈ 0, m . Then

f -p xn (B xn ( r M m e -n )) = f p (f -m xn (B xn ( r M m e -n )) ⊂ f p (B x n-m ( r M m )),
where the inclusion comes from (3.3) with p = m. We deduce:

∀p ∈ 0, m , f -p xn (B xn (re -2n )) ⊂ B x n-m+p ( r M m M p ) ⊂ B x n-p (r). (3.5)
We finally obtain (3.1) by combining (3.4) and (3.5).

Pullback of the Fubini-Study form ω

Let ν be an ergodic dilating measure of exponents λ 1 > λ 2 . Let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). Let n 4 (β) be the smallest integer n such that e -n ≤ β -1 .

Proposition 3.3. Let x ∈ F such that η (x) ≥ η and β (x) ≤ β. If n ≥ max{n 4 (β), n (x n )} and if r ≤ η, then we have on f -n xn (B xn (re -n )): 1. (f n ) * ω ≥ e -4n +2nλ 1 i 2 dZ x ∧ dZ x if the exponents do not resonate. 2. (f n ) * ω ≥ e -4n +2nλ 2 i 2 dW x ∧ dW x .
The remainder of this Section is devoted to the proof. Theorem 2.1 gives 

(f n ) * ω = (ξ x) * ((R n, xn ) -1 ) * ((ξ xn ) -1 ) * ω on f -n xn (B xn (re -n )). Let ω 0 := i 2 dz ∧ dz + i 2 dw ∧
e -2n ω 0 ≤ ((ξ xn ) -1 ) * ω ≤ 2ω 0 .
Proof. For every p = (z, w) and p = (z , w ) in ξ xn (B xn (re -n )), we have

e -n β -1 d(p, p ) ≤ (ξ xn ) -1 (p) -(ξ xn ) -1 (p ) ≤ 2d(p, p ).
This implies for every n ≥ n 4 (β) and (z,

w) ∈ ξ xn (B xn (re -n )): ∀u ∈ C 2 , e -2n |u| ≤ D (z,w) (ξ xn ) -1 (u) ≤ 2 |u| .
This provides the desired estimates.

Lemma 3.5. Let x ∈ F . If n ≥ n (x n ), then 1. ((R n,xn ) -1 ) * ω 0 ≥ e 2(nλ 1 -n ) i 2 dz ∧ dz if the exponents do not resonate. 2. ((R n,xn ) -1 ) * ω 0 ≥ e 2(nλ 2 -n ) i 2 dw ∧ dw. Proof.
We use the fact that the linear part of R n,xn is diagonal with coefficients e -n -nλ 1 ≤ |α n,xn | ≤ e n -nλ 1 and e -n -nλ 2 ≤ |β n,xn | ≤ e n -nλ 2 (see Theorem 2.1) and the fact that the (1, 1)-forms i 2 dz ∧ dz and i 2 dw ∧ dw are positive.

To end the proof of Proposition 3.3, we observe that for every x ∈ F :

(ξ x) * ( i 2 dz ∧ dz) = ( i 2 dZ x ∧ dZ x) (ξ x) * ( i 2 dw ∧ dw) = ( i 2 dW x ∧ dW x)
which follows from the definitions of Z x and W x.

Uniformizations

Let ν be an ergodic dilating measure of exponents λ 1 > λ 2 and let δ > 0. Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν).

Measure of dynamical balls

We apply Lemma 3.1. There exist r 0 > 0, n 2 ≥ 1 and C ⊂ P 2 such that ν(C) ≥ 1 -δ/8 and for every x ∈ C and n ≥ n 2 :

ν(B n (x, r 0 /8)) ≥ e -nhν -n , ∀r ≤ r 0 , ν(B n (x, 5r)) ≤ ν(B n (x, 5r 0 )) ≤ e -nhν + n .
We denote Λ (1) 

:= π -1 0 (C) ∩ F .

Control of the functions n , ρ , L , η , β of Theorem 2.1

Let n 0 , ρ 0 > 0, L 0 > 0, η 0 > 0 and β 0 > 0 such that

Λ (2) := x ∈ F , n (x) ≤ n 0 , ρ (x) ≥ ρ 0 , L (x) ≤ L 0 , η (x) ≥ η 0 , β (x) ≤ β 0 (3.6) satisfies ν(Λ (2) ) ≥ 1 -δ/8.

Uniformization of the dimension of the current.

Let S be a positive closed current on P 2 whose support contains the support of ν. Let r 1 > 0 such that 

Λ (3) := x ∈ F , ∀r ≤ r 1 , r d S,Z (x)+ ≤ (S ∧ ( i 2 dZ x ∧ dZ x))(B x 0 (r)) ≤ r d S,Z (x)- (S ∧ ( i 2 dW x ∧ dW x))(B x 0 (r)) ≤ r d S,W (x)-

Uniformization of the dimension of the measure

The lower dimension d ν is defined in Section 1.4. Let r 2 > 0 such that

D := {x ∈ P 2 , ∀r ≤ r 2 , ν(B x (r)) ≤ r dν -} satisfies ν(D) ≥ 1 -δ/8. We set Λ (4) := π -1 0 (D) ∩ F .
Definition of Λ , η 1 and N .

The integers n 1 (L), n 3 (L) and n 4 (β) were defined before Lemma 2.3, 3.2 and Proposition 3.3. Let n 5 be the smallest integer n such that e -n ≤ 1/2 and 2e -n(λ 1 + ) < 1.

Λ := Λ (1) ∩ Λ (2) ∩ Λ (3) ∩ Λ (4) , η 1 := min{η 0 , r 0 , r 1 , r 2 }, N := max{n 0 , n 1 (L 0 ), n 2 , n 3 (L 0 ), n 4 (β 0 ), n 5 }. We have ν( Λ ) ≥ 1 -δ/2.

Definition of ∆n .

