
HAL Id: hal-01613671
https://hal.science/hal-01613671v1

Submitted on 9 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prediction of Intention during Interaction with iCub
with Probabilistic Movement Primitives

Oriane Dermy, Alexandros Paraschos, Marco Ewerton, Jan Peters, François
Charpillet, Serena Ivaldi

To cite this version:
Oriane Dermy, Alexandros Paraschos, Marco Ewerton, Jan Peters, François Charpillet, et al.. Pre-
diction of Intention during Interaction with iCub with Probabilistic Movement Primitives. Frontiers
in Robotics and AI, 2017, 4, �10.3389/frobt.2017.00045�. �hal-01613671�

https://hal.science/hal-01613671v1
https://hal.archives-ouvertes.fr

Prediction of intention during interaction with

iCub with Probabilistic Movement Primitives

Oriane Dermy 1,∗, Alexandros Paraschos 2,4, Marco Ewerton 2,

Jan Peters 2,3, François Charpillet 1 and Serena Ivaldi 1

1 Inria, Villers-ls-Nancy, 54600, France;

Universit de Lorraine, Loria, UMR7503, Vandoeuvre, 54500, France;

CNRS, Loria, UMR7503, Vandoeuvre, 54500, France
2TU Darmstadt, Darmstadt, Germany

3Max Planck Institute for Intelligent Systems, Tubingen, Germany
4Data Lab, Volkswagen Group, 80805 Munich, Germany

Abstract

This paper describes our open-source software for predicting the intention of a user

physically interacting with the humanoid robot iCub. Our goal is to allow the robot to infer

the intention of the human partner during collaboration, by predicting the future intended

trajectory: this capability is critical to design anticipatory behaviors that are crucial in

human-robot collaborative scenarios, such as in co-manipulation, cooperative assembly or

transportation. We propose an approach to endow the iCub with basic capabilities of intention

recognition, based on Probabilistic Movement Primitives (ProMPs), a versatile method for

representing, generalizing, and reproducing complex motor skills. The robot learns a set of

motion primitives from several demonstrations, provided by the human via physical interaction.

During training, we model the collaborative scenario using human demonstrations. During

the reproduction of the collaborative task, we use the acquired knowledge to recognize the

intention of the human partner. Using a few early observations of the state of the robot, we

can not only infer the intention of the partner, but also complete the movement, even if the

user breaks the physical interaction with the robot. We evaluate our approach in simulation

and on the real iCub. In simulation, the iCub is driven by the user using the Geomagic Touch

haptic device. In the real robot experiment, we directly interact with the iCub by grabbing

and manually guiding the robot’s arm. We realize two experiments on the real robot: one with

simple reaching trajectories, and one inspired by collaborative object sorting. The software

implementing our approach is open-source and available on the GitHub platform. Additionally,

we provide tutorials and videos.

Keywords: robot, prediction, intention, interaction, probabilistic models

1 INTRODUCTION

A critical ability for robots to collaborate with humans is to predict the intention of the partner.

For example, a robot could help a human fold sheets, move furniture in a room, lift heavy objects,

1

or place wind-shields on a car frame. In all these cases, the human could begin the collaborative

movement by guiding the robot, or by leading the movement in the case that both human and

robot hold the object. It would be beneficial for the performance of the task if the robot could

infer the intention of the human as soon as possible, and collaborate to complete the task without

requiring any further assistance. This scenario is particularly relevant for manufacturing [1], where

robots could help human partners in carrying a heavy or unwieldy object, while humans could

guide the robot without effort in executing the correct trajectory for positioning the object at the

right location 1. For example, the human could start moving the robot’s end-effector towards the

goal location, and release the grasp on the robot when the robot shows that it is capable of reaching

the desired goal location without human intervention. Service and manufacturing scenarios offer a

wide set of examples where collaborative actions can be initiated by the human and finished by the

robot: assembling objects parts, sorting items in the correct bins or trays, welding, moving objects

together, etc. In all these cases, the robot should be able to predict the goal of each action and

the trajectory that the human partner wants to do for each action. To make this prediction, the

robot should use all available information coming from sensor readings, past experiences (prior),

human imitation and previous teaching sessions or collaborations. Understanding and modeling

the human behavior, exploiting all the available information, is the key to tackle this problem [3].

To predict the human intention, the robot must identify the current task, predict the user’s goal

and predict the trajectory to achieve this goal. In the human-robot interaction literature, many

keywords are associated to this prediction ability: inference, goal estimation, legibility, intention

recognition, anticipation.

Anticipation is the ability of the robot to choose the right thing to do in a current situation [4].

To achieve this goal, the robot must predict the effect of their action, as studied with the concept

of affordances [5, 6, 7]. It also must predict the human intention, which means estimating the

partner’s goal [8, 9]. Finally, it must be able to predict the future events or states, e.g. being able

to simulate the evolution of the coupled human-robot system, as it is frequently done in model

predictive control [10, 11] or in human-aware planning [12, 13].

It has been posited that having legible motions [14, 15] helps the interacting partners in increasing

the mutual estimation of the partner’s intention, increasing the efficiency of the collaboration.

Anticipation requires thus the ability to visualize or predict the future desired state, e.g., where

the human intends to go to. Predicting the user intention is often formulated as predicting the

target of the human action, meaning that the robot must be able to predict at least the goal of

the human when the two partners engage in a joint reaching action. To make such prediction, a

common approach is to consider each movement as an instance of a particular skill or goal-directed

movement primitive.

In the past decade, several frameworks have been proposed to represent movements primitives,

frequently called skills, the most notable being Gaussian Mixture Models (GMM) [16, 17], Dynamic

Movement Primitives (DMP) [18], Probabilistic Dynamic Movement Primitive (PDMP [19]) and

Probabilistic Movement Primitives (ProMP) [20]. For a thorough review of the literature we

refer the interested reader to [21]. Skill learning techniques have been applied to several learning

scenarios, such as playing table-tennis, writing digits, avoiding obstacles during pick & place

1Currently, this scenario is frequently addressed in manufacturing by robots and lifters; in the future, we imagine
that humanoid robots could also be used for such task, for assisting workers in environments where robots cannot
be installed on a fixed base, such as in some aircraft manufacturing operations [2].

2

motions, etc. In all these scenarios, the humans are classically providing the demonstrations (i.e.,

realizations of the task trajectories) by either manually driving the robot or through tele-operation,

following the classical paradigm of imitation learning. Some of them have been also applied to

the iCub humanoid robot: for example, [22] used DMPs to adapt a reaching motion online to the

variable obstacles encountered by the robot arm, while [23] used ProMPs to learn how to tilt a

grate including torque information.

Among the aforementioned techniques, ProMPs stand out as one of the most promising tech-

niques for realizing intention recognition and anticipatory movements for human-robot collaboration.

They have the advantage, with respect to the other methods, of capturing by design the variabil-

ity of the human demonstrations. They also have useful structural properties, as described by

[20], such as co-activation, coupling and temporal scaling. ProMPs have already been used in

human-robot coordination for generating appropriate robot trajectories in response to initiated

human trajectories [24]. Differently from DMPs, ProMPs do not need the information about the

final goal of the trajectory, which is something that DMPs use to set an attractor that guarantees

convergence to the final goal.2 Also, they perform better in presence of noisy measurements or

sparse measurements, as discussed in [25].3 In a recent paper [19] proposed a method called PDMP

(Probabilistic Dynamic Movement Primitive). This method improves DMP with probabilistic

properties to measure the likelihood that the movement primitive is executed correctly and to

perform inference on sensor measurement. However, The PDMPs do not have a data-driven

generalization and can deviate arbitrarily from the demonstrations. These last differences can be

critical for our humanoid robot (for example, if it collides with something during the movement, or

if during the movement it holds something that can fall down due to a bad trajectory, etc.). Thus,

the ProMPs method is more suitable for our applications.

In this paper, we present our approach to the problem of predicting the intention during

human-robot physical interaction and collaboration, based on Probabilistic Movement Primitives

(ProMPs) [20], and we present the associated open-source software code that implements the

method for the iCub.

To illustrate the technique, the exemplifying problem we tackle in this paper is to allow the

robot to finish a movement initiated by the user that physically guides the robot arm. From

the first observations of the joint movement, supposedly belonging to a movement primitive of

some task, the robot must recognize which kind of task the human is doing, predict the ”future”

trajectory and complete the movement autonomously when the human releases the grasp on the

robot.4

To achieve this goal, the robot first learns the movement primitives associated to the different

actions/tasks. We choose to describe these primitives with ProMPs, as they are able to capture

the distribution of demonstrations in a probabilistic model, rather than with a unique “average”

trajectory. During interaction, the human starts physically driving the robot to perform the

2There may be applications where converging to a unique and precise goal could be a desirable property of the
robot’s movement. However, it is an assumption that prevents us to generalize the method for different actions, and
this is another reason why we prefer ProMPs.

3We refer the interested reader to [25] for a thorough comparison between DMPs and ProMPs to be used for
interaction primitives and prediction.

4To avoid disambiguation, in our method, tasks are encoded by primitives that are made of trajectories: this is a
very classical approach for robot learning techniques and in general techniques based on primitives. Of course this is
a simplification, but it allows representing a number of different tasks: pointing, reaching, grasping, gazing, etc.

3

desired task. At the same time, the robot collects observations of the task. It then uses the prior

information from the ProMP to compute a prediction of the desired goal together with the ”future”

trajectory that allows it to reach the goal.

A conceptual representation of the problem is shown in Figure 1. In the upper part of this

figure, we represent the training step for one movement primitive: the robot is guided by the human

partner to perform a certain task, and several entire demonstrations of the movement that realizes

the task are collected. Both kinematics (e.g., Cartesian positions) and dynamics (e.g., wrenches)

information are collected. The N trajectories constitute the base for learning the primitive, that

is learning the parameters ω of the trajectory distribution. We call this learned distribution the

prior distribution. If multiple tasks are to be considered, then the process is replicated such that

we have one ProMP for every task. The bottom of the figure represents the inference step. From

the early observations5 of a movement initiated by the human partner, the robot first recognizes

which ProMP best matches the early observations (i.e., it recognizes the primitives that the human

is executing, among the set of known primitives). Then, it estimates the future trajectory, given

the early observations (e.g. first portion of a movement) and the prior distribution, computing

the parameters ω∗ of the posterior distribution. The corresponding trajectory can be used by the

robot to autonomously finish the movement, without relying on the human.

Training

Inference

Model learning

N demonstrations of the whole trajectory

#samples

x
ProMP

recognized ProMP

Model update

#samples

x updated ProMP

computing

computing

Movement initiated by the partner

posterior
distribution

observations

Partner's guidance

ProMP recognition

prior
distribution

Movement finished
by the robot autonomously

Partner's guidance

#samples

x

Figure 1: Conceptual use of the ProMP for predicting the desired trajectory to be performed by
the robot in a collaborative task. Top: training phase, where ProMPs are learned from several
human demonstrations. Bottom: inference phase (online), where from early observations the robot
recognizes the current (among the known) ProMP and predicts the human intention, i.e., the
future evolution of the initiated trajectory.

In the paper, we describe both the theoretical framework and the software that is used to perform

this prediction. The software is currently implemented in Matlab and C++; it is open-source,

available on github:

https://github.com/inria-larsen/icubLearningTrajectories

and it has been tested both with a simulated iCub in Gazebo and the real iCub. In simulation,

physical guidance is provided by the Geomagic Touch6; on the real robot, the human operator

simply grabs the robot’s forearm.

5In the paper, we denote by early observations the first portion of a movement observed by the robot, i.e., from
t = 0 to a current t.

6The Geomagic Touch is a haptic device, capable of providing force feedback from the simulation to the operator.

4

https://github.com/inria-larsen/icubLearningTrajectories

We also provide a practical example of the software that realizes the exemplifying problems. In

the example, the recorded trajectory is composed of both the Cartesian position and the forces at

the end-effector. Notably, in previous studies [23], ProMPs were used to learn movement primitives

using joint positions. Here, we use Cartesian positions instead of joints positions, to exploit the

redundancy of the robotic arm in performing the desired task in the 3D space. At the control level

of the iCub, this choice requires the iCub to control its lower-level (joint torque) movement with

the Cartesian controller [26] instead of using the direct control at joint level. As for the forces, we

rely on a model-based dynamics estimation that exploits the 6 axis force/torque sensors [27, 28].

All details for the experiments are presented in the paper and the software tutorial.

To summarize, the contributions of this paper are:

• the description of a theoretical framework based on ProMPs for predicting the human desired

trajectory and goal during physical human-robot interaction, providing the following features:

recognition of the current task, estimation of the task duration, prediction of the future

trajectory;

• an experimental study about how multimodal information can be used to improve the

estimation of the duration/speed of an initiated trajectory;

• the open-source software to realize an intention recognition application with the iCub robot,

both in simulation and on the real robot.

The paper is organized as follows. In Section 2 we review the literature about intentions in

Human-Robot Interaction (HRI), probabilistic models for motion primitives and their related

software. In Section 3 we describe the theoretical tools that we use to formalize the problem of

predicting the intention of the human during interaction. Particularly, we describe the ProMPs

and their use for predicting the evolution of a trajectory given early observations. In Section

4 we overview the software organization and the interconnection between our software and the

iCub’s main software, both for the real and simulated robot. The following sections are devoted to

presenting our software and its use for predicting intention. We choose to present three examples

of increasing complexity, with the simulated and real robot. We provide and explain in detail a

software example for a 1-DOF trajectory in Section 5. In Sections 6 and 7 we present the intention

recognition application with the simulated and real iCub, respectively. In the first examples with

the robot, the “tasks” are exemplified by simple reaching movements, to provide simple and clear

trajectories that help the reader understand the method, whereas the last experiment with the

robot is a collaborative object sorting task. Section 8 provides the links to the videos showing how

to use the software in simulation and on the iCub. Finally, in Section 10 we discuss our approach,

its limitations and outline our future developments.

2 Related Work

In this paper we propose a method to recognize the intention of the human partner collaborating

with the robot, formalized as the target and the ”future” trajectory associated to a skill, modeled

In our experiments with the simulated iCub we did not use this feature. We used the Geomagic Touch to steer the
arm of the simulated robot. In that sense, we used it more as a joystick for moving the left arm.

5

by a goal-directed Probabilistic Movement Primitive. In this section, we briefly overview the

literature about intention recognition in human-robot interaction and motion primitives for learning

of goal-directed robotic skills.

2.1 Intention during human-robot interaction

When humans and robots collaborate, mutual understanding is paramount for the success of any

shared task. Mutual understanding means that the human is aware of the robot’s current task,

status, goal, available information, that he/she can reasonably predict or expect what it will do

next, and vice versa. Recognizing the intention is only one piece of the problem, but still plays a

crucial part for providing anticipatory capabilities.

Formalizing intention can be a daunting task, as one may find it difficult to provide a unique

representation that explains the intention for very low-level goal directed tasks (e.g., reaching a

target object and grasping it) and for very high-level, complex, abstract or cognitive tasks (e.g.,

change a light bulb on the ceiling - by building a stair composed of many parts, climbing it and

reaching the light bulb on the ceiling, etc.). [29] review different approaches of action recognition

and intention prediction.

