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Regularization effects of a noise propagating through a

chain of differential equations: an almost sharp result

Paul-Éric Chaudru de Raynal∗ and Stéphane Menozzi†

September 25, 2020

Abstract

We investigate the effects of the propagation of a non-degenerate Brownian noise through a
chain of deterministic differential equations whose coefficients are rough and satisfy a weak like
Hörmander structure (i.e. a non-degeneracy condition w.r.t. the components which transmit the
noise). In particular we characterize, through suitable counter-examples, almost sharp regularity
exponents that ensure that weak well posedness holds for the associated SDE. As a by-product of
our approach, we also derive some density estimates of Krylov type for the weak solutions of the
considered SDEs.

Keywords: regularization by noise, martingale problem, Kolmogorov hypoelliptic PDEs, density esti-

mates, parametrix.
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1 Introduction and Main Results

In this work we are interested in studying the weak regularization effects of a Brownian noise prop-
agating through a chain of n d-dimensional oscillators. Namely, we establish weak uniqueness for
Stochastic Differential Equations (SDEs in short) of the following type:

dX1
t = F1(t,X1

t , . . . , X
n
t )dt+ σ(t,X1

t , . . . , X
n
t )dWt,

dX2
t = F2(t,X1

t , . . . , X
n
t )dt,

dX3
t = F3(t,X2

t , . . . , X
n
t )dt,

...

dXn
t = Fn(t,Xn−1

t , Xn
t )dt,

t ≥ 0. (1.1)

In the above equation, (Wt)t≥0 stands for a d-dimensional Brownian motion and the components
(Xi

t)i∈[[1,n]] are Rd-valued as well. We suppose that the (Fi)i∈[[2,n]] satisfy a kind of weak Hörmander
condition, i.e. the matrices

(
Dxi−1Fi(t, ·)

)
i∈[[2,n]]

have full rank. However, the coefficients (Fi)i∈[[2,n]]
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can be rather rough in their other entries. Namely, Hölder continuous or even in a suitable Lq − Lp
space for F1, where the parameter q relates to the time integrability and p to the spatial one. We
assume as well that the diffusion coefficient σ is bounded from above and below and spatially Hölder
continuous.

We emphasize that, under these conditions, the Stroock and Varadhan Theory for weak uniqueness
does not apply. This especially comes from the specific degenerate framework considered here: the
noise in the ith component only comes from the (i − 1)th component, 2 ≤ i ≤ n, through the
non-degeneracy of the gradients

(
Dxi−1Fi(t, ·)

)
i∈[[2,n]]

(components which transmit the noise). We

nevertheless show that the system is well posed, in a weak sense, when the drift of the first component
is Hölder continuous or bounded in supremum norm or in suitable Lq−Lp norm and the drift functions
of the other components are only Hölder continuous with respect to the variables that do not transmit
the noise. Denoting by (βji )2≤i≤j≤n the Hölder index of the drift of the ith component w.r.t. the jth

variable we assume βji ∈
(
[(2i − 3)/(2j − 1)], 1

]
. We also show that these thresholds are (almost)

sharp thanks to appropriate counter examples.
Also, as a by-product of our analysis, we prove that the density of the unique weak solution of

the system satisfies Krylov-like estimates.

Weak and strong regularization by noise

Strong and weak well posedness of stochastic systems outside the classical Cauchy-Lipschitz frame-
work have motivated a lot of works since the last past four decades1.

Concerning the strong well posedness, the first result in that direction is due to Zvonkin [Zvo74]
who showed that one-dimensional non degenerate Brownian driven stochastic differential equations
with bounded and measurable drift and Hölder continuous diffusion matrix are well posed for Hölder
index strictly greater than 1/2. Then, Veretennikov [Ver80] generalized the result to the multidimen-
sional case for a Lipschitz diffusion matrix. These results have been recently revisited in the work of
Krylov and Röckner [KR05], where SDEs with additive Brownian noise and locally integrable drift
are shown to be strongly well posed and Zhang [Zha10] who extended the Krylov and Röckner result
to SDEs with multiplicative noise and weakly Lipschitz diffusion matrix (i.e. in Sobolev Sense).
Similar issues are handled as well in [FF11]. Also, we can mention the recent work by Davie [Dav07]
in which path-by-path uniqueness is proved for non degenerate Brownian SDEs with bounded drift
and the approach of Catellier and Gubinelli [CG16] (which also relies on path-by-path uniqueness)
where SDEs with additive fractional Brownian noise are investigated. Finally, let us mention the
work [GO13] where the strong well-posedness of a particular one dimensional system with singular
inhomogeneous drift is proved. We refer the reader to the Saint Flour Lecture notes of Flandoli
[Fla11] where a very interesting and general account on the topic is given.

On the other hand, and still in the Brownian framework, it has been shown that non degenerate
stochastic systems are well posed in a weak sense as soon as the drift function is measurable and
bounded and the diffusion matrix only a continuous (in space) function. This is the celebrated
theory of the martingale problem put on complete mathematical framework by Stroock and Varadhan,
see [SV79]. Weak well posedness results for non degenerate SDE with additive noise have also
been explored recently: Flandoli, Issoglio and Russo showed in [FIR17] that multidimensional non

1In the presentation below, we will mainly focus on Brownian driven SDEs. We can refer to the recent work of Priola
[Pri18] for the more general Lévy driven case in the non-degenerate framework.
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degenerate SDEs with non-homogeneous distributional drift are well posed as soon as the regularity
index is strictly greater than −1/2. At the same time, Delarue and Diel proved in [DD15] that the
result still holds when the regularity index is strictly greater than −2/3 in the one-dimensional case.
This last work has then been generalized by Cannizzaro and Chouk [CC18] to the multidimensional
setting. Note however that, in the two last mentioned works, the Authors assumed that the drift can
be enhanced into a rough path structure.

All the above strong and weak results deeply rely on the non-degeneracy assumption imposed to
the noise and illustrate what is usually called, following the terminology of Flandoli, a regularization
by noise phenomenon. Here, the regularization has to be understood as follows: while an ordinary
differential system could be ill-posed when the drift is less than Lipschitz (or weakly Lipschitz [PL89]),
the analogous non degenerate stochastic system is well posed (in a strong or a weak sense). To obtain
this kind of result, the noise plays a central role. A striking example to understand the phenomenon
is the Peano Example : while the deterministic scalar ODE

Ẏt = sign(Yt)|Yt|αdt, Y0 = 0, α ∈ (0, 1), (1.2)

has an infinite number of solutions that could still be trapped in the singularity for any given time,
the corresponding Brownian SDE is strongly well posed. In [DF14], Delarue and Flandoli put the
phenomenom in light: in short time, the fluctuations of the noise dominate the system so that the
solution leaves the singularity and in long time, the drift dominates and constrains the solution to
fluctuate around one of the extremal solutions of the Peano Example. Hence, there is a strong com-
petition, in short time, between the irregularity of the drift and the fluctuations of the noise.

Here, our result mostly emphasizes a regularization phenomenon coming from a degenerate noise
(i.e. when n ≥ 2 in (1.1)). In view of the above discussion, it is clear that the degeneracy may dra-
matically damage the regularization by noise properties and, in order to preserve some regularization
effect, the noise still needs to have a way to propagate through the system. Such kind of behavior
will typically hold when the system satisfies a so-called Hörmander condition for hypoellipticity, see
Hörmander’s seminal work on the topic [Hör67].

In our case, we suppose the drift of each component to be differentiable w.r.t. its first variable and
the resulting gradient to be non-degenerate, but only Hölder continuous in the other variable. This
last non-degeneracy assumption is the reason why this kind of condition is called weak Hörmander
condition. Namely, up to some regularization of the diffusion coefficient, the drift is needed to span
the space through Lie Bracketing. Also, in comparison with the general Hörmander setting, the
specific drift structure we consider here is such that at each level of the chain we only require one
additional Lie bracket to generate the corresponding directions, up to some regularization of the
diffusion coefficient again. This setting allows us to recover some regularization effect of the noise at
each level of the chain. We also refer for similar issues to Section 2 in [LP94].

Concerning the strong regularization effects of a degenerate noise in a weak Hörmander setting,
one of the first result has been given by Chaudru de Raynal in [CdR17] and concerns strong well
posedness of the above system (1.1) when n = 2. It is shown in that case that the system is well
posed as soon as the drift coefficients are Hölder continuous with Hölder exponent strictly greater
than 2/3 w.r.t. the degenerate variable and when the diffusion matrix is Lipschitz continuous in
space. This result was then extended by Wang and Zhang [WZ16] under Hölder-Dini conditions
with the same critical Hölder threshold 2/3. We also mention, again for two oscillators and when the
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degenerate component only depends linearly of the non-degenerate variable and not on the degenerate
component, the recent work by Fedrizzi, Flandoli, Priola and Vovelle [FFPV17] who address the case
of a weakly differentiable non-degenerate drift with order of weak differentiation strictly greater than
2/3. The critical case corresponding to the exponent 2/3 has been discussed by Zhang [Zha18].

From the weak regularization by noise viewpoint, in our current weak Hörmander setting, one of
the first results is the work by Menozzi [Men11]. The key-point there is to exploit some smoothing
effects of a suitable parametrix kernel, associated with a Gaussian linearization of (1.1), which had
already been used by Delarue and Menozzi in [DM10] to derive heat-kernel bounds for the solu-
tion of (1.1). In [Men11], it is shown that the system (1.1) is (weakly) well posed for a spatially
Lipschitz continuous drift satisfying the previously mentioned non-degeneracy condition, and a spa-
tially Hölder continuous diffusion coefficient. The result was then extended in [Men18] for a spatially
continuous diffusion coefficient, following the martingale problem approach establishing some suit-
able Calderón-Zygmund estimates for a degenerate Gaussian kernel and appropriate non-standard
localization arguments. Also, in the case of two oscillators, Zhang showed in [Zha18] that when the
degenerate component only depends linearly of the non-degenerate variable and not on the degener-
ate component, the system is weakly well posed as soon as the drift of the first component satisfies
some local integrability conditions and when the diffusion coefficient is continuous. At the same time,
Chaudru de Raynal showed in [CdR18] that when n = 2 the system is well posed in a weak sense as
soon as the drift of each component are at least 1/3 Hölder continuous in the degenerate variable and
showed that this result is (almost) sharp for the drift of the second oscillator thanks to an appropriate
counter example.

Hence, the minimal threshold obtained for the Hölder regularity of the drift is not an artefact:
this can be seen as the price to pay to balance the degeneracy of the noise. Especially, in view of the
previous discussion on the Delarue and Flandoli work, it is related to the fact that the fluctuations of
the degenerate noise are not strong enough to push the solution away from the singularity if the drift
is too irregular. As said above, this is illustrated in [CdR18] where a counter example is built thanks
to this observation. Namely, it is shown that any stochastic perturbation of the Peano Example (1.2)
has to have (at least) fluctuations of order strictly lower than 1/(1 − α) in order to restore (weak)
uniqueness. Hence, for two oscillators, assuming that the dynamics of the degenerate component
is driven by (1.2) perturbed by the integral of the Brownian source plugged in the non-degenerate
component in (1.1), we have that the typical variance of the noise is of order t3/2 at time t. From the
above condition, we indeed find 1/(1− α) > 3/2 ⇐⇒ α > 1/3.

Organization of our paper

The paper is organized as follows. Our assumptions and main results are stated at the end of the
current Section. We present in Section 2 the main tools that allow to derive our results. Namely, a
suitable Gaussian linearization of the initial model (1.1) around a deterministic Cauchy-Peano flow
of the initial system of ODEs (corresponding to (1.1) taking σ = 0). In particular, since we consider
rough coefficients, we establish therein measurability properties and bi-Lipschitz like regularity for
such flows. The well posedness of the martingale problem for the operator associated with (1.1) is
then obtained in Section 3. Section 4 is eventually dedicated to a class of counter examples which
emphasize the almost sharpness of our results.
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Assumptions and main result

Our assumptions are the following:

(UE) There exists κ ≥ 1 s.t. for all (t,x) ∈ R+ × Rnd, z ∈ Rd,

κ−1|z|2 ≤ 〈σσ∗(t,x)z, z〉 ≤ κ|z|2,

where | · | denotes the Euclidean norm, 〈·, ·〉 is the inner product and ∗ stands for the transpose.

(S) The coefficients σ(t, ·),
(
Fi(t,0)

)
i∈[[2,n]]

are assumed to be bounded measurable in time. Also,

the diffusion coefficient σ(t, ·) is uniformly η-Hölder continuous in space, for some η > 0 uniformly
in time. The drift entries

(
Fi(t, ·)

)
i∈[[2,n]]

are s.t. for all (zi, · · · , zn) ∈ Rd(n−(i−1)), the mapping

z ∈ Rd 7→ Fi(t, z, zi, · · · , zn) is in C1+η(Rd,Rd) uniformly in time2 and w.r.t. (zi, . . . , zn). Moreover,
Dxi−1Fi(t, ·) is bounded . Eventually, the mappings (zi, · · · , zn) ∈ Rd(n−(i−1)) 7→ Fi(t, z, zi, · · · , zn)

are, for j ∈ [[i, n]], βji -Hölder continuous in the variable zj , with βji > 0, uniformly in time and in
z ∈ Rd.

(D) The first entry of the drift F1 is supposed to satisfy one of the following assumptions:

(a) The measurable mapping t ∈ R+ 7→ F1(t,0) is bounded and F1(t, ·) is Hölder continuous in
space3 uniformly in time.

(b) The measurable mapping (t,x) ∈ R+ × Rnd 7→ F1(t,x) is bounded.

(c) F1 ∈ Lq(R+, L
p(Rnd)), n2d

p + 2
q < 1, p ≥ 2, q > 2.

Observe that case (b) can be viewed as a particular case of (c), corresponding to p = q = ∞. Since
the techniques used to address those two cases are rather different (see Section 3.2), we prefer to
consider them separately.

(H) There exists a closed convex subset Ei−1 ⊂ GLd(R) (set of invertible d× d matrices) s.t., for all
t ≥ 0 and (xi−1, . . . , xn) ∈ R(n−i+2)d, Dxi−1Fi(t, xi−1, . . . , xn) ∈ Ei−1. For example, Ei, i ∈ [[1, n− 1]],
may be a closed ball included in GLd(R), which is an open set.

We say that assumption (A) is in force whenever (UE), (S), (H) and at least one of the three
items in (D) hold.

Theorem 1 (Weak Uniqueness and Hölder continuity indexes). Assume (A) and that the following
conditions hold:

∀i ∈ [[2, n]], j ∈ [[i, n]], βji ∈

(
2i− 3

2j − 1
, 1

]
. (1.3)

Then, the martingale problem associated with (Lt)t≥0 where for all φ ∈ C2
0 (Rnd,R), x ∈ Rnd,

Ltϕ(x) = 〈F (t,x), Dxφ(x)〉+
1

2
tr
(
a(t,x)D2

x1φ(x)
)
, a := σσ∗, (1.4)

2For the sake of clarity we chose the same regularity index for σ and (Dxi−1Fi)i∈[[2,n]], but the result remains true
for any ησ Hölder continuous σ and ηF,i Hölder continuous Dxi−1Fi, provided ησ and ηF,i belong to (0, 1].

3Actually one can assume that F1 is βj1 Hölder continuous in the jth variable for any βj1 in (0, 1].
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is well posed, i.e. there exists a unique probability measure P on C(R+,Rnd) s.t. denoting by (Xt)t≥0

the associated canonical process, for every ϕ ∈ C1,2
0 (R+ × Rnd,R) and conditionally to Xt = x

for t ≥ 0,
(
ϕ(s,Xs) − ϕ(t,x) −

∫ s
t (∂u + Lu)ϕ(u,Xu)du

)
s≥t

is a P-martingale. In particular weak

uniqueness holds for the SDE (1.1).
The transition probability P (t, s,x, ·), determined by (Ls)s≥0, is s.t. for a given T > 0, almost all

s ∈ (t, T ] and all Γ ∈ B(Rnd): P (t, s,x,Γ) =
∫

Γ p(t, s,x,y)dy.
Furthermore, we have the following Krylov-like estimate: for all fixed T > 0 and every f ∈

Lq
′
([0, T ], Lp

′
(Rnd)) with n2d

p′ + 2
q′ < 2, p′ > 1, q′ > 1, (t,x) ∈ [0, T ]× Rnd:

|EPt,x [

∫ T

t
f(s,Xs)ds]| ≤ C‖f‖Lq′ (([0,T ],Lp′ (Rnd)), (1.5)

where EPt,x denotes the expectation w.r.t. Pt,x[·] := P[·|Xt = x] and C := C((A), p′, q′, T ).