We set

∀n ≥ N , ∆n := F ∩ f -n {n (x) ≤ n} = {x ∈ F , n (x n ) ≤ n}. Since ν is f -invariant and Λ (3) ⊂ {n (x) ≤ n}, we have ν( ∆n ) ≥ ν(Λ (3) ) ≥ 1 -δ/8. Hence ∀n ≥ N , ν( Λ ∩ ∆n ) ≥ 1 -δ.

Separated sets

A subset {x 1 , . . . , x N } ⊂ P 2 is r-separated if d(x i , x j ) ≥ r for every i = j. For A ⊂ P 2 , a subset {x 1 , . . . , x N } ⊂ A is maximal r-separated with respect to A if it is r-separated and if for every y ∈ A, there exists i ∈ {1, . . . N } such that d(y, x i ) < r. We use similar definitions for the distance d n , in which case we say that the subsets are (n, r) separated. 

Elementary separation

i = j, B n (x i , c η 1 /2) ∩ B n (x j , c η 1 /2) = ∅. 2. A ⊂ ∪ Nn i=1 B n (x i , c η 1 ). 3. ν(B n (x i , c η 1 )) ≤ e -nhν +n .
4. e -nhν -n ≤ ν(B n (x i , c η 1 )) si c ≥ 1/8. 

N n ≥ ν(A)e

Concentrated separation

Lemma 4.1 applied with c = 1/4 gives ν(B n (x i , η 1 /4)) ≥ e -nhν -n for every x i in a maximal (n, η 1 /4)-separated subset of A. We shall see that it is possible to select a large number of x i such that

ν(B n (x i , η 1 /4) ∩ A) ≥ e -nhν -2n .
We take the arguments of de Thélin-Vigny in [ 

i = j, B n (x i , η 1 /8) ∩ B n (x j , η 1 /8) = ∅.

for every

1 ≤ i ≤ N n,2 , ν(B n (x i , η 1 /4) ∩ A) ≥ e -nhν -2 n . 3. N n,2 ≥ ν(A)e nhν -2n .
4. e -nhν -n ≤ ν(B n (x i , cη 1 )) si c ≥ 1/8.

Proof. Let us apply Lemma 4.1 with c = 1/4 and n ≥ max{N , n δ }. There exists a maximal (n, η 1 /4)-separated subset {x 1 , . . . , x N n,1 } of A satisfying:

-for every i = j, B n ( [START_REF] Berteloot | Normalization of bundle holomorphic contractions and applications to dynamics[END_REF] be the cardinality of I, and assume that I = 1, N n,2 (we may adapt the sums below if N n,2 = 0). We want to bound N n,2 from below. We know that A ⊂ ∪

x i , η 1 /8) ∩ B n (x j , η 1 /8) = ∅, -A ⊂ ∪ N n,1 i=1 B n (x i , η 1 /4), -e -nhν -n ≤ ν(B n (x i , η 1 /8)), -N n,1 ≥ ν(A)e nhν -n . Let us set I := 1 ≤ i ≤ N n,1 , ν(B n (x i , η 1 /4) ∩ A) ≥ e -nhν -2 n . Let N n,
N n,1 i=1 B n (x i , η 1 /4), hence ν(A) ≤ N n,2 i=1 ν(B n (x i , η 1 /4) ∩ A) + N n,1 i=N n,2 +1 ν(B n (x i , η 1 /4) ∩ A). If i ∈ 1, N n,2 , we have ν(B n (x i , η 1 /4) ∩ A) < e -nhν -2 n by definition of I. Otherwise, ν(B n (x i , η 1 /4)) ≤ e -nhν + n since x i ∈ C. This implies ν(A) ≤ N n,2 e -nhν + n + (N n,1 -N n,2 )e -nhν -2 n . (4.1)
Let us give an upper bound for N n,1 . Since the balls B n (x i , η 1 /8) are pairwise disjoint and since ν(B n (x i , η 1 /8)) ≥ e -nhν -n , we get

e nhν + n ≥ N n,1 ≥ N n,1 -N n,2 .
Combining this and (4.1), we obtain

ν(A) ≤ N n,2 e -nhν + n + e -n .
Since n ≥ n δ , we have e -n ≤ δ/2 ≤ ν(A)/2, and hence

N n,2 ≥ ν(A)e nhν -n /2. Finally N n,2 ≥ ν(A)e nhν -2 n since n ≥ N ≥ n 5 .
Now we put in B n (x, η 1 /2) a lot of balls whose centers are in B n (x, η 1 /4) ∩ A.

Lemma 4.3. Let A ⊂ π 0 ( Λ ) such that ν(A) > 0. Let x ∈ A and let n ≥ N such that ν(B n (x, η 1 /4) ∩ A) ≥ e -nhν -2n .
Let {y 1 , . . . , y Mn } be a maximal 2η 1 e -nλ 1 -4n -separated subset in B n (x, η 1 /4) ∩ A.

1. for every i = j, B(y i , η 1 e -nλ 1 -4n ) ∩ B(y j , η 1 e -nλ 1 -4n ) = ∅.

2. B n (x, η 1 /4) ∩ A ⊂ ∪ Mn i=1 B(y i , 2η 1 e -nλ 1 -4n ).

B(y

i , η 1 e -nλ 1 -4n ) ⊂ B n (x, η 1 /2).

M n ≥ e -nhν -2n

1 2η 1 e nλ 1 +4n dν - .

Proof. Item 1 comes from separation, Item 2 from the maximal property. Lemmas 2.3 then 3.2 give B(y i , η 1 e -nλ 1 -4n ) ⊂ f -n ŷi,n (B y i,n (η 1 e -2n /4) ⊂ B n (y i , η 1 /4).

