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Safe trajectory optimization for whole-body motion of humanoids

Valerio Modugno'?, Gabriele Nava®, Daniele Pucci®, Francesco Nori®, Giuseppe Oriolo!, Serena Ivaldi’

Abstract— Multi-task prioritized controllers generate com-
plex behaviors for humanoids that concurrently satisfy several
tasks and constraints. In our previous work we automati-
cally learned the task priorities that maximized the robot
performance in whole-body reaching tasks, ensuring that the
optimized priorities were leading to safe behaviors. Here, we
take the opposite approach: we optimize the task trajectories for
whole-body balancing tasks with switching contacts, ensuring
that the optimized movements are safe and never violate any of
the robot and problem constraints. We use (1+1)-CMA-ES with
Constrained Covariance Adaptation as a constrained black box
stochastic optimization algorithm, with an instance of (1+1)-
CMA-ES for bootstrapping the search. We apply our learning
framework to the prioritized whole-body torque controller of
iCub, to optimize the robot’s movement for standing up from
a chair.

I. INTRODUCTION

The generation of complex whole-body movements for
humanoid robots typically involves the definition of a set of
tasks (i.e., tracking a desired trajectory for the joints or the
end-effectors, either positions or forces), performance objec-
tives (e.g., minimize the torques), under a set of constraints
(e.g., joint limits, motors limits) that assure that the motion
is physically feasible on the real robot. For example, let us
consider the humanoid iCub (Fig.1) that must stand up from
a chair. This motion, trivial for a human, is very challenging
to be realized for a humanoid. During the execution of the
stand up we want to be sure that the robot produces the right
acceleration of its Center of Mass (CoM) while balancing.
This necessitates optimizing its posture at each time step.
At the same time we want to guarantee the feasibility and
the safety1 of the generated motions, i.e., we must take into
account torque and joint limits, collisions, external forces,
balancing constraints to prevent falling efc.

To solve this multi-task, multi-constraint problem, the
research community has converged to a consensus frame-
work in the last years: that is by using prioritized multi-
task controllers, either with strict task priorities [1] or soft
task priorities (also called weights) [2]. Typically, they are
formulated as Quadratic Programming (QP) problems [3].

*This work was supported by the European Projects CoDyCo (FP7,
n.600716), Comanoid (H2020, n.645097) and An.Dy (H2020, n.731540)

! Sapienza Universita di Roma, Italy.

{modugno@dis, oriolo@diag}.uniromal.it

2 Tnria Nancy - Grand Est, CNRS & Univ. Lorraine, Loria, France.

serena.ivaldi@inria. fr

3 Fondazione Istituto Italiano di Tecnologia, Italy.

firstname.lastname@iit.it

!By safety, here we mean the satisfaction of all the mechanical constraints
of the robot, task constraints that guarantee that motions are feasible and do
not make the robot fall, and constraints deriving from the interaction with
the environment.
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Fig. 1: The humanoid robot iCub performing a whole-body
motion (stand-up from the chair), with several tasks and con-
straints. In this paper we optimize the desired task trajectory
w.r.t. a fitness function, guaranteeing that the global robot
behavior is safe: it never violates any of the constraints.

The main problem with these methods is that when the global
movement to realize is complex, like in the stand-up case, a
significant amount of manual tuning is required to optimize
the motion and adapt it to the robot, as one cannot guarantee
that the QP controller can successfully execute any desired
trajectory while satisfying all the constraints, not to mention
the possibility that the QP solver uses constraints relaxation
to find a solution. Generally, one can optimize the task
priorities/weights, their evolution in time (e.g., their relative
priority, or scalar value, or the task transitions), and/or the
task trajectories, by acting on the desired trajectories (e.g.,
desired CoM) or some via-points (e.g., to avoid collisions or
potentially unstable configurations).

In previous work [4] we proposed to automatically learn
the task priorities by stochastic optimisation. Our hypothesis
was that the tasks were fixed, but not the task weights. In [5]
we proposed to use constrained optimization to find solutions
that never violate constraints, guaranteeing a safe trajectory
and control generation.