Hence, our Theorem allows to recover almost all the previously mentioned works on weak well
posedness and provides an extension for the full chain. It also permits us to avoid any regularity
assumption on the drift of the diffusion component so that we recover the Stroock and Varadhan
result in the case n = 1 up to an arbitrary small Hölder exponent on the continuity of the diffusion
matrix. Concerning this last point, we feel that using the localization strategy proposed by Menozzi
in [Men18] we may be able to get rid of this assumption and only assume the diffusion coefficient to
be continuous in space. Indeed, using our results (say Lemma 5 below together with condition (1.3))
should allow one to adapt the approach of [Men18] and extend Theorem 1 to continuous diffusion
matrix.

We also underline that our result allows to deal with a large class of different drifts for the non
degenerate component: the system can be globally with sub-linear growth (Assumption (A)-(a)),
rough and bounded (Assumption (A)-(b)) or only suitably integrable and rough (Assumption (A)-
(c)).

Moreover, the following result shows that Theorem 1 is almost sharp. By almost, we mean that
the critical lower thresholds in (1.3) and in (D)-(c) are not yet handled. Namely we have:

Theorem 2 (Almost sharpness). There exists F satisfying (UE), (S), (H) and such that:

∃i ∈ [[2, n]], j ∈ [[i, n]], βji <
2i− 3

2j − 1
, (1.6)

or

F1 ∈ Lq([0, T ], Lp(Rnd)),
n2d

p
+

2

q
> 1, p ≥ 2, q > 2 (1.7)

for which weak uniqueness fails for the SDE (1.1).

We first emphasize that there are already some results in that direction: in [BFGM19] the Au-
thors show that when n = 1 and when the integrability condition (1.7) is not satisfied (i.e. in the
supercritical case) equation (1.1) does not have a weak solution. Another counter example to that
case can be found in [GO13]. Note that in comparison with the results in [FIR17], [DD15], [CC18],
the almost sharpness of the integrability condition (1.7) has to be understood for drifts assumed to
be functions and not distributions.
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Secondly, it has been proved in [CdR18], that for all i in [[2, n]] the Hölder exponents βii , are also
almost sharp, thanks to a class of counter examples based on stochastic perturbations of the Peano
example (1.2).

Thirdly, we feel that the Hölder continuity assumption assumed on Dxi−1Fi(t, ·) is a technical
artefact. Nevertheless, relaxing this assumption to consider the

(
Dxi−1Fi(t, ·)

)
i∈[[2,n]]

are just continu-

ous functions of xi−1 is definitely more tricky. Indeed, in that case, our approach based on parametrix
fails and the natural approach, relying on harmonic analysis techniques, seems very involved.

And last, but not least, let us notice that the two thresholds for the drift component (say (1.3) and
condition (A)-(c)) will appear many times throughout this work as a minimal value for making our
proof work (see the proofs of Lemmas 5, 6, 9 and 11). This underlines the sharpness of the exponent
for the strategy we used and explains why the critical case of these conditions is not investigated here.
It seems indeed clear for us that the critical case requires different tools as those presented here.

Remark 1. Before entering into the proof, we indicate that, from a more analytic viewpoint, the
techniques we develop in the current work could also be used in order to derive well-posedness results
in the mild sense (see [SV79], [Kol11]) for the corresponding degenerate parabolic PDE, which involves
rough coefficients in a weak Hörmander setting, when the source term belongs to appropriate Lebesgue
spaces.

2 Strategy and key tools

Our strategy relies on the martingale problem approach. Hence, we face two problems: firstly, we
have to show the existence of a solution to the martingale problem in our current setting, which
becomes quite tricky under (D)-(c) while it is quite obvious under (D) - (a) and (b); secondly we
have to show that the solution is unique which is the real core of this paper.

About uniqueness. Usual approaches to uniqueness for the martingale problem associated with
a given operator are based on a perturbative method. Let us detail two of the main strategies devel-
oped in the literature. The historical one due to Stroock and Varadhan [SV79] consists in exploiting
some Lp controls on the derivatives of a suitable Gaussian heat kernel (parametrix ). It allows, in the
non-degenerate diffusive case, to establish well posedness provided the diffusion coefficient is solely
continuous. As a by-product of this approach, Krylov like estimates of type (1.5) are obtained, em-
phasizing that the canonical process associated with the solution actually possesses a density which
enjoys integrability properties up to a certain threshold. Extensions of these types of results to the
chain (1.1) are available in [Men18].

On the other hand, a more recent approach is due to Bass and Perkins [BP09]. In the non-
degenerate setting, under the stronger assumption of Hölder continuity of the diffusion coefficient, it
only requires pointwise controls of an underlying parametrix kernel. This approach has then been
successfully extended under the considered weak type Hörmander setting to a chain of type (1.1)
in [Men11] in the diffusive case and in [HM16] for more general stable driven degenerate SDEs of
type (1.1) with dimension restriction. It is actually more direct than the approach of Stroock and
Varadhan. However, its drawback is that it does not provide a priori information on the density of
the underlying canonical process.

Let us underline that in both cases, the parametrix plays a central role. This approach consists in
expanding the generator of a given stochastic process around a suitable proxy generator which can be
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well handled. The point is then to control in a suitable way the associated approximation error. In
our current degenerate diffusive setting, since the SDE is Brownian driven, the difficulty is to exhibit
an appropriate Gaussian process that fulfills the previously indicated constraints.

When the drift F is smooth in addition to (A), say globally Lipschitz continuous, it has been
shown in [DM10], [Men11], [Men18] that a good proxy is provided by the linearization around the
deterministic flow associated with (1.1) (i.e. when σ = 0 therein) leading to consider a multi-scale
Gaussian process as parametrix. It is therefore a natural candidate for the current work. Anyhow,
under (A), we do not have anymore a deterministic flow in the usual Cauchy-Lipschitz sense. A first
difficulty is therefore to deal with non-smooth and non-unique Cauchy-Peano flows. It actually turns
out that any measurable flow solving (1.1) with σ = 0 is a good candidate to make our machinery
work. The specific controls associated with those objects are presented in Section 2.2.

Also, in order to handle very rough drifts for the non degenerate component, from (D)-(c) F1 ∈
Lq([0, T ], Lp(Rnd)), we are led to apply the Girsanov transform to the equation with F1 = 0. To do
so requires to have some a priori knowledge of the corresponding density. This is why, to achieve
our goal, the Stroock and Varadhan approach leading to estimate (1.5), seems to be the natural
framework.

In comparison with the approach based on the Zvonkin Transform initiated in [CdR18], our ap-
proach allows to obtain a clever analysis of the chain in the sense that, we are here able to enlight
the almost sharp regularity needed for each component of the drift and w.r.t. each variable. This
last point is not possible via the Zvonkin Transfom which is more global and does not permit this
distinction. Accordingly to the works [CdR17], [FFPV17], the Zvonkin approach seems more suited
to derive strong uniqueness. In that case a global threshold appears for each variable at each level of
the chain.

About existence. Concerning the existence part, our proof consists in adapting to our degener-
ate setting the idea introduced by Portenko [Por90] and used by Krylov and Röckner [KR05] as well
to build local weak solutions in the non-degenerate case.

Usual notations. In what follows, we denote a quantity in Rnd by a bold letter: i.e. 0, stands for
zero in Rnd and we denote by (X1

t , . . . , X
n
t )t≥0 the components of (Xt)t≥0. Introducing the embedding

matrix B from Rd into Rnd, i.e. B = (Id×d, 0, . . . , 0)∗, where “∗” stands for the transpose, we rewrite
accordingly (1.1) in the shortened form

dXt = F(t,Xt)dt+Bσ(t,Xt)dWt,

where F = (F1, . . . , Fn) is an Rnd-valued function.

The deterministic backward flow. In the following, we will first assume for the sake of
simplicity that assumption (D)-(a) is in force. The extension to cases (b) and (c) will be discussed
later on. Introduce now, for fixed T > 0, y ∈ Rnd and t ∈ [0, T ] the backward flow:

.
θt,T (y) = F(t,θt,T (y)), θT,T (y) = y. (2.1)

Remark 2. We mention carefully that from the Cauchy-Peano theorem, a solution to (2.1) exists.
Indeed, the coefficients are continuous and have at most linear growth.
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2.1 Linearized Multi-scale Gaussian Process and Associated Controls

We now want to introduce the forward linearized flow around a solution of (2.1). Namely, we consider
for s ≥ 0 the deterministic ODE

.

φ̃s = F(s,θs,T (y)) +DF(s,θs,T (y))[φ̃s − θs,T (y)], (2.2)

where for all z ∈ Rnd,

DF(s, z) =


0 · · · · · · · · · 0

Dz1F2(s, z) 0 · · · · · · 0

0 Dz2F3(s, z) 0 0
...

... 0
. . .

...
0 · · · 0 Dzn−1Fn(s, z) 0


denotes the subdiagonal of the Jacobian matrix DzF(s, ·) at point z. Introduce now for a given
(T,y) ∈ R+∗×Rnd, the resolvent (R̃T,y(t, s))s,t≥0 associated with the partial gradients (DF(t,θt,T (y)))t≥0

which satisfies for (s, t) ∈ (R+)2:

∂sR̃
T,y(s, t) = DF(s,θs,T (y))R̃T,y(s, t), R̃T,y(t, t) = Ind×nd. (2.3)

Note in particular that since the partial gradients are subdiagonal det(R̃T,y(t, s)) = 1.

We consider now the stochastic linearized dynamics (X̃T,y
s )s∈[t,T ]:

dX̃T,y
s = [F(s,θs,T (y)) +DF(s,θs,T (y))(X̃T,y

s − θs,T (y))]ds+Bσ(s,θs,T (y))dWs,

∀s ∈ [t, T ], X̃T,y
t = x. (2.4)

From equations (2.2) and (2.3) we explicitly integrate (2.4) to obtain for all v ∈ [t, T ]:

X̃T,y
v = R̃T,y(v, t)x +

∫ v

t
R̃T,y(v, s)

(
F(s,θs,T (y))−DF(s,θs,T (y))θs,T (y)

)
ds

+

∫ v

t
R̃T,y(v, s)Bσ(s,θs,T (y))dWs.

(2.5)

Denoting by θ̃
T,y
s,t (x) the solution of (2.2) with starting point θ̃

T,y
t,t (x) = x we rewrite:

X̃T,y
v = θ̃

T,y
v,t (x) +

∫ v

t
R̃T,y(v, s)Bσ(s,θs,T (y))dWs, v ∈ [t, T ]. (2.6)

An important correspondence is now given by the following Proposition.

Proposition 3 (Density of the linearized dynamics). Under (A), we have that, for all v ∈ (t, T ] the
random variable X̃T,y

v in (2.6) admits a Gaussian density p̃T,y(t, v,x, ·) which writes:

∀z ∈ Rnd, p̃T,y(t, v,x, z) :=
1

(2π)
nd
2 det(K̃T,y

v,t )
1
2

exp

(
−1

2

〈
(K̃T,y

v,t )−1(θ̃
T,y
v,t (x)− z), θ̃

T,y
v,t (x)− z

〉)
,

(2.7)
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where

K̃T,y
v,t :=

∫ v

t
R̃T,y(v, s)Ba(s,θs,T (y))B∗R̃T,y(v, s)∗ds, a(s,θs,T (y)) = σσ∗(s,θs,T (y)).

Also, there exists C := C((A), T ) > 0 s.t. for all k ∈ [[0, 2]], i ∈ [[1, n]],

|Dk
xi p̃

T,y(t, T,x,y)| ≤ C

(T − t)k
(

(i−1)+ 1
2

)
+n2d

2

exp
(
−C−1(T − t)

∣∣T−1
T−t
(
x− θt,T (y)

)∣∣2)
=:

C

(T − t)k
(

(i−1)+ 1
2

) p̄C−1(t, T,x,y), (2.8)

where for all u > 0, we denote by Tu the important scale matrix:

Tu =


uId×d 0d×d · · · 0d×d

0d×d u2Id×d 0
...

...
. . .

. . .
...

0d×d · · · 0 unId×d

 . (2.9)

Proof. Expression (2.7) readily follows from (2.6). We recall as well that, under (A), the covariance
matrix K̃T,y

v,t enjoys, uniformly in y ∈ Rnd a good scaling property in the sense of Definition 3.2
in [DM10] (see also Proposition 3.4 of that reference). That is: for all fixed T > 0, there exists
C2.10 := C2.10((A), T ) ≥ 1 s.t. for all 0 ≤ v < t ≤ T , for all y ∈ Rnd:

∀ξ ∈ Rnd, C−1
2.10(v − t)−1|Tv−tξ|2 ≤ 〈K̃T,y

v,t ξ, ξ〉 ≤ C2.10(v − t)−1|Tv−tξ|2. (2.10)

Remark 3 (On the Hörmander like non-degeneracy assumption and the good scaling property). We
carefully point out that the boundedness and non-degeneracy conditions expressed on the derivatives
(Dxi−1Fi(t, ·))i∈[[2,n]], as well as on the diffusion coefficient σ(t, ·), in assumptions (S), (H) and (UE)
are precisely explicitly used to derive this bound. The natural analogue bounds of (2.10) also hold for
the inverse matrices, see again [DM10], Definition 3.2 and Lemma 3.6 therein as well as the proof of
(2.12) below.

Rewrite now from (2.5) and (2.6):〈
(K̃T,y

T,t )−1(θ̃
T,y
T,t (x)− y), θ̃

T,y
T,t (x)− y

〉
=
〈

(R̃T,y(T, t)∗(K̃T,y
T,t )−1R̃T,y(T, t)(x− θ̃

T,y
t,T (y)),x− θ̃

T,y
t,T (y)

〉
, (2.11)

where, accordingly with the previous notations for the forward linearized flow θ̃
T,y
T,t (x), we denote:

θ̃
T,y
t,T (y) = R̃T,y(t, T )y −

∫ T

t
R̃T,y(t, s)

(
F(s,θs,T (y))−DF(s,θs,T (y))θs,T (y)

)
ds.

for the corresponding linearized-backward flow starting from y at time T .
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Observe now that θ̃
T,y
t,T (y) = θt,T (y). Indeed, from (2.3):

∂tθ̃
T,y
t,T (y) = DF(t,θt,T (y))θ̃

T,y
t,T (y) +

(
F(t,θt,T (y))−DF(t,θt,T (y))θt,T (y)

)
,

so that:

∂tθ̃
T,y
t,T (y)− ∂tθt,T (y) = DF(t,θt,T (y))

(
θ̃
T,y
t,T (y)− θt,T (y)

)
.

Since θ̃
T,y
T,T (y) = θT,T (y) = y, we deduce from Gronwall’s Lemma that θ̃

T,y
t,T (y) = θt,T (y) for all

t ∈ [0, T ].
We carefully point out that, even though the solution to the ODE (2.1) is not unique, once we

have chosen a solution and consider the associated flow to construct our linearized Gaussian model,

we precisely get the identification θ̃
T,y
t,T (y) = θt,T (y) for all t ∈ [0, T ] with the chosen flow.

We thus get from the previous identification, equations (2.11), (2.10) and Remark 3 that there
exists C := C((A), T ) > 0, s.t. for all t ∈ [0, T ),

C−1(T − t)|T−1
T−t(x− θt,T (y))|2 ≤

〈
(K̃T,y

T,t )−1(θ̃
T,y
T,t (x)− y), θ̃

T,y
T,t (x)− y

〉
(2.12)

≤ C(T − t)|T−1
T−t(x− θt,T (y))|2.