From the human’s point of view, understanding the robot’s intention means that the human

should find intuitive and non-ambiguous every goal-directed robot movement or actions, and it

should be clear what the robot is doing or going to do [30]. [31] formalized the difference between

predictability and legibility : a motion is legible if an observer can quickly infer its goal, while a

motion is predictable when it matches the expectations of the observer given its goal.

The problem of generating legible motions for robots has been addressed in many recent works.

For example, [31] use optimization techniques to generate movements that are predictable and

legible. [32] apply an Inverse Reinforcement Learning method on autonomous cars to select the

robot movements that are maximally informative for the humans and that will facilitate their

inference of the robot’s objectives.

From the robot’s point of view, understanding the human’s intention means that the robot

should be able to decipher the ensemble of verbal and non-verbal cues that the human naturally

generates with his/her behavior, to identify, for a current task and context, what is the human

intention. The more information (e.g., measurable signals from the human and the environment) is

used, the better and more complex the estimation can be.

The simplest form of intention recognition is to estimate the goal of the current action, under

the implicit assumption that each action is a goal-directed movement.

[33] showed that humans implicitly attribute intentions in form of goals to robot motions,

proving that humans exhibit anticipatory gaze towards the intended goal. Gaze was also used

by [34] in a human-robot interaction game with iCub, where the robot (human) was tracking

the human (robot) gaze to identify the target object. [35] proposed the Bayesian Human Motion

Intentionality Prediction algorithm, to geometrically compute the most likely target of the human

motion, using Expectation-Maximisation and a simple Bayesian classifier. In [36], a method called

Intention-Driven Dynamics model, based on Gaussian Process Dynamical Models (GPDM [37]),

is used to infer the intention of the robot’s partner during a ping-pong match, represented by

the target of the ball, by analyzing the entire human movement before the human hits the ball.

6

More generally, modeling and descriptive approaches can be used to match predefined labels with

measured data [38].

A more complex form of intention recognition is to estimate the future trajectory from the

past observations. In a sense, to estimate [xt+1, . . . , xt+Tfuture] = f(xt, xt−1, . . . , xt−Tpast). This

problem, very similar to the estimate of the forward dynamics model of a system, is frequently

addressed by researchers in model predictive control, where being able to “play” the system

evolving in time is the basis for computing appropriate robot controls. When a trajectory can

be predicted by an observer from early observations of it, we can say that the trajectory is not

only legible, but predictable. A systematic approach for predicting a trajectory is to reason in

terms of movement primitives, in such a way that the sequence of points of the trajectory can be

generated by a parametrized time model or a parametrized dynamical system. For example, [39]

plan reaching trajectories for object-carrying that are able to convey information about the weight

of the transported object. More generally, in generative approaches [40], latent variables are used

to learn models for the primitives, both to generate and infer actions. The next subsection will

provide more detail about the state-of-the-art techniques for generating movement primitives.

In [41], the robot first learns Interaction Primitives by watching two humans performing an

interactive task, using motion capture. The Interaction Primitive encapsulates the dependencies

between the two human movements. Then, the robot uses the Interaction Primitive to adapt its

behavior to its partner’s movement. Their method is based on Dynamics Motor Primitives [18],

where a distribution over the DMP’s parameters is learned. Notably, in this paper we didn’t

follow the same approach to learn Interaction Primitives, since there is a physical interaction that

makes the user’s and the robot’s movements as one joint movements. Moreover, there is no latency

between the partner’s early movement and the robot’s, because the robot’s arm is physically driven

by the human until the latter breaks the contact.

Indeed, most examples in the literature focus on kinematic trajectories, corresponding to

gestures that are typically used in dyadic interactions characterized by a coordination of actions

and reactions. Whenever the human and robot are also interacting physically, collaborating on

a task with some exchange of forces, then the problem of intention recognition becomes more

complex. Indeed, the kinematics information provided by the “trajectories” cannot be analyzed

without taking into account the haptic exchange and the estimation of the “roles” of the partners

in leading/following each other.

Estimating the current role of the human (master/slave or leader/follower) is crucial, as the role

information is necessary to coherently adapt the robot’s compliance and impedance at the level of

the exchanged contact forces. Most importantly, adapting the haptic interaction can be used by

the robot to communicate when it has understood the human intent and is able to finish the task

autonomously, mimicking the same type of implicit nonverbal communication that is typical of

humans.

For example, in [42], the robot infers the human intention utilizing the measure of the human’s

forces and by using Gaussian Mixture Models. In [43], the arm impedance is adapted by a Gaussian

Mixture Model based on measured forces and visual information. Many studies focused on the

robot’s ability to act only when and how its user wants [44][45] and to not interfere with the

partner’s forces [46] or actions [47].

In this paper, we describe our approach to the problem of recognizing the human intention

7

during collaboration by providing an estimate of the future intended trajectory to be performed by

the robot. In our experiments, the robot does not adapt its role during the physical interaction,

but simply switch from follower to leader when the human breaks contact with it.

2.2 Movement primitives

Movement Primitives (MPs) is a well established paradigm for representing complex motor skills.

The most known method for representing movement primitives is probably the Dynamic Movement

Primitives (DMPs) [18, 48, 19]. DMPs use a stable non-linear attractor in combination with a

forcing term to represent the movement. The forcing term enables to follow specific movement,

while the attractor asserts asymptotic stability. In a recent paper, [19] proposed an extension

to DMPs, called PDMP (Probabilistic Dynamic Movement Primitive). This method improves

DMP with probabilistic properties to measure the likelihood that the movement primitive is

executed correctly and to perform inference on sensor measurement. However, The PDMPs do not

have a data-driven generalization and can deviate arbitrarily from the demonstrations. This last

difference can be critical for our applications with the humanoid robot iCub, since uncertainties

are unavoidable and disturbances may happen frequently and de-stabilize the robot movement

(for example, an unexpected collision during the movement). Thus, the ProMPs method is more

accurate for our software.

[49], [50] and [25] compared ProMPs and DMPs for learning primitives and specifically inter-

action primitives. With the DMP model, at the end of the movement, only a dynamic attractor

is activated. Thus, it always reach a stable goal. The properties allowed by both methods are

temporal scaling of the movement, learning from a single demonstration, and generalizing to

new final position. With ProMPs, we have in addition the ability to do inference (thanks to the

distribution), to force the robot to pass by several initial via-points (the early observations), to

know the correlation between the input of the model, and to co-activate some ProMPs. In our

study, we need these features, because the robot must determine a trajectory that passes by the

early observations (beginning of the movement where the user guides physically the robot).

A Recurrent Neural Networks (RNN) approach [51] used a hierarchy of neural networks to

simulate the activation of areas in human brain. The network can be trained to infer the state of

the robot at the next point in time, given the current state. The authors propose to train the RNN

by minimizing the error between the inferred position of the next time step and the ground-truth

obtained from demonstrations.

Hidden Markov Models (HMMs) for movement skills were introduced by [52]. This method

is often used to categorize movements, where a category represents a movement primitive. This

method also allows to represent the temporal sequence of a movement. In [53] they use learned

Hierarchical Hidden Markov Model (HHMMs) to recognize human behaviors efficiently. In [54]

they present the Primitive based Coupled-HMM (CHMM) approach, for human natural complex

action recognition. In this approach, each primitive is represented by a Gaussian Mixture Model.

Adapting Gaussian Mixture Models is another method used to learn physical interaction with

learning. In [55] they use GMMs and Gaussian Mixture Regression to learn, in addition to the

position (joint information), force information. Using this method, a humanoid robot is able to

collaborate in one dimension with its partner for a lifting task. In our paper, we will also use

8

(Cartesian) position and force information to allow our robot to interact physically with its partner.

A sub-problem of movement recognition is that robots need to estimate the duration of the

trajectory to align a current trajectory with learned movements. In our case, at the beginning

of the physical Human-Robot Interaction (pHRI), the robot observes a partial movement guided

by its user. Given this partial movement, the robot must first estimate what the current state of

the movement is to understand what its partner intent is. Thus, it needs to estimate the partial

movement’s speed.

Fitts’ law models the movement duration for goal-directed movements. This model is based

on the assumption that the movement duration is a linear function of the difficulty to achieve a

target[56]. In [57], they show that by modifying the target’s width, the shape of the movement

changes. Thus, it is difficult to apply Fitt’s law when the size of the target can change. In [57] and

[58], they confirm this idea by showing that the shape of the movement changes with the accuracy

required by the goal position of the movement.

Dynamics Time Warping (DTW) is a method to find the correlation between two trajectories

that have different durations, in a more robust way than the Euclidean distance. In [41], they

modify the DTW algorithm to match a partial movement with a reference movement. Many

improvements over this method exist. In [59], they propose a robust method to improve the

indexation. The calculation speed of DTW is improved using different methods, such as FastDTW,

Lucky Time Warping or FTW. An explanation and comparison of these methods is presented in

[60], where they add their own computation speed improvement by using a method called Pruned

Warping Paths. This method allows the deletion of unlikely data. However, a drawback of this

well-known DTW method is they don’t preserve the global trajectory’s shape.

In [25], where they use a probabilistic learning of movement primitives, they improve the

duration estimation of movements by using a different time warping method. This method is based

on a Gaussian basis model to represent a time warping function and, instead of DTW, it forces a

local alignment between the two movements without “jumping” some index. Thus, the resulting

trajectories are more realistic, smoother, and this method preserves the global trajectories’ shapes.

For inferring the intention of the robot’s partner, we use Probabilistic Movement Primitives

(ProMPs), [20]). Specifically, we use the ProMP’s conditioning operator to adapt the learned

skills according to observations. The ProMPs can encode the correlations between forces and

positions and allow better prediction of the partner’s intention. Further, the phase of the partner’s

movement can be inferred and therefore the robot can adapt to the partner’s velocity changes.

ProMPs are more efficient for collaborative tasks, as shown in [25], where in comparison to DMPs,

the root-mean square error of the predictions is lower.

2.3 Related open-source software

One of the goals of this paper is to introduce an open-source software for the iCub (but potentially

for any other robot), where the ProMP method is used to recognize human intention during

collaboration, so that the robot can execute initiated actions autonomously. This is not the

first open-source implementation for representing movement primitives: however, it has a novel

application and a rationale that makes it easy to use with the iCub robot.

In Table 1 we report on the main software libraries that one can use to learn movement

9

primitives. Some have been also used to realize learning applications with iCub, e.g., [61, 22] or

to recognize human intention. However, the software we propose here is different: it provides an

implementation of ProMPs used explicitly for intention recognition and prediction of intended

trajectories. It is interfaced with iCub, both real and simulated, and addresses in the specific case

of physical interaction between the human and the robot. In short, it is a first step towards adding

intention recognition ability to the iCub robot.

3 Theoretical framework

In this section we present the theoretical framework that we use to tackle the problem of intent

recognition: we describe the ProMPs and how they can be used to predict trajectories from early

observations.

In Section 3.2 we formulate the problem of learning a primitive for a simple case, where the robot

learns the distribution from several demonstrated trajectories. In Section 3.3 we formulate and

provide the solution to the problem of predicting the “future” trajectory from early observations (i.e.,

the initial data points). In Section 3.4 we discuss the problem of predicting the time modulation,

i.e., predicting the global duration of the predicted trajectory. This problem is non-trivial, as

by construction the demonstrated trajectories are “normalized” in duration when the ProMP is

learned. 7 In Section 3.5 we explain how to recognize, from the early observations, to which of

many known skills (modeled by ProMPs) the current trajectory belongs. In all these sections we

tried to present the theoretical aspects related to the use of ProMPs for the intention recognition

application.

Practical examples of these theoretical problems are presented and explained later in sections 5

- 7. Section 5 explains how to use our software, introduced in Section 4, for learning one ProMP

for a simple set of 1-DOF trajectories. Section 6 presents an example with the simulated iCub in

Gazebo, while Section 7 presents an example with the real iCub.

3.1 Notation

To facilitate understanding of the theoretical framework, we first introduce the notations we use in

this section and throughout the remainder of the paper.

Trajectories:

• X(t) ∈ R3, X(t) = [x(t), y(t), z(t)]>: the x/y/z-axis Cartesian coordinate of the robot’s

end-effector.

• F (t) ∈ R6, F (t) = [fx, fy, fz,mx,my,mz]
>: the wrench contact forces, i.e. the external

forces and moments measured by the robot at the contact level (end-effector).

• ξ(t) ∈ RD: the generic vector containing the current value or state of the trajectories

at time t. It can be mono-dimensional (e.g. ξ(t) = [z(t)]), or multi-dimensional (e.g.

ξ(t) = [X(t), F (t)]>), depending on the type of trajectories that we want to represent with

the ProMP.

7In some tasks, e.g., reaching, it is reasonable to assume that the difference of duration of the demonstrated
trajectories is negligible; however, in other tasks the duration of the demonstrated trajectories may vary significantly.

10

S
o
ft

w
a
re

/
li

b
ra

ry
M

e
th

o
d

C
o
d

e
li

n
k

L
a
n

g
u

a
g
e

R
o
b

o
t

R
e
fe

re
n

c
e
(s

)
D

y
n
a
m

ic
a
l

S
y
st

em
M

o
d
u
la

ti
o
n

fo
r

R
ob

ot
A

d
ap

ti
ve

L
ea

rn
in

g
v
ia

K
in

es
-

th
et

ic
D

em
on

st
ra

ti
on

s

G
M

R
[6

2
]

M
a
tl

a
b

H
o
a
p

3
[6

3
]

p
b

d
li

b
-m

at
la

b
H

M
M

,
G

M
M

,
a
n
d

ot
h

er
s

[6
4
]

M
a
tl

a
b

B
a
x
te

r
[6

5
]

D
M

P
le

ar
n

in
g

w
it

h
G

M
R

D
M

P
a
n

d
G

M
R

[6
6
]

M
at

la
b

or
C

C
o
m

a
n

[6
7
]

S
to

ch
a
st

ic
M

a
ch

in
e

L
ea

rn
in

g
T

o
o
l-

b
ox

K
er

n
el

F
u
n
ct

io
n
s,

G
a
u
ss

ia
n

P
ro

-
ce

ss
es

,
B

ay
es

ia
n

O
p

ti
m

iz
a
ti

o
n

[6
8
]

C
+

+
o
r

P
y
th

o
n

—

p
y
d

m
p

s
D

M
P

[6
9
]

P
y
th

o
n

S
a
rc

o
s

[1
8
]

D
y
n
a
m

ic
a
l

S
y
st

em
s

a
p
p
ro

a
ch

to
L

ea
rn

R
ob

ot
M

ot
io

n
s

G
M

M
,

S
E

D
S

[7
0
]

M
a
tl

a
b

iC
u

b
[1

7
],

[7
1
]

F
u

n
ct

io
n

A
p

p
ro

x
im

at
io

n
,

D
M

P
,

an
d

B
la

ck
-B

ox
O

p
ti

m
iz

at
io

n
(d

m
p

b
b

o)
D

M
P

[7
2
]

P
y
th

on
or

C
+

+
iC

u
b

[6
1
,

2
2
]

L
ea

rn
in

g
M

ot
or

S
k
il
ls

fr
om

P
ar

ti
al

ly
O

b
se

rv
ed

M
ov

em
en

ts
E

x
ec

u
te

d
a
t

D
iff

er
en

t
S

p
ee

d
s

P
ro

M
P

[7
3
]

M
at

la
b

or
P

y
th

o
n

—
[4

9
]

ic
u

b
L

ea
rn

in
gT

ra
je

ct
or

ie
s

P
ro

M
P

[7
4
]

M
a
tl

a
b

a
n

d
C

+
+

iC
u

b
—

T
ab

le
1:

O
p

en
-s

ou
rc

e
so

ft
w

ar
e

li
b

ra
ri

es
im

p
le

m
en

ti
n

g
M

ov
em

en
t

P
ri

m
it

iv
es

a
n

d
th

ei
r

a
p

p
li

ca
ti

o
n

to
d

iff
er

en
t

k
n

ow
n

ro
b

o
ts

.