Since

y i ∈ B n (x, η 1 /4), we have B n (y i , η 1 /4) ⊂ B n (x, η 1 /2), which yields Item 3. Item 2 implies ν(B n (x, η 1 /4) ∩ A) ≤ Mn i=1 ν(B(y i , 2η 1 e -nλ 1 -4n )).
By assumption, the left hand side is larger than e -nhν -2n . For the right hand side, since n ≥ N ≥ n 5 , we have 2η 1 e -nλ 1 -n < η 1 ≤ r 2 and thus

ν(B(y i , 2η 1 e -nλ 1 -4n )) ≤ (2η 1 e -nλ 1 -4n ) dν - by using y i ∈ A ⊂ π 0 ( Λ ) ⊂ D.
This shows e -nhν -2n ≤ M n (2η 1 e -nλ 1 -4n ) dν -.

Lower bounds for the directional dimensions of T

Let ν be an ergodic dilating measure whose exponents λ 1 > λ 2 do not resonate. Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). We have d T,Z (ν) := d T,Z (x) and d T,W (ν) = d T,W (x) for ν-almost every x (see Proposition 2.4). In this Section we prove Theorems 5.1 and 5.2. These results specify in a directional way Theorems A and B of de Thélin-Vigny [START_REF] De Thélin | On the measures of large entropy on a positive closed current[END_REF] concerning the dimension of T . We use below arguments of [START_REF] De Thélin | On the measures of large entropy on a positive closed current[END_REF] by replacing the lower bound (obtained in [START_REF] De Thélin | On the measures of large entropy on a positive closed current[END_REF] by slicing arguments)

(f n ) * ω ≥ e 2nλ 2 e -n ω
by the two lower bounds (obtained by normal forms Theorem 2.1) 

(f n ) * ω ≥ e 2nλ

First lower bounds for the upper dimensions d T,Z et d T,W

Theorem 5.1. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be an ergodic dilating measure whose exponents λ 1 > λ 2 do not resonate. There exist functions O 5 ( ), O 6 ( ) satisfying the following properties. Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). Then

d T,Z (ν) ≥ 2 + h ν -log d λ 1 -O 5 ( ) d T,W (ν) ≥ 2 λ 2 λ 1 + h ν -log d λ 1 -O 6 ( ).
Proof. Let us denote d T,Z := d T,Z (ν). For first estimate, we are going to show

(λ 1 + 4 )(d T,Z -2 + ) + 13 ≥ h ν -log d (5.1) which provides d T,Z ≥ 2 + h ν -log d -13 λ 1 + 4 -=: 2 + h ν -log d λ 1 -O 5 ( ).
Let δ > 0. Let Λ and N be given by Section 3.3. For every n ≥ N we set

A n := π 0 ( Λ ∩ ∆n ), it satisfies ν(A n ) ≥ ν( Λ ∩ ∆n ) ≥ 1 -δ > 0. Lemma 4.1 applied with c = 1 yields a maximal (n, η 1 )-separated subset {x 1 , . . . , x Nn } of A n with N n ≥ ν(A n )e nhν -n ≥ (1 -δ)e nhν -n . (5.2)
For every i, let us choose xi ∈ Λ ∩ ∆n such that π 0 (x i ) = x i . From Proposition 9.3, we get

d n = P 2 ((f n ) * T ) ∧ ω. Therefore d n ≥ Nn i=1 P 2 (f n ) * (1 Bn(x i ,η 1 /2) T ) ∧ ω ≥ Nn i=1 P 2 (1 Bn(x i ,η 1 /2) T ) ∧ (f n ) * ω.
By using Lemmas 2.3 and 3.2 with xi ∈ Λ , we get

B x i ( η 1 2 e -nλ 1 -4n ) ⊂ f -n xi,n (B x i,n ( η 1 8 e -2n )) ⊂ B n (x i , η 1 8 
).

(5.3)

Since T ∧ (f n ) * ω is a positive measure, we deduce

d n ≥ Nn i=1 P 2 (1 Bx i ( η 1 2 e -nλ 1 -4n ) T ) ∧ (f n ) * ω.
Thanks to the first inclusion of (5.3) and xi ∈ ∆n (which implies n ≥ n (x i,n )), we can use Proposition 3.3 to bound (f n ) * ω from below. We obtain

d n ≥ Nn i=1 e 2nλ 1 -4n T ∧ i 2 dZ xi ∧ dZ xi (B x i ( η 1 2 e -nλ 1 -4n )).
Since xi ∈ Λ ⊂ Λ (3) and η 1 ≤ r 1 , we deduce

d n ≥ Nn i=1 e 2nλ 1 -4n η 1 2 e -nλ 1 -4n d T,Z +
.

Finally, we use the estimate (5.2):

d n ≥ ν(A n ) η 1 2 d T,Z + e n(hν -(λ 1 +4 )(d T,Z -2+ )-13 ) ,
where ν(A n ) ≥ (1 -δ). By taking logarithm and dividing by n, we get (5.1) when n → ∞. The second estimate concerning the coordinate W is proved in a similar way, by using Proposition 3.3 to bound (f n ) * ω from below. We precisely get

(λ 1 + 4 )(d T,W + ) + 5 ≥ h ν -log d + 2λ 2 (5.4) which yields d T,W ≥ 2λ 2 λ 1 + 4 + h ν -log d -5 λ 1 + 4 -=: 2 λ 2 λ 1 + h ν -log d λ 1 -O 6 ( ).
This completes the proof of Theorem 5.1.

Proof of Theorem 1.1

Theorem 1.1 is a consequence of Theorem 5.2 below and of the lower bound (1.6).