Indeed, from (2.10) it is easily derived that the spectrum of ̂̃KT,t,T,y

1 := (T − t)T−1
T−tK̃

T,y
T,t T

−1
T−t lies in

[C−1
2.10, C2.10]. So does the spectrum of ( ̂̃KT,t,T,y

1 )−1 := (T − t)−1TT−t(K̃T,y
T,t )−1TT−t. From Lemma 3.6

in [DM10] (see also Lemma 6.2 in [Men18] for notations closer to the current framework) we can also

write R̃T,y(T, t) = TT−t ̂̃RT,t,T,y

(1, 0)T−1
T−t where ̂̃RT,t,T,y

(1, 0) is a non-degenerate bounded matrix

whose bounds do not depend on t, T , i.e. ̂̃RT,t,T,y

(1, 0) is a non-degenerate macro matrix. Therefore,
introducing H̃T,y

T,t = R̃T,y(t, T )K̃T,y
T,t R̃T,y(t, T )∗, we can rewrite from (2.11) that:〈

(K̃T,y
T,t )−1(θ̃

T,y
T,t (x)− y), θ̃

T,y
T,t (x)− y

〉
=
〈

(H̃T,y
T,t )−1(x− θT,t(y)),x− θT,t(y)

〉
,

(H̃T,y
T,t )−1 = R̃T,y(T, t)∗(K̃T,y

T,t )−1R̃T,y(T, t)

= (T − t)T−1
T−t
( ̂̃RT,t,T,y

(1, 0)
)∗

( ̂̃KT,t,T,y

1 )−1 ̂̃RT,t,T,y

(1, 0)T−1
T−t. (2.13)

The previous non-degeneracy properties of ( ̂̃KT,t,T,y

1 )−1, ̂̃RT,t,T,y

(1, 0) then readily give (2.12). Put it
differently, the matrix H̃T,y

T,t also satisfies a good scaling property.
We now deduce from (2.13) and (2.10) that (2.8) holds for k = 0. We now write from (2.7):

Dxi p̃
T,y(t, T,x,y) =

1

(2π)
nd
2 det(K̃T,y

T,t )
1
2

Dxi exp

(
−1

2

〈
(H̃T,y

T,t )−1(x− θt,T (y)),x− θt,T (y)
〉)

=

(
− (H̃T,y

T,t )−1(x− θt,T (y))
)
i

(2π)
nd
2 det(K̃T,y

T,t )
1
2

exp

(
−1

2

〈
(H̃T,y

T,t )−1(x− θt,T (y)),x− θt,T (y)
〉)

.
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We thus derive from (2.12) and (2.13):

|Dxi p̃
T,y(t, T,x,y)| ≤ C

(T − t)(i−1)+ 1
2

+n2d
2

exp
(
−C−1(T − t)

∣∣T−1
T−t
(
x− θt,T (y)

)∣∣2) ,
which proves (2.8) for k = 1. The case k = 2 is derived similarly.

2.2 Regularity and measurability of the Cauchy-Peano flow

Let us recall, as indicated before equation (2.1), that we work first under assumption (D)-(a). In this
setting, we mention that the delicate part here consists in dealing with the nonlinear flow θt,s(y).
Because of our low Hölder regularity, we face two problems: one has to choose a measurable flow of
(2.1) (which is very important to make licit any integration of this flow along the terminal condition)
and this flow must have the appropriate regularity to deal with our parametrix kernel, say e.g. bi-
Lipschitz as in [DM10], [Men11], [Men18].

The first issue is addressed by Lemma 4 below. The second problem is quite involved and requires
also a careful analysis. Indeed our approach, based on parametrix kernel, makes an intensive use of
the gradient estimate of the frozen transition density p̃T,y given in (2.7). This leads us to study the
space integral of the Gaussian like function p̄C−1 defined by (2.8) w.r.t. the backward variable y. The
crucial point is that such an integral then involves the backward flow with argument the integration
variable. In a smooth setting, such a problem is easily handled through a change of variable. When
working with non-continuously differentiable coefficients, one may also use the bi-Lipschitz property
of the flow to change its argument from the integration variable to the fixed initial one (see e.g.
[DM10] where F is Lipschitz in space). In the current setting the flow is not smooth enough either
to perform a change of variable nor to use the bi-Lipschitz estimate. Nevertheless, using a careful
regularization procedure which precisely works under the condition (1.3) on the Hölder continuity
exponents, we show in Lemma 5 below that the chosen flow satisfies an approximate bi-Lipschitz
estimate. This approximate bi-Lipschitz estimate is sufficient to deal with our parametrix kernel.

Lemma 4. For a given T > 0, there exists a measurable mapping (s, t,x) ∈ [0, T ]2×Rnd 7→ θt,s(x)

s.t. θt,s(x) = x +
∫ t
s F(v,θv,s(x))dv.

Proof. The proof follows from the result of [Zub12] and usual covering arguments.

From now on, we choose by simplicity to work with a given measurable flow θt,s(x) which exists
by the previous lemma.

Lemma 5. There exist constants (C5, C
′
5) := (C5, C

′
5)((A), T ) ≥ 1 s.t. for all 0 ≤ t < s ≤ T small

enough:

C−1
5 (s− t)|T−1

s−t(θs,t(x)−y)|2−C ′5 ≤ (s− t)|T−1
s−t(x− θt,s(y))|2 ≤ C5(s− t)|T−1

s−t(θs,t(x)−y)|2 +C ′5.
(2.14)

Also, for any measurable flow θ̌s,t satisfying the integral equation in Lemma 4 and possibly different
from the chosen one θs,t, it also holds that:

C−1
5 (s− t)|T−1

s−t(θ̌s,t(x)−y)|2−C ′5 ≤ (s− t)|T−1
s−t(x− θt,s(y))|2 ≤ C5(s− t)|T−1

s−t(θ̌s,t(x)−y)|2 +C ′5.
(2.15)
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Lemma 5 is a key tool for our analysis. It roughly says that, even though the drift coefficient
is not smooth, we can still expect a kind of equivalence of the rescaled forward and backward flows
(which has been thoroughly used in the papers [DM10], [Men11], [Men18] for Lipschitz drifts) up
to an additional constant contribution. This is precisely the result of equation (2.14). Also, since
uniqueness here possibly fails for the flows, equation (2.15) gives that the bound still holds for two
arbitrary measurable flows. This specific property will be used later on in the proof of Lemma 6
below in Appendix A.

It turns out that, the new contribution in (2.14), (2.15) does not perturb the analysis of the
parametrix kernels associated with the density of X̃T,y

T starting from x at time t ∈ [0, T ) given in
Proposition 3. We refer to Section 3.1 for details.

Proof. We focus on the proof of (2.15). Indeed, (2.14) is derived as a special case taking the same
flows, i.e. θ̌ = θ. Considering now two measurable flows θ, θ̌ provided by the integral equation in
Lemma 4, we write from the integral dynamics:

(s− t)
1
2T−1

s−t(x− θt,s(y)) = (s− t)
1
2T−1

s−t

[
(θ̌s,t(x)− y)−

∫ s

t

(
F(u, θ̌u,t(x))− F(u,θu,s(y))

)
du
]
.

= (s− t)
1
2T−1

s−t
(
θ̌s,t(x)− y

)
− Is,t(x,y), (2.16)

Is,t(x,y) = (s− t)
1
2T−1

s−t

∫ s

t

(
F(u, θ̌u,t(x))− F(u,θu,s(y))

)
du.

We aim at establishing that

|Is,t(x,y)| ≤ C
{

1+(s− t)−1

∫ s

t
(s− t)

1
2 |T−1

s−t(θ̌u,t(x)− θu,s(y))|du
}
, (2.17)

which together with (2.16) and the Gronwall lemma gives the r.h.s. of (2.14). The l.h.s. could be
derived similarly to the analysis we now perform.

Since the function F is not Lispchitz, we will thoroughly use, as crucial auxiliary tool, some
appropriate mollified flows. We first denote by δ ∈ Rn ⊗ Rn, a matrix whose entry δij is strictly
positive for indexes i ∈ [[2, n]] and j ≥ i. We then define for all v ∈ [0, T ], z ∈ Rnd, i ∈ [[2, n]],

F δi (v, zi−1,n) := Fi(v, ·) ? ρδi,.(z) =

∫
Rd(n−(i−1))

Fi(v, zi−1, zi − wi, · · · , zn − wn)ρδi,.(w)dw. (2.18)

Here, for all w = (wi, · · · , wn) ∈ Rd(n−(i−1)), ρδi,.(w) := 1∏n
j=i δ

d
ij

ρi

(
wi
δii
, wi+1

δi(i+1)
, · · · , wnδin

)
where ρi :

Rd(n−(i−1)) → R+ is a standard mollifier, i.e. ρi has compact support and
∫
Rd(n−(i−1)) ρi(z)dz = 1. We

denote Fδ(v, z) = (F1(v, z), F δ2 (v, z), · · · , F δn(v, z)).
Note carefully that, under the considered assumptions (A), the (F δi )i∈[[2,n]] are thus Lipschitz

continuous functions, with explosive Lipschitz constant w.r.t. the mollifying procedure in the variables
(xi, · · · , xn). More precisely, standard arguments from approximation theory give that, under the

current assumptions, the Lipschitz constant of F δi w.r.t. its jth variable blows up at rate δ
−1+βji
ij .

Controls associated with the mollification procedure. The first key point is that the regu-
larized drift Fδ only appears in a time integral for our analysis (see equations (2.16) and (2.23)). So,
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the parameters δij only have to satisfy that there exists C := C((A), T ) > 0 such that for all z in
Rnd, for all u in [t, s]: ∣∣∣(s− t) 1

2T−1
s−t

(
F(u, z)− Fδ(u, z)

)∣∣∣ ≤ C(s− t)−1. (2.19)

From the definition of our regularization procedure in (2.18) this means that δij must be such that

n∑
i=2

(s− t)
1
2
−i

n∑
j=i

δ
βji
ij ≤ C(s− t)−1. (2.20)

Hence, one can choose δij = (s− t)
(i− 3

2
) 1

β
j
i which yields (s− t)

1
2
−iδ

βji
ij = (s− t)−1. This choice of δij

will be kept for the rest of the proof.
The second key point relies on the fact that, for this choice of the regularization parameter, the

rescaled drift Fδ satisfies an approximate Lipschitz property whose Lipschitz constant, once the drift
is integrated, does not yield any additional singularity. Namely, there exists a C := C((A), T ) such
that for all u in [s, t], for all z, z′ in Rnd∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(u, z)− Fδ(u, z′)

)∣∣∣ (2.21)

≤ C

(
(s− t)−

1
2 + (s− t)−1|(s− t)

1
2T−1

s−t(z− z′)|

)
.

Indeed, as already underlined at the end of the previous paragraph, the (F δi )i∈[[2,n]] are Lipschitz
continuous functions (with potentially explosive Lipschitz constant in the variables (xi, · · · , xn) for
F δi because of the regularization procedure) and F1 is βj1 > 0 Hölder continuous in the jth variable

for arbitrary (βj1)j∈[[1,n]] in (0, 1]. The Young inequality then yields that there exists C
βj1
> 0 s.t. for

all x ∈ Rnd, |x|β
j
1 ≤ C

βj1
(1 + |x|). Hence,∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(v, z)− Fδ(v, z′)

)∣∣∣ ≤ C

(
(s− t)−

1
2 (1 + |(z− z′)|)

+

n∑
i=2

(s− t)
1
2
−i
(
|(z− z′)i−1|+

n∑
j=i

|(z− z′)j |

δ
1−βji
ij

))

≤ C

(
(s− t)−

1
2 + |(s− t)

1
2T−1

s−t(z− z′)|

×
(

1 + (s− t)−1 +
n∑
i=2

n∑
j=i

(s− t)j−i

δ
1−βji
ij

))
.

Hence (2.21) follows from the fact that, from our previous choice of δij , one gets

(s− t)j−i

δ
1−βji
ij

= (s− t)
(j−i)−(i− 3

2
) 1

β
j
i

(1−βji )

≤ C(s− t)−1, (2.22)

since from the assumption (1.3) on the indexes of Hölder continuity:

βji >
2i− 3

2j − 1
⇐⇒ (j − i)− (i− 3

2
)(1− βji )/β

j
i > −1.
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Derivation of the final bound. We are now in position to bound the term Is,t(x,y) defined in
(2.16). Under (A) we have:

|Is,t(x,y)| ≤
∫ s

t
du|(s− t)

1
2T−1

s−t
(
F(u, θ̌u,t(x))− F(u,θu,s(y))

)
|

≤
∫ s

t
du
∣∣∣(s− t) 1

2T−1
s−t

(
F(u, θ̌u,t(x))− Fδ(u, θ̌u,t(x))

)∣∣∣
+

∫ s

t
du
∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(u, θ̌u,t(x))− Fδ(u,θu,s(y))

)∣∣∣
+

∫ s

t
du
∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(u,θu,s(y))− F(u,θu,s(y))

)∣∣∣
=: I1

s,t(x,y) + I2
s,t(x,y) + I3

s,t(x,y). (2.23)

Using (2.19), we obtain that there exists C := C((A), T ) s.t. for all 0 ≤ t < s ≤ T, x,y ∈ Rnd:

|I1
s,t(x,y)|+ |I3

s,t(x,y)| ≤ C. (2.24)

Finally, one can use (2.21) to derive that for all 0 ≤ t < s ≤ T, x,y ∈ Rnd:

|I2
s,t(x,y)| ≤ C

[
(s− t)

1
2 +

∫ s

t
(s− t)−1

(
(s− t)

1
2 |T−1

s−t(θ̌u,t(x)− θu,s(y))|
)
du

]

≤ C
{

1 + (s− t)−1

∫ s

t
(s− t)

1
2 |T−1

s−t(θ̌u,t(x)− θu,s(y))|du
}
,

up to a modification of C := C((A), T ) for the last inequality. From this last equation together with
(2.24), we therefore derive (2.17). The proof is complete.

2.3 Frozen Green kernels and associated PDEs

In this paragraph we introduce useful tools for the analysis of the martingale problem. Namely, we
consider suitable green kernels associated with the previously defined frozen process and establish the
Cauchy problem which it solves.

For all f ∈ C1,2
0 ([0, T )× Rnd,R), and ε ≥ 0 meant to be small, we define the Green function:

∀(t,x) ∈ [0, T )× Rnd, G̃εf(t,x) =

∫ T

(t+ε)∧T
ds

∫
Rnd

dyp̃s,y(t, s,x,y)f(s,y). (2.25)

We point out that the measurability of the flow in (s,y) established in Lemma 4 precisely gives
that p̃s,y(t, s,x,y) is a measurable function of these parameters and ensures that the above Green
function is properly defined. Denote by (L̃s,yt )t∈[0,s] the generator of (X̃s,y

t )t∈[0,s], i.e. for all ϕ ∈
C∞0 (Rnd,R), x ∈ Rnd,

L̃s,yt ϕ(x) := 〈F(t,θt,s(y)) +DF(t,θt,s(y))(x− θt,s(y)), Dxϕ(x)〉

+
1

2
tr(σσ∗(t,θt,s(y))D2

x1ϕ(x)). (2.26)
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One now easily checks that:

∀(t,x, z) ∈ [0, s)× (Rnd)2,
(
∂t + L̃s,yt

)
p̃s,y(t, s,x, z) = 0. (2.27)

However, we carefully mention that some care is needed to establish the following lemma, whose proof
is postponed to Section A, which is crucial to derive that G̃f := G̃0f actually solves an appropriate
Cauchy like problem.

Lemma 6 (Dirac convergence of the frozen density). For all bounded continuous function f : Rnd →
R,x ∈ Rnd, setting for all (ε, t) in (R+\{0}) × [0, T ], fε,t(x) :=

∫
Rnd f(y)p̃t+ε,y(t, t + ε,x,y)dy, we

have:
sup
t∈[0,T ]

|fε,t(x)− f(x)| −→
ε↓0

0. (2.28)

We emphasize that the above lemma is not a direct consequence of the convergence of the law of
the frozen process towards the Dirac mass (see e.g. (2.27)). Indeed, the integration parameter is also
the freezing parameter which makes things more subtle.

We also have the following result.

Lemma 7 (Lq
′−Lp′ convergence for the mollification with the frozen density). For all bounded contin-

uous function f ∈ C1,2
0 ([0, T )×Rnd,R), setting, for any ε > 0, fε(t,x) :=

∫
Rnd f(t+ε,y)It∈[0,T−ε]p̃

t+ε,y(t, t+
ε,x,y)dy, we have for all p′, q′ > 1:

‖fε − f‖Lq′ ([0,T ],Lp′ (Rnd)) −→ε↓0 0. (2.29)

Introducing for all f ∈ C1,2
0 ([0, T )× Rnd,R), ε ≥ 0 and (t,x) ∈ [0, T )× Rnd the quantity:

M̃ ε
t f(t,x) =

∫ T

(t+ε)∧T
ds

∫
Rnd

dyL̃s,yt p̃s,y(t, s,x,y)f(s,y), (2.30)

we derive from (2.27) and Proposition 3 that the following equality holds for all ε > 0 small enough:

∂tG̃
εf(t,x) + M̃ ε

t f(t,x) = −fε(t,x), ∀(t,x) ∈ [0, T )× Rnd, (2.31)

denoting with the notation of Lemma 7, fε(t,x) =
∫
Rnd f(t+ ε,y)It∈[0,T−ε]p̃

t+ε,y(t, t+ ε,x,y)dy, i.e.
the time argument of f is also shifted and truncated above T − ε. Observe here that the localization
w.r.t. ε is precisely needed to exploit directly (2.27) and derive (2.31), for a given fixed ε > 0, by
usual domination arguments. We mention that when ε = 0, it follows from the definition (2.25) of
our Green kernel that the smoothness on f is not a sufficient condition to derive the smoothness of
G̃f = G̃0f . This comes from the dependence of the covariance matrix in p̃s,y w.r.t. the integration
variable (see (2.7)).