11

• Ξ = Ξ[1:tf] = [ξ(1), . . . , ξ(tf)]> ∈ RD·tf is an entire trajectory, consisting of tf samples or

data points.

• Ξi[1:tfi] is the i-th demonstration (trajectory) of a task, consisting of tfi samples or data

points.

Movement Primitives:

• k ∈ [1 : K]: the k-th ProMP, among a set of K ProMPs that represent different tasks/actions.

• nk: number of recorded trajectories for each ProMP.

• Sk = {Ξ{k,1}, . . . ,Ξ{k,nk}}: set of nk trajectories for the k-th ProMP.

• ξ(t) = Φtω + εξ is the model of the trajectory with:

– εξ ∼ N (0, β): expected trajectory noise.

– Φt ∈ RD×D·M : radial basis functions (RBFs) used to model trajectories. It is a block

diagonal matrix.

- M : number of RBFs.

- ψji(t) =
e

−(t−ci)
2

2h∑M
m=1 e

−(t−cm)2

2h

: i-th RBF for all inputs j ∈ [1 : D].

It must be noted that the upper term comes from a Gaussian 1√
2πh

e
−(t−ci)

2

2h , where

ci, h are respectively the center and variance of the i-th Gaussian. In our RBF

formulation, we normalize all the Gaussians.

– ω ∈ RD·M : time-independent parameter vector weighting the RBFs, i.e., the parameters

to be learned.

• p(ω) ∼ N (µω,Σω): normal distribution computed from a set {ω1, . . . ,ωn}. It represents

the distribution of the modeled trajectories, also called prior distribution.

Time modulation:

• s̄: number of samples used as reference to rescale all the trajectories to the same duration.

• Φαit ∈ RD×D·M : the RBFs rescaled to match the Ξi trajectory duration.

• αi = s̄
tfi

: temporal modulation parameter of the i-th trajectory .

• α = Ψδno
ωα + εα is the model of the function mapping δno into the temporal modulation

parameter α, with:

- Ψ: a set of RBFs used to model the mapping between δno and α;

- δno is the variation of the trajectory during the first no observations (data points); it

can be δno = ξ(no) − ξ(1) if the entire trajectory variables (e.g., Cartesian position,

forces, etc.) are considered, or more simply δno = X(no)−X(1) if only the variation in

terms of Cartesian position is considered;

- ωα: the parameter vector weighting the RBFs of the Ψ matrix.

12

Inference:

• Ξo = [Xo, F o]> = [ξo(1), . . . , ξo(no)]
>: early-trajectory observations, composed of no data

points.

• Σoξ: noise of the initiated trajectory observation.

• α̂: estimated time modulation parameter of a trajectory to infer.

• t̂f = s̄
α̂ : estimated duration of a trajectory to infer.

• Ξ∗ = [ξo(1), . . . , ξo(no), ξ
∗(no + 1), . . . , ξ∗(tf)]: ground truth of the trajectory for the robot

to infer.

• Ξ̂ = [X̂, F̂]> = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(t̂f)]>: the estimated trajectory.

• p(ω̂) ∼ N (µ̂ω, σ̂ω): posterior distribution of the parameter vector of a ProMP using the

observation Ξo.

• k̂: index of the recognized ProMP from the set of K known (previously learned) ProMPs.

3.2 Learning a Probabilistic Movement Primitive (ProMP) from demon-

strations

Our toolbox to learn, replay and infer the continuation of trajectories is written in Matlab and

available at:

https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram

Let us assume the robot has recorded a set of n1 trajectories: {Ξ1, . . . ,Ξn1
}, where the i-th

trajectory is Ξi = {ξ(1), . . . , ξ(tfi)}. ξ(t) is the generic vector containing all the variables to be

learned at time t, with the ProMP method. It can be mono-dimensional (e.g. ξ(t) = [z(t)] for

the z-axis Cartesian coordinate), or multi-dimensional (e.g. ξ(t) = [X(t), F (t)]>). Note that the

duration of each recorded trajectory (i.e. tfi) may be variable. To find a common representation

in terms of primitives, a time modulation is applied to all trajectories, such that they have the

same number of samples s̄ (see details in Section 3.4). Such modulated trajectories are then used

to learn a ProMP.

A ProMP is a Bayesian parametric model of the demonstrated trajectories in the form:

ξ(t) = Φtω + εξ (1)

where ω ∈ RM is the time-independent parameter vector weighting the RBFs, εξ ∼ N (0, β) is the

trajectory noise, and Φt is a vector of M radial basis functions evaluated at time t:

Φt = [ψ1(t), ψ2(t),, ψM (t)]

with
ψi(t) = 1∑M

j=1 ψj(t)
exp{−(t−c(i))2

2h }

c(i) = i/M

h = 1/M2

(2)

13

https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram

Note that all the ψ functions are scattered across time.

For each Ξi trajectory, we compute the ωi parameter vector to have ξi(t) = Φtωi + εξ. This

vector is computed to minimize the error between the observed ξi(t) trajectory and its model

Φtωi + εξ. This is done using the Least Mean Square algorithm, i.e.:

ωi = (Φ>t Φt)
−1Φ>t ξi(t). (3)

To avoid the common issue of the matrix Φ>t Φt in Equation 3 not being invertible, we add a

diagonal term and perform Ridge Regression:

ωi = (Φ>t Φt + λ)−1Φ>t ξi(t). (4)

where λ = 10−11 · 1D·M×D·M is a parameter that can be tuned by looking at the smallest singular

value of the matrix Φ>t Φt.

Thus, we obtain a set of these parameters: {ω1, . . . ,ωn}, upon which a distribution is computed.

Since we assume Normal distributions, we have:

p(ω) ∼ N (µω,Σω) (5)

with µω =
1

n

n∑
i=1

ωi (6)

and Σω =
1

n− 1

n∑
i=1

(ωi − µω)>(ωi − µω) (7)

The ProMP captures the distribution over the observed trajectories. To represent this movement

primitive, we usually use the movement that passes by the mean of the distribution Figure 4 shows

the ProMP for a 1-DOF lifting motion, with a number of reference samples s̄ = 100 and number of

basis functions M = 5.

This example is included in our Matlab toolbox as demo plot1DOF.m. The explanation of this

Matlab script is presented in Section 5. More complex examples are also included in the scripts

demo plot*.m.

3.3 Predicting the future movement from initial observations

Once the ProMP p(ω) ∼ N (µω,Σω) of a certain task has been learned8, we can use it to predict

the evolution of an initiated movement. An underlying hypothesis is that the observed movement

follows to this learned distribution.

Suppose that the robot measures the first no observations of the trajectory to predict (e.g.,

lifting the arm). We call these observations Ξo = [ξo(1), . . . , ξo(no)]. The goal is then to predict

the evolution of the trajectory after these no observations, i.e. find {ξ̂(no + 1), . . . , ξ̂(t̂f)}, where

t̂f is the estimation of the trajectory duration (see Section 3.4). This is equivalent to predicting

the entire Ξ̂ trajectory where the first no samples are known and equal to the observations: Ξ̂ =

{ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(tt̂f)}. Therefore, our prediction problem consists of predicting

Ξ̂ given the Ξo observations.

8i.e., we computed the p(ω) distribution from the dataset {ω1, . . . ,ωn}, where each ωi is an estimated parameter
computed from the trajectory demonstrations.

14

To do this prediction, we start from the learned prior distribution p(ω), and we find the ω̂

parameter within this distribution that generates Ξ̂. To find this ω̂ parameter, we update the

learned distribution p(ω̂) ∼ N (µ̂ω, Σ̂ω) using the formulae:{
µ̂ω = µω +K(Ξo − Φ[1:no] µω)

Σ̂ω = Σω −K(Φ[1:no] Σω)
(8)

where K is a gain computed by:

K = ΣωΦ>[1:no](Σ
o
ξ + Φ[1:no]ΣωΦ>[1:no])

−1 (9)

Equation 8 and 9 can be computed through the marginal and conditional distributions [20, 75], as

detailed in Appendix A.

Figure 6 shows the predicted trajectory for the lifting motion of the left arm of iCub. The

different graphs show inferred trajectories when the robot observed no = 10, 30, 50, 80% of the

total trajectory duration. This example is also available in the toolbox as demo plot1DOF.m. The

nbData variable changes the percentage of known data. Thus, it will be visible how the inference

improves according to this variable. An example of predicted trajectories of the arm lifting in

Gazebo can be found in a provided video (see Section 8).

3.4 Predicting the trajectory time modulation

In the previous section, we presented the general formulation of ProMPs, which makes the implicit

assumption that all the observed trajectories have the same duration and thus the same sampling.9

That is why the duration of the trajectories generated by the RBF is fixed and equal to s̄. Of

course, this is valid only for synthetic data and not for real data.

To be able to address real experimental conditions, we now consider the variation of the

duration of the demonstrated trajectories. To this end, we introduce a time modulation parameter

α that maps the actual trajectory duration tf to s̄: α = s̄/tf . The normalized duration s̄ can be

chosen arbitrarily; for example it can be set to the average of the duration of the trajectories, e.g.,

s̄ = mean(tf1, . . . , tfK). Notably, in the literature sometimes α is called phase [20, 50]. The effect

of α is to change the phase of the RBFs, that are scaled in time.

The time modulation of the i-th trajectory Ξi is computed by αi = s̄
tfi

. Thus, we have

α · t ∈ [1 : s̄]. Thus, the improved ProMP model is:

ξt = Φαtω + εt , (10)

where Φαt is the RBFs matrix evaluated at time αt. All the M Gaussian functions of the RBFs

are spread over the same number of samples s̄. Thus, we have:

Φαt = [ψ1(αt), ψ2(αt),, ψM (αt)].

During the learning step, we record a set of α parameters: Sα = {α1, . . . , αn}. Then, using

this set, we can replay the learned ProMP with different speeds. By default (e.g. when α = 1), the

9Actually, we call here duration what is in fact the total number of samples for the trajectory.

15

speed allows to finish the movement in s̄ samples.
z[

m
]

Time [s]
0 0.5 1 1.50

0.02

0.04

0.06

0.08

real trajectory
observations
prior proMP
prediction
error of duration

Figure 2: This plot shows the predicted trajectory given early observations (data points, in black),
compared to the ground truth (e.g., the trajectory that the human intends to execute with the
robot). We show the prior distribution (in light blue) and the posterior distribution (in red), which
is computed by conditioning the distribution to match the observations. Here, the posterior simply
uses the average α computed over the α1, . . . , αK of the K demonstrations. Without predicting
the time modulation from the observations and using the average α, the predicted trajectory has a
duration that is visibly different from the ground truth.

During the inference, the time modulation α of the partially observed trajectory is not known.

Unless fixed a priori, the robot must estimate it. This estimation is critical to ensure a good

recognition, as shown in Figure 2: the inferred trajectory (represented by the mean of the posterior

distribution in red) does not have the same duration as the “real” intended trajectory (which is

the ground truth). This difference is due to the estimation error of the time modulation parameter.

This estimation α̂ by default is computed as the mean of all the αk observed during the learning:

α̂ =

∑
αk
nk

. (11)

However, using the mean value for the time modulation is an appropriate choice only when the

primitive represents goal-directed motions that are very regular, or for which we can reasonably

assume that differences in the duration can be neglected (which is not a general case). In many

applications this estimation may be too rough.

Thus, we have to find a way to estimate the duration of the observed trajectory, which

corresponds to accurately estimating the time modulation parameter α̂. To estimate α̂, we

implemented four different methods. The first is the mean of all the αk, as in Equation 11. The

16

second is the maximum likelihood, with

α̂ = argmaxα∈Sαk{loglikelihood(Ξo, µωk , σωk , αk)}. (12)

The third is the minimum distance criterion, where we seek the best α̂ that minimizes the

difference between the observed trajectory Ξot and the predicted trajectory for the first no data

points:

α̂ = argminα∈Sαk{
no∑
t=1

|Ξot − Φαtµωk |}. (13)

The fourth method is based on a model: we assume that there is a correlation between α and

the variation of the trajectory δno from the beginning until the time no. This “variation” δno

can be computed as the variation of the position, e.g., δno = X(no) −X(1), or the variation in

the entire trajectory, δno = Ξ(no)− Ξ(1), or any other measure of progress, if this hypothesis is

appropriate for the type of task trajectories of the application.10 Indeed, the α can be linked also

to the movement speed, which can be roughly approximated by Ẋ = δX
tf

(Ξ̇ = δΞ
tf

). We model the

mapping between δno and α by:

α = Ψ(δno)
>ωα + εα, (14)

where Ψ are RBFs, and εα is a zero-mean Gaussian noise. During learning, we compute the

ωα parameter, using the same method as in Equation 3. During the inference, we compute

α̂ = Ψ(δno)
>ωα.

A comparison of the four methods for estimating α on a test study with iCub in simulation is

presented in Section 6.6.

There exist other methods in the literature for computing α. For example, [49] propose a

method that models local variability in the speed of execution. In [24] they use a method that

improves Dynamic Time Warping by imposing a smooth function on the time alignment mapping

using local optimization. These methods will be implemented in the future works.

3.5 Recognizing one among many movement primitives

Robots should not learn only one skills, but many: different skills for different tasks. In our

framework, tasks are represented by movement primitives, precisely ProMP. So it is important for

the robot to be able to learn K different ProMPs and then be able to recognize from the early

observations of a trajectory which of the K ProMPs the observations belong to.

During the learning step of a movement primitive k ∈ [1 : K], the robot observes different

trajectories Sk = {Ξ1, . . . ,Ξn}. For each ProMP, it learns the distribution over the parameters

vector p(ω) ∼ N (µωk ,Σωk), using Equation 3. Moreover, the robot records the different phases of

all the observed trajectories: Sαk = {α1k, . . . , αnk}.
After having learned these K ProMPs, the robot can use this information to autonomously

execute a task trajectory. Since we are targeting collaborative movements, performed together

with a partner at least at the beginning, we want the robot to be able to recognize from the first

observations of a collaborative trajectory which is the current task that the partner is doing and

10In our case, this assumption can be appropriate, because the reaching trajectories in our application are generally
monotonic increasing/decreasing.

17

what is the intention of the partner. Finally, we want the robot to be able to complete the task on

its own, once it has recognized the task and predicted the future trajectory.

Let Ξo = [Ξ1 . . .Ξno]
> be the early observations of an initiated trajectory.