Theorem 5.2. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be an ergodic dilating measure whose exponents λ 1 > λ 2 do not resonate. There exist functions O 1 ( ), O 2 ( ) satisfying the following properties. Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). Then

d T,Z (ν) ≥ 2 + d ν - log d λ 1 -O 1 ( ), d T,W (ν) ≥ 2 λ 2 λ 1 + d ν - log d λ 1 -O 2 ( ).
Proof. Let us set d T,Z := d T,Z (ν). We are going to show

(λ 1 + 4 )(d T,Z -d ν + 2 ) + 8 ≥ 2λ 1 -log d. (5.5)
This yields as desired

d T,Z -d ν ≥ 2λ 1 λ 1 + 4 - log d -8 λ 1 + 4 -2 =: 2 - log d λ 1 -O 1 ( ).
(5.6)

Let δ > 0. Let Λ and N be given by Section 3.3. For every n ≥ N we set

A n := π 0 ( Λ ∩ ∆n ), it satisfies ν(A n ) ≥ 1 -δ. Let {x 1 , . . . , x N n,2 } be a (n, η 1 /4)-separated subset of A n provided by Lemma 4.2.
Then for every x i , we set a 2η 1 e -nλ 1 -4n -separated subset {y i 1 , . . . , y i Mn } given by Lemma 4.3. For every i we choose xi ∈ Λ ∩ ∆n such that π 0 (x i ) = x i , and for every j we choose ŷi j ∈ Λ ∩ ∆n such that π 0 (ŷ i j ) = y i j . According to Proposition 9.3, we have

d n = P 2 (f n ) * T ∧ ω, thus d n ≥ N n,2 i=1 Mn j=1 P 2 (f n ) * (1 B(y i j ,η 1 e -nλ 1 -4n ) T ) ∧ ω = N n,2 i=1 Mn j=1 B(y i j ,η 1 e -nλ 1 -4n ) T ∧ (f n ) * ω. Lemma 2.3 with ŷi j ∈ Λ implies B(y i j , η 1 e -nλ 1 -4n ) ⊂ f -n ŷi j,n (B(y i j,n , η 1 4 e -2n
)).

(5.7)

Since ŷi j ∈ ∆n , we can apply Proposition 3.3 to bound (f n ) * ω from below: 3) and n ≥ N , hence

d n ≥ N n,2 i=1 Mn j=1 e 2nλ 1 -4n T ∧ i 2 dZ ŷi j ∧ dZ ŷi j B y i j (η 1 e -nλ 1 -4n ) . (5.8) Now ŷi j ∈ Λ ⊂ Λ (
d n ≥ N n,2 i=1 Mn j=1 e 2nλ 1 -4n (η 1 e -nλ 1 -4n ) d T,Z + .
Finally, we use the lower bounds for M n (Lemma 4.3) and for N n,2 (Lemma 4.2). We obtain for every n ≥ max{N , n 1-δ }:

d n ≥ (1 -δ)e nhν -2n • e -nhν -2n 1 2η 1 e nλ 1 +4n dν - • e 2nλ 1 -4n (η 1 e -nλ 1 -4n ) d T,Z + .
Let us note that the entropy h ν disappear for the benefit of d ν , and we get

d n ≥ c e -8n e nλ 1 +4n dν -d T,Z -2 e 2nλ 1 , (5.9) 
where c := (1-δ)η

d T,Z + 1
/(2η 1 ) dν -. Taking logarithm and then dividing by n, we obtain (5.5) when n → +∞. Similarly, we can prove

(λ 1 + 4 )(d T,W -d ν + 2 ) + 8 ≥ 2λ 2 -log d by using again Proposition 3.3 to bound (f n ) * ω from below.
6 Currents S and semi-extremal endomorphisms

of Theorem 1.4

Let S be a (1, 1) closed positive current of P 2 . If S does not satisfy f * S = dS, the directional dimensions may be not ν-almost everywhere constant (see Proposition 2.4). In this case, in the manner of de Thélin-Vigny [START_REF] De Thélin | On the measures of large entropy on a positive closed current[END_REF], we take on an adapted definition and obtain the following result. The functions O 5 ( ), O 6 ( ) were defined in Theorem 5.1. Theorem 6.1. Let f be an endomorphism of P 2 of degree d ≥ 2. Let S be a (1, 1) closed positive current of P 2 , of mass 1. Let ν be an ergodic dilating measure whose exponents λ 1 > λ 2 do not resonate. We assume that Supp(ν) ⊂ Supp S. Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). For every Λ ⊂ F such that ν( Λ) > 0, we set

d S,Z ( Λ) := sup x∈ Λ d S,Z (x), d S,W ( Λ) := sup x∈ Λ d S,W (x). Then d S,Z ( Λ) ≥ 2 + h ν -log d λ 1 -O 5 ( ), d S,W ( Λ) ≥ 2 λ 2 λ 1 + h ν -log d λ 1 -O 6 ( ).
Proof. Let 2δ := ν( Λ). We construct Λ et N for the current S as in Section 3.3. We have ν( Λ ∩ ∆n ) ≥ 1 -δ for every n ≥ N , thus ν( Λ ∩ Λ ∩ ∆n ) ≥ δ > 0. We follow the arguments of Theorem 5.1. Lemma 4.1 applied to A n := π 0 ( Λ ∩ Λ ∩ ∆n ) and c = 1 provides a maximal (n, η 1 )-separated subset {x 1 , . . . , x Nn } of A n . For every i, let us choose xi ∈ Λ ∩ Λ ∩ ∆n such that π 0 ( xi ) = x i . According to Proposition 9.3 we have

d n = P 2 (f n ) * S ∧ ω, hence d n = P 2 ((f n ) * S) ∧ ω ≥ Nn i=1 P 2 (1 Bn(x i ,η 1 /2) S) ∧ (f n ) * ω.
Then we use the inclusions and the lower bound for (f n ) * ω to obtain:

d n ≥ Nn i=1 e 2nλ 1 -4n S ∧ i 2 dZ xi ∧ dZ xi (B x i ( η 1 2 e -nλ 1 -4n )).
Since xi ∈ Λ and n ≥ N , we get

d n ≥ Nn i=1 e 2nλ 1 -4n η 1 2 e -nλ -4n d S,Z (x i )+
. Now we use the adapted definition of d S,Z ( Λ) and the lower estimate (5.2) to obtain

d n ≥ ν(A n ) η 1 2 d S,Z ( Λ)+ e nhν -13n -n(λ 1 +4 )(d S,Z ( Λ)-2+ ) , (6.1) 
where ν(A n ) ≥ δ. The lower bound concerning W is proved in a similar way. Remark 6.2. Theorem 6.1 is the counterpart of Theorem 5.1 for currents S. Similarly, the counterpart of Theorem 5.2 can be proved with n ≥ max{N , n δ } in the proof.