Proposition 8. Pointwise control of the Green Kernel. There exists C(T ) := C((A), T ) −→
T→0

0

s.t. for all (t,x) ∈ [0, T ] × Rnd and all f ∈ Lq
′(

[0, T ], Lp
′
(Rnd)

)
s.t. n2d

p′ + 2
q′ < 2, p′ > 1, q′ > 1,

ε ∈ [0, T − t]:
|G̃εf(t,x)| ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)). (2.32)
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Proof. From (2.8) with k = 0 and Lemma 5 we have that for all ε ∈ [0, T − t],

|G̃εf(t,x)| ≤ C

∫ T

t
ds

∫
Rnd

dy|f(s,y)|p̄C−1(t, s,x,y) (2.33)

≤ C

∫ T

t
ds

∫
Rnd

dy|f(s,y)|
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)
n2d
2

≤ C

∫ T

t
ds

∫
Rnd

dy|f(s,y)|
exp

(
−C−1

[
(s− t)|T−1

s−tθs,t(x)− y)|2 + 1
])

(s− t)
n2d
2

,

up to a modification of C. So, the result follows from the Hölder inequality and the condition on the
exponents p′ and q′. Denoting by p̃′, q̃′ the conjugate of p′ and q′ respectively we indeed have

∫ T

t
ds

∣∣∣∣∣∣
∫
Rnd

dy

∣∣∣∣∣exp
(
−C−1(s− t)(|T−1

s−t(θs,t(x)− y)|2)
)

(s− t)
n2d
2

∣∣∣∣∣
p̃′
∣∣∣∣∣∣
q̃′
p̃′

≤ C

∫ T

t
ds

1

(s− t)
n2d
2

(p̃′−1)( q̃
′
p̃′ )

< +∞⇔ n2d(p̃′ − 1)

2

q̃′

p̃′
< 1⇔ n2d

2p′
+

1

q′
< 1.

3 Well posedness of the corresponding martingale problem

We have now given the main tools needed to prove our main results: the well posedness of the martin-
gale problem associated with (Lt)t≥0 defined in (1.4) and the corresponding Krylov-type estimates.
This section is organized as follows: we first investigate the well posedness under Assumption (D)-
(a). In that case, the existence part is not a challenge, since it readily follows from previously known
results based on compactness arguments that exploit the sublinear structure of the drift F, while the
uniqueness part is quite more delicate. As a by-product of our approach to uniqueness we derive the
Krylov like estimate.

The scheme used for proving uniqueness under (D)-(a) will be a major tool to extend our result
for uniqueness under (D)-(b) (the existence part under that assumption being a trivial application
of the Girsanov Theorem) and then for existence and uniqueness under (D)-(c). Indeed, under this
last assumption, even the existence part requires to derive first some Krylov type estimates. We will
precisely exploit those established under (A)-(a) considering first F1 = 0 and then cope with the
true Lq −Lp drift through a Girsanov argument. The approach is in some sense similar to the one of
Krylov and Röckner [KR05] or Fedrizzi et al. [FFPV17] for the Girsanov part. The main difference is
that in the quoted work the required Krylov like estimate readily followed from the explicit density of
the unperturbed process at hand. The Brownian motion in [KR05], the joint density of the Brownian
motion and its integral in [FFPV17]. We here precisely show that, first under (A)-(a), the solution
to the martingale problem has a density which satisfies a similar Krylov type estimate. We actually
prove that any solution to the martingale problem satisfies such an estimate (see equation (3.8) below).
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It is precisely to deal with Lq − Lp drifts (under Assumption (D)-(c)) that we have chosen an
approach inspired by the Stroock and Varadhan original arguments which explicitly provides the
required Krylov like estimates. Before going into the proof, let us briefly explain the main differences
between our analysis and the strategy of [SV79]. In particular, our approach differs from the original
one because of the specific structure of our problem.

In the original non degenerate setting with bounded drifts considered by Stroock and Varadhan,
the Girsanov Theorem allows them to deal with the diffusive part of the equation only. Their main
idea to obtain the desired control on their perturbed kernel goes through regularization arguments.
The key point allowing them to get the estimation at the limit are: the strong convergence of the
driftless Euler scheme (to keep track on pointwise estimate) and a localization argument.

In our current setting things are a bit different: we are not allowed anymore to get rid of the drift,
because of our degenerate structure.

Our strategy is the following. In the Hölder framework of case (a), we manage to prove directly the
existence of the density of the canonical process for any solution to the martingale problem through
the associated Krylov-type estimate, for f ∈ Lq′([0, T ], Lp

′
(Rnd)) and p′, q′ large enough. This is a

consequence of the pointwise controls established in Lemma 9 below. This is enough to derive the well
posedness of the martingale problem. In a second time, we complete the proof of the Krylov estimate
(1.5) on the indicated range for p′, q′ through a regularization argument. Namely, we regularize the
drift coefficient F through convolution. For the regularized drift, it follows from [DM10], [Men11]
that the corresponding process has a density. It then follows from the previous analysis that the
process with mollified coefficients satisfies uniformly w.r.t. the mollification parameter the Krylov
estimate. The final statement then follows letting the mollification parameter tend to zero from the
well posedness of the martingale problem. Cases (b) and (c) are handled from case (a) through an
additional Girsanov type argument.

3.1 Well posedness with full Hölder drift, Assumption (D)-(a)

3.1.1 Existence under Assumption (D)-(a)

The first step is to establish that there exists a solution to the martingale problem defined in Theorem
1. From the definition of (Lt)t≥0 in (1.4) it is easily seen that, under (A), existence is obtained
adapting to our current framework Theorem 6.1.7 in [SV79]. The strategy is clear. An Euler like
scheme can be considered. Fix first T > 0 and consider the grid Λm([0, T ]) := {(ti := ih)i∈[[0,m]]}, h =
T/m. Introduce the corresponding “discretization” scheme:

Xm
s = Xm

ti +

∫ s

ti

(
F(ti,X

m
ti )+DF(ti,X

m
ti )(X

m
u −Xm

ti )
)
du+Bσ(ti,X

m
ti )(Ws−Wti), s ∈ [ti, ti+1]. (3.1)

This scheme defines a sequence of measures (Pm)m≥1 on C([0, T ],Rnd) which is tight and for which
the continuity assumption on the coefficients and the sub-linearity of the drift allow to identify that
any limit P solves the martingale associated with (Lt)t≥0 on [0, T ]. We refer to Section 6.1 of [SV79]
for details. To derive the existence of a solution to the martingale problem on the whole positive line,
we can rely on a usual chaining in time argument, see e.g. Chapter 6 in [SV79].
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3.1.2 Uniqueness Assumption (D)-(a)

We first want to establish that any solution to the martingale problem satisfies the suitable Krylov
like density estimate of Theorem 1. To do so, the key ingredient is to prove that an operator involving
L and a suitable associated perturbation (based on the frozen process/generators of Section 2) has
small Lq

′ − Lp′ norm when the fixed final horizon T is small. Namely, for ε ≥ 0:

Rεf(t,x) := (LtG̃
εf − M̃ ε

t f)(t,x) =

∫ T

(t+ε)∧T
ds

∫
Rnd

dy(Lt − L̃s,yt )p̃s,y(t, s,x,y)f(s,y), (3.2)

with G̃εf, M̃ εf and p̃s,y defined in (2.25), (2.30) and (2.7) respectively. We will often use as well the
notation Rf(t,x) = R0f(t,x). We have the following Lemma whose proof is postponed to the end of
the current section:

Lemma 9 (Pointwise and Lq
′ − Lp′ Control for Rε).

There exists q′0 := q′0((A)), p′0 := p′0((A)) s.t. for q′ ≥ q′0, p
′ ≥ p′0, it holds that for all (t,x) ∈

[0, T ]× Rnd and Rε as in (3.2):

|Rεf(t,x)| ≤ C‖f‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)), (3.3)

with C := C((A), T, p′0, q
′
0).

Also, for q′, p′ > 1 s.t. n2d
p′ + 2

q′ < 2, we have that for all f ∈ Lq′([0, T ]×Rnd, Lp′(Rnd)), uniformly
in ε ∈ [0, ε0], ε0 small enough:

‖Rεf‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)) ≤ C‖f‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)), (3.4)

with C := C((A), T, p′, q′) −→
T→0

0. In particular, equation (3.4) implies that the operator I − Rε is

invertible, with bounded inverse in Lq
′ − Lp′, provided T is small enough.

The first step of our procedure consists in applying the Itô formula on the Green kernel G̃εf , for
f in C1,2

0 ([0, T )×Rnd,R), for ε small enough (depending on the support of f) and the process Xt,x
s .

G̃εf(t,x) + E

[∫ T

t
(∂s + Ls)G̃

εf(s,Xt,x
s )ds

]

= G̃εf(t,x) +

∫ T

t

∫
Rnd

(∂s + Ls)G̃
εf(s,y)PXt,x

s
(dy)ds = 0,

where PXt,x
s

denotes the law of Xt,x
s . We exploit (2.31) to write:

G̃εf(t,x)−
∫ T

t

∫
Rnd

fε(s,y)PXt,x
s

(dy)ds+

∫ T

t

∫
Rnd

(LsG̃
εf − M̃ ε

s f)(s,y)PXt,x
s

(dy)ds = 0. (3.5)

Recall that thanks to Proposition 8 we have that there exists C(T ) := C((A), T ) −→
T→0

0 s.t. for all

(t,x) ∈ [0, T ]× Rnd and all f ∈ Lq′([0, T ], Lp
′
(Rnd):
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|G̃εf(t,x)| ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)). (3.6)

Assume now for a while that p′, q′ are large enough so that the pointwise control (3.3) of Lemma
9 holds. From (3.5), (3.6) and (3.3) we readily get:

|
∫ T

t
E[fε(X

t,x
s )]ds| ≤ C‖f‖Lq′ ([0,T ],Lp′ (Rnd)) (3.7)

Letting ε go to zero, we thus derive from Lemma 6 that for any solution P of the martingale
problem, provided p′, q′ are large enough, for all f ∈ C∞0 ([0, T )× Rnd,R) it holds:∣∣∣∣∣EP

[∫ T

t
f(s,Xt,x

s )ds

]∣∣∣∣∣ ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)), (3.8)

which is precisely the estimate (1.5) of Theorem 1.
Now, for any solution P of the martingale problem, denote, thanks to (3.8), its density by

p(t, s,x,y). We have from (3.5) that:

−G̃εf(t,x) = −EP

[∫ T

t
fε(s,X

t,x
s )ds

]
+ E

[∫ T

t
Rεf(s,Xt,x

s )ds

]

= −
∫ T

t

∫
Rnd

fε(s,y)p(t, s,x,y)dyds+

∫ T

t

∫
Rnd

Rεf(s,y)p(t, s,x,y)dyds

= −
∫ T

t

∫
Rnd

(Iε −Rε)f(s,y)p(t, s,x,y)dyds, (3.9)

denoting by Iεf(s,y) = fε(s,y). Since both sides are continuous with respect to Lq
′ − Lp′ norm,

uniformly in ε, we conclude that (3.9) holds for all f ∈ Lq′ − Lp′ . We then conclude from Lemma 9
that letting ε go to zero:

EP

[∫ T

t
f(s,Xt,x

s )ds

]
= G̃ ◦ (I −R)−1f(t,x), (3.10)

which gives uniqueness for T small enough. Global well-posedness is again derived from a chaining
in time argument.

To complete the proof of Theorem 1 under (A)-(a) it now remains to derive the Krylov estimate

(1.5) under the condition on p′, q′ stated therein, namely n2d
p′ + 2

q′ < 2, and not only for p′, q′ large
enough.

Consider for a parameter δ > 0, the SDE (1.1) with drift Fδ(t,x) :=
(
F(t, ·) ? Φδ

)
(x), where

Φδ(·) := δ−ndΦ(·/δ), where Φ ∈ C∞0 (Rnd,R+),
∫
Rnd Φ(z)dz = 1. It is known that, denoting by Pδ

the associated solution to the martingale problem, the canonical process enjoys two-sided multi-scale
Gaussian bounds similar to those of (2.8) (with k = 0), see indeed again [DM10], [Men11].

Denoting by pδ(t, s,x,y) its density, similarly to (3.5) we get

G̃δ,εf(t,x) −
∫ T

t

∫
Rnd

fε(s,y)pδ(t, s,x,y)dyds+

∫ T

t

∫
Rnd

(LδsG̃
εf − M̃ δ,ε

s f)(s,y)pδ(t, s,x,y)dyds

= 0, (3.11)
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where in the above equation, G̃δ,εf, Lδs, M̃
δ,ε
s denote the frozen Green kernel, generator and frozen

generator with mollified drift. Importantly, the pointwise bound (3.6) on the Green kernel and the
controls of Lemma 9 are uniform with respect to this additional mollifying parameter.

From (3.11) and Lemma 9 we deduce that

C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd))

(
1 + ‖pδ‖Lq̃′ ([0,T ],Lp̃′ (Rnd))

)
≥
∣∣∣∣ ∫ T

t

∫
Rnd

fε(s,y)pδ(t, s,x,y)dyds

∣∣∣∣,
where q̃′, p̃′ are the conjugate exponents of q′, p′ respectively. This yields in particular from the Riesz
representation theorem that, for T small enough, ‖pδ‖Lq̃′ ([0,T ],Lp̃′ (Rnd)) ≤ C(T ). Thus:∣∣∣∣∣

∫ T

t

∫
Rnd

fε(s,y)pδ(t, s,x,y)dyds

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

t
EPδ [fε(s,X

t,x
s )]ds

∣∣∣∣∣ ≤ C(T )‖fε‖Lq′ ([0,T ],Lp′ (Rnd)).

The Krylov like estimate (1.5) is then obtained by the dominated convergence theorem and Lemma 6
letting first ε and then δ go to zero from the well posedness of the martingale problem and Theorem
11.1.4 in [SV79].

This completes the proof of Theorem 1 under (A)-(a) �

Proof of Lemma 9 We focus on the proof for Rf = R0f . The parameter ε does not play here any
role for the estimates. We have, by definition

Rf(t,x) =

∫ T

t
ds

∫
Rnd

dy(Lt − L̃s,yt )p̃s,y(t, s,x,y)f(s,y)

=:

∫ T

t
ds

∫
Rnd

dyH(t, s,x,y)f(s,y). (3.12)

Here, the operator H is the so-called backward parametrix kernel, see [MS67]. It already appeared,
in a similar form but under stronger smoothness assumptions in [DM10, Men11].

The bound (2.8) of Proposition 3 now yields that there exists C := C((A)) such that:

|Rf(t,x)| ≤
∫ T

t
ds

∫
Rnd

dy|f(s,y)|

{∣∣∣F1(t,x)− F1(t,θt,s(y))
∣∣∣|Dx1 p̃

s,y(t, s,x,y)|

+
n∑
i=2

{∣∣∣Fi(t,x)−
(
Fi(t,θt,s(y))−Dxi−1Fi(t,θt,s(y))(x− θt,s(y))i−1

)∣∣∣
×|Dxi p̃

s,y(t, s,x,y)|
}

+ |a(t,x)− a(t,θt,s(y))||D2
x1 p̃

s,y(t, s,x,y)|

}

≤ C

∫ T

t
ds

∫
Rnd

dy|f(s,y)|

{(
1 + |x− θt,s(y)|

)
(s− t)

1
2

+

n∑
i=2

{[∣∣∣Fi(t,x)− Fi(t, xi−1,θt,s(y)i:n)
∣∣∣

+
∣∣∣Fi(t, xi−1,θt,s(y)i:n)−

(
Fi(t,θt,s(y))−Dxi−1Fi(t,θt,s(y))(x− θt,s(y))i−1

)∣∣∣]
× 1

(s− t)(i−1)+ 1
2

}
+
|x− θt,s(y)|η

s− t

}
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)
n2d
2

,
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where we have denoted for z ∈ Rnd, zi:n = (zi, · · · , zn) ∈ R(n−(i−1))d. From (A) and (1.3) we thus
derive, up to a modification of C:

|Rf(t,x)| ≤ C

∫ T

t
ds

∫
Rnd

dy|f(s,y)|

{(
(s− t)−

1
2 + (s− t)

1
2 |T−1

s−t(x− θt,s(y))|
)

+
n∑
i=2

{[ n∑
j=i

( |(x− θt,s(y))j |
(s− t)j−

1
2

)βji
(s− t)β

j
i (j− 1

2
)

+
( |(x− θt,s(y))i−1|

(s− t)(i−1)− 1
2

)1+η
(s− t)(i− 3

2
)(1+η)

∣∣∣] 1

(s− t)i−
1
2

}

+

(
(s− t)

1
2 |T−1

s−t(x− θt,s(y))|
)η

(s− t)1− η
2

}
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)
n2d
2

.