From these partial observations, the robot can recognize the “correct” (i.e., most likely) ProMP

k̂ ∈ [1 : K]. First, for each ProMP k ∈ [1 : K], it computes the most likely phase (time modulation

factor) α̂k (as explained in Section 3.4), to obtain the set of ProMPs with the most likely duration:

S[µωk
,α̂k] = {(µω1

, α̂1), . . . , (µωK , α̂K)}
Then we compute the most likely ProMP k̂ in S[µωk

,α̂k] according to some criterion. One

possible way is to minimize the distance between the early observations and the mean of the ProMP

for the first portion of the trajectory:

k̂ = arg min
k∈[1:K]

[
1

no

no∑
t=1

|Ξt − Φα̂kt µωk |

]
(15)

In Equation 15, for each ProMP k ∈ [1 : K], we compute the average distance between the observed

early-trajectory Ξt and the mean trajectory of the ProMP Φα̂ktµωk , with t = [1 : no]. The most

likely ProMP k̂ is selected by computing the minimum distance (arg min). Other possible methods

for estimating the most likely ProMPs could be inspired by those presented in the previous section

for estimating the time modulation, i.e. maximum likelihood or learned models.

Once identified the k̂-th most likely ProMP, we update its posterior distribution to take into

account the initial portion of the observed trajectory, using Equation 8:
µ̂ωk̂

= µωk̂
+K(Ξo − Φα̂k̂[1:no]µωk̂

)

Σ̂ωk̂
= Σωk̂

−K(Φα̂k̂[1:no]Σωk̂
)

K = Σωk̂
Φ>α̂k̂[1:no] (Σξo + Φα̂k̂[1:no]Σωk̂

Φ>α̂k̂[1:no])
−1

(16)

with α̂k̂[1 : no] = α̂k̂ t (in matrix form), with t ∈ [1 : no].

Finally, the inferred trajectory is given by:

∀t ∈ [1 : t̂f], ξ̂(t) = Φt µ̂ωk̂

with the expected duration of the trajectory t̂f = α̂ks̄. The robot is now able to finish the movement

executing the most-likely “future” trajectory Ξ̂ = [ξ̂no+1 . . . ξ̂t̂f]>.

4 Software overview

In this section, we introduce our open-source software with an overview of its architecture. This

software is composed of two main modules, represented in Figure 3.

While the robot is learning the Probabilistic Movement Primitives (ProMPs) associated to the

different tasks, the robot is controlled by its user. The user’s guidance can be either manual for

the real iCub, or through a haptic device for the simulated robot.

A Matlab module allows replaying movement primitives or finishing a movement that has been

initiated by its user. By using this module, the robot can learn distributions over trajectories,

replay movement primitives (using the mean of the distribution), recognize the ProMP that best

18

C++ module
To link and redirect

all information

trajectory

trajectory1.txt
....

trajectoryN.txt

save
trajectories

retrieve
trajectories

co
mmand

force

feedback

trajectory
com

m
and

 (manually or using
a haptic device)

user's guidance

Matlab module
To learn, predict

& continue
trajectories

iCub

Goal 1

Goal 3

Goal 2command

During inference
During learning
During all steps

(real or in simulation)

user guidance
inferred trajectory
iCub's Position / wrenches

 C

 B

A

Figure 3: Software architecture and data-flows.
The robot’s control is done either by the user’s guidance (manually or through a haptic device)
represented in blue, or by the Matlab module, in purple. The C++ module handles the control
source to command the robot, as represented in black. Moreover, this module forwards information
that comes from the iCub.

matches a current trajectory, and infer the future evolution (until the end target) of this trajectory.

A C++ module forwards to the robot the control that comes either from the user or from the

Matlab module. Then, the robot is able to finish a movement initiated by its user (directly or

through a haptic device) in an autonomous way, as shown in Figure 1.

We present the C++ module in Section 6.2 and the theoretical explanation of the Matlab

module algorithms in Section 3. A guide to run this last module is first presented in Section 5

for a simple example, and in Section 6 for our application, where a simulated robot learns many

measured information of the movements. Finally, we present results on the real iCub application

in Section 7.

Our software is available through the GPL licence, and publicly available at:

https://github.com/inria-larsen/icubLearningTrajectories.

Tutorial, readme and videos can be found in that repository. First, the readme file describes

how to launch simple demonstrations of the software. Videos present these demonstrations to

simplify the understanding. In the next sections, we detail the operation of the demo program

for a first case of 1DOF primitive, followed by the presentation of the specific applications on the

iCub (first simulated and then real).

5 Software example: learning a 1-DOF primitive

In this section, we present the use of the software to learn ProMPs in a simple case of 1-DOF

primitive. This example only uses the MatlabProgram folder, composed of:

• A sub-folder called “Data”, where there are trajectory sets used to learn movement primitives.

These trajectories are stored in text files with the following information:

19

https://github.com/inria-larsen/icubLearningTrajectories

- input parameters: # input1 # input2 [...]

- input parameters with time-step: # timeStep # input1 # input2 [...]

- recordTrajectories.cpp program recording: See Section 6.3 for more information.

• A sub-folder called “used functions”. It contains all the functions used to retrieve trajectories,

compute ProMPs, infer trajectories, and plot results. Normally, using this toolbox does not

require understanding these functions. The first lines of these functions give an explanation

of their functioning and precise what are the input(s) and output(s) parameters.

• Matlab scripts called “demo *.m”. They are simple examples of how to use this toolbox.

The script demo plot1DOF.m, can be used to compute a ProMP and to continue an initiated

movement. The ProMP is computed from a dataset stored in a “.mat” file, called traj1 1DOF.mat.

In this script, variables are first defined to make the script specific to the current dataset:

1 %%%%%%%%%%%%%%%VARIABLES, please look at the README

2 %Can be either ".mat" or ".txt". In the current demo, you can also write ...

DataPath = Data/traj1 if you want to use the text files of this dataset.

3 DataPath= 'Data/traj1 1DOF.mat';

4 typeRecover= '.mat' %or .txt, it depends on your choice of data file.

5 inputName = {'z[m]'};%label of your input(s). Here z represents the z-axis ...

cartesian coordinate.

6 s ref=100; %number of samples used as reference to rescale all the trajectories ...

to the same duration.

7 nbInput = 1; %dimension of the generic vector containing the state of the ...

trajectory.

8 M = 5; %number of radial basis functions per input.

9 expNoise = 0.00001; %expected trajectory noise.

10 percentData = 20; %percent of observed data during the inference

11 %type of criterion used to infer the temporal modulation parameter.

12 %('MO':model/'ML'maximum likelihood/ 'ME' average/'DI' distance).

13 %%%%%%%%%%%%%% END VARIABLE CHOICE

The variables include:

• DataPath is the path to the recorded data. If the data are stored in text files, this variable

contains the folder name where text files are stored. These text files are called “recordX.txt”,

with X ∈ [0 : n− 1] if there are n trajectories. One folder is used to learn one ProMP. If the

data are already loaded from a “.mat” file, write the whole path with the extension. The

data in “.mat” matches with the output of the Matlab function loadTrajectory.

• nbInput= D is the dimension of the input vector ξt.

• expNoise = Σoξ is the expected noise of the initiated trajectory. The smaller this variable is,

the stronger the modification of the ProMP distribution will be, given new observations.

We will now explain more in detail the script. To recover data recorded in a “.txt” file, we call

the function:

t{1} = loadTrajectory(PATH, nameT, varargin)

20

Its input parameters specify the path of the recorded data, the label of the trajectory. Other

information can be added by using the varargin variable (for more detail, check the header of the

function with the help comments). The output is an object that contains all the information about

the demonstrated trajectories. It is composed of nbTraj, the number of trajectory; realTime,

the simulation time; y (and yMat), the vector (and matrix) trajectory set , etc.. Thus, t{1}.y{i}
contains the i-th trajectory.

The Matlab function drawRecoverData(t{1}, inputName,'namFig', nFig, varargin) plots

in a Matlab figure (numbered nFig) the dataset of loaded trajectories. An example is shown in

Figure 4, on the left. Incidentally, the different duration of the trajectories is visible: on average, it

is 1.17± 0.42 seconds.

To split the entire dataset of demonstrated trajectories t{1} into a training dataset (used for

learning the ProMPs) and a test dataset (used for the inference), call the function

[train, test] = partitionTrajectory(t{1}, partitionType, percentData, s ref) where

if partitionType= 1, only one trajectory is in the test set and the others are placed in the training

set, and if partitionType> 1 it corresponds to the percentage of trajectories that will be included

in the training set.

The ProMP can be computed from the training set by using the function:

promp = computeDistribution(train, M, s ref,c,h)

The output variable promp is an object that contains all the ProMP information. The first

three input parameters have been presented before: train is the training set, M is the number

of RBFs, s ref is the number of samples used to rescale all the trajectories. The last two input

parameters c and h shape the RBFs of the ProMP model: c ∈ RM is the center of the Gaussians

and h ∈ R their variance.

To visualize this ProMP, as shown in Figure 4, call the function: drawDistribution(promp, ...

inputName,s ref)

0 0.5 1 1.5 2

Time [s]

0

0.05

0.1

0.15

0.2

0.25

z[
m

]

97.5 percentile
mean }ProMP

Figure 4: The observed trajectories are represented in magenta. The corresponding ProMP is
represented in blue. The following parameters are used: s̄ = 100 for the reference number of
samples, M = 5 for the number of RBFs spread over time, and h = 0.04 (= 1

M2) the variance of
the RBFs.

For debugging purposes and to understand how to tune the ProMPs’ parameters, it is interesting

to plot the overlay of the basis functions in time. Choosing an appropriate number of basis functions

21

is important, as too few may be insufficient to approximate the trajectories under consideration,

and too many could result in over-fitting problems. To plot the basis functions, simply call:

drawBasisFunction(promp.PHI,M)

where promp.PHI is a set of RBFs evaluated in the normalized time range t ∈ [1 : s̄].

Figure 5 shows at the top the basis functions before normalization, and at the bottom the

ProMP modeled from these basis functions. From left to right, we change the number of basis

functions. When there are not enough basis functions (left), the model is not able to correctly

represent the shape of the trajectories. In the middle, the trajectories are well represented by the

five basis functions. With more basis functions (right), the variance of the distribution decreases

because the model is more accurate. However, arbitrarily increasing the number of basis functions

is not a good idea, as it may not improve the accuracy of the model and worse it may cause

overfitting.

normalized # samples

R
B

Fs

2 RBF 5 RBF 50 RBF

Too few RBFs Too many RBFs

0 50 100
0

0.2

0.4

0.6

0.8

1

0

0.2

0.6

0.8

1

0.4

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100

Figure 5: The ProMP computed for the test dataset (Figure 4) using different numbers of basis
functions: from left to right: M = {2, 5, 50} basis functions before normalization, with a variance
h = 1

M2 .

Once the ProMP is learned, the robot can reproduce the movement primitive using the mean

of the distribution. Moreover, it can now recognize a movement that has been initiated in

this distribution, and predict how to finish it. To do so, given the early no observations of a

movement, the robot updates the prior distribution to match the early observed data points:

through conditioning, it finds the posterior distribution, that can be used by the robot to execute

the movement on its own.

The first step in predicting the evolution of the trajectory is to infer the duration of this

trajectory, which is encoded by the time modulation parameter α̂. The computation of this

inference, which was detailed in Section 3.4, can be done by using the function:

[expAlpha,type,x]=inferenceAlpha(promp,test{1},M,s ref,c,h,test{1}.nbData, ...

22

expNoise, typeReco)

where typeReco is the type of criteria used to find the expected time modulation (’MO’, ’DI’

or ’ML’ for model, distance or maximum likelihood methods); expAlpha = α̂ is the expected time

modulation; type is the index of the ProMP from which expAlpha has been computed, which we

note in this paper as k . To predict the evolution of the trajectory, we use Equation 8 from Section

3.3. In Matlab, this is done by the function: infTraj = inference(promp, test{1}, M, ...

s ref, c, h, test{1}.nbData, expNoise, expAlpha)

where test{1}.nbData has been computed during the partitionTrajectory step. This variable

is the number of observations no, representing the percentage of observed data (percentData)

of the test trajectory (i.e., to be inferred) that the robot observes. infTraj= Ξ̂ is the inferred

trajectory. Finally, to draw the inferred trajectory, we can call the function:

drawInference(promp,inputName,infTraj, test1,s ref).

It can be interesting to plot the quality of the predicted trajectories as a function of the number of

observations, as done in Figure 6.

10% 30%

50% 80%

Time [s] Time [s]

prior ProMP

ground truth

Figure 6: The prediction of the future trajectory given early observations, exploiting the information
of the learned ProMP (Figure 4). The plots show the predicted trajectories after 10%, 30%, 50%
and 80% of observed data points.

Note that when we have observed a larger portion of the trajectory, the prediction of the

remaining portion is more accurate.

23

Traj. Samples α = s̄
Iterations , s̄ = 100 Duration [s]

Min 83 1.2048 0.83
Max 115 0.8696 1.15
Mean 100 1 0.99
Std deviation 9 11.1111 0.09

Table 2: information about trajectories’ duration

Now we want to measure the quality of the prediction. Let Ξ∗ = [ξo(1), . . . , ξo(no), ξ
∗(no +

1), . . . , ξ∗(t∗f)] be the real trajectory expected by the user. To measure the quality of the prediction,

we can use:

• The likelihood of having the Ξ∗ trajectory given the updated distribution ˆp(ω).

• The distance between the Ξ∗ trajectory and the Ξ̂ inferred trajectory.

However, according to the type of recognition typeReco used to estimate the time modulation

parameter α from the early observations, a visible mismatch between the predicted trajectory

and the real one can be visible even when a lot of observations are used. This is due to the error

of the expectation of this time modulation parameter. In Section 3.4, we present the different

methods used to predict the trajectory duration. These methods select the most likely α̂ according

to different criteria: distance; maximum likelihood; model of the α variable11; and average of the

observed α during learning.

Figure 7 shows the different trajectories predicted after no = 40% of the length of the desired

trajectory is observed, according to the method used to estimate the time modulation parameter.

On this simple test, where the variation time is little as shown in Table 2, the best result is

accomplished by the average of time modulation parameter of the trajectories used during the

learning step. In more complicated cases, when the time modulation varies, the other methods will

be preferable as seen in Section 3.5.

6 Application on the simulated iCub: learning three prim-

itives

In this application, the robot learns multiple ProMPs and is able to predict the future trajectory of

a movement initiated by the user, assuming the movement belongs to one of the learned primitives.

Based on this prediction, it can also complete the movement once it has recognized the appropriate

ProMP.

We simplify the three actions/tasks by reaching three different targets, represented by three

colored balls in the reachable workspace of the iCub. The example is performed with the simulated

iCub in Gazebo. Figure 8 shows the three targets, placed at different heights in front of the robot.

In Section 6.1 we formulate the intention recognition problem for the iCub: the problem is to

learn the ProMP from trajectories consisting of Cartesian positions in 3D12 and the 6D wrench

11In this model, we assume that we can find the time modulation parameter according to the global variation of
the position during the no first observed data.