Proof of Theorem 1.7

Since T is f -invariant and ν is ergodic, we have d T (x) = d T (µ) for µ-almost every x, see Proposition 2.5. According to Proposition 9.1, µ << σ T implies

d T (µ) ≤ d µ . ( 6.2) 
Let us analyse these quantities. On the one hand, Proposition 9.2 yields d T (µ) = min d T,Z (x), d T,W (x) for µ-almost every x ∈ P 2 and for every holomorphic coordinates (Z, W ) near x. On the other hand, since

d µ = d µ , then d µ = d µ = dim H (µ), which is equal to 2 + log d λ 1 by (1.7). One deduces from (6.2) that if µ << σ T , then min d T,Z (x), d T,W (x) ≤ 2 + log d λ 1 . (6.3) Now we use Theorem 5.2. Let > 0 such that 4 -O 1 ( ) > 2 + log d λ 1
, where the function O 1 ( ) is defined by (5.6). Let (Z, W ) Oseledec-Poincaré coordinates for (f, µ).

First we bound d T,Z (µ) from below, then we establish the formula for d T,W (µ) modulo the function O 2 ( ). If µ << σ T , then λ 2 = 1 2 log d by Theorem 1.6. We deduce from (1.6) that 2 + log d λ 1 ≤ d µ . Theorem 5.2 then provides

d T,Z (µ) ≥ 4 -O 1 ( ) , d T,W (µ) ≥ 2 + log d λ 1 -O 2 ( ).
Finally, using 4-O 1 ( ) > 2+ log d λ 1 and (6.3) with coordinates (Z, W ) , we get d T,W (µ) ≤ 2 + log d λ 1 as desired.

Upper bounds for the directional dimensions of T

In this Section we show Theorem 1.2. Let ν be an ergodic dilating measure such that Supp(ν) ⊂ Supp(µ) and whose exponents λ 1 > λ 2 do not resonate. Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). We want to prove

d T,Z (ν) ≤ log d λ 2 + 2 λ 1 λ 2 + O 3 ( ) and d T,W (ν) ≤ log d λ 2 + 2 + O 4 ( ).
We shall directly obtain these upper bounds for ν-almost every x, by using the jacobians of T ∧ dZ x ∧ dZ x and T ∧ dW x ∧ dW x with respect to f . In particular, we shall not use separated subsets. The Monge-Ampère equation µ = T ∧ T will be crucial.

Dimensions of the Green current on the equilibrium measure

The following Proposition is proved in Section 7.3.

Proposition 7.1. Let f be an endomorphism of P 2 of degree d ≥ 2 and let T be its Green current. Let x ∈ Supp µ and let Z be a local holomorphic coordinate (submersion) in a neighbourhood V of x. Then T ∧ ( i 2 dZ ∧ dZ) is not the zero measure on V . This implies: Proposition 7.2. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be an ergodic dilating measure of exponents λ 1 > λ 2 and whose support is contained in the support of µ. Let > 0 and let (Z, W ) be Oseledec-Poincaré coordinates for (f, ν). We recall that for every x ∈ F , (Z x, W x) is defined on B x 0 (η (x)). Then, for every 0 < r < η (x),

T ∧ i 2 dZ x ∧ dZ x (B x (r)) > 0 and T ∧ i 2 dW x ∧ dW x (B x (r)) > 0.
In particular, for every δ > 0, there exist m 0 ≥ 1, L 0 ≥ 1 and q 0 ≥ 1 such that

Ω :=    η (x) ≥ 1 4m 0 , L(x) ≤ L 0 , T ∧ i 2 dZ x ∧ dZ x (B x ( 1 4m 0 )) ≥ 1 q 0 T ∧ i 2 dW x ∧ dW x (B x ( 1 4m 0 )) ≥ 1 q 0    satisfies ν( Ω ) ≥ 1 -δ.
Proof. The first part immediately follows from Proposition 7.1. To prove the second part, let m 0 ≥ 1 and L 0 ≥ 1 be such that ν η ≥ 1 4m 0 ∩ {L ≤ L 0 } ≥ 1 -δ/2. Then we choose q 0 large enough so that ν( Ω ) ≥ 1 -δ.

We define for every n ≥ 1:

Ωn := Ω ∩ f -n ( Ω ).
Since ν is invariant, we have:

ν( Ωn ) ≥ 1 -2δ. (7.1)
The following Proposition will be useful to prove Theorems 1.2 1.5. L 0 is defined in Proposition 7.2 and n 1 (L 0 ) ≥ 1 is defined before Lemma 2.3. Proposition 7.3. Let f be an endomorphism of P 2 of degree d ≥ 2. Let ν be a ergodic dilating measure of exponents λ 1 > λ 2 and such that Supp(ν) ⊂ Supp(µ). For every n ≥ n 1 (L 0 ) and x ∈ Ωn , we have:

T ∧ i 2 dZ x ∧ dZ x B x 1 m 0 -nλ 2 +3n ≥ 1 d n e -2nλ 1 -2n 1 q 0 if λ 1 ∈ {kλ 2 , k ≥ 2} , T ∧ i 2 dW x ∧ dW x B x 1 m 0 e -nλ 2 +3n ≥ 1 d n e -2nλ 2 -2n 1 q 0 for every λ 1 > λ 2 .
Proof. Let x ∈ Ωn and let

E n := f -n xn (B xn ( 1 4m 0 
)).