In the above equation we put each contribution coming from the difference of the generators at its
intrinsic scale w.r.t. exponential bounds. In other words, the terms:( |(x− θt,s(y))j |

(s− t)j−
1
2

)βji ≤ (
(s− t)

1
2 |T−1

s−t(x− θt,s(y))|
)βji ,

( |(x− θt,s(y))i−1|
(s− t)(i−1)− 1

2

)1+η
≤

(
(s− t)

1
2 |T−1

s−t(x− θt,s(y))|
)(1+η)

,

can be absorbed by the exponential. Therefore,

|Rf(t,x)| ≤ C

{
n∑
i=2

n∑
j=i

∫ T

t

ds

(s− t)i−
1
2
−βji (j− 1

2
)

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|

+

∫ T

t

ds

(s− t)1− η
2

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|

+

n∑
i=2

∫ T

t

ds

(s− t)1−η(i− 3
2

)

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|

}
. (3.13)

Note carefully that the condition (1.3) precisely gives that for all i ∈ [[2, n]], j ∈ [[i, n]], 1− {(i− 1) +
1
2 − β

j
i (j − 1 + 1

2) > 0 so that all the above time singularity are integrable. Note also that, thanks to
Lemma 5 (almost equivalence on the flows):∫

Rnd
dyp̄C−1(t, s,x,y) =

∫
Rnd

dy
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)
n2d
2

≤ C3.14. (3.14)

The results in (3.3) and (3.4) now follow from (3.13) and the following key Lemma.

Lemma 10 (Lq
′−Lp′ Controls for the singularized Green kernel). Introduce for f ∈ Lq′

(
[0, T ], Lp

′
(Rnd)

)
,

with p′, q′ > 1 and some γ ∈ [0, 1) the quantify:

Nγf(t,x) :=

∫ T

t

ds

(s− t)γ

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|. (3.15)
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There exists q′0 := q′0(γ) ≥ 1, p′0 := p′0(γ) ≥ 1 and C := C((A), T, p′0, q
′
0) s.t. for q′ ≥ q′0, p

′ ≥ p′0, it
holds that for all (t,x) ∈ [0, T ]× Rnd:

Nγf(t,x) ≤ C‖f‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)),

.
Also, there exists C(T ) := C(T, (A), γ) −→

T→0
0 s.t. for all f ∈ Lq′

(
[0, T ], Lp

′
(Rnd)

)
,

‖Nγf‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

Proof of Lemma 10. Let us first start with the pointwise estimate. For all (t,x) ∈ [0, T ) × Rnd,
denoting by p̃′, q̃′ the conjugate exponents of p′, q′, write:

Nγf(t,x) ≤
(∫ T

t

ds

(s− t)q̃′γ
( ∫

Rnd
dyp̄C−1(t, s,x,y)p̃

′) q̃′
p̃′
) 1
q̃′ ‖f‖Lq′ ([0,T ],Lp′ (Rnd))

≤ C

∫ T

t

ds

(s− t)q̃
′(γ+n2d

2
(1− 1

p̃′ ))
‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

It is thus clear that the pointwise statement of the lemma is fulfilled if p′, q′ are large enough, in order
to guarantee that, for (p̃′)−1 + (p′)−1 = 1, (q̃′)−1 + (q′)−1 = 1, p̃′, q̃′ are sufficiently close to 1 to have

q̃′(γ + n2d
2 (1− 1

p̃′ )) < 1.

Let us now turn to the estimate in Lq
′
([0, T ], Lp

′
(Rnd)) norm. Setting

Kt,s,γ ? f(s,x) :=
1

(s− t)γ

∫
Rnd

dyp̄C−1(t, s,x,y)f(s,y)dy,

we derive from (3.15) and the triangle inequality:∥∥∥Nγf(t, ·)
∥∥∥
Lp′ (Rnd)

=
∥∥∥∫ T

t
dsKt,s,γ ? f(s, ·)

∥∥∥
Lp′ (Rnd)

≤
∫ T

t
ds‖Kt,s,γ ? f(s, ·)‖Lp′ (Rnd). (3.16)

From usual L1 − Lp′ convolution arguments we also get:

‖Kt,s,γ ? f(s, ·)‖Lp′ (Rnd) ≤
C

(s− t)γ
‖f(s, ·)‖Lp′ (Rnd).

Plugging this estimate into (3.16) and using the Hölder inequality with exponents q′, q̃′ > 1 s.t.
(q′)−1 + (q̃′)−1 = 1 we obtain:∫ T

0
dt‖Nγf(t, ·)‖q

′

Lp′ (Rnd)
≤ C

∫ T

0
dt
(∫ T

t

ds

(s− t)γ
‖f(s, ·)‖Lp′ (Rnd)

)q′
≤ CT

∫ T

0
dt

∫ T

t
ds

C

(s− t)γ
‖f(s, ·)‖q

′

Lp′ (Rnd)
,
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where CT := C((A), p′, q′, T ) denotes a constant which is small as T is. From the Fubini Theorem
we eventually derive∫ T

0
dt‖Nγf(t, ·)‖q

′

Lp′ (Rnd)
≤ CT

∫ T

0
ds‖f(s, ·)‖q

′

Lp′ (Rnd)

∫ s

0
dt

C

(s− t)γ
≤ CT ‖f‖q

′

Lq′ ([0,T ],Lp′ (Rnd))
,

up to a modification of CT in the last inequality.

Hence, using the above control in (3.15) yields:

‖Rf‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ CT ‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

This concludes the proof of Lemma 9.

3.2 Existence and uniqueness under (D)-(b) and (c)

Since in that setting no continuity is assumed on F1 we will derive the well posedness through Girsanov
arguments. It therefore clearly appears that the dynamics with 0 drift on the first non-degenerate
component, and its associated linearization, plays a key role. We first introduce some notations used
throughout this section.

We first define for all x ∈ Rnd, F̄(t,x) := (0, F2(t,x), · · · , Fn(t,x)), where F̄ satisfies (S) and
(H). Recall from Theorem 1 that, under (A)-(a), weak uniqueness holds for the SDE:

dX̄t = F̄(t, X̄t)dt+Bσ(t, X̄t)dWt. (3.17)

For fixed (T,y) ∈ R+×Rnd, we consider the following deterministic system to define our Gaussian
proxy:

.

θ̄t,T (y) = F̄(t, θ̄t,T (y)), θ̄T,T (y) = y, (3.18)

and
d

dt
˜̄φt = F̄(t, θ̄t,T (y)) +DF(t, θ̄t,T (y))[˜̄φt − θ̄t,T (y)], t ≥ 0.

Again, in (3.18), we consider the Cauchy-Peano flow furnished by Lemma 4 and which also satisfies
the equivalence of rescaled norms of Lemma 5. The dynamics of the linearized Gaussian process
associated with (3.17) writes:

d ˜̄XT,y
t =

(
F̄(t, θ̄t,T (y)) +DF̄(t, θ̄t,T (y))( ˜̄XT,y

t − θ̄t,T (y))
)
dt+Bσ(t, θ̄t,T (y))dWt, (3.19)

and we denote the associated generator by ( ˜̄LT,yt )t∈[0,T ] and by ˜̄pT,y(t, s,x, ·) the corresponding density
at times s > t when the process starts in x at time t.

We point out that, with respect to the previously used notations, we choose to keep track of the
driftless dynamics for F1 adding bars on the associated objects: dynamics, generators, density.

For our strategy, recall that we aim at proving uniqueness for the initial SDE (1.1), through
the well posedness of the martingale problem associated with (Lt)t≥0. Once existence is known, the
point is that we use a different Gaussian proxy than previously, namely the one considered in (3.19)
associated with the driftless dynamics on the first component.
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3.2.1 Existence and Uniqueness under Assumption (D) - (b)

Under (b) (bounded measurable drift F1 on the non-degenerate component), existence is a direct
consequence of the Girsanov theorem. We thus now focus on uniqueness.

Repeating the previous approach (see subsection 3.1.2), using the family of random variables

( ˜̄Xs,y
s )s∈[t,T ] defined in (3.19) with ˜̄Xs,y

t = x as Gaussian proxys, we have to bound analogously to
the estimate of Lemma 9:

Rf(t,x) :=

∫ T

t
ds

∫
Rnd

dy(Lt − ˜̄Ls,yt )˜̄ps,y(t, s,x,y)f(s,y) (3.20)

=

∫ T

t
ds

∫
Rnd

dy
{

(Lt − L̄t) + (L̄t − ˜̄Ls,yt )
}

˜̄ps,y(t, s,x,y)f(s,y)

=: R̄f(t,x) + R̄f(t,x),

where

R̄f(t,x) :=

∫ T

t
ds

∫
Rnd

dy(L̄t − ˜̄Ls,yt )˜̄ps,y(t, s,x,y)f(s,y),

and

R̄f(t,x) := (R− R̄)f(t,x) =

∫ T

t
ds

∫
Rnd

dy(Lt − L̄t)˜̄ps,y(t, s,x,y)f(s,y) (3.21)

=

∫ T

t
ds

∫
Rnd

dy〈F1(t,x), Dx1
˜̄ps,y(t, s,x,y)〉f(s,y).

From Lemma 9, we have already shown that R̄f(t,x) is controlled in Lq
′ − Lp′ norm. It thus suffice

to investigate the behavior of the Lq
′ − Lp′ norm of R̄f(t,x) defined by (3.21). Namely, our goal is

to prove that

‖R̄f‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)), with C(T ) −→
T→0

0. (3.22)

Since from (2.8) and (3.21) we have for all (t,x) ∈ [0, T ]× Rnd:

|R̄f(t,x)| ≤ C

∫ T

t

ds

(s− t)
1
2

∫
Rnd

dy
exp

(
−C−1(s− t)|T−1

s−t(x− θ̄t,s(y))|2
)

(s− t)
n2d
2

|f(s,y)|.

The estimate (3.22) then readily follows from Lemma 10.

3.2.2 Existence and Uniqueness under Assumption (D)-(c)

We choose in this paragraph to address first the uniqueness, which is a rather direct extension of
our previous approach, whereas the existence is a bit involved and requires to exploit the Krylov like
inequality (1.5) that has been established for the process (X̄t)t≥0 with 0 drift in the non-degenerate
component introduced in (3.17).
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Uniqueness under Assumption (D)-(c) With the notations of the previous paragraph it remains
to control, in Lq

′ − Lp′ norm, the contribution R̄f introduced in (3.21). The term R̄f in (3.20) is
again controlled as under assumption (A)-(a). Similarly to the previous paragraph (see also (2.8)
and (3.21)), we have:

|Dx1
˜̄ps,y(t, s,x,y)| ≤ C

(s− t)
n2d
2

+ 1
2

× exp

(
−C

−1

2
(s− t)|T−1

s−t(x− θ̄t,s(y))|2
)

≤ C

(s− t)
1
2

p̄C−1(t, s,x,y). (3.23)

Uniqueness then follows from the following lemma which can be viewed as a refinement of Lemma 10
and explicitly exploits the condition on p and q stated in (A)-(c).

Lemma 11 (Refined Lq − Lp control of singularized Green kernels).
Introduce for all f, F1 ∈ Lq

(
[0, T ], Lp(Rnd)

)
and (t,x) ∈ [0, T ]× Rnd,

uF1(t,x) := F1(t,x)

∫ T

t

ds

(s− t)
1
2

∫
Rnd

p̄C−1p(t, s,x,y)f(s,y)dy. (3.24)

Then, for all p ≥ 2, q > 2 s.t. n2d
p + 2

q < 1, there exists C(T ) := C(T, (A), p, q) −→
T→0

0 s.t. for all

f, F1 ∈ Lq
(
[0, T ], Lp(Rnd)

)
‖uF1‖Lq([0,T ],Lp(Rnd)) ≤ C(T )‖F1‖Lq([0,T ],Lp(Rnd))‖f‖Lq([0,T ],Lp(Rnd)).

Proof of Lemma 11. With the notations of Lemma 10 rewrite:

uF1(t,x) = F1(t,x)

∫ T

t

ds

(s− t)
1
2

∫
Rnd

p̄C−1(t, s,x,y)f(s,y)dy =: F1(t,x)

∫ T

t
dsKt,s, 1

2
? f(s,x).

(3.25)
The triangle inequality yields:∥∥∥∫ T

t
dsF1(t, ·)Kt,s, 1

2
? f(s, ·)

∥∥∥
Lp(Rnd)

≤
∫ T

t
ds‖F1(t, ·)Kt,s, 1

2
? f(s, ·)‖Lp(Rnd). (3.26)

The idea is here to reproduce the computations of Lemma 10 integrating directly the singularized
heat-kernel, i.e. Kt,s, 1

2
, in the y variable when performing the Hölder inequality in order to make the

product of the norms ‖f(s, ·)‖Lp(Rnd)‖F1(t, ·)‖Lp(Rnd) appear. Precisely:

‖F1(t, ·)Kt,s, 1
2
? f(s, ·)‖Lp(Rnd) =

(∫
Rnd

dx|F1(t,x)|p
∣∣∣ ∫

Rnd
dyKt,s, 1

2
(x,y)f(s,y)

∣∣∣p) 1
p

≤
(∫

Rnd
dx|F1(t,x)|p

{∫
Rnd

dy|f(s,y)|p
}{∫

Rnd
dy|Kt,s, 1

2
(x,y)|p̃

} p
p̃
) 1
p
,
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where again p−1 + (p̃)−1 = 1. Observe now that usual Gaussian calculations give that there exists
Cp > 0 such that, for all x in Rnd:{∫

Rnd
dy|Kt,s, 1

2
(x,y)|p̃

} 1
p̃ ≤ Cp

(s− t)
n2d
2

1
p

+ 1
2

.

Thus,

‖F1(t, ·)Kt,s, 1
2
? f(s, ·)‖Lp(Rnd) ≤ ‖F1(t, ·)‖Lp(Rnd)‖f(s, ·)‖Lp(Rnd)

Cp

(s− t)
n2d
2

1
p

+ 1
2

, (3.27)

which yields from (3.26) that:∥∥∥∫ T

t
dsF1(t, ·)Kt,s, 1

2
? f(s, ·)

∥∥∥
Lp(Rnd)

≤ Cp
∫ T

t

ds

(s− t)
n2d
2

1
p

+ 1
2

‖F1(t, ·)‖Lp(Rnd)‖f(s, ·)‖Lp(Rnd).

From the definition in (3.25) we eventually derive that:∫ T

0
dt‖uF1(t, ·)‖q

Lp(Rnd)
≤ Cqp

∫ T

0
‖F1(t, ·)‖q

Lp(Rnd)

(∫ T

t

ds

(s− t)(n
2d
2

1
p

+ 1
2

)q̃

) q
q̃ ∫ T

t
ds‖f(s, ·)‖q

Lp(Rnd)

≤ Cqp‖F1‖qLq([0,T ],Lp(Rnd))
‖f‖q

Lq([0,T ],Lp(Rnd))

(∫ T

t

ds

(s− t)(n
2d
2

1
p

+ 1
2

)q̃

) q
q̃

,(3.28)

with q−1 + (q̃)−1 = 1. Let us now show that the remaining time integral in the above equation gives

a small contribution in times. To do so, it suffices to show that (n
2d
2

1
p + 1

2)q̃ < 1. Since (q̃)−1 = 1− 1
q ,

we have that: (n2d

2

1

p
+

1

2

)
q̃ < 1 ⇐⇒ n2d

2

1

p
+

1

2
< 1− 1

q
⇐⇒ n2d

p
+

2

q
< 1,

which is precisely the condition appearing in (A)-(c) and assumed in the current Lemma.