12Note that in that particular example we do not use the orientation because we want the robot’s hand to keep
the same orientation during the movement. But in principle, it is possible to learn trajectories consisting of the

24

0

Mean

ground truth

0.2

0.1

0

0.2

0.1

observations
prior ProMP
prediction

Distance

Maximum
likelihood

z
[m

]

Time [s]

Model

0 0.5 1 1.5 0 0.5 1 1.5

Figure 7: The prediction of the future trajectory given no = 40% of early observations from
the learned ProMP computed for the test dataset (Figure 4). The plots show the predicted
trajectory, using different criteria to estimate the best phases of the trajectory: using the average
time modulation (Equation 11); using the distance criteria (Equation 13); using the maximum
log-likelihood (Equation 12); or using a model of time modulation according to the time variation
(Equation 14).

information measured by the robot during the movement. In Section 6.2 we describe the simulated

setup of iCub in Gazebo, then in Section 6.3 we explain how trajectories are recorded, including

force information, when we use the simulated robot.

6.1 Predicting intended trajectories by using ProMPs

The model is based on Section 3, but here we want to learn more information during movements.

We record this information in a multivariate parameter vector:

∀t, ξt =

[
Xt

Ft

]
∈ R9

Were Xt ∈ R3 is the Cartesian position of the robot’s end effector and Ft ∈ R6 the external

forces and moments. In particular, Ft contains the user’s contact forces and moments. Let us call

6D/7D Cartesian position and orientation of the hand, to make the robot change also the orientation of the hand
during the task.

25

Goal1

Goal3

Goal2

starting
point

0 1 2 3 4 5-0.4
-0.3
-0.2

0 1 2 3 4 5-0.2
-0.1

0

x[
m

]
y[

m
]

z[
m

]

Time [s]
0 1 2 3 4 50

0.2
0.4

goal 3
goal 2
goal 1

Goals:

Figure 8: Left: the three colored targets that the robot must reach from the starting point; the
corresponding trajectories are used to learn three primitives representing three skills. Right: the
Cartesian position information of the demonstrated trajectories for the three reaching tasks.

dim(ξt)= D, the dimension of this parameter vector.

The corresponding ProMP model is:

ξt =

[
Xt

Ft

]
= Φαtω + εt

Where ω ∈ RD·M is the time independent parameter vector, εt =

[
εXt

εFt

]
∈ RD is the zero-mean

Gaussian i.i.d. observation noise, and Φαt ∈ RD×D·M a matrix of Radial Basis Functions (RBFs)

evaluated at time αt.

26

Since we are in the multidimensional case, this Φαt block diagonal matrix is defined as:

Φαt = BlockdiagonalMatrix(φ1, . . . , φD) ∈ RD×D·M

It is a diagonal matrix of D Radial Basis Functions (RBFs), where each RBF represents one

dimension of the ξt vector and it is composed of M Gaussians, spread over same number of samples

s̄.

6.1.1 Learning motion primitives

During the learning step of each movement primitive k ∈ [1 : 3], the robot observes different

trajectories Sk = {Ξ1, . . . ,Ξn}k, as presented in Section 6.3.

For each trajectory Ξi[1:tfi] = [ξi(1), . . . , ξi(tfi)]
>, it computes the optimal ωki parameter vector

that best approximates the trajectory.

We saw in Section 3.5 how these computations are done. In our software, we use matrix

computation instead of tfi iterative ones done for each observation t (as in Equation 3). Thus, we

have:

ωki = (Φ>α[1:tfi]
Φα[1:tfi])

−1Φ>α[1:tfi]
∗ Ξi[1:tfi] (17)

with Φα[1:tfi] = [Φα1,Φα2 . . . ,Φαtfi]
>.

6.1.2 Prediction of the trajectory evolution from initial observations

After having learned the three ProMPs, the robot is able to finish an initiated movement on its

own. In Sections 3.3, 3.4 and 3.5 we explained how to compute the future intended trajectory

given the early observations.

In this example, we add specificities about the parameters to learn.

Let Ξo =

[
Xo

F o

]
= [Ξ1 . . .Ξno]

> be the early observations of the trajectory.

First, we only consider the partial observations: Xo = [X1 . . . Xno]
>. Indeed, we assume the

recognition of a trajectory is done with Cartesian position information only, because the same

movement can be done and recognized with different force profiles than the learned ones.

From this partial observation Xo, the robot recognizes the current ProMP k̂ ∈ [1 : 3], as seen

in Section 3.5. It also computes an expectation of the time modulation t̂f , as seen in Section 3.4.

Using the expected value of the time modulation, it approximates the trajectory speed and its

total time duration.

Second, we use the total observation Ξo to update the ProMP, as seen in Section 3.3. This

computation is based on equation 16, but here again, we use matrix computation:
µ̂ωk = µωk +K(Ξo − Φα[1:no]µωk)

Σ̂ωk = Σωk −K(Φα[1:no]Σωk)

K = ΣωkΦ>α[1:no](Σξo + Φα[1:no]ΣωkΦ>α[1:no])
−1

27

From this posterior distribution, we retrieve the inferred Ξ̂ = {ξ̂1, ..., ξ̂t̂f } trajectory, with:

∀t ∈ [1 : t̂f], ξ̂t =

[
X̂t

F̂t

]
= Φαtµ̂ωk

Note that the inferred wrenches F̂t, here, correspond to the simulated wrenches in Gazebo. In this

example there is little use for them in simulation; the interest for predicting also wrenches will be

clearer in Section 7, with the example on the real robot.

6.2 Setup for simulated iCub

For this application, we created a prototype in Gazebo, where the robot must reach three different

targets with the help of a human. To interact physically with the robot simulated in Gazebo, we

used the Geomagic touch, a haptic device.

The setup consists of:

• the iCub simulation in Gazebo, complete with the dynamic information provided by whole-

BodyDynamicsTree (https://github.com/robotology/codyco-modules/tree/master/src/

modules/wholeBodyDynamicsTree) and the Cartesian information provided by iKinCarte-

sianController ;

• the Geomagic Touch, installed following the instructions in https://github.com/inria-larsen/

icub-manual/wiki/Installation-with-the-Geomagic-Touch, which not only install the

SDK and the drivers of the GeoMagic but also point to how to create the yarp drivers for

the Geomagic;

• a C++ module (https://github.com/inria-larsen/icubLearningTrajectories/tree/

master/CppProgram) that connects the output command from the Geomagic to the iCub in

Gazebo, and eventually enables recording the trajectories on a file. A tutorial is included in

this software.

The interconnection among the different modules is represented in Figure 3, where the Matlab

module is not used. The tip of the Geomagic is virtually attached to the end-effector of the robot:

xgeo → xicub hand

When the operator moves the Geomagic, the position of the Geomagic tip xgeo is scaled (1:1 by

default) in the iCub workspace as xicub hand, and the Cartesian controller is used to move the iCub

hand around a “home” position, or default starting position:

xicub hand = hapticDriverMapping(x0 + xgeo)

where hapticDriverMapping is the transformation applied by the haptic device driver, which

essentially maps the axis from the Geomagic reference frame to the iCub reference frame. By

default, no force feedback is sent back to the operator in this application, as we want to emulate the

zero-torque control mode of the real iCub, where the robot is ideally transparent and not opposing

28

https://github.com/robotology/codyco-modules/tree/master/src/modules/wholeBodyDynamicsTree
https://github.com/robotology/codyco-modules/tree/master/src/modules/wholeBodyDynamicsTree
https://github.com/inria-larsen/icub-manual/wiki/Installation-with-the-Geomagic-Touch
https://github.com/inria-larsen/icub-manual/wiki/Installation-with-the-Geomagic-Touch
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/CppProgram
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/CppProgram

any resistance to the human guidance. A default orientation of the hand (“katana” orientation) is

set.

6.3 Data acquisition

The dark button of the Geomagic is used to start and stop the recording of the trajectories. The

operator must click and hold the button during the whole movement and release the button at the

end. The trajectory is saved on a file called recordX.txt for the X-th trajectory. The structure of

this file is:

1 #time #xgeo #ygeo #zgeo #fx #fy #fz #mx #my #mz #x icub hand #y icub hand ...

#z icub hand

2 5.96046e-06 -0.0510954 -0.0127809 -0.0522504 0.284382 -0.0659538 -0.0239582 ...

-0.0162418 -0.0290078 -0.0607215 -0.248905 -0.0872191 0.0477496$

A video showing the iCub’s arm moved by an user through the haptic device in Gazebo is

available in Section 8 (tutorial video). The graph in Figure 8 represents some trajectories recorded

with the Geomagic, corresponding to lifting the left arm of the iCub.

Demonstrated trajectories and their corresponding forces can be recorded directly from the

robot, by accessing the Cartesian interface and the wholeBodyDynamicsTree module.13

In our project on Github, we provide the acquired dataset with the trajectories for the interested

reader who wishes to test the code with these trajectories. Two datasets are available at https://

github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram/Data/: the

first dataset called “heights” is composed of three goal-directed reaching tasks, where the targets

vary in height; the second dataset called “FLT” is composed of trajectories recorded on the real

robot, whose arms moves forward, to the left and to the top.

A matlab script that learns ProMPs with such kinds of datasets is available in the toolbox,

called demo plotProMPs.m. It contains all the following steps.

To load the first “heights” dataset with the three trajectories, write:

1 t{1} = loadTrajectory('Data/heights/bottom', 'bottom', 'refNb', s bar, ...

'nbInput',nbInput, 'Specific', 'FromGeom');

2 t{2} = loadTrajectory('Data/heights/top', 'top', 'refNb', s bar, ...

'nbInput',nbInput, 'Specific', 'FromGeom');

3 t{3} = loadTrajectory('Data/heights/middle', 'forward', 'refNb', s bar, ...

'nbInput',nbInput, 'Specific', 'FromGeom');

Figure 8 shows the three sets of demonstrated trajectories. In the used dataset called “heights”,

we have recorded 40 trajectories per movement primitive.

6.4 Learning the ProMPs

We need to first learn the ProMPs associated to the three observed movements. First, we partition

the collected dataset into a training set and test dataset for the inference. One random trajectory

13In our example, we do not use the simulated wrench information as it is very noisy. However, we provide the
code and show how to retrieve it and use it, in case the readers should not have access to the real iCub.

29

https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram/Data/
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/MatlabProgram/Data/

for the inference is used:

1 [train{i},test{i}] = partitionTrajectory(t{i},1,percentData,s bar);

The second input parameter specifies that we select only one trajectory, randomly selected, to test

the ProMP.

Now, we compute the three ProMPs with:

1 promp{1} = computeDistribution(train{1}, M, s bar,c,h);

2 promp{2} = computeDistribution(train{2}, M, s bar,c,h);

3 promp{3} = computeDistribution(train{3}, M, s bar,c,h)

We set the following parameters:

• s bar=100: reference number of samples, which we note in this paper as s̄.

• nbInput(1)= 3; nbInput(2)= 6: dimension of the generic vector containing the state

of the trajectories. It is composed of 3D Cartesian position and 6D forces and wrench

information.14

• M(1)= 5; M(2)= 5: number of basis functions for each nbInput dimension.

• c = 1/M;h = 1/(M*M): RBF parameters (see Equation 2).

• expNoise = 0.00001: the expected data noise. We assume this noise to be very low, since

this is a simulation.

• percentData = 40: this variable specifies the percentage of the trajectory that the robot

will be observed, before infering the end.

These parameters can be changed at the beginning of the Matlab script.

Figure 9 shows the three ProMPs of the reaching movements towards the three targets. To

highlight the most useful dimension, we only plot the z-axis Cartesian position. However, each

dimension is plotted by the Matlab script with:

1 drawRecoverData(t{1}, inputName, 'Specolor','b','namFig', 1);

2 drawRecoverData(t{1}, inputName, 'Interval', [4 7 5 8 6 9], ...

'Specolor','b','namFig',2);

3 drawRecoverData(t{2}, inputName, 'Specolor','r','namFig',1);

4 drawRecoverData(t{2}, inputName, 'Interval', [4 7 5 8 6 9], ...

'Specolor','r','namFig',2);

5 drawRecoverData(t{3}, inputName, 'Specolor','g','namFig',1);

6 drawRecoverData(t{3}, inputName, 'Interval', [4 7 5 8 6 9], ...

'Specolor','g','namFig',2);

14Note that in our example wrenches are separated from the Cartesian position, because they are not used to
recognize the index of the current ProMP during the inference.

30

z[
m

]

Normalized #samples
0 20 40 60 80 100

0

0.1

0.2

0.3

ProMP Goal 1 Goal 2 Goal 3
Mean

97,5 percentile

observations

Figure 9: The Cartesian position in the z-axis of the three ProMPs corresponding to reaching
three targets. There are 39 trajectory demonstrations per each ProMPm with M=5 basis functions,
c = 1

M , h = 1
M2 and s̄ = 100.

6.5 Predicting the desired movement

Now that we have learned the different ProMPs, we can predict the end of a trajectory according to

the early observation no. This number is computed from the variable percentData written at the

beginning of the trajectory by: no = |percentData100 ∗ tfi|, where i is the index of the test-trajectory

To prepare the prediction, the model the time modulation of each trajectory is computed with:

1 w = computeAlpha(test.nbData,t, nbInput);

2 promp{1}.w alpha= w{1};
3 promp{2}.w alpha= w{2};
4 promp{3}.w alpha= w{3};

This model relies on the global variation of Cartesian position during the first no observations.

The model’s computations are explained in Section 3.4.

Now, to estimate the time modulation of the trajectory, call the function:

1 [alphaTraj,type, x] = inferenceAlpha(promp,test{1},M,s bar,c,h,test{1}.nbData, ...

expNoise, 'MO');

Where alphaTraj contains the estimated time modulation α̂ and type gives the index of the

recognized ProMP. The last parameter x is used for debbuging purposes.

Using this estimation of the time modulation, the end of the trajectory is inferred with:

1 infTraj = inference(promp, test{1}, M, s bar, c, h, test{1}.nbData, expNoise, ...

alphaTraj);

31

As shown in the previous example, the quality of the prediction of the future trajectory depends

on the accuracy of the time modulation estimation. This estimation is computed by calling the

function:

1 %Using the model:

2 [alphaTraj,type, x] = inferenceAlpha(promp,test{1},M,s bar,c,h,test{1}.nbData, ...

expNoise, 'MO');

3 %Using the distance criteria:

4 [alphaTraj,type, x] = inferenceAlpha(promp,test{1},M,s bar,c,h,test{1}.nbData, ...

expNoise, 'DI');

5 %Using the Maximum likelihood criteria:

6 [alphaTraj,type, x] = inferenceAlpha(promp,test{1},M,s bar,c,h,test{1}.nbData, ...

expNoise, 'ML');

7 %Using the mean of observed temporal modulation during learning:

8 alphaTraj = (promp{1}.mu alpha + promp{2}.mu alpha + promp{3}.mu alpha) /3.0;

6.6 Predicting the time modulation

In Section 3.4 we presented four main methods for estimating the time modulation parameter,

discussing why this is crucial for a better estimation of the trajectory. Here, we compare the

methods on the three goals experiment. We recorded 40 trajectories for each movement primitive,

for a total of 120 trajectories. After having computed the corresponding ProMPs, we tested the

inference by providing early observations of a trajectory that the robot must finish. For that

purpose, it recognizes the correct ProMP among the three precedently learned (see Section 3.5)

and then it estimates the time modulation parameter α̂. Figure 10 represents the average error of

the α̂ during inference for 10 trials according to the number of observations (from 30% to 90%

of observed data) and according to the used method. These methods are the ones we have just

presented before that we called mean (Equation 11), maximum likelihood (Equation 12), minimum

distance (Equation 13) or model (Equation 14). Each time, the tested trajectory is chosen randomly

from the data set of observed trajectories (of course, the test trajectory does not belong to the

training set, so it was not used in the learning step). The method that takes the average of α

observed during learning is taken as comparison (in black). We can see that other methods are

more accurate. The maximum likelihood is increasingly more accurate, as expected. The fourth

method (model) that models the α according to the global variation of the trajectory’s positions

during the early observations is the best performing when the portion of observed trajectory is

small (e.g., 30%-50%). Since it is our interest to predict the future trajectory as early as possible,

we adopted the model method for our experiments.