The inverse branch f -n xn is well defined on B xn ( 1 4m 0 ) since xn ∈ Ω . Let g n be the restriction of f n on E n . By using f -n xn • g n = Id En and T = 1 d n g * n T on E n , we obtain

T ∧ i 2 dZ x ∧ dZ x = 1 d n g * n T ∧ g * n (f -n xn ) * ( i 2 dZ x ∧ dZ x) = 1 d n g * n T ∧ i 2 (dZ x • (f -n xn )) ∧ d(Z x • (f -n xn ))
on the open subset E n . Now we use (2.1) to write

Z x • (f -n xn ) = α n,xn Z xn . Since |α n,xn | 2 ≥ e -2nλ 1 -2n , we get on E n : T ∧ i 2 dZ x ∧ dZ x ≥ 1 d n e -2nλ 1 -2n g * n T ∧ i 2 dZ xn ∧ dZ xn . (7.2)
We are going to bound from above the left hand side and to bound from below the right hand side (applied to E n ). Using Lemma 2.3 with r = 1/m 0 and n ≥ L 0 we obtain

E n ⊂ B x 1 m 0 e -nλ 2 +3n , hence T ∧ i 2 dZ x ∧ dZ x B x 1 m 0 e -nλ 2 +3n ≥ T ∧ i 2 dZ x ∧ dZ x(E n ) (7.3)
For the right hand side, since g n is injective on E n and g n (E n ) = B xn 1 4m 0 , we get

g * n T ∧ i 2 (dZ xn ∧ dZ xn ) (E n ) = T ∧ i 2 (dZ xn ∧ (dZ xn ) (B xn ( 1 4m 0 )) ≥ 1 q 0 , ( 7.4) 
where the inequality comes from xn ∈ Ω . By combining (7.2), (7.3) and (7.4) we obtain

T ∧ i 2 dZ x ∧ dZ x B x m 0 e -nλ 2 +3n ≥ 1 d n e -2nλ 1 -2n 1 q 0 . We use W x •(f -n xn ) = β n,x W xn et |β n,x 2 ≥ e -2nλ 2 -2n
to prove the other lower bound.

Proof of Theorem 1.2

We take the notations of Section 7.1. Let

Ω := lim sup n∈N Ω ∩ f -n ( Ω ) = lim sup n∈N Ωn .
We have ν( Ω ) ≥ 1 -2δ according to (7.1). Let x ∈ Ω . Then there exists an increasing sequence of intergers (l p ) p such that

x ∈ Ω ∩ f -lp ( Ω ) = Ωlp
for every p ≥ 0. Proposition 7.3 then asserts for p large enough:

T ∧ i 2 dZ x ∧ dZ x B x 1 m 0 e -lpλ 2 +3lp ≥ 1 d lp e -2lpλ 1 -2lp 1 q 0 .
If p is also large enough so that e lp ≥ 1 m 0 and 1 q 0 ≥ e -lp , we obtain with r p := e -lp(λ 2 -4 ) :

T ∧ i 2 dZ x ∧ dZ x (B x (r p )) ≥ e -lp(log d+2λ 1 +3 ) = r (log d+2λ 1 +3 )/(λ 2 -4 ) p .
Since (r p ) p tends to 0 and ν( Ω ) > 0, we get

d T,Z (ν) ≤ log d + 2λ 1 + 3 λ 2 -4 =: log d λ 2 + 2 λ 1 λ 2 + O 3 ( ).
One can prove

d T,W (ν) ≤ log d + 2λ 2 + 3 λ 2 -4 =: log d λ 2 + 2 + O 4 ( )
in a similar way.

Monge-Ampère mass

We prove Proposition 7.1. Let x ∈ Supp µ, let V be a neighbourhood of x and let Z : V → C be a holomorphic coordinate (submersion) on V . We want to prove that the positive measure T ∧ i 2 dZ ∧ dZ is not the zero measure on V . With no loss of generality, we can assume that x = (0, 0), V = D(2) × D(2) and Z(z, w) = z. Let also T = 2i∂∂G on V , where G is a continuous psh function. We denote σ z (u) := (z, u).

Lemma 7.4. If (T ∧ i 2 dZ ∧ dZ)(D(2) × D(2)) = 0, then G • σ z is harmonic on D for every z ∈ D. Proof. Let z 0 ∈ D and let ϕ ∈ C ∞ 0 (D) be a test function. Let ψ ∈ C ∞ 0 (D 2 ) such that ψ • σ z 0 = ϕ on D. According to Proposition 9.4, we have T ∧ i 2 dZ ∧ dZ (ψ) = z∈D w∈D (G • σ z )(w) × ∆(ψ • σ z )(w) d Leb(w) d Leb(z),
which is equal to zero by our assumption. Since the measurable function

z → w∈D (G • σ z )(w) × ∆(ψ • σ z )(w) d Leb(w) is non negative, there exists A ⊂ D such that Leb(A) = Leb(D) and ∀z ∈ A, w∈D (G • σ z )(w) × ∆(ψ • σ z )(w) d Leb(w) = 0. (7.5) 
Let us extend this property to every z ∈ D. Since A is a dense subset of D, there exists a sequence (z n ) n of points in A which converges to z. Using (7.5), we get

∀n ≥ 1, w∈D (G • σ zn )(w) × ∆(ψ • σ zn )(w) d Leb(w) = 0. (7.6)
Since G is continuous on D 2 and ψ is smooth on D 2 , G and 2i∂∂ψ are uniformly continuous on D 2 . This implies that G • σ zn uniformly converges to G • σ z on D and that ∆(ψ • σ zn ) uniformly converges to ∆(ψ • σ z ) on D. Taking the limits in (7.6), we get

∀z ∈ D, w∈D (G • σ z )(w) × ∆(ψ • σ z )(w) d Leb(w) = 0.
In particular, we obtain using ψ

• σ z 0 = ϕ: w∈D (G • σ z 0 )(w) × ∆ϕ(w) d Leb(w) = 0.
This holds for every ϕ ∈ C ∞ 0 (D), hence the function G • σ z 0 is harmonic on D. Theorem 7.5 (Briend). Let G be a continuous psh function on [START_REF] Binder | Dimension of pluriharmonic measure and polynomial endomorphisms of C n[END_REF] ) such that there exists a holomorphic disc σ