Existence under Assumption (D)-(c) We here consider a function F1 ∈ Lq([0, T ], Lp(Rnd)),
where p, q are as in (D)-(c). To prove the existence, the strategy is to exploit the idea introduced by
Portenko [Por90] and used by Krylov and Röckner [KR05] as well to build local weak solutions (before
they also establish that they are actually strong solutions) in the non-degenerate case. We also refer
for perturbed degenerate Ornstein-Uhlenbeck dynamics to [FFPV17] and [Zha18]. We adapt a bit
this approach.

Recall that for the process (X̄t)t≥0 introduced in (3.17) we have from Theorem 1, equation (1.5),
the following density estimate.

Denoting by P̄ (t, s,x, ·) the transition probability determined by (L̄s)s≥0, it is s.t. for a given
T > 0, almost all s ∈ (t, T ] and all Γ ∈ B(Rnd): P̄ (t, s,x,Γ) =

∫
Γ p̄(t, s,x,y)dy. More specifically, for

any f ∈ Lq′([0, T ], Lp
′
(Rnd)), n2d

p′ + 2
q′ < 2, p′ > 1, q′ > 1, and (t,x) ∈ [0, T ]× Rnd:∣∣∣ĒP̄t,x

[ ∫ T

t
f(s, X̄s)ds

]∣∣∣ ≤ C3.29‖f‖Lq′ ([0,T ],Lp′ (Rnd)), C3.29 := C3.29((A), p′, q′, T ). (3.29)
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We now state an exponential integrability result for the unique weak solution of (3.17). Such
types of estimates were first proved by Khas’minskii in [Kha59] for the Brownian motion. We can
also refer to Lemma 2.1 in Chapter 1 of the monograph by Sznitman [Szn98]. Since the proof only
relies on the Markov property, it readily extends to the current inhomogeneous and non-Brownian
framework.

Lemma 12 (Khas’minskii’s type exponential integrability). Let (X̄t)t≥0 be the (unique-weak) solution
to (3.17). Then, for any fixed T > 0 and a positive Borel function f : [0, T ]× Rnd → R+ s.t.

αT := sup
x∈Rnd

ĒP̄0,x

[∫ T

0
f(s, X̄s)ds

]
< 1,

one also has:

sup
x∈Rnd

ĒP̄0,x

[
exp

(∫ T

0
f(s, X̄s)ds

)]
<

1

1− αT
.

As a corollary to the previous Lemma we obtain the following proposition which will allow to
apply the Girsanov Theorem to derive the existence of a solution to the martingale problem under
the assumption (D)-(c) through a change of probability.

Proposition 13 (Exponential integrability). Let (X̄t)t≥0 be the (unique-weak) solution to (3.17).

Let F1 ∈ Lq([0, T ], Lp(Rnd)) with n2d
p + 2

q < 1, p ≥ 2, q > 2. Then, for any λ > 0, there exists
KF1,λ := KF1,λ((A), T ) s.t.

sup
x∈Rnd

ĒP̄0,x

[
exp

(
λ

∫ T

0
|(σ−1F1)(s, X̄s)|2ds

)]
≤ KF1,λ. (3.30)

The constant KF1,λ depends continuously on ‖F1‖Lq([0,T ],Lp(Rnd)) and λ.

We point out that in the above Proposition, the case p = 2 can only be considered in the scalar
non-degenerate case d = n = 1.

Proof. Observe that for a > 1 s.t. a(n
2d
p + 2

q ) < 1, setting p′ = p
2a , q

′ = q
2a , so that indeed n2d

p′ + 2
q′ < 2,

one has:

‖ |σ−1F1|2a ‖Lq′ ([0,T ],Lp′ (Rnd)) =
(∫ T

0
dt
{∫

Rnd
dx(|(σ−1F1)(t,x)|2a)p′

} q′
p′
) 1
q′

≤ κa
(∫ T

0
dt
{∫

Rnd
dx|F1(t,x)|p

} q
p
) 2a
q ≤ κa‖F1‖2aLq([0,T ],Lp(Rnd)).

From equation (3.29) we thus derive that for all x ∈ Rnd:∣∣∣ĒP̄0,x [

∫ T

0
|σ−1F1(s, X̄s)|2ads]

∣∣∣ ≤ C3.29‖ |σ−1F1|2a ‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ C3.29κ
a‖F1‖2aLq([0,T ],Lp(Rnd)).

(3.31)
For a as above, write now for ε ∈ (0, 1) and from the Young inequality:

ĒP̄0,x

[
exp

(
λ

∫ T

0
|(σ−1F1)(s, X̄s)|2ds

)]
≤ ĒP̄0,x

[
exp

(
λ

∫ T

0
|(σ−1F1)(s, X̄s)|2a

ε

a
ds

)]
C(T, a, ε, λ).

The statement now directly follows from the above equation, (3.31) and Lemma 12 taking ε :=
(2λC3.29κ

a‖ F1‖2aLq([0,T ],Lp(Rnd))
)−1.
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Proposition 13 ensures that the Novikov condition is fulfilled in order to prove existence for the
martingale problem associated with (Lt)t≥0 for F1 satisfying (D)-(c) starting from P̄0,x and the
associated dynamics (3.17) of the canonical process. Set,

W̃t := Wt −
∫ t

0
(σ−1F1)(s, X̄s)ds, t ∈ [0, T ].

From Proposition 13, we derive that:

Mt := exp

(∫ t

0
(σ−1F1)(s, X̄s)dWs −

1

2

∫ t

0
|(σ−1F1)(s, X̄s)|2ds

)
, t ∈ [0, T ]

is an P̄-Ft martingale (Here (Fs)s∈[0,T ] stands for the natural filtration associated with the canonical

process (X̄s)s∈[0,T ] under P̄). It follows from the Girsanov theorem that (W̃t)t∈[0,T ] is a Wiener process
on (Ω,FT , (Fs)s∈[0,T ],P) where [dP/dP̄]

∣∣
FT

:= MT . The dynamics of (X̄s)s∈[0,T ], writes under P:

dX̄t =
(
BF1(t, X̄t) + F̄(t, X̄t)

)
dt+Bσ(t, X̄t)dW̃t = F(t, X̄t)dt+Bσ(t, X̄t)dW̃t,

that is (X̄t)t∈[0,T ] solves (1.1) under P.

3.3 Krylov bounds under (D)-(b) and (c)

We aim here at proving estimate (1.5) under assumptions (D)-(b) and (c). We mainly focus on case
(c) which is the more involved. Case (b) can indeed be derived from the methodology developed under
(D)-(a) and the controls obtained in Section 3.2.1 or alternatively following the approach presented
below for (D)-(c) which remains valid for a bounded drift on the non-degenerate component.

Thanks to Proposition 13, the proof of the Krylov bound (1.5) is similar to the proof of Lemma
3.3 in [KR05]. We provide a complete proof in our context for the sake of completeness.

Write now for f ∈ Lq′([0, T ], Lp
′
(Rnd)), n2d

p′ + 2
q′ < 2, p′ > 1, q′ > 1, (t,x) ∈ [0, T ] × Rnd with the

notations of the previous paragraph:

|EPt,x [

∫ T

t
f(s,Xs)ds]| =

∣∣∣ĒP̄t,x
[MT

Mt

∫ T

t
f(s,Xs)ds

]∣∣∣
≤ ĒP̄t,x

[(MT

Mt

)α] 1
α
T

1
α

(
ĒP̄t,x

[ ∫ T

t
|f(s, X̄s)|βds

]) 1
β
,

where α−1 + β−1 = 1, α > 1, β > 1. We have from Proposition 13 that the exponential martingale
has moments of all orders so that there exists CT > 0, with CT → 0 when T → 0 such that:

|EPt,x [

∫ T

t
f(s,Xs)ds]| ≤ CT

(
ĒP̄t,x

[ ∫ T

t
|f(s, X̄s)|βds

]) 1
β ≤ CT ‖|f |β‖

1
β

Lq′′ ([0,T ],Lp′′ (Rnd))

≤ CT ‖f‖Lq′′β([0,T ],Lp′′β(Rnd)),

if p′′, q′′ ∈ [1,+∞] are s.t. n2d/p′′ + 2/q′′ < 1. Taking β > 1 sufficiently close to 1 s.t. the previous
condition holds for p′′ = p′/β, q′′ = q′/β eventually yields the result.
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4 Counter example

This section is devoted to the almost sharpness of the thresholds appearing in Theorem 1. This is
the purpose of Theorem 2 which we now prove. We only focus here on the statement concerning
the almost sharpness of the Hölder exponents βji , i ≤ j in [[2, n]]2 in (1.3). Indeed, as emphasized
in the introduction, the sharpness of Lq − Lp integrability conditions on the first component F1 of
the drift follows from Example 69 of [BFGM19] (see also Proposition 3.3 of [GO13]). We eventually
recall that, the almost sharpness of the coefficients βii , i in [[2, n]], has been already proved in [CdR18].

Let us first introduce the main idea of our counter example. As we already discussed, the Peano
system (1.2) is ill posed as soon as α is in (0, 1) and Y starts from 0 and well posed (in a strong sense)
as soon as it is suitably perturbed. In [DF14], the authors show that, in order to regularize, there must
exist a transition time strictly less than one such that, before this time, the noise dominates in the
dynamics of the system and therefore allows the solution to leave the singularity. This competition
can be written explicitly and gives the following (heuristic) rule: the fluctuations of order γ of the
noise added in the system has to be strictly lower than 1/(1− α). We formalize these facts with our
Proposition 14 below.

This proposition will be the key tool to handle each Hölder threshold which depends on the
component and the variable. Hence, in order to exhibit the (almost) optimal threshold for the drift
of the ith component with respect to the jth variable we need to build an ad hoc Peano-like example.
Focusing on the ith component and the jth variable, for i ∈ [[2, n]] and j ∈ [[i, n]], we consider:

ẋ1
t = ẋ2

t = . . . = ẋi−1
t = 0

ẋit = sign(xjt )|x
j
t |β

j
i

ẋi+1
t = xit, . . . , ẋ

j
t = xj−1

t

ẋj+1
t = ẋj+2

t = . . . = ẋnt = 0

t ≥ 0,

and xl0 = 0 for all l in [[1, j]]. Each entry (xkt )t≥0,k∈[[1,n]] of the above dynamics is scalar. It is well seen

that the global well posedness of this system relies on the well posedness of the ith equation whose

extremal solutions write ±cij
βji
t((j−i)β

j
i+1)/(1−βji ), for some positive cij

βji
. In that case, our stochastic

perturbation is on the form

dXt = AXtdt+BdWt + F ji (Xt)dt, A =



0 · · · · · · · · · 0

1 0 · · · 0
...

0 1 0
...

...
...

. . .
. . . 0

...
0 · · · 0 1 0


, (4.1)

where F ji (x) = eisign(xj)|xj |β
j
i and ei is the ith vector of the canonical basis of Rn. This in particular

means that the perturbation of the ith component is done by the (i− 1)th iterated integrals (in time)
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of Brownian motion. Thus, focusing on the ith level of the chain and the jth component this means
that we are interested in the following type of SDE

Zi,jt = x+

∫ t

0
sign

(∫ s

0
. . .

∫ si+2

0
Zi,jsi+1

dsi+1 . . . dsj

)∣∣∣∣∣
∫ s

0
. . .

∫ si+2

0
Zi,jsi+1

dsi+1 . . . dsj

∣∣∣∣∣
βji

ds+W i
t , (4.2)

where W i will be chosen as the (i − 1)th iterated integral in time of Brownian motion. The non-
uniqueness in law for equation (4.2) will then follow from the next proposition.

Proposition 14 (Failure of the well posedness for the regularized Peano system). LetW be a random
process with continuous paths satisfying, in law, an invariance by symmetry and a self-similarity
property of order γ > 0. Namely:

(Wt, t ≥ 0)
(law)
= (−Wt, t ≥ 0), ∀t ≥ 0, tγW1

(law)
= Wt.

Suppose moreover that E|W1| < +∞ and that W and α < 1 are such that there exists a weak solution
to the following SDE:

Zt = x+

∫ t

0
sign

(∫ s

0
. . .

∫ si+2

0
Zs1ds1 . . . dsk

)∣∣∣∣∣
∫ s

0
. . .

∫ si+2

0
Zs1ds1 . . . dsk

∣∣∣∣∣
α

ds+Wt, (4.3)

for any initial condition x ≥ 0 where k ∈ N is given and that it satisfies the Kolmogorov criterion.
Then, if α < (γ − 1)/(k + γ), uniqueness in law fails for (4.3).

Turning now to our claim, it is clear that for βji > 0 (4.2), admits for all initial condition x≥0
at least one solution which satisfies the Kolmogorov Criterion. Our statement concerning the non
uniqueness in law for the solution of (4.2) then readily follows from Proposition 14. Taking α = βji ,
W = W i, which corresponds to the (i − 1)th iterated integrals (in time) of Brownian motion and
therefore induces to take γ = i− 1

2 , and k = j − i, we deduce that weak uniqueness fails as soon as

βji <
2i− 3

2j − 1
.

It now remains to prove Proposition 14.

Proof of Proposition 14. Consider the extremal solutions of the deterministic solutions associated
with (4.3), that correspond to the caseWt = 0 and write ±cα,kt(kα+1)/(1−α). The crucial point consists
in comparing the fluctuations of the noise in the dynamics of (4.3) with the extremal solution of the
associated Peano Example. The proof follows the lines of [CdR18] but we decide to reproduce it here
for the sake of completeness.

For a given parameter β ∈ (0, 1), we define for any continuous path Y from R+ to R the variable
τ(Y ) as

τ(Y ) = inf{t ≥ 0 : Yt ≤ (1− β)cα,kt
(kα+1)/(1−α)}.

The stopping time τ(Y ) then corresponds to the first passage of Y below a threshold related to the
(positive) extremal solution of the deterministic Peano system. Then, the key point to the proof of
Proposition 14 is the following Lemma.
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Lemma 15. Let Z be a weak solution of (4.3) starting from some x > 0 and suppose that α <
(γ − 1)/(k + γ). Then, there exists a positive ρ, depending on α, β, γ and E|W1| only, such that

Px(τ(Z) ≥ ρ) ≥ 3/4. (4.4)

Roughly speaking, the result tells us that, when the noise in the system is not strong enough,
the solution from above the (positive) extremal solution will remain above with great probability. If
weak uniqueness holds, the symmetry property implies that any solution from below the (negative)
extremal solution will remain below with great probability. Letting the starting point tend to 0 (i.e.
to the singularity) this leads to a contradiction. Together with the above Lemma, this last fact will
allow us to conclude our counter-example.

Let (Z,W) be a weak solution of (4.3) with the initial condition x = 0. Then, (−Z,−W) is also
a weak solution of (4.3) so that, if uniqueness in law holds, Z and −Z have the same law.

Let Zn be a sequence of weak solutions of (4.3) starting from 1/n, n being a positive integer
and (P1/n)n≥0 its law. Thanks to Kolmogorov’s criterion, we can extract a converging subsequence
(P1/nk)k≥0 that converges to P0, the law of the weak solution Z of (1.2) starting from 0. Since the
bound in (4.4) does not depend on the initial condition we get that

P0(τ(Z) ≥ ρ) ≥ 3/4,

and, thanks to uniqueness in law
P0(τ(−Z) ≥ ρ) ≥ 3/4,

which is obviously impossible.

Proof of Lemma 15. Let Z be a weak solution of (4.3) starting from x > 0. Since it has continuous
path, we have almost surely that τ(Z) > 0. Then, note that for t ∈ [0, τ(Z)] we have:

Zt = x+

∫ t

0
sign

(∫
. . .

∫
Zs1ds1 . . . dsk

)∣∣∣∣∣
∫
. . .

∫
Zs1ds1 . . . dsk

∣∣∣∣∣
α

dt+Wt

≥ (1− β)αcα,kt
(kα+1)/(1−α) +Wt.

Hence, choosing η such that (1−η) = [(1−β)α+(1−β)]/2, we observe that β−η+1−η = (1−β)α

and we get that:

Zt ≥ (1− η)cα,kt
(kα+1)/(1−α) + (β − η)cα,kt

(kα+1)/(1−α) +Wt,

for all t in [0, τ(Z)].
Let now ρ be a positive number to be specified later on. Set c̃α,k = (β − η)cα,k and define

A =
{
c̃α,kt

(kα+1)/(1−α) +Wt > 0 for all t in (0, ρ]
}
.