32

% observed data
30 40 50 60 70 80 90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
model
maximum likelihood
distance
mean

30 40 50 60 70 80 90
% observed data

0.005

0.01

0.015

11301 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4% observed data

model
maximum likelihood
distance
mean

0

0.01

0.02

0.03

0.04

0.05

30 40 50 60 70 80 90

Figure 10: (top left) Error of α estimation; (top right and bottom) error of trajectory prediction
according to the number of known data and the method used. We executed 10 different trials for
each case.

7 Application on the real iCub

In this section we present and discuss two experiments with the real robot iCub.

In the first, we take inspiration from the experiment of the previous Section 6, where the “tasks”

are exemplified by simple point-to-point trajectories demonstrated by a human tutor. In this

experiment we explore how to use wrench information and use known demonstrations as ground

truth, to evaluate the quality of our prediction.

In the second experiment, we set up a more realistic collaborative scenario, inspired by

collaborative object sorting. In such applications, the robot is used to lift an object (heavy, or

dangerous, or that the human cannot manipulate, as for some chemicals or food), the human

inspects the object and then decides if it is accepted or rejected. Depending on this decision, the

object goes on a tray or bin in front of the robot, or on a bin located on the robot side. Dropping

the objects in two cases must be done in a different way. Realizing this application with iCub is

not easy, as iCub cannot lift heavy objects and has a limited workspace. Therefore, we simplify

the experiment with small objects and two bins. The human simply starts the robots movement

33

with physical guidance, and then the robot finishes the movement on its own. In this experiment

the predicted trajectories are validated on-the-fly by the human operator.

In a more complex collaborative scenario, tasks could be elementary tasks such as pointing,

grasping, reaching, manipulating tools (the type of task here is not important, as long as it can be

represented by a trajectory).

7.1 Three simple actions with wrench information

Task trajectories, in this example, have both position and wrench information. In general, it is a

good idea to represent collaborative motion primitives in terms of both position and wrenches, as

this representation enables using them in the context of physical interaction. Contrarily to the

simulated experiment, here the inferred wrenches F̂t correspond to the wrenches the robot should

perceive if the partner was manually guiding the robot to perform the entire movement: indeed,

these wrenches are computed from the demonstrations used to learn the primitive. The predicted

wrenches can be used in different ways, depending on the application. For example, if the partner

breaks the contact with the robot, the perceived wrenches will be different. If the robot is not

equipped with tactile or contact sensors, this information can be used by the robot to “perceive”

the contact breaking and interpret it, for example, as the sign that the human wants the robot to

continue the task on its own. Another use for the demonstrated wrenches is for detecting abnormal

forces while the robot is moving: this use can have different applications, from adapting the motion

to new environment to automatically detecting new demonstrations. Here, they are simply used

to detect when the partner breaks the contact with the robot, and the latter must continue the

movement on its own.

In the following, we present how to realize the experiment for predicting the user intention

with the real iCub, using our software. The robot must learn three task trajectories represented in

Figure 11. In red, the first trajectory goes from an initial position in front of the robot to its left

(task A). In green, the second trajectory goes from the same initial position to the top (task C). In

blue, the last trajectory goes from the top position to the position on the left (task B).

To provide the demonstrations for the tasks, the human tutor used three visual targets shown on

the iCub GUI, a basic module of the iCub code that provides a real-time synthetic and augmented

view of the robot status, with arrows for the external forces and colored objects for the targets.

One difficulty for novice users of iCub is to be able to drive the robot’s arm making it perform

desired complex 3D trajectories [76], but after some practice in moving the robot’s arm the operator

recorded all the demonstrations. We want to highlight that having variations in the starting or

ending points of the trajectories is not at all a problem, since the ProMPs are able to deal with

this variability.

We will see that by using the ProMPs method and by learning the end-effector Cartesian

position, the robot will be able to learn distributions over trajectories, recognize when a movement

belongs to one of these distributions and infer the end of the movement.

In this experiment, the robot received 10 demonstrated trajectories per movement primitive, all

provided by the same user. We recorded the Cartesian end-effector position and the wrenches of the

robot’s left arm. Data are retrieved using the function used functions/retrieveRealDataWithoutOrientation.m.

The output parameters of this function are three objects (one per ProMP) that contain all the

34

C

B

A

x[
m

]

-0.3

-0.2

-0.1

y[
m

]

-0.4

-0.2

0

z[
m

]

Time [s]
0 2 4 6 8 10

-0.2
0

0.2

0 2 4 6 8 10

0 2 4 6 8 10

A
B
C

f x[N
]

0 2 4 6 8 10
-20

0

20

m
x[N

m
]

0 2 4 6 8 10
-5

0

5

f y[N
]

0 2 4 6 8 10
-20

0

20
m

y[N
m

]

0 2 4 6 8 10
-5

0

5

Time [s]

f z[N
]

0 2 4 6 8 10
-50

0

50

m
z[N

m
]

0 2 4 6 8 10
-2

0

2

Figure 11: Top left: the iCub and the visualization of the three targets in its workspace, defining the
three tasks A-B-C. Top right: Cartesian position information of the demonstrated trajectories for
the three tasks. Bottom left and right: wrench (force and moment) information of the demonstrated
trajectories.

required information to learn the ProMPs.

In this function, the wrench information are filtered using a Matlab function called envelope.m15:

for each trajectory traj and its subMatrix M = F ([1 : t]):

1 [envHigh, envLow] = envelope(traj.M);

2 traj.M = (envHigh+envLow)/2;

These three objects are saved in 'Data/realIcub.mat'. A Matlab script called demo plotProMPsIcub.m

recovers these data, using the function load('Data/realIcub.mat'). This script follows the

same organization as the ones we previously explained in Sections 5 and 6. By launching this

script, the recovered data are plotted first.

15Information about this function can be found here: https://fr.mathworks.com/help/signal/ref/envelope.

html?requestedDomain=www.mathworks.com

35

https://fr.mathworks.com/help/signal/ref/envelope.html?requestedDomain=www.mathworks.com
https://fr.mathworks.com/help/signal/ref/envelope.html?requestedDomain=www.mathworks.com

Then, the ProMPs are computed and plotted, as presented in Figure 12. In this figure, the

distributions are visibly overlaid:

• during the whole trajectories duration for the wrench information;

• during the 40% first samples of the trajectories for the Cartesian position information.

After this learning step, the user chooses which ProMP to test. Using a variable that represents

the percentage of observed data to be used for the inference, the script computes the number of

early observations no
16 that will be measured by the robot. Using this number, the robot models

the time modulation parameter α17 of each ProMP, as explained in Section 3.4. Using this model,

the time modulation of the test trajectory is estimated and the corresponding ProMP is identified.

x[
m

]

0 20 40 60 80 100
-0.4

-0.2

0

y[
m

]

0 20 40 60 80 100
-1

-0.5

0

z[
m

]

Normalized #samples

0 20 40 60 80 100
-0.5

0

0.5

f x[N
]

0 20 40 60 80 100
-40

-20

0

20

f y[N
]

0 20 40 60 80 100
-20

0

20

f z[N
]

0 20 40 60 80 100
-40

-20

0

20

m
x[N

m
]

0 20 40 60 80 100
-4

-2

0

2

m
y[N

m
]

0 20 40 60 80 100
-2

0

2

4

m
z[N

m
]

0 20 40 60 80 100
-2

0

2

4

ProMPA

ProMPB

ProMPC

Demonstrations
A
B
C

Figure 12: The ProMPs learned by the robot from the demonstrations of Figure 11.

Then, the inference of the trajectory’s target is performed. Figure 13 represents the inference

of the three tested trajectories when wrench information is not used by the robot to infer the

trajectory. To realize this figure, with the comparison between the predicted trajectory and the

ground truth, we applied our algorithm offline. In fact, it is not possible at time t to have the

ground truth of the trajectory intended by the human from t+ 1 to tf : even if we would tell to the

human in advance the goal that he/she must reach for, the trajectory to reach that goal could

vary. So, for the purpose of these figures and comparisons with the ground truth, we show here the

offline evaluation: we select one demonstrated task trajectory from the test set (not the training

16no is not the same for each trajectory test, because it depends on the total duration of the trajectory to be
inferred.

17Since the model uses the no parameter, its computation cannot be performed before this step.

36

A

z[
m

]

x[
m

]

0 2 4 6 8
-0.3

-0.2

-0.1

y[
m

]

0 2 4 6 8
-1

-0.5

0

0 2 4 6 8
-0.5

0

0.5
f x[

N
]

0 2 4 6 8
-10

-5

0

5

f y[N
]

0 2 4 6 8
-20

0

20

f z[N
]

0 2 4 6 8
-20

0

20

m
x[N

m
]

0 2 4 6 8
-2

0

2
m

y[N
m

]

0 2 4 6 8
-2

0

2

m
z[N

m
]

0 2 4 6 8
-0.5

0

0.5

1

ground truth
observations
prior proMP
prediction

B

x[
m

]

0 2 4 6-0.4

-0.2

0

y[
m

]

0 2 4 6-0.4

-0.2

0

z[
m

]

0 2 4 6-0.2

0

0.2

f x[N
]

0 2 4 6-10

0

10

f y[N
]

0 2 4 6-10

0

10

f z[N
]

0 2 4 6-40

-20

0

m
x[N

m
]

0 2 4 6-5

0

5

m
y[N

m
]

0 2 4 60

2

4

m
z[N

m
]

0 2 4 6-5

0

5

C

Time [s]

x[
m

]

0 2 4 6 8
-0.4

-0.2

0

y[
m

]

0 2 4 6 8
-0.3

-0.2

-0.1

0

z[
m

]

0 2 4 6 8
-0.5

0

0.5

f x[N
]

0 2 4 6 8
-40

-20

0

20

f y[N
]

0 2 4 6 8
-5

0

5

10

f z[N
]

0 2 4 6 8
-40

-20

0

20

m
x[N

m
]

0 2 4 6 8
-3

-2

-1

0

m
y[N

m
]

0 2 4 6 8
-2

0

2

4

m
z[N

m
]

0 2 4 6 8
-1

0

1

2

Figure 13: The prediction of the future trajectory from the learned ProMPs computed from the
position information for the 3-targets dataset on the real iCub (Figure 12) after 40% of observations.

set used to learn the ProMP) as ground truth, and imagine that this is the intended trajectory.

In Figure 13, the ground truth is shown in black, whereas the portion of this trajectory that is

fed to the inference, and that corresponds to the “early observations”, is represented with bigger

black circles. We can see that the inference of the Cartesian position is correct, although we

37

can see an error of about 1 second of the estimated duration time for the last trial. Also, the

wrench inference is not accurate. We can assume that it is: because the robot infers the trajectory

using only position information without wrench information, or because the wrenches’ variation is

not correlated to the position variation. To improve this result, we can make the inference using

wrench in addition to Cartesian position information, as shown in Figure 14. We can see in this

Figure that the estimation of the trajectory’s duration is accurate. The disavantage is that the

inference of the Cartesian position is less accurate because the posterior distribution computation

makes a trade-off between fitting Cartesian position and wrench early observations. Moreover, to

allow a correct inference using wrench information, the noise expectation must be increased to

consider forces. 18

To confirm these results, we analyzed the trajectory inference and α estimation considering

different percentages of each trajectory as observed data (30 to 90%). For each percentage, we

performed 20 tests, with and without force information.

In Figure 15, each box-plot represents errors for 20 tests. On the top, the error criterion is the

average distance between the inferred trajectory and the real one. We can see that the inference of

Cartesian end-effector trajectory is more accurate without wrench information. On the bottom,

the error criterion is the distance between the estimated α and the real one. We can see that using

wrench information, the estimation of the α is more accurate. Thus, these two graphs confirm

what we assumed from Figures 13 and 14.

Median, mean and variance of the prediction errors, computed with the normalized root-mean-

square error (NRMSE) are reported in Table 3. The prediction error for the time modulation is a

scalar: |αprediction − αreal|. The prediction error for the trajectory is computed by the NRMSE of

|Ξprediction − Ξreal|.
In future upgrades for this application, we will probably use the wrench information only

to estimate the time modulation parameter α, to have both the best inference of the intended

trajectory and the best estimation of the time modulation parameter to combine the benefits of

inference with and without wrench information.

Table 3 also reports the average time for computing the prediction of both time modulation

and posterior distribution. The computation were performed in Matlab, on a single core laptop (no

parallelization). While the computation time for the case “without wrenches” is fine for real-time

application, using the wrench information delays the prediction and represents a limit for real-time

applications if fast decisions have to taken by the robot. Computation time will be improved in

the future works, with the implementation of the prediction in an iterative way.

7.2 Collaborative object sorting

We realized another experiment with iCub, where the robot has to sort some objects in different

bins (see Figure 16). We have two main primitives: one for a bin located on the left of the robot,

and one for the bin to the front. Dropping the object is done at different heights, with a different

gesture that also has a different orientation of the hand. For this reason, the ProMP model consists

18In future versions, we will include the possibility to have different noise models for the observations, e.g. we

will have Σo
Ξ =

[
ΣX 0
0 ΣF

]
. We will therefore set a bigger covariance for the wrench information than for the

position information.

38

With wrenches
% of observed data ('
n. of samples)

30(' 180) 50(' 300) 70(' 419) 90(' 539)

Prediction error of
time modulation

median 2.26e-08 1.35e-08 3.61e-09 8.95e-09
mean 4.26e-02 7.81e-09 2.19e-08 2.09e-08
variance 1.08e-02 1.09e-16 5.44e-16 2.24e-16

Prediction error for
the trajectory
(NRMSE) [m]

median 2.73e-01 5.51e-01 4.52e-01 5.38e-01
mean 8.11e-01 5.86e-01 5.29e-01 3.42e-01
variance 7.45e-01 1.36e-01 7.74e-02 2.93e-02

Computation time
[s]

mean 0.25 0.74 1.92 3.59
variance 0.01 0.27 2.77 4.81

Without wrenches
% of observed data ('
n. of samples)

30(' 180) 50(' 300) 70(' 419) 90(' 539)

Prediction error of
time modulation

median 1.19e-02 1.76e-02 1.74e-02 1.62e-02
mean 2.81e-02 1.92e-02 2.45e-02 1.43e-02
variance 9.51e-04 1.00e-04 3.37e-04 1.82e-04

Prediction error for
the trajectory
(NRMSE) [m]

median 4.53e-02 4.73e-02 7.20e-02 6.20e-02
mean 1.56e-01 7.36e-02 5.75e-02 4.29e-02
variance 5.04e-02 1.80e-03 1.80e-03 6.0e-04

Computation time
[s]

mean 6.89e-02 8.49e-02 1.43e-01 2.58e-01
variance 2.83e-03 1.19e-03 7.31e-03 2.45e-03

Table 3: Mean and stdev of the NRMSE of the prediction errors plotted in Figure 15, and average
time for computing both predictions (time modulation and trajectory via update of the posterior
distribution). The computation were performed in Matlab, on a single core (no parallelization).

