Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result - Archive ouverte HAL
Article Dans Une Revue Transactions of the American Mathematical Society Année : 2020

Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result

Résumé

We investigate the effects of the propagation of a non-degenerate Brownian noise through a chain of deterministic differential equations whose coefficients are rough and satisfy a weak like Hörmander structure (i.e. a non-degeneracy condition w.r.t. the components which transmit the noise). In particular we characterize, through suitable counterexamples , almost sharp regularity exponents that ensure that weak well posedness holds for the associated SDE. As a by-product of our approach, we also derive some density estimates of Krylov type for the weak solutions of the considered SDEs.
Fichier principal
Vignette du fichier
CHAUDRU_MENOZZI_TAMS_V3_LAST_FOR_HAL.pdf (527.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01613679 , version 1 (09-10-2017)
hal-01613679 , version 2 (25-09-2020)
hal-01613679 , version 3 (31-10-2021)

Identifiants

Citer

Paul-Eric Chaudru de Raynal, Stephane Menozzi. Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result. Transactions of the American Mathematical Society, 2020, ⟨10.1090/tran/7947⟩. ⟨hal-01613679v3⟩
859 Consultations
353 Téléchargements

Altmetric

Partager

More