The event A allows us to compare the fluctuations of the noise and those of the (positive) extremal
solution. More precisely, it is the set of realizations for which the amount of noise in the system is
lacking. Note that on A we have

Zt ≥ (1− η)cα,kt
(kα+1)/(1−α) ≥ (1− β)cα,kt

(kα+1)/(1−α)
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for all t in [0, ρ]. But this is compatible only with the event {τ(Z) ≥ ρ} so that A ⊂ {τ(Z) ≥ ρ}.
Hence

P(τ(Z) ≥ ρ) ≥ P(A). (4.5)

We are now going to bound from below the probability of the event A. We have

P(Ac) = P
(
∃t ∈ (0, ρ] : c̃α,kt

(kα+1)/(1−α) +Wt ≤ 0
)

≤ P
(
∃t ∈ (0, ρ] : |Wt| ≥ c̃α,kt(kα+1)/(1−α)

)
= P

(
∃t ∈ (0, 1] : (ρt)γ |W1| ≥ c̃α,k(ρt)(kα+1)/(1−α)

)
= P

(
∃t ∈ (0, 1] : |W1| ≥ c̃α,k(ρt)−δ

)
,

where δ = γ − (kα + 1)/(1− α). Since α < (γ − 1)/(k + γ), we get that δ > 0 and we obtain from
the previous computations that

P(Ac) ≤ P
(
|W1| ≥ c̃α,kρ−δ

)
≤ E|W1|c̃−1

α,kρ
δ,

from the Markov inequality. Thus

P(τ(Z) ≥ ρ) ≥ P(A) ≥ 1− E|W1|c̃−1
α,kρ

δ,

so that there exists a positive ρ such that P(τ(Z) ≥ ρ) ≥ 3/4.

A Proof of the Technical Lemmas 6 and 7

A.1 Proof of Lemma 6 (Dirac convergence of the frozen density)

For the proof of this Lemma we are somehow faced with the same type of difficulties as for Lemma
5. Namely, recalling the expression of p̃t+ε,y(t, t + ε,x,y) derived from (2.7), we have a dependence

of the covariance matrix K̃t+ε,y
t+ε,t and of the linearized flow θ̃

t+ε,y
t+ε,t (x) in the integration variable y.

Let (θu,t(x)
)
u∈[t,t+ε]

be the forward flow provided by Lemma 4. To study the sensitivity of the

covariance matrix w.r.t. the flows we now introduce, for a given point x ∈ Rnd, the linear Gaussian
diffusion (X̄u)u∈[t,t+ε] with dynamics:

dX̄u = DF(u,θu,t(x))X̄udu+Bσ(u,θu,t(x))dWu. (A.1)

The associated covariance matrix between t and t+ ε writes:

K̄t,x
t+ε,t =

∫ t+ε

t
R̄t,x(t+ ε, u)Bσσ∗(u,θu,t(x))B∗R̄t,x(t+ ε, u)∗du, (A.2)

where (R̄t,x(v, u))t≤u,v≤t+ε stands for the resolvent associated with (DF(u,θu,t(x)))u∈[t,t+ε]. We point

out that (R̄t,x(v, u))t≤u,v≤t+ε and (R̃t+ε,y(v, u))t≤u,v≤t+ε are similar resolvents, in the sense that they
actually only differ in the flow considered in the linear dynamics. The flow is forward for R̄t,x and
backward for R̃t+ε,y.
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Observe now that, from (H), K̄t,x
t+ε,t satisfies the good scaling property (2.10). Write now:∫

Rnd
p̃t+ε,y(t, t+ ε,x,y)f(y)dy

=

[∫
Rnd

{
exp

(
−1

2

〈
(K̃t+ε,y

t+ε,t )−1(θ̃
t+ε,y
t+ε,t (x)− y), θ̃

t+ε,y
t+ε,t (x)− y

〉)
(2π)

nd
2 det(K̃t+ε,y

t+ε,t )
1
2

−
exp

(
−1

2

〈
(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y
〉)

(2π)
nd
2 det(K̃t+ε,y

t+ε,t )
1
2

}
f(y)dy

]

+

[∫
Rnd

{
exp

(
−1

2

〈
(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y
〉)

(2π)
nd
2 det(K̃t+ε,y

t+ε,t )
1
2

−
exp

(
−1

2

〈
(K̄t,x

t+ε,t)
−1(θt+ε,t(x)− y),θt+ε,t(x)− y

〉)
(2π)

nd
2 det(K̄t,x

t+ε,t)
1
2

}
f(y)dy

]

+

[∫
Rnd

exp
(
−1

2

〈
(K̄t,x

t+ε,t)
−1(θt+ε,t(x)− y),θt+ε,t(x)− y

〉)
(2π)

nd
2 det(K̄t,x

t+ε,t)
1
2

f(y)dy

]

=:

3∑
i=1

Ξε
i (t,x). (A.3)

It is directly seen from the dominated convergence theorem that Ξε
3(t,x) →

ε↓0
f(x). It remains to prove

that Ξε
1(t,x),Ξε

2(t,x) can be viewed as remainders as ε ↓ 0.
Let us write

|Ξε
1(t,x)| ≤ ‖f‖∞

∫
Rnd

dy

(2π)
nd
2 det(K̃t+ε,y

t+ε,t )
1
2

∫ 1

0
dλ|(ϕεt,x,y)′(λ)|, (A.4)

where λ ∈ [0, 1]:

ϕεt,x,y(λ) = exp

(
−1

2

{
〈(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉+

λ
[
〈(K̃t+ε,y

t+ε,t )−1(θ̃
t+ε,y
t+ε,t (x)− y), θ̃

t+ε,y
t+ε,t (x)− y〉

−〈(K̃t+ε,y
t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉

]})
,

|(ϕεt,x,y)′(λ)| ≤
∣∣∣(K̃t+ε,y

t+ε,t )−
1
2

{
(θt+ε,t(x)− y) + (θ̃

t+ε,y
t+ε,t (x)− y)

}∣∣∣
×
∣∣∣(K̃t+ε,y

t+ε,t )−
1
2

{
(θt+ε,t(x)− y)− (θ̃

t+ε,y
t+ε,t (x)− y)

}∣∣∣ϕεt,x,y(λ), (A.5)

using the Cauchy-Schwarz inequality for the last assertion. A key quantity to control for the analysis

is now the linearization error |(K̃t+ε,x
t+ε,t )−

1
2 (θt+ε,t(x)− θ̃

t+ε,y
t+ε,t (x))|. From (2.10) we readily have:∣∣∣(K̃t+ε,x

t+ε,t )−
1
2 (θt+ε,t(x)− θ̃

t+ε,y
t+ε,t (x))

∣∣∣ ≤ Cε 1
2 |T−1

ε (θt+ε,t(x)− θ̃
t+ε,y
t+ε,t (x))|. (A.6)
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To bound the above r.h.s. we first introduce for z ∈ Rnd, u ∈ [t, t+ ε],

Ft+ε,y(u, z) :=
(
F1(u,θu,t+ε(y)), F2(u, z1, (θu,t+ε(y))2,n), F3(u, z2, (θu,t+ε(y))3,n), · · · ,

Fn(s, zn−1, (θu,t+ε(y))n)
)
. (A.7)

We then write:

ε
1
2T−1

ε (θt+ε,t(x)− θ̃
t+ε,y
t+ε,t (x)) := ε

1
2T−1

ε

{∫ t+ε

t
du

[(
F(u,θu,t(x))− Ft+ε,y(u,θu,t(x))

)
+

(
DF(u,θu,t+ε(y))(θu,t(x)− θ̃

t+ε,y
u,t (x))

)
+

(∫ 1

0
dλ
(
DFt+ε,y(u,θu,t+ε(y) + λ(θu,t(x)− θu,t+ε(y)))

− DFt+ε,y(u,θu,t+ε(y))
)

(θu,t(x)− θu,t+ε(y))

)]}
:= (I1

t+ε,t + I2
t+ε,t + I3

t+ε,t)(x,y), (A.8)

where, according to the notations of (A.7), for (u, z) ∈ [t, t+ε]×Rnd, DFt+ε,y(u, z) is the (nd)× (nd)
matrix with only non zero d× d matrix entries (DFt+ε,y(u, z))j,j−1 := Dxj−1Fj(u, zj−1,θu,t+ε(y)j,n),
j ∈ [[2, n]]. In particular DFt+ε,y(u,θu,t+ε(y)) = DF(u,θu,t+ε(y)).

Observe now that, from (S):

|I3
t+ε,t(x,y)| ≤ C

n∑
i=2

∫ t+ε

t
duε−(i−1/2)|(θu,t(x)− θu,t+ε(y))i−1|1+η

≤ C

∫ t+ε

t
duε−1+η/2

(
ε1/2|T−1

ε (θu,t(x)− θu,t+ε(y))|
)1+η

.

From Lemma 5 (almost equivalence of the flows) we now derive:

|I3
t+ε,t(x,y)| ≤ C

∫ t+ε

t
duε−1+η/2

(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1
)1+η

≤ Cεη/2
(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1
)1+η

. (A.9)

Let us now deal with I1
t+ε,t(x,y). From the previous definition of Ft+ε,y in (A.7), the key idea is to

use the sub-linearity of F and the appropriate Hölder exponents. Namely, using the Young inequality
we derive:

|I1
t+ε,t(x,y)| ≤ C

n∑
i=1

ε−i+1/2
n∑
j=i

∫ t+ε

t
du|(θu,t(x)− θu,t+ε(y))j |β

j
i

≤ C

(
ε−1/2

∫ t+ε

t
du
(
|(θu,t(x)− θu,t+ε(y))|+ 1

)

+
n∑
i=2

ε−i+1/2
n∑
j=i

∫ t+ε

t
du

{(
|((θu,t(x)− θu,t+ε(y))j)|

εγ
j
i

)
+ ε

γji
β
j
i

1−βj
i

})
,
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for some parameters γji > 0 to be specified below. Hence,

|I1
t+ε,t(x,y)| ≤ C

(∫ t+ε

t
duε1/2|T−1

ε (θu,t(x)− θu,t+ε(y))|+ ε1/2

+

n∑
i=2

n∑
j=i

∫ t+ε

t
du
{
ε−i+j−γ

j
i

( |((θu,t(x)− θu,t+ε(y))j)|
εj−1/2

)
+ ε
−i+1/2+γji

β
j
i

1−βj
i

})

≤ C

(∫ t+ε

t
duε1/2|T−1

ε (θu,t(x)− θu,t+ε(y))|+ ε1/2

+
n∑
i=2

n∑
j=i

∫ t+ε

t
du
{
ε−i+j−γ

j
i ε1/2|T−1

ε (θu,t(x)− θu,t+ε(y))|+ ε
−i+1/2+γji

β
j
i

1−βj
i

})
.

We now use Lemma 5 to derive ε1/2|T−1
ε (θu,t(x)− θu,t+ε(y))| ≤ C(ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1). We
emphasize here that in our current framework we should a priori write θt+ε,u(θu,t(x)) in the above
equation since we do not have a priori the flow property. Anyhow, since Lemma 5 is valid for any
flow starting from θu,t(x) at time u associated with the ODE (see equation (2.15)) we can proceed
along the previous one, i.e. (θv,t(x))v∈[u,t+ε]. This yields:

|I1
t+ε,t(x,y)| (A.10)

≤ C
[
ε1/2 + (ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1)ε
(

1 +
n∑
i=2

n∑
j=i

{
ε−i+j−γ

j
i + ε

−i+1/2+γji
β
j
i

1−βj
i

})]
.

Choose now for i ∈ [[2, n]] and j ∈ [[i, n]],

−i+ j − γji = −i+ 1/2 + γji
βji

1− βji
⇐⇒ γji = (j − 1

2
)(1− βji ),

to balance the two previous contributions associated with the indexes i, j. To obtain a global smooth-
ing effect w.r.t ε in (A.10) we need to impose:

−i+ j − γji > −1 ⇐⇒ βji >
2i− 3

2j − 1
.

Hence, under (1.3), we have that there exists ζ := ζ
(
(A), (βji )i∈[[1,n]],j∈[[i,n]]

)
∈ (0, 1) s.t.:

|I1
t+ε,t(x,y)| ≤ Cεζ

(
1 + ε1/2|T−1

ε (θt+ε,t(x)− y)|
)
. (A.11)

We now get from (A.6), (A.8), (A.9), (A.11) and the Gronwall lemma that:∣∣∣(K̃t+ε,x
t+ε,t )−

1
2 (θt+ε,t(x)− θ̃

t+ε,y
t+ε,t (x))

∣∣∣
≤ Cε

1
2 |T−1

ε (θt+ε,t(x)− θ̃
t+ε,y
t+ε,t (x))|

≤ Cεη/2∧ζ
(
1 + ε1/2|T−1

ε (θt+ε,t(x)− y)|+ (ε1/2|T−1
ε (θt+ε,t(x)− y)|)1+η

)
. (A.12)
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Hence, recalling from (2.12) and Lemma 5 that

〈(K̃t+ε,y
t+ε,t )−1(θ̃

t+ε,y
t+ε,t (x)−y), θ̃

t+ε,y
t+ε,t (x)−y〉 ≥ C−1ε|T−1

ε (x−θt,t+ε(y))|2 ≥ C−1(ε|T−1
ε (θt+ε,t(x)−y)|2−1),

we get from the definition in (A.5) that for all λ ∈ [0, 1]:

ϕεt,x,y(λ) ≤ C exp(−C−1ε|T−1
ε (θt+ε,t(x)− y)|2).

We finally obtain from (A.5) and (A.12) that there exists C2 := C2(T, (A)) ≥ 1 s.t.:

|(ϕεt,x,y)′(λ)| ≤ C2ε
η/2∧ζ exp

(
−C−1

2 ε|T−1
ε (θt+ε,t(x)− y)|2

)
. (A.13)

Plugging Equation (A.13) into (A.4), we derive that, since K̃t+ε,y
t+ε,t satisfies (2.10), |Ξε

1(t,x)| →
ε↓0

0.

Let us now consider the term Ξε
2(t,x) in (A.3). Write first Ξε

2(t,x) := (Ξε
21 + Ξε

22)(t,x) where:

Ξε
21(t,x) :=

∫
Rnd

dy

(2π)
nd
2

f(y)

det(K̄t,x
t+ε,t)

1
2

∫ 1

0
dλ(ψεt,x,y)′(λ),

∀λ ∈ [0, 1], ψεt,x,y(λ) := exp

(
−1

2

{
〈(K̄t,x

t+ε,t)
−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉

+ λ

[
〈(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉

−〈(K̄t,x
t+ε,t)

−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉
]})

,

Ξε
22(t,x) :=

∫
Rnd

dy

(2π)
nd
2

f(y)

[
1

det(K̃t+ε,y
t+ε,t )

1
2

− 1

det(K̄t,x
t+ε,t)

1
2

]
(ψεt,x,y)(1). (A.14)

Observe that for all λ ∈ [0, 1],

|(ψεt,x,y)′(λ)| ≤
∣∣∣〈((K̃t+ε,y

t+ε,t )−1 − (K̄t,x
t+ε,t)

−1)(θt+ε,t(x)− y),θt+ε,t(x)− y〉
∣∣∣ψεt,x,y(λ).

Equation (2.10), which holds for K̄t,x
t+ε,t as well, yields:

|(ψεt,x,y)′(λ)| ≤ C
∣∣∣〈((K̃t+ε,y

t+ε,t )−1 − (K̄t,x
t+ε,t)

−1)(θt+ε,t(x)− y),θt+ε,t(x)− y〉
∣∣∣

× exp(−Cε|T−1
ε (θt+ε,t(x)− y)|2)

=: C|Qε| exp(−Cε|T−1
ε (θt+ε,t(x)− y)|2), (A.15)

for C := C((A), T ).
Now, the covariance matrices explicitly write

K̃t+ε,y
t+ε,t =

∫ t+ε

t
duR̃t+ε,y(t+ ε, u)Ba(u,θu,t+ε(y))B∗R̃t+ε,y(t+ ε, u)∗,

K̄t,x
t+ε,t =

∫ t+ε

t
duR̄t,x(t+ ε, u)Ba(u,θu,t(x))B∗R̄t,x(t+ ε, u)∗,
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where R̃t+ε,y, R̄t,x respectively denote the resolvents associated with the linear parts of equations
(2.2) and (A.1). Thus, setting:

K̃t+ε,y
t+ε,t = ε−1Tε ̂̃Kt+ε,t,t+ε,y

1 Tε, K̄t,x
t+ε,t = ε−1Tε ̂̄Kt+ε,t,t,x

1 Tε, (A.16)

we write: ∣∣∣〈(K̃t+ε,y
t+ε,t − K̄t,x

t+ε)(θt+ε,t(x)− y),θt+ε,t(x)− y〉
∣∣∣

=

∣∣∣∣〈( ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 )(ε−1/2Tε(θt+ε,t(x)− y)), ε−1/2Tε(θt+ε,t(x)− y)〉
∣∣∣∣

≤ C| ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 |×ε−1|Tε(θt+ε,t(x)− y)|2.