39

of the Cartesian position of the hand Xt = [xt, yt, zt] ∈ R3 and its orientation At ∈ R4, expressed

as a quaternion:

ξt =

[
Xt

At

]
= Φαt ω + εt

As in the previous experiment, we first teach the robot the primitives by kinesthetic teaching, with

a dozen of demonstrations. Then we start the robot movement: the human operator physically

grabs the robot’s arm and start the movement towards one of the bins. The robot’ skin is used

twice. First, to detect the contact when the human grabs the arm, which marks the beginning of

the observations. Second, when the human breaks the contact with the arm, which marks the end

of the observations. Using the first portion of the observed movement, the robot recognize the

current task that is being executed, predicts the future movement that is intended by the human

and then executes it on its own. In the video (see link in Section 8) we artificially introduced

a pause to let the operator “validate” the predicted trajectory, using a visual feedback on the

iCubGui. Figure 17 shows one of the predictions made by the robot after the human releases the

arm. Of course in this case we do not have a “ground truth” for the predicted trajectory, only a

validation of the predicted trajectory by the operator.

40

8 Videos

We recorded several videos that complement the tutorials. The videos are presented in the github

repository of our software: https://github.com/inria-larsen/icubLearningTrajectories/

tree/master/Videos.

9 DISCUSSION

While we believe that our proposed method is principled and has several advantages for predicting

intention in human-robot interaction, there are numerous improvements that can be done. Some

will be object of our future works.

Improving the estimation of the time modulation - Our experiments showed that

estimating the time modulation parameter α, determining the duration of the trajectory, greatly

improves the prediction of the trajectory in terms of difference with the human intended trajectory

(i.e., our ground truth). We proposed four simple methods in Section 3.4, and in the iCub

experiment we showed that the method that maps the time modulation and the variation of the

trajectory in the first no observations provides a good estimate of the time modulation α for our

specific application. However, it is an ad hoc model that cannot be generalized to all possible cases.

Overall, the estimation of the time modulation (or phase) can be improved. For example, [24] used

Dynamic Time Warping, while [49] proposed to improve the estimation by having local estimations

of the speed in the execution of the trajectory, to comply with cases where the velocity of task

trajectory may not be constant throughout the task execution. In the future, we plan to explore

more solutions and integrate them into our software.

Improving prediction - Another point that needs further investigation and improvement

is how to improve the prediction of the trajectories exploiting different information. In our

experiment with iCub, we improved the estimation of the time modulation using position and

wrench information; however, we observed that the noisy wrench information does not help in

improving the prediction of the position trajectory. One improvement is to certainly exploit

more information from the demonstrated trajectories, such as estimating the different noise of

every trajectory component and exploiting this information to improve the prediction. Another

possible improvement would consist in using contextual information about the task trajectories.

Finally, it would be interesting to try to identify automatically the characteristic such as velocity

profiles or accelerations, that are renown to play a key role in attributing intentions to human

movements. For example, in goal-directed tasks such as reaching, the arm velocity profile and the

hand configuration are cues that helps us detect intentions. Extracting these cues automatically,

leveraging the estimation of the time modulation, would probably improve the prediction of the

future trajectory. This is a research topic on its own, outside the scope of this paper, with strong

links to human motor control.

Continuous prediction - In Section 3.5 we described how to compute the prediction of the

future trajectory after recognizing the current task. However, we did not explore what happens

if the task recognition is wrong: this may happen, if there are two or more task with a similar

trajectory at the beginning (e.g., moving the object from the same initial point towards one of

four possible targets), or simply because there were not enough observed points. So what happens

41

https://github.com/inria-larsen/icubLearningTrajectories/tree/master/Videos
https://github.com/inria-larsen/icubLearningTrajectories/tree/master/Videos

if our task recognition is wrong? How to re-decide on a previously identified task? And how

should the robot decide if its current prediction is finally correct (in statistical terms)? While

implementing a continuous recognition and prediction is easy with our framework (one has simply

to do the estimation at each time step), providing a generic answer to these question may not be

straightforward. Re-deciding about the current task implies also changing the prediction of the

future trajectory. If the decision does not come with a confidence level greater than a desired value,

then the robot could face a stall: if asked to continue the movement but unsure about the future

trajectory, should it continue or stop? The choice may be application-dependent. We will address

these issues and the continuous prediction in future works.

Improving computational time - Finally, we plan to improve the computational time for

the inference and the portability of our software by porting the entire framework in C++.

Learning tasks with objects - In many collaborative scenarios, such as object carrying and

cooperative assembly, the physical interaction between the human and the robot is mediated by

objects. In these cases, if specific manipulations must be done on the objects, our method still

applies, but not only on the robot. It must be adapted to the new “augmented system” consisting

of robot and object. Typically, we could image a trajectory for some frame or variable or point of

interest for the object, and learn the corresponding task. Since ProMPs support multiplication

and sequencing of primitives, we could exploit the properties of the ProMPs to learn the joint

distribution of the robot task trajectories and the object task trajectories.

10 CONCLUSION

In this paper we propose a method for predicting the intention of a user physically interacting

with the iCub in a collaborative task. We formalize the intention prediction as predicting the

target and “future” intended trajectory from early observations of the task trajectory, modeled by

Probabilistic Movement Primitives (ProMPs). We use ProMPs because they capture the variability

of the task, in the form of a distribution of trajectories coming from several demonstrations of the

task. From the information provided by the ProMP, we are able to compute the future trajectory

by conditioning the ProMP to match the early observed data points. Additional features of our

method are the estimation of the duration of the intended movement, the recognition of the current

task among the many known in advance, and multimodal prediction.

Section 3 described the theoretical framework, whereas Sections 4–7 presented the open-source

software that provides the implementation of the proposed method. The software is available on

github, and tutorials and videos are provided.

We used three examples of increasing complexity to show how to use our method for predicting

the intention of the human in collaborative tasks, exploiting the different features. We presented

experiments with both the real and the simulated iCub. In our experiments, the robot learns a

set of motion primitives corresponding to different tasks, from several demonstrations provided

by a user. The resulting ProMPs are the prior information that is later used to make inferences

about human intention. When the human starts a new collaborative task, the robot uses the

early observations to infer which task the human is executing, and predicts the trajectory that the

human intends to execute. When the human releases the robot, the predicted trajectory is used by

the robot to continue executing the task on its own.

42

In Section 9 we discussed some current issues and challenges for improving the proposed method

and make it applicable to a wider repertoire of collaborative human-robot scenarios. In our future

works, our priority would be in accelerating the time for computing the inference, and finding a

principled way to do continuous estimation, by letting the robot re-decide continuously about the

current task and future trajectory.

Appendices

A Detail of the inference formula

In this appendices, we explain how to obtain the inference formulae used in our software. First, let

us recall the Marginal and Conditional Gaussians laws19 Given a marginal Gaussian distribution

for x and a Gaussian distribution for y given x in the form:

p(x) = N
(
x|µ,∆−1

)
p(y|x) = N

(
Ax+ b, L−1

)
(18)

the marginal distribution of y and the conditional distribution of x given y are given by

p(y) = N
(
y|Aµ+ b, L−1 +A∆−1A>

)
(19)

p(x|y) = N
(
x|ΣA>L(y − b) + ∆µ,Σ

)
(20)

where

Σ = (∆ +A>LA)−1

We computed the parameter’s marginal Gaussian distribution from the set of observed move-

ments:

p(ω) ∼ N (µω,Σω) (21)

From the model Ξt = Φ[1:tf]ω + εΞ, we have the conditional Gaussian distribution for Ξ given

ω:

p(Ξ|ω) = N (Ξ|Φ[1:tf]ω,ΣΞ) (22)

Then, using Equation 19:

p(Ξ) = N (Ξ|Φ[1:tf]µw,ΣΞ + Φ[1:tf]ΣωΦ>[1:tf]) (23)

that is the prior distribution of the ProMP.

Let Ξo = [ξo(1), . . . , ξo(no)] be the first no observations of the trajectory to predict with the

first no elements corresponding to the early observations.

Let Ξ̂ = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(tt̂f)] be the whole trajectory we have to predict. We

can then compute the posterior distribution of the ProMP by using the conditional Gaussians

19 From the book [77]

43

Equation 20:

p(ω|Ξo) = N (ω|µω +K(Ξo − Φ[1:no]µω),Σω −KΦ[1:no]Σω) (24)

with K = ΣωΦ>[1:no](ΣΞ + Φ[1:no]ΣωΦ>[1:no])
−1 (25)

Thus, we have the posterior distribution of the ProMP p(ω|Ξo) = N (ω|µ̂ω, Σ̂ω) with:
µ̂ω = µω +K(Ξo − Φ[1:no]µω)

Σ̂ω = Σω −K(Φ[1:no]Σω)

K = ΣωΦ>[1:no](Σ
o
ξ + Φ[1:no]ΣωΦ>[1:no])

−1

(26)

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of interest.

Author Contributions

Designed study: OD, AP, FC, SI. Wrote software: OD, ME, AP, SI. Wrote paper: OD, AP, ME,

FC, JP, SI.

Funding

This paper was partially funded by the European projects CoDyCo (no. 600716 ICT211.2.1) and

AnDy (no. 731540 H2020-ICT-2016-1), and the French CPER project SCIARAT.

Acknowledgments

The authors wish to thank the IIT researchers of the CoDyCo project for their support with iCub,

Ugo Pattacini and Olivier Rochel for their help with the software for the Geomagic, and Iaki

Fernndez Prez for all his relevant feedback.

References

[1] J. Dumora, F. Geffard, C. Bidard, N. A. Aspragathos, and P. Fraisse. Robot assistance

selection for large object manipulation with a human. In 2013 IEEE International Conference

on Systems, Man, and Cybernetics, pages 1828–1833, Oct 2013.

[2] Stéphane Caron and Abderrahmane Kheddar. Multi-contact walking pattern generation based

on model preview control of 3d com accelerations. In Humanoid Robots, 2016 IEEE-RAS

International Conference on, November 2016.

[3] T. Sato, Y. Nishida, J. Ichikawa, Y. Hatamura, and H. Mizoguchi. Active understanding of

human intention by a robot through monitoring of human behavior. In Proceedings of the

44

IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, volume 1, pages

405–414 vol.1, Sep 1994.

[4] Guy Hoffman. Anticipation in human-robot interaction. In AAAI Spring Symposium: It’s

All in the Timing, 2010.

[5] S. Ivaldi, S. M. Nguyen, N. Lyubova, A. Droniou, V. Padois, D. Filliat, P. Y. Oudeyer, and

O. Sigaud. Object learning through active exploration. IEEE Transactions on Autonomous

Mental Development, 6(1):56–72, March 2014.

[6] Erol Şahin, Maya Çakmak, Mehmet R Doğar, Emre Uğur, and Göktürk Üçoluk. To afford

or not to afford: A new formalization of affordances toward affordance-based robot control.

Adaptive Behavior, 15(4):447–472, 2007.

[7] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater, and J. Santos-

Victor. Affordances in psychology, neuroscience and robotics: a survey. IEEE Transactions

on Cognitive and Developmental Systems, PP(99):1–1, 2017.

[8] Zhikun Wang, Katharina Mülling, Marc Peter Deisenroth, Heni Ben Amor, David Vogt,

Bernhard Schölkopf, and Jan Peters. Probabilistic movement modeling for intention inference

in human-robot interaction. The International Journal of Robotics Research, 32(7):841–858,

2013.

[9] Serge Thill and Tom Ziemke. The role of intention in human-robot interaction. In Proceedings

of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot

Interaction, HRI ’17, pages 427–428, New York, NY, USA, 2017. ACM.

[10] A. Zube, J. Hofmann, and C. Frese. Model predictive contact control for human-robot

interaction. In Proceedings of ISR 2016: 47st International Symposium on Robotics, pages

1–7, June 2016.

[11] S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta, and G. Sandini. Approximate

optimal control for reaching and trajectory planning in a humanoid robot. In Proc. of the

2010 IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS, pages

1290–1296, Taipei, Taiwan, 2010.

[12] Rachid Alami, Aurélie Clodic, Vincent Montreuil, Emrah Akin Sisbot, and Raja Chatila.

Toward human-aware robot task planning. In AAAI spring symposium: to boldly go where

no human-robot team has gone before, pages 39–46, 2006.

[13] Julie Shah, James Wiken, Brian Williams, and Cynthia Breazeal. Improved human-robot

team performance using chaski, a human-inspired plan execution system. In Proceedings of

the 6th international conference on Human-robot interaction, pages 29–36. ACM, 2011.

[14] Baptiste Busch, Jonathan Grizou, Manuel Lopes, and Freek Stulp. Learning legible motion

from human–robot interactions. International Journal of Social Robotics, pages 1–15, 2017.

[15] Anca Dragan and Siddhartha Srinivasa. Generating legible motion. In Proceedings of Robotics:

Science and Systems, Berlin, Germany, June 2013.

45

[16] S. Calinon, D. Bruno, and D. G. Caldwell. A task-parameterized probabilistic model with mini-

mal intervention control. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 3339–3344, May 2014.

[17] S Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems

with gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

[18] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical

movement primitives: learning attractor models for motor behaviors. Neural computation,

25(2):328–373, 2013.

[19] Franziska Meier and Stefan Schaal. A probabilistic representation for dynamic movement

primitives. arXiv preprint arXiv:1612.05932, 2016.

[20] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic

movement primitives. In Advances in neural information processing systems, pages 2616–2624,

2013.

[21] Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell, and Stefan

Schaal. Robot learning. In Springer Handbook of Robotics, pages 357–398. 2016.

[22] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud. Learning compact parameterized

skills with a single regression. In Proc. IEEE-RAS International Conference on Humanoid

RObots - HUMANOIDS, pages 1–7, 2013.

[23] Alexandros Paraschos, Elmar Rueckert, Jan Peters, and Gerhard Neumann. Model-free

probabilistic movement primitives for physical interaction. In Intelligent Robots and Systems

(IROS), 2015 IEEE/RSJ International Conference on, pages 2860–2866. IEEE, 2015.

[24] Guilherme J Maeda, Gerhard Neumann, Marco Ewerton, Rudolf Lioutikov, Oliver Kroemer,

and Jan Peters. Probabilistic movement primitives for coordination of multiple human–robot

collaborative tasks. Autonomous Robots, pages 1–20, 2016.

[25] Guilherme Maeda, Marco Ewerton, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, and Gerhard

Neumann. Learning interaction for collaborative tasks with probabilistic movement primitives.

In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on, pages

527–534. IEEE, 2014.