D(2) × D(2). Let E be the set of points p ∈ D( 1 4 ) × D( 1 
p : D → D(2) × D(2) satisfying 1. the boundary of σ p is outside D( 1 2 ) × D( 1 2 ), 2. G • σ p is harmonic D. Then (2i∂∂G ∧ 2i∂∂G)(E) = 0.
In our situation, D( 1 4 ) × D( 1 4 ) = E since one can take for σ p the discs σ z : D → D × D, u → (z, u). Indeed, the boundary of σ z is contained in {z} × ∂D and G • σ z is harmonic on D according to Lemma 7.4. Theorem 7.5 then gives:

(2i∂∂G ∧ 2i∂∂G)(D( 1 4 ) × D( 1 
)) = 0, (

which contradicts x = 0 ∈ Supp µ = Supp(2i∂∂G ∧ 2i∂∂G).

Upper bound for the dimension of dilating measures

We prove Theorem 1.5. We shall take the proof of Theorem 5.2 and use Proposition 7.3. Let > 0 and let Λ and ∆n be the sets defined in Section 3.3. The set Ωn has been defined in Section 7.1, it satisfies ν( Ωn ) ≥ 1-2δ. Hence we have ν( Λ ∩ ∆n ∩ Ωn ) ≥ 1-3δ for every n ≥ N . Now let K n be the unique integer satisfying

η 1 e -nλ 1 -4n e -λ 2 +3 ≤ 1 m 0 e -Knλ 2 +3Kn ≤ η 1 e -nλ 1 -4n . (8.1) so that K n nλ 1 /λ 2 . Let {x 1 , • • • , x N n,2
} be a (n, η 1 /4)-separated subset of A n := π 0 ( Λ ∩ ∆n ∩ ΩKn ) provided by Lemma 4.2. We have for every n ≥ max{N , n 1-3δ }:

N n,2 ≥ ν(A n )e nhν -2n ≥ (1 -3δ)e nhν -2n . (8.2)
Then, for every x i , let {y i 1 , . . . , y i Mn } be a 2e -nλ 1 -4n -separated subset of B n (x i , η 1 /4) ∩ A n provided by Lemma 4.3. The cardinality of this set satisfies:

M n ≥ e -nhν -2n 1 2η 1 e nλ 1 +4n dν - . ( 8.3) 
For every j ∈ {1, . . . , M n }, we set ŷi j ∈ Λ ∩ ∆n ∩ ΩKn such that y i j = π 0 (ŷ i j ). Then we follow the proof of Theorem 5.2 until the inequality (5.8):

d n ≥ N n,2 i=1 Mn j=1 e 2nλ 1 -4n T ∧ ( i 2 dZ ŷi j ∧ dZ ŷi j ) (B y i j (η 1 e -nλ 1 -4n )). ( 8.4) 
We want to apply Proposition 7.3. According to (8.1),

B y i j (η 1 e -nλ 1 -4n ) ⊃ B y i j 1 m 0 e -Knλ 2 +3Kn .
We apply the positive measure T ∧ ( i 2 dZ ŷi j ∧ dZ ŷi j ) to this inclusion. Since ŷi j ∈ ΩKn , we deduce from Proposition 7.3 that for every n satisfying n ≥ N and K n ≥ N :

T ∧ ( i 2 dZ ŷi,j ∧ dZ ŷi,j ) (B y i j (η 1 e -nλ 1 -4n )) ≥ 1 d Kn e -2Knλ 1 -2Kn 1 q 0 .
We infer from (8.4) that for every n satisfying n ≥ N and K n ≥ N ,

d n ≥ N n,2 • M n • e 2nλ 1 -4n 1
d Kn e -2Knλ 1 -2Kn 1 q 0 . (8.5)

Now we use the upper bounds for N n,2 and M n given by (8.2) and (8.3):

d n+Kn ≥ (1 -3δ)e nhν -2n • e -nhν -2n 1 2η 1 e nλ 1 +4n
dν -

• e 2nλ 1 -4n e -2Knλ 1 -2Kn 1 q 0 .

If C 1 ( ) := (1 -3δ)/q 0 (2η 1 ) dν -, we get:

log d + K n n log d ≥ 1 n log C 1 ( ) -8 + (λ 1 + 4 )(d ν -) + 2λ 1 -2 K n n (λ 1 + ).
By using (8.1), we have

log d + λ 1 + 4 λ 2 -3 log d ≥ 1 n log C 2 ( ) -8 + (λ 1 + 4 )(d ν -) + 2λ 1 -2 λ 1 + 4 λ 2 -3 (λ 1 + ),
where C 2 ( ) is another constant. Letting n tend to +∞ and then to 0, we get

d ν ≤ log d λ 1 + log d λ 2 + 2 λ 1 λ 2 -1 .
To obtain the other upper bound, we use the analogue of (8.4) for W . Applying Proposition 7.3 with respect to W , we obtain instead of (8.5): ϕ dν 2 = 1.

d n ≥ N n,2 • M n • e 2nλ 2 -
For every n ≥ 1, we let M n satisfy P 2 1 {ϕ≤Mn} ϕdν 2 ≥ 1 -1 n . By the Lebesgue density Theorem, for ν 1 -almost every x in {ϕ ≤ M n }, we have

lim r→0 ν 1 (B x (r) ∩ {ϕ ≤ M n }) ν 1 (B x (r)) = 1.
Then for every r small enough, we have We finish by observing that the local dimension of the maximum of two measures is equal to the minimum of these two dimensions, since one divides by log r which is negative.

Cohomology and slices

We refer to Sections 1.2 and A.3 of Dinh-Sibony's book [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF].