In this paper, we take the opposite approach: we consider
a controller with a fixed strategy and task priorities, and
optimize the task trajectories, i.e. the reference trajectories or
desired trajectories of the tasks. We do not use a weighted QP
controller but the prioritized whole-body controller proposed
by Nava et al. [6], which is capable of performing highly
dynamic tasks [7]. We parametrize the task trajectories, and
use constrained black-box stochastic optimization to ensure
that the optimized trajectories are “safe” and that they never
violate any constraint. As in [5], we rely on (1+1)-CMA-ES



with CCA to find solutions that do not violate constraints,
but we improve the search bootstrap phase. To show the
effectiveness of our approach, we show how we can optimize
a particular motion for iCub: standing-up from a chair.

This kind of motion is characterized by switching contacts
(from the legs on the chair to the feet on the ground),
physical interaction with the environment and several balance
constraints to be verified. Executing this kind of motion
with the previous approach (learning task priorities) is hardly
possible, because it is not suited to segment a complex
movement into phases characterized by different contacts
configurations.

The paper is organized as follows. Section II presents
the related research in safe trajectory optimization for hu-
manoid robots. Section III formulates our learning problem
and describes the framework for learning task trajectories
for controlling redundant robots like humanoids, including
the whole-body controller and the constrained optimization
algorithms retained for the study. Section IV illustrates the
experiments with the iCub humanoid robot.

II. RELATED WORK

The problem of whole-body control for redundant robots
such as humanoids involves fulfilling multiple operational,
posture and force tasks, while satisfying several constraints
that guarantee the physical feasibility of the generated mo-
tions [8], [9]. The problem is classically solved by prioritized
multi-task controllers with strict task priorities [1], [10]
or soft task priorities (also called weights) [2], [11]. It is
formulated as a QP problem subject to constraints, that is
solved at each time step of the control loop [3], [12].

To optimize the global robot movement, one classic ap-
proach is to fix the desired task trajectories (e.g., they
are known in advance, or demonstrated by a human) and
optimize the task priorities/weights (including their value in
time, their transitions, efc.). Very frequently, this optimization
is done manually. In [4], [5] we parametrized the task
priorities and optimized their parameters to obtain behaviors
that were maximizing a fitness function while satisfying the
problem constraints.

Another approach consists in fixing the task priorities
and optimize the desired task trajectories (in the form of
set-points, via-points or entire trajectories). For example, in
[13] the authors parametrized the task trajectories of a QP
controller with a set of waypoints, and used Bayesian Opti-
mization to optimize the global robot’s movement reducing
a task cost.

Trajectory optimization has been a central area of research
in robotics for decades, especially to generate highly dy-
namic motions. In some cases, the problem of trajectory
optimisation has been decoupled from the controller used
to execute the trajectory on the robot. For example, in [14]
Mordatch et al. propose the Contact Invariant Optimization
method to synthesize highly complex behaviours, decom-
posed in different phases with their own set of contacts
and weight functions. In [15] Park et al. propose the In-
cremental Optimization for Real-Time Replanning ITOMP),

an optimal trajectory planning method that can avoid moving
obstacle by interleaving planning and execution.

Both in [14] and [15], the problem’s constraints are
managed as an additional cost inside the objective function,
which might lead to solutions that are not feasible.

An alternative approach is to reframe the trajectory op-
timization problem as an optimal control one. For locally
linearized systems with quadratic cost function and Gaussian
noise, one of the most prominent methods is the iLQG [16]:
it iteratively improves an optimal controller that locally op-
timizes a linearisation of a general non-linear system around
the current trajectory. In [17] ILQG was used as optimization
routine inside a Model Predictive Control scheme. In [18]
Tassa et al. propose a generalized version of Differential
Dynamic Programming to provide a second order approx-
imation of the Bellman equation, (while ILQG employs a
first order approximation of the same expression). These
trajectory optimization methods provide explicit means to
manage constraints on the control inputs with backtracking
line search in [16], [17], or by solving quadratic program
with box constraints for each time step in [18]. None of
them combat the state space constraint issue in an explicit
way, so there is no guarantee of constraint satisfaction in
scenarios with real robots. Toussaint proposed a probabilistic
extension of ILQG that it can deal with non-Gaussian noise
models but relaxes more the constraints [19]. More recently,
Akrour et al. in [20] extended [16] by dropping the linear
approximation of the model dynamics, and replacing it with
a model free approach based on a quadratic Q-function.
However, as the previous methods, it ignores the existence
of constraints defined in the state and action spaces.