[26] Ugo Pattacini, Francesco Nori, Lorenzo Natale, Giorgio Metta, and Giulio Sandini. An

experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages

1668–1674. IEEE, 2010.

[27] Serena Ivaldi, Matteo Fumagalli, Marco Randazzo, Francesco Nori, Giorgio Metta, and Giulio

Sandini. Computing robot internal/external wrenches by means of inertial, tactile and f/t

sensors: theory and implementation on the icub. In Humanoid Robots (Humanoids), 2011

11th IEEE-RAS International Conference on, pages 521–528. IEEE, 2011.

46

[28] Matteo Fumagalli, Serena Ivaldi, Marco Randazzo, Lorenzo Natale, Giorgio Metta, Giulio

Sandini, and Francesco Nori. Force feedback exploiting tactile and proximal force/torque

sensing. Autonomous Robots, 33(4):381–398, 2012.

[29] Yiannis Demiris. Prediction of intent in robotics and multi-agent systems. Cognitive processing,

8(3):151–158, 2007.

[30] Joseph Kim, Christopher J Banks, and Julie A Shah. Collaborative planning with encoding of

users’ high-level strategies. In AAAI Conference on Artificial Intelligence (AAAI-17), 2017.

[31] Anca Dragan and Siddhartha Srinivasa. Integrating human observer inferences into robot

motion planning. Autonomous Robots, 37(4):351–368, 2014.

[32] Sandy H. Huang, David Held, Pieter Abbeel, and Anca D. Dragan. Enabling robots to

communicate their objectives. CoRR, abs/1702.03465, 2017.

[33] Alessandra Sciutti, Ambra Bisio, Francesco Nori, Giorgio Metta, Luciano Fadiga, and Giulio

Sandini. Robots can be perceived as goal-oriented agents. Interaction Studies, 14(3):329–350,

2013.

[34] S. Ivaldi, S. Anzalone, W. Rousseau, O. Sigaud, and M. Chetouani. Robot initiative in a team

learning task increases the rhythm of interaction but not the perceived engagement. Frontiers

in Neurorobotics, page conditionally accepted, 2014.

[35] Gonzalo Ferrer and Alberto Sanfeliu. Bayesian human motion intentionality prediction in

urban environments. Pattern Recognition Letters, 44:134–140, 2014.

[36] Zhikun Wang, Marc Peter Deisenroth, Heni Ben Amor, David Vogt, Bernhard Schölkopf, and

Jan Peters. Probabilistic modeling of human movements for intention inference. In Robotics:

Science and Systems. Citeseer, 2012.

[37] Jack M Wang, David J Fleet, and Aaron Hertzmann. Gaussian process dynamical models. In

NIPS, volume 18, page 3, 2005.

[38] Gergely Csibra and György Gergely. ?obsessed with goals?: Functions and mechanisms of

teleological interpretation of actions in humans. Acta psychologica, 124(1):60–78, 2007.

[39] Oskar Palinko, Alessandra Sciutti, Laura Patané, Francesco Rea, Francesco Nori, and Giulio

Sandini. Communicative lifting actions in human-humanoid interaction. In Humanoid Robots

(Humanoids), 2014 14th IEEE-RAS International Conference on, pages 1116–1121. IEEE,

2014.

[40] Hilary Buxton. Learning and understanding dynamic scene activity: a review. Image and

vision computing, 21(1):125–136, 2003.

[41] Heni Ben Amor, Gerhard Neumann, Sanket Kamthe, Oliver Kroemer, and Jan Peters. Inter-

action primitives for human-robot cooperation tasks. In Robotics and Automation (ICRA),

2014 IEEE International Conference on, pages 2831–2837. IEEE, 2014.

47

[42] Elena Gribovskaya, Abderrahmane Kheddar, and Aude Billard. Motion learning and adaptive

impedance for robot control during physical interaction with humans. In Robotics and

Automation (ICRA), 2011 IEEE International Conference on, pages 4326–4332. IEEE, 2011.

[43] Leonel Rozo Castañeda, Sylvain Calinon, Darwin Caldwell, Pablo Jimenez Schlegl, and Carme

Torras. Learning collaborative impedance-based robot behaviors. In Proceedings of the

Twenty-Seventh AAAI Conference on Artificial Intelligence, pages 1422–1428, 2013.

[44] Tom Carlson and Yiannis Demiris. Human-wheelchair collaboration through prediction of

intention and adaptive assistance. In Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on, pages 3926–3931. IEEE, 2008.

[45] Harold Soh and Yiannis Demiris. Learning assistance by demonstration: Smart mobility with

shared control and paired haptic controllers. Journal of Human-Robot Interaction, 4(3):76–100,

2015.

[46] Nathanaël Jarrassé, Jamie Paik, Viviane Pasqui, and Guillaume Morel. How can human

motion prediction increase transparency? In Robotics and Automation, 2008. ICRA 2008.

IEEE International Conference on, pages 2134–2139. IEEE, 2008.

[47] Jimmy Baraglia, Maya Cakmak, Yukie Nagai, Rajesh Rao, and Minoru Asada. Initiative

in robot assistance during collaborative task execution. In Human-Robot Interaction (HRI),

2016 11th ACM/IEEE International Conference on, pages 67–74. IEEE, 2016.

[48] Stefan Schaal. Dynamic movement primitives: a framework for motor control in humans and

humanoid robotics. In Adaptive motion of animals and machines, pages 261–280. Springer,

2006.

[49] Marco Ewerton, Gerhard Neumann, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, and

Guilherme Maeda. Learning multiple collaborative tasks with a mixture of interaction

primitives. In Robotics and Automation (ICRA), 2015 IEEE International Conference on,

pages 1535–1542. IEEE, 2015.

[50] Alexandros Paraschos, Gerhard Neumann, and Jan Peters. A probabilistic approach to robot

trajectory generation. In Humanoid Robots (Humanoids), 2013 13th IEEE-RAS International

Conference on, pages 477–483. IEEE, 2013.

[51] Aude Billard and Maja J Matarić. Learning human arm movements by imitation:: Evaluation

of a biologically inspired connectionist architecture. Robotics and Autonomous Systems,

37(2):145–160, 2001.

[52] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden markov model: Analysis

and applications. Machine learning, 32(1):41–62, 1998.

[53] Nam Thanh Nguyen, Dinh Q Phung, Svetha Venkatesh, and Hung Bui. Learning and detecting

activities from movement trajectories using the hierarchical hidden markov model. In Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,

volume 2, pages 955–960. IEEE, 2005.

48

[54] Haibing Ren and Guangyou Xu. Human action recognition with primitive-based coupled-HMM.

In Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 2, pages

494–498. IEEE, 2002.

[55] Paul Evrard, Elena Gribovskaya, Sylvain Calinon, Aude Billard, and Abderrahmane Kheddar.

Teaching physical collaborative tasks: Object-lifting case study with a humanoid. In Humanoid

Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, pages 399–404.

IEEE, 2009.

[56] Paul M Fitts. The information capacity of the human motor system in controlling the

amplitude of movement. Journal of Experimental Psychology: General, 121(3):262, 1992.

[57] Gary D Langolf, Don B Chaffin, and James A Foulke. An investigation of fitts? law using a

wide range of movement amplitudes. Journal of Motor Behavior, 8(2):113–128, 1976.

[58] JF Soechting. Effect of target size on spatial and temporal characteristics of a pointing

movement in man. Experimental Brain Research, 54(1):121–132, 1984.

[59] Eamonn Keogh. Exact indexing of dynamic time warping. In Proceedings of the 28th

international conference on Very Large Data Bases, pages 406–417. VLDB Endowment, 2002.

[60] Diego F Silva and Gustavo EAPA Batista. Speeding up all-pairwise dynamic time warping

matrix calculation. In Proceedings of the 2016 SIAM International Conference on Data

Mining, pages 837–845. SIAM, 2016.

[61] Ryan Lober, Vincent Padois, and Olivier Sigaud. Multiple task optimization using dynamical

movement primitives for whole-body reactive control. In Humanoid Robots (Humanoids),

2014 14th IEEE-RAS International Conference on, pages 193–198. IEEE, 2014.

[62] M. Hersch, F. Guenter, S. Calinon, and Billard. Dynamical system modulation for robot adap-

tive learning via kinesthetic demonstrations, http://lasa.epfl.ch/sourcecode/counter.

php?ID=11&index=1, 2008.

[63] Hersch Micha, , and Billard Aude. Dynamical system modulation for robot learning via

kinesthetic demonstrations. IEEE Transactions on Robotics, 24(6), 2008.

[64] Sylvain Calinon. pbdlib-matlab, https://gitlab.idiap.ch/rli/pbdlib-matlab/, 2015.

[65] S. Calinon. A tutorial on task-parameterized movement learning and retrieval. Intelligent

Service Robotics, 9(1):1–29, 2016.

[66] S. Calinon and al. Statistical dynamical systems for skills acquisition in humanoids, http:

//www.calinon.ch/showPubli.php?publi=3031, 2012.

[67] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell. Statistical dynamical

systems for skills acquisition in humanoids. In Proc. IEEE Intl Conf. on Humanoid Robots

(Humanoids), pages 323–329, Osaka, Japan, 2012.

[68] Ryan Lober. Stochastic machine learning toolbox, https://github.com/rlober/smlt, 2014.

49

http://lasa.epfl.ch/sourcecode/counter.php?ID=11&index=1
http://lasa.epfl.ch/sourcecode/counter.php?ID=11&index=1
https://gitlab.idiap.ch/rli/pbdlib-matlab/
http://www.calinon.ch/showPubli.php?publi=3031
http://www.calinon.ch/showPubli.php?publi=3031
https://github.com/rlober/smlt

[69] Travis DeWolf. pydmps, https://github.com/studywolf/pydmps, 2013.

[70] Mohammad Khansari. Dynamical systems approach to learn robot motions, https:

//bitbucket.org/khansari/seds, 2011.

[71] Seyed Mohammad Khansari-Zadeh and Aude Billard. A dynamical system approach to

realtime obstacle avoidance. Autonomous Robots, 32(4):433–454, 2012.

[72] Freek Stulp. DmpBbo – a c++ library for black-box optimization of dynamical movement

primitives, https://github.com/stulp/dmpbbo, 2014.

[73] Marco Ewerton. Learning motor skills from partially observed movements executed at different

speeds, https://github.com/studywolf/pydmps, 2016.

[74] Oriane Dermy. icublearningtrajectories, https://github.com/inria-larsen/

icubLearningTrajectories, 2017.

[75] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[76] Serena Ivaldi, Sebastien Lefort, Jan Peters, Mohamed Chetouani, Joelle Provasi, and Elisabetta

Zibetti. Towards engagement models that consider individual factors in hri: on the relation of

extroversion and negative attitude towards robots to gaze and speech during a human-robot

assembly task. International Journal of Social Robotics, 9:63–86, 2017.

[77] Christopher M Bishop. Pattern recognition. Machine Learning, 128:1–58, 2006.

50

https://github.com/studywolf/pydmps
https://bitbucket.org/khansari/seds
https://bitbucket.org/khansari/seds
https://github.com/stulp/dmpbbo
https://github.com/studywolf/pydmps
https://github.com/inria-larsen/icubLearningTrajectories
https://github.com/inria-larsen/icubLearningTrajectories

A

ground truth
observations
prior ProMP
prediction

B

C

Figure 14: The prediction of the future trajectory from the learned ProMPs computed from the
position and wrench information for the 3-targets dataset on the real iCub (Figure 12) after 40%
of observations.

51

3 0 4 0 5 0 6 0 7 0 8 0 9 0

With wrenches

Without wrenches
0.04

0.02

0

2

1.5

1

0.5

1 2 3 4 5 6 7
1 1 1 1 1 1 1

0

0.5

1× 10-7

% of observed data

0

0.05

0.1

3 0 6 0 7 0 8 0 9 04 0 5 0

Figure 15: Trajectory prediction error (top) and time modulation estimation error (bottom) of the
future trajectory with and without wrench information, for the 3-targets dataset on the real iCub
(Figure 12) with respect to the number of observed data points.

52

F
L

Figure 16: The second experiment with the robot: iCub must sort the objects into two bins, guided
by the human. If the object is good, the robot has to put the object in the “front bin”; if the object
is not good, the robot has to put the object in the “left bin”. The gestures to put the objects into
the two bins are different. To simplify, the drop locations for the two bins are represented by the
targets F and L. After inspecting the object, the human drives the robot towards the front of the
left.

53

Action towards the front bin (F)

0 0.5 1 1.5 2
-0.4

-0.2

0

x
[m

]

0 0.5 1 1.5 2

-0.4

-0.2

0

y
[m

]

0 0.5 1 1.5 2
-2

0

2

a
2

0 0.5 1 1.5 2
-0.2

0

0.2

z[
m

]

0 0.5 1 1.5 2
-0.5

0

0.5

a
1

0 0.5 1 1.5 2
-5

0

5

a
3

0 0.5 1 1.5 2
2

3

4
a

4

time [s]

time [s]

Action towards the left bin (L)

x[
m

]

-0.4
-0.3
-0.2
-0.1

0

y[
m

]

-0.8
-0.6
-0.4
-0.2

0

z[
m

]

0 0.2 0.4 0.6 0.8 1 1.2-0.2
-0.1

0
0.1
0.2

a 1

-0.5

0

0.5

a 2

-1
0
1
2

a 3

-4
-2
0
2
4

Time [s]

a 4

0 0.2 0.4 0.6 0.8 1 1.22
2.5

3
3.5

Time [s]

prior of the
recognized ProMP

observations

posterior

prior of the other

Figure 17: Predicted trajectories for the second experiment with the robot (Figure 16). The black
circles represent the observations acquired while the human is physically moving the iCub’s arm.
When the human breaks the contact and releases the arm, the robot predicts the future trajectory
and continues the movement. The prior of the recognized ProMP is blue, the posterior ProMP
used for prediction is red, the prior ProMP of the other task (i.e., the one that is recognized as not
the one currently being executed) is green.Top, F: the human moves the arm towards the front
bin. After few observations (∼ 0.5s) the robot recognizes that the movement corresponds to the
“F” action. The prior of the F actions is blue, the posterior/prediction is red, the L action is green.
Bottom, L: the human moves the arm towards the left bin. After few observations (∼ 0.25s) the
robot has recognized the L action. The prior of the L action is blue, the posterior red, the F action
(not recognized) is green.

54

	INTRODUCTION
	Related Work
	Intention during human-robot interaction
	Movement primitives
	Related open-source software

	Theoretical framework
	Notation
	Learning a Probabilistic Movement Primitive (ProMP) from demonstrations
	Predicting the future movement from initial observations
	Predicting the trajectory time modulation
	Recognizing one among many movement primitives

	Software overview
	Software example: learning a 1-DOF primitive
	Application on the simulated iCub: learning three primitives
	Predicting intended trajectories by using ProMPs
	Learning motion primitives
	Prediction of the trajectory evolution from initial observations

	Setup for simulated iCub
	Data acquisition
	Learning the ProMPs
	Predicting the desired movement
	Predicting the time modulation

	Application on the real iCub
	Three simple actions with wrench information
	Collaborative object sorting

	Videos
	DISCUSSION
	CONCLUSION
	Appendices
	APPENDICES
	Detail of the inference formula