Proposition 9.3. Let S be a (1, 1)-closed positive current of P 2 of mass 1. Let ω be the Fubini-Study form on P 2 and let f : P 2 → P 2 be an endomorphism of degree d. Then,

P 2 (f n ) * S ∧ ω = P 2 S ∧ (f n ) * ω = d n .
Proof. The first equality comes from the definition of duality. We show the second one. By using f * ω = d•ω +2i∂∂u, where u is a smooth function on P 2 , we obtain by induction

(f n ) * ω = d n ω + 2i∂∂v n ,
where

v n := (d n-1 • u + • • • + d • u • f n-2 + u • f n-1
). Hence Finally, the quantity in brackets is equal to (∆G z )(φ z ) = (σ * z S)(φ z ).

P 2 :

 2 = ω ∧ ω.

3 .

 3 T is a (1, 1) positive smooth form on an open set of P 2 .

Theorem 2 . 1 .

 21 [START_REF] Berteloot | Normalization of bundle holomorphic contractions and applications to dynamics[END_REF] Proposition 4.3]) Let f be an endomorphism of P 2 of degree d ≥ 2.

dw be the standard form on D 2 . 3 . 4 .

 234 Lemma Let x ∈ F such that η (x) ≥ η and β (x) ≤ β. For every n ≥ n 4 (β) and r ≤ η, we have on ξ xn (B xn (re -n )):

satisfies ν(Λ ( 3 )

 3 ) ≥ 1 -δ/8. In the case of the Green current T , the functions d T,Z , d T,Z and d T,W are ν-almost everywhere constant and denoted d T,Z (ν), d T,Z (ν) and d T,W (ν).

Lemma 4 . 1 .

 41 Let f be an endomorphism of P 2 of degree d ≥ 2 and let ν be an ergodic measure. Let A ⊂ π 0 ( Λ ) such that ν(A) > 0 and let c ∈ ]0, 1]. Let n ≥ N and let {x 1 , . . . x Nn } ⊂ A be maximal (n, c η 1 )-separated with respect to A. Then 1. for every

  nhν -n . Proof. Item 1 comes from separation, Item 2 from the maximal property, Items 3 and 4 from Section 3.3, because n ≥ N , c η 1 ≤ η 1 and x i ∈ C. Items 2 and 3 then imply ν(A) ≤ Nn i=1 ν(B n (x i , c η 1 )) ≤ N n e -nhν +n , which gives Item 5.

  Now we use the following result, see [5, Lemme IV.1.1] and [24, Section A.10].

1 2 ν 1 ( 2 . 1 . 9 . 2 .

 12192 B x (r)) ≤ ν 1 (B x (r) ∩ {ϕ ≤ M n }) = Bx(r)∩{ϕ≤Mn} ϕ dν 2 ≤ M n Bx(r) dν And thus ν 1 (B x (r)) ≤ 2M n ν 2 (B x (r)). We deduce that d ν 1 (x) ≥ d ν 2 (x) and d ν 1 (x) ≥ d ν 2 (x) for ν 1 -almost every x ∈ {ϕ ≤ M n }. We end with ν 1 (∪ n∈N {ϕ ≤ M n }) = 1.Now we take the notations of Section 1.Proposition Let S be a (1, 1)-closed positive current on P 2 . Let x ∈ P 2 and let (Z, W ) be holomorphic coordinates near x. Then d S (x) = min d S,Z (x), d S,W (x) , d S (x) = min d S,Z (x), d T,W (x) . Proof. Let us set σ S,Z = S ∧ ( i 2 dZ ∧ dZ) and σ S,W = S ∧ ( i 2 dW ∧ dW ). There exists c > 0 such that 1 c (σ S,Z + σ S,W ) ≤ σ S ≤ c(σ S,Z + σ S,W ) on a neighbourhood of x, see [13] Chapter III, §3. We deduce for every r small enough 1 c max [σ S,Z (B x (r)), σ S,W (B x (r))] ≤ σ S (B x (r)) ≤ 2c max [σ S,Z (B x (r)), σ S,W (B x (r))] .
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 22942 ∧ (f n ) * ω = P ∧ d n ω + 2i∂∂v n .Since S is a closed current of mass 1, we have P 2 S∧2i∂∂v n = 0 and P 2 S∧d n ω = d n . Let G be a continuous psh function on D 2 and let S = 2i∂∂G. Let (Z, W ) be the coordinates onD 2 and let φ ∈ C ∞ 0 (D 2 ). Then S∧ i 2 dZ∧dZ(φ) = z∈D w∈D G z (w) × ∆φ z (w) d Leb(w) d Leb(z) = z∈D (σ * z S)(φ z )d Leb(z),whereσ z : u → (z, u), G z := G • σ zand φ z := φ • σ z . Proof. By definition, (z, w) × 4 ∂ 2 φ ∂w∂w (z, w) d Leb(z, w) = z∈D w∈D G z (w) × ∆φ z (w) d Leb(w) d Leb(z).

  1 e -n dZ ∧ dZ and (f n ) * ω ≥ e 2nλ 2 e -n dW ∧ dW .

	Theorem 5.1 uses elementary separation (Lemma 4.1), Theorem 5.2 uses concentrated
	separation (Lemmas 4.2 and 4.3). Theorem 5.2 implies Theorem 1.1 (via the lower bound
	(1.6) for d

ν ) and Theorem 1.7.

  4n 1 d Kn e -2Knλ 2 -2Kn 1 q 0 . Let ν 1 and ν 2 be two probability measures on P 2 such that ν 1 << ν 2 . Then for ν 1 -almost every x ∈ P 2 , we have:d ν 1 (x) ≥ d ν 2 (x) and d ν 1 (x) ≥ d ν 2 (x).Proof. Let ϕ ∈ L 1 (ν 2 ) such that ν 1 (A) = A ϕν 2 for every Borel set A of P 2 . Using the dominated convergence Theorem, limM →∞ P 2 1 {ϕ≤M } ϕ dν 2 =

	Then we get which completes the proof of Theorem 1.5. d ν ≤ log d λ 1 + log d λ 2 9 Appendix 9.1 Dimension of measures Proposition 9.1. P 2 + 2 1 -	λ 2 λ 1	,