It remains to control the term̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 = (∆t+ε,t
1 −∆t+ε,t

2 )(x,y),

∆t+ε,t
1 (x,y) := ε

∫ t+ε

t
duT−1

ε R̃t+ε,y(t+ ε, u)B∆a(u, t+ ε)(x,y)B∗R̃t+ε,y(t+ ε, u)∗T−1
ε ,

∆a(u, t+ ε)(x,y) =
(
a(u,θu,t+ε(y))− a(u,θu,t(x))

)
,

∆t+ε,t
2 (x,y) := ε

∫ t+ε

t
duT−1

ε ∆ ˜̄Rt+ε,u,t,x,y
(t+ ε, u)Ba(u,θu,t(x))B∗R̄t,x(t+ ε, u)∗T−1

ε

−ε
∫ t+ε

t
du

{
T−1
ε R̃t+ε,y(t+ ε, u)Ba(u,θu,t(x))B∗

×
(

∆ ˜̄Rt+ε,u,t,x,y
(t+ ε, u)

)∗
T−1
ε

}
,

∆ ˜̄Rt+ε,u,t,x,y
(t+ ε, u) =

(
R̄t,x(t+ ε, u)− R̃t+ε,y(t+ ε, u)

)
. (A.17)

From the scaling properties of the resolvent, see e.g. Lemma 6.2 in [Men18] for details, we have that:

R̄t,x(t+ ε, u) = Tε ̂̄Rt+ε,u,t,x

1 T−1
ε , R̃t+ε,y(t+ ε, u) = Tε ̂̃Rt+ε,u,t+ε,y

1 T−1
ε , (A.18)

where ̂̄Rt+ε,u,t,x

1 , ̂̃Rt+ε,u,t+ε,y

1 are non-degenerate bounded matrices, uniformly in u ∈ [t, t+ε]. Hence,
from (A.18) and the definitions in (A.17):

|∆t+ε,t
1 (x,y)|

≤ Cε−1

∫ t+ε

t
|∆a(u, t+ ε)(x,y)|du ≤ Cε−1

∫ t+ε

t
|θu,t(x)− θu,t+ε(y)|ηdu (A.19)

≤ Cεη/2−1

∫ t+ε

t
du|ε1/2T−1

ε (θu,t(x)− θu,t+ε(y))|η ≤ Cεη/2(|ε1/2T−1
ε (θt+ε,t(x)− y)|η + 1),

using again Lemma 5 for the last inequality. Still from (A.18), the definitions in (A.17) and recalling
as well that T−1

ε Ba(u,θu,t(x))B∗T−1
ε = ε−2Ba(u,θu,t(x))B∗, we now write that:

|∆t+ε,t
2 (x,y)| ≤ Cε−1

∫ t+ε

t
|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε|du. (A.20)
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Note then:

|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε|

=
∣∣∣T−1
ε

∫ t+ε

u

(
DF(v,θv,t(x))R̄t,x(v, u)−DF(v,θv,t+ε(y))R̃t+ε,y(v, u)

)
dvTε

∣∣∣
≤
∫ t+ε

u
|T−1
ε DF(v,θv,t(x))Tε||T−1

ε ∆ ˜̄Rt+ε,u,t,x,y
(v, u)Tε|dv

+

∫ t+ε

u

∣∣∣T−1
ε

(
DF(v,θv,t(x))−DF(v,θv,t+ε(y))

)
Tε
∣∣∣|T−1

ε R̃t+ε,y(v, t)Tε|dv

≤ C
∫ t+ε

u
ε−1|DF(v,θv,t(x))−DF(v,θv,t+ε(y))|dv,

using the Gronwall lemma and the structure of the resolvent for the last inequality.
Pay attention that we only know from (S) that for all i ∈ [[2, n]],∀zi:n = (zi, · · · , zn) ∈ R(n−i+1)d,

zi−1 7→ Dxi−1Fi(zi−1, z
i:n) is Cη(Rd,Rd ⊗ Rd)-Hölder continuous for η > 0. We thus have to handle

the above term with some care. Write with the notations of (A.7):

|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε|

≤ C

∫ t+ε

u
ε−1

n∑
i=2

(
|Dxi−1Fi(v,θv,t(x))−Dxi−1F

t+ε,y
i (v,θv,t(x))|

+|Dxi−1F
t+ε,y
i (v,θv,t(x))−Dxi−1Fi(v,θv,t+ε(y))|

)
dv

≤ C

∫ t+ε

u
ε−1

n∑
i=2

(
|Dxi−1Fi(v,θv,t(x))−Dxi−1Fi(v,θv,t(x)i−1, (θv,t+ε(y))i:n)|

+|(θv,t(x)− θv,t+ε(y))i−1|η
)
dv =: (R1 +R2)(t+ ε, u, t,x,y).

We get |R2(t + ε, u, t,x,y)| ≤ C
∫ t+ε
u ε−1|θv,t(x) − θv,t+ε(y)|ηdv which can be handled similarly to

(A.19). This yields: |R2(t+ ε, u, t,x,y)| ≤ Cεη/2
(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1)η. On the other hand,
using a reverse Taylor expansion, for positive parameters (δi)i∈[[2,n]] to be specified:

|R1(t+ ε, u, t,x,y)|

≤ C

∫ t+ε

u
ε−1

n∑
i=2

(∣∣∣{Fi(v,θv,t(x)i−1 + δi, (θv,t(x))i:n
)
− Fi(v,θv,t(x))

}
−
{
Fi
(
v,θv,t(x)i−1 + δi, (θv,t+ε(y))i:n

)
− Fi

(
v,θv,t(x)i−1, (θv,t+ε(y))i:n

)}∣∣∣δ−1
i + δηi

)
dv

≤ C

∫ t+ε

u
ε−1

n∑
i=2

( n∑
j=i

|(θv,t(x)− θv,t+ε(y))j |β
j
i δ−1
i + δηi

)
.

≤ C

{ n∑
i=2

n∑
j=i

(
|ε1/2(T−1

ε (θt+ε,t(x)− y))|β
j
i + 1

)
ε(j−1/2)βji δ−1

i + max
i∈[[2,n]]

δηi

}
,

using again Lemma 5 for the last inequality. For this contribution to be a remainder it therefore

suffices to choose δi = maxj∈[[i,n]] ε
(j−1/2)βji−γ , for γ > 0 small enough. From the above computations
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we eventually derive that there exists ζ ′ := ζ ′((A), (βji )i∈[[1,n]],j∈[[i,n]]) ∈ (0, 1) s.t.

|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε| ≤ Cε
η
2
∧ζ′(ε 1

2 |T−1
ε (θt+ε,t(x)− y)|+ 1).

Plugging this bound into (A.20), we then derive from (A.19) and (A.17) that:

| ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 | ≤ Cε
η
2
∧ζ′(ε 1

2 |T−1
ε (θt+ε,t(x)− y)|+ 1). (A.21)

Recalling now that ̂̃Kt+ε,t,t+ε,y

1 , ̂̄Kt+ε,t,t,x

1 are because of (2.10) and (A.16) non-degenerate uni-

formly w.r.t. the parameter ε, we deduce that the inverse matrices
( ̂̃Kt+ε,t,t+ε,y

1

)−1
,
( ̂̄Kt+ε,t,t,x

1

)−1

have the same Hölder regularity. Indeed,( ̂̃Kt+ε,t,t+ε,y

1

)−1
−
( ̂̄Kt+ε,t,t,x

1

)−1
=
( ̂̄Kt+ε,t,t,x

1

)−1
( ̂̄Kt+ε,t,t,x

1 − ̂̃Kt+ε,t,t+ε,y

1

)( ̂̃Kt+ε,t,t+ε,y

1

)−1
,

and we eventually conclude from (A.21). Hence, from the definition in (A.15)

|Qε| :=
∣∣∣〈((K̃t+ε,y

t+ε,t )−1 − (K̄t,x
t+ε,)

−1
)
(θt+ε,t(x)− y),θt+ε,t(x)− y〉

∣∣∣
=

∣∣∣∣∣〈(
( ̂̃Kt+ε,t,t+ε,y

1

)−1

−
( ̂̄Kt+ε,t,t,x

1

)−1)
(ε1/2T−1

ε (θt+ε,t(x)− y)), ε1/2T−1
ε (θt+ε,t(x)− y)〉

∣∣∣∣∣
≤ Cεη/2∧ζ

′(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1)ε|T−1
ε (θt+ε,t(x)− y)|2, C := C((A), T ).

We eventually get:

|Ξε
21(t,x)| ≤ Cεη/2∧ζ

′
∫
Rnd

dy

ε
n2d
2

(ε1/2|T−1
ε (θt+ε,t(x)− y)|+ 1) exp(−Cε|T−1

ε (θt+ε,t(x)− y)|2)

≤ Cεη/2∧ζ
′
, C := C((A), T ). (A.22)

This yields |Ξε
21(t,x)| →

ε→0
0. Arguments similar to those employed for Ξε

21(t,x) can be used to prove

that for the term Ξε
22(t,x) defined in (A.14). Namely,

|Ξε
22(t,x)| ≤ ‖f‖∞

∫
Rnd

dy

(2π)
nd
2

∣∣∣∣∣ 1

det(K̃t+ε,y
t+ε,t )

1
2

− 1

det(K̄t,x
t+ε,t)

1
2

∣∣∣∣∣(ψεt,x,y)(1)

≤ C‖f‖∞
∫
Rnd

dy

∣∣∣∣∣1− det(K̃t+ε,y
t+ε,t )

1
2

det(K̄t,x
t+ε,t)

1
2

∣∣∣∣∣p̄C−1(t, t+ ε,x,y)

≤ C‖f‖∞
∫
Rnd

dy

∣∣∣∣∣1− det
(
K̃t+ε,y
t+ε,t

(
K̄t,x
t+ε,t

)−1
) 1

2

∣∣∣∣∣p̄C−1(t, t+ ε,x,y). (A.23)

Using again (A.16), we now write:

det
(
K̃t+ε,y
t+ε,t

(
K̄t,x
t+ε,t

)−1
)

= det
( ̂̃Kt+ε,t,t+ε,y

1

( ̂̄Kt+ε,t,t,x

1

)−1
)

= det
(
I + ( ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 )
( ̂̄Kt+ε,t,t,x

1

)−1
)
.

Plugging this identity into (A.23), we thus derive from (A.21) that Ξε
22(t,x) →

ε→0
0. The proof is

complete.
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A.2 Proof of Lemma 7

Write for p′, q′ > 1,

‖fε − f‖q
′

Lq′ ([0,T ],Lp′ (Rnd))
=

∫ T

0
‖fε(t, ·)− f(t, ·)‖q

′

Lp′ (Rnd)
dt.

Note that, up to a middle point type argument, the indicator part in the very definition of fε can be
easily dealt. With a slight abuse of notation, we thus start from the following expression for fε:

∀(t,x) ∈ [0, T ]× Rnd,
∫
Rnd

f(t+ ε,y)p̃t+ε,y(t, t+ ε,x,y)dy.

Now,

‖fε(t, ·)− f(t, ·)‖p
′

Lp′ (Rnd)
=

∫
Rnd

∣∣∣ ∫
Rnd

f(t+ ε,y)p̃t+ε,y(t, t+ ε,x,y)dy − f(t,x)
∣∣∣p′dx

≤ 2p
′−1
(∫

Rnd

∣∣∣ ∫
Rnd

f(t+ ε,y)p̃t+ε,y(t, t+ ε,x,y)dy − f(t+ ε,θt+ε,t(x))
∣∣∣p′dx

+

∫
Rnd
|f(t+ ε,θt+ε,t(x))− f(t,x)|pdx

)
=: 2p

′−1(Iε1(t) + Iε2(t)).

Recalling that f is smooth and has compact support in time and space, we readily get Iε2(t) −→
ε→0

0.

Let us now turn to Iε1(t). Write:

Iε1(t) ≤ 2p
′−1
(∫

Rnd

∣∣∣ ∫
Rnd

(
f(t+ ε,y)− f(t+ ε,θt+ε,t(x)

)
p̃t+ε,y(t, t+ ε,x,y)dy

∣∣∣p′dx
+

∫
Rnd

∣∣∣f(t+ ε,θt+ε,t(x))

∫
Rnd

(
p̃t+ε,y(t, t+ ε,x,y)− p̄(t, t+ ε,x,y)

)
dy
∣∣∣p′dx) =: Iε11(t) + Iε12(t),

where p̄(t, t + ε,x,y) :=
exp(− 1

2〈(K̄t,x
t+ε,t)

−1(θt+ε,t(x)−y),θt+ε,t(x)−y〉)
(2π)

nd
2 det(K̄t,x

t+ε,t)
1
2

is a true density in y and already

appears in the term Ξε
3 defined in (A.3) in the proof of Lemma 6. The previous analysis of this term

readily gives Iε12(t) −→
ε→0

0. On the other hand, from the good scaling property of equation (2.10),

Lemma 5 and the Hölder inequality, there exists C := C(p′, (A)) s.t.:

Iε11(t) ≤ C

∫
Rnd

∫
Rnd

∣∣∣f(t+ ε,y)− f(t+ ε,θt+ε,t(x))
∣∣∣p′ p̄C−1(t, t+ ε,x,y)dydx

≤ C

∫
Rnd

(Id(θt+ε,t(x),supp(f(t+ε,·)))≤δ + Id(θt+ε,t(x),supp(f(t+ε,·)))>δ)

×
∫
Rnd

∣∣∣f(t+ ε,y)− f(t+ ε,θt+ε,t(x))
∣∣∣p′ p̄C−1(t, t+ ε,x,y)dydx

≤ C
(
εp
′/2‖Df‖∞ +

∫
Rnd

Id(θt+ε,t(x),supp(f(t+ε,·)))>δ

∫
Rnd
|f(t+ ε,y)|p′ p̄C−1(t, t+ ε,x,y)dydx

)
≤ C

(
εp
′/2‖Df‖∞ + ‖f‖∞ exp

(
− C−1 δ

2

ε

)∫
Rnd

Iy∈supp(f(t+ε,·))

∫
Rnd

p̄C−1(t, t+ ε,x,y)dxdy
)

≤ C
(
εp
′/2‖Df‖∞ + ‖f‖∞ exp

(
− C−1 δ

2

ε

))
,
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where in the above computations we recall that p̄C−1 introduced in (2.8) is actually a density w.r.t. x.
We conclude the proof from the above convergence of Iε1(t), Iε2(t) thanks to the dominated convergence
theorem.
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[KR05] N. Krylov and M. Röckner. Strong solutions of stochastic equations with singular time
dependent drift. Prob. Theory Rel. Fields, 131:154–196, 2005.

[LP94] E. Lanconelli and S. Polidoro. On a class of hypoelliptic evolution operators. volume 52,
pages 29–63. 1994. Partial differential equations, II (Turin, 1993).

[Men11] S. Menozzi. Parametrix techniques and martingale problems for some degenerate Kol-
mogorov equations. Electronic Communications in Probability, 17:234–250, 2011.

[Men18] S. Menozzi. Martingale problems for some degenerate Kolmogorov equations. Stoc. Proc.
Appl., 128-3:756–802, 2018.

[MS67] H. P. McKean and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J.
Differential Geometry, 1:43–69, 1967.

[PL89] R. Di Perna and P. L. Lions. Ordinary Differential Equations, transport theory and
Sobolev Spaces. Inv. Math., 98:511–547, 1989.

[Por90] N.I. Portenko. Generalized Diffusion Processes. English translation: Amer. Math. Soc.,
Providence, Rhode Island, 1990.

43



[Pri18] E. Priola. Davie’s type uniqueness for a class of SDEs with jumps. Ann. Inst. Henri
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