Reist et al. propose a framework that combines optimal
control and trajectory planning to compute a set of policies
that stabilize from any starting point a non-linear system to-
wards a goal state, while taking into account the control-state
constraints [21]. The motion planning module generates an
open loop trajectory for the system that satisfies the control-
state constraints. Then the feedback module ensures local
stability around the nodes of the computed trajectory. The
union of the controllable region around each ball produce
the so called “funnel”. All the states in the funnel under
the optimal control policy reach the goal and satisfy all the
problem’s constraints. It has two main limitations: first, it
only allows quadratic cost functions; second, it cannot be
easily extended to control problems with switching contacts.

III. METHOD

The framework proposed in this paper addresses all the
issues of the other methods presented in Section II. Our
learning module relies on a derivative-free constrained opti-
mization method that poses no restrictions on the structure of
the problem and guarantees constraint satisfaction both in the
state and in the control space. The integration of the learning
module with an established feedback torque controller [6],
[7] let us obtain solutions that are robust and that can be
easily extended to multi-contact scenarios.
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Fig. 2: Overview of the proposed method. The balance
controller executes a desired task trajectory, represented by
a parametrized function. An outer learning loop enables the
optimization of the parameters of the task trajectory, taking
into account the constraint violations in an explicit way.

Figure 2 outlines our method. The balance torque con-
troller of [6], [7] tracks the desired task trajectory (i.e., the
CoM) sending joint torque commands to the robot (III-B).
The task trajectories p(7) are parametrized functions, where
7 are the free parameters to be optimized (III-C). At the end
of a roll-out (i.e., execution of the stand-up from the chair)
we evaluate the fitness of the movement and the constraint
violation. A constrained stochastic optimisation algorithm
updates the parameters of the task trajectories (III-D).

A. Notation

Throughout the paper we use the following definitions:

e “(-)p: point b expressed in frame a

o [I: inertial frame

« 'pp,’Rp,: base position and orientation in / frame

e (;: joint positions

¢« M,C,G: dynamic matrices and vectors of the floating
base robot

o Jc,: k—th contact Jacobian

« J(,): robot Jacobian

« f: external wrench

« h: centroidal momentum

o ¢(-): objective function

o nyc: # of inequality constraints g;(-)

o npc: # of equality constraints A;(-)

e n¢ = nyc +ngce: total number of constraints

o IT C R": parameter space of the RBFs network

o T € IT: k-th candidate at the current generation

o K: total number of candidates for each generation

o K,: number of best candidates or elites

e Ti.k,: best candidates of the current generation

o A (%,X): Gaussian distribution with mean 7 and co-
variance X

o G2 step size

o [(my): penalty factor

« 1, indicator function

B. Whole-body torque controller

We hereby describe the balance torque controller. Let us
consider a dynamic representation of a floating base robot.
We represent the configuration space of a humanoid robot
by a triplet q = (“ps,’Rp,q;) € R* x SO(3) x R" where pg
and 'Ry describe respectively the position and orientation

of the base of the humanoid (usually located in the torso)
respect of an inertial reference frame, while q; represents the
vector of joint angles. The total Degrees of Freedom (DoF)
of the robot are n+ 6 because the free floating base adds
6 DoF. The generalized velocity associated to the system is
v = ("pp,'wp,q;) = (vs,q,) where vg describes the spatial
velocities of the base frame with respect to the inertial frame;
Twp is defined as ['@p]« ='Rp'RY, with [-]« being the screw
symmetric matrix obtained from /@g. With the hypothesis
of a flat contact surface (reasonable hypothesis in our case,
since our contacts are on a flat ground and flat chair) the
constrained dynamic model describing the robot is:

0=Jo,v (1)
Su=M(q)V+C(q,v)V+G(q) — ) Jc f (2)
T

where u € R” denotes the generalized force at the joints, S is
a selection matrix, M € R"0 x R"t0 ig the generalized mass
matrix, C(q,v) and G(q) account respectively for the non
inertial forces and the gravity torque. f; € R® represents the
external wrench and is related to the Ground Reaction Forces
(GRF) and the Center of Pressure (CoP) while the Jacobian
Jc, maps the robot velocity to the linear and angular velocity
of the frame where the external wrench is exerted:

Jo.(@) =¥, (@) I (@) ©)
s _[15 —['Pc, —"PBl
JCk - |:03 A13 “4)

The dimension of J¢, depends on the number and the kind of
contacts with the environment. For example a double stance
contact that constraints both orientation and position of the
contact point has 12 dimensions (6 for each foot in contact
with the ground). Equation 1 is equal to zero because we
make the hypothesis of no slippage on the contact surfaces.
Due to the fact that a free floating model is underactuated,
we can rewrite the equation 2 into two different parts:

0=1Jcv+JcvV 5)
0= [M,(q) M,;(q)] V+Cy(a,v)V+Gpy(a) — LIt fi €R® (6)
u=[My(@)" M;(@)]V+Ci(q,v)v+Gj(a) - LIt €R" (7)
with My(q) € R®® M;(q) € R™" and M;(q) € R®". 1t
is proven that it is possible to diagonalize the generalized
mass matrix M leading to a decoupling of base and joint

accelerations [22]. We introduce the following change of
coordinates q =q, Vv ="T(q)v

c -1
T= |: XB CXBMb Mbj:| (8)
0n><6 ln
. 13 - [Ipc - IPB] X
‘Xp = 9
B |:03><3 13 ©

where the ¢ superscript represents the frame centered in the
center of mass of the floating base platform, oriented as the
inertial frame /. Equation 2 becomes:

Su=M(q)v+C(q,V)V+G— Y JLfi (10)



where

~ ﬁb(‘l) 065n }
M= _ 11
0.x6  Mj(q)) o
J— o m13 03><3
M;(a) = 10353 i(fl)] 12
G=mge3 (13)
Jo(w) = [T (@) )] (14)
=b [ 15 _[IPCi_IPC]X
= o, N (15)

with m the mass of the robot and I the inertia of the robot
defined in the CoM frame. Due to the change of coordinate,
the floating base velocities now represent the linear and
angular velocities of the CoM. In particular the angular
velocity is the average angular velocity. Equation 10 unifies
in one expression the centroidal dynamics and the dynamic
description of the free floating base. From now on all the
subsequent equations will refer to Equation 10 and to lighten
the notation we will drop the overline sign. The change
of coordinate allows for a simple computation of the robot
momentum. From [23] and Equation 10,the robot momentum
is defined as h = M,v,.The D’Alembert’s principle states
that the rate of change of the robot momentum depends
on the external forces acting on the robot (force from the
environment and gravity in the CoM). From Equation 10
and d’Alembert’s principle we can write:

. d
h=—(M,vp) =Jif—mge; (16)

dt
By inverting the previous relation we can find an expression
that connects the desired rate of the change of the centroidal
momentum and the external forces:

f=J57 (h* +mges)
h* = h% + K,(h—h?) +K,~/hfhd

a7
(18)

where h* combines a feed-forward term and a Proportional
Integral correction to ensure that the system achieves the de-
sired centroidal momentum. The control torques that realize
the instantaneous external forces and satisfy the holonomic
constraints at the contact point are:

u=A"(JeM(F — JLf) — Jcv)) + Naug (19)

with A = J;M;, ()T the pseudo-inversion, F = C+ G and
u =F-Jf+K}(q;— q;?e“') +Kyq; the posture task pro-
jected in the null space of the primary task that is introduced
for the stability of the zero dynamics. In [6] the authors
empirically proved that in a centroidal momentum controller
the posture task do not always assure the internal stability.
To overcome this issue in Equation 18 they replace the
momentum error with

Jo(a))]
herr: — j
[Jck;(q‘})] v

—1 <k .
where [J;(q;)JG(q9)] comes from a reduced expression
of the centroidal momentum matrix that maps the joints

(20)

velocities to the velocities of the floating base and is defined
as Jg(q;) = —M,J, 'J;. This substitution is motivated by
the Lyapunov stability of the linearized closed loop dynam-
ics around the joint positions-velocities equilibrium point
(q?,O). Equation 17 is mathematically sound only if the robot
is standing on one foot and we ignore all the balance related
constraints (GRF contained inside the friction cone and CoP
inside the support polygon). To resolve the redundancy in the
external forces in a multi-contact scenario and to take into
account all the conditions for a stable stance we can recast
the computation of the external forces as an optimization
problem. This is done in our case, since the robot transitions
between 2 contact forces in the legs when seated (contacts
between legs and chair) and 2 in the feet when it stands up
(contacts between feet sole and ground).

C. Trajectories Parametrization

In our application, our desired task trajectory is the one
of the CoM. The CoM Cartesian trajectory is modelled as a
weighted sum of normalized Radial Basis Functions (RBFs):

p*7[ (75' t) _ ZZ;] Tcika(nukakat)
comiTh Yoy k(M. Ok, 1)

where pron is the desired profile in time of one of the
component of the final CoM trajectory, Wi(ly,Ok,t) =
exp (—1/2[(t — )/ 0x]?). with fixed mean i and variance
o, of the basis functions, n, is the number of RBFs and
7 = (W1,...,Mn,) C R™ is the set of parameters for each
trajectory dimension. Generally for the design of Cartesian
trajectory some conditions must be verified, for example
passing through a set of waypoints or imposing particular
conditions on initial or final velocities and accelerations. In
this work, due to the application scenario, we employed an
extended version of the RBF that allows for waypoints. We
augment the RBF model by adding a set of RBFs y;, one
for each waypoint, located in correspondence of the time
in which we impose the waypoint passage:

Yo (U, 0,0 + Xy AV (TN )
r+nwp
Y™ Wie(Me, Ok )

21

Peéom(mit) =

(22)
Once we set the value of the free parameters 77:l-f , we need to
compute the value of the fixed parameters in order to match
the waypoint passage conditions. Given the vector of values
f"P = [fy,... £y, ] that defines the value of the function peyy,

N F.
at each way-point, we can write:
1 =A""b (23)
where
[ wi(uf, o1, 1f) Vi, (U, O 7)) ]

A= : : (24)
Lvi(ui, o1, 15,,) Wiy (i O )
AT A (e 0 1) — S0 Y 0 )]

b= :

o TR AW (s 0 115, ) — ™ Wb, O ) |
(25



For the case of exponential radial basis functions the matrix
A is always invertible due to its particular structure.

D. Constrained Stochastic Optimisation

In the following section we formalize and describe our
method for learning the parameters of the task trajectory
with constrained stochastic optimisation. Given a fitness
function ¢ (7) : R"”? — R and a set of equality and inequality
constraints g, h, we want to find an optimal solution & € IT C
R"" to the problem:

n° = arg m;_lX(P(JL') (26)
s.t.

g(m) <0 i=1,....mc @7

h(m) =0 i=1,...,nzc (28)

In our previous work [4], [5], we solve the problem with
derivative-free methods, imposing no constraints on the
structure of the fitness function and of the constraints. We use
the known extensions of CMA-ES [24] that we benchmarked
in [5] for learning task priorities, to harness the known
advantage of having to tune few parameters.

For CMA-ES a single iteration (called generation) com-
prises several stages. From a multivariate Gaussian distribu-
tion A (%,0°%) K samples 7; are drawn with a o step
size; an evaluation of the objective function @, called fitness,
is performed for each sample 7;. Based on the fitness, the
samples are ranked and the Gaussian distribution is updated
according to the best K, candidates 7y.x,, called elites.

The update changes the mean, the covariance and the step
size of the search distribution. The update for > and X
exploits information both from last generation and all the
previous ones. The step size update plays a key role to
avoid premature convergence of the algorithm around local
minima. A set of probability weights influences the mean
update with one P associated to each elite candidate. a
default value for each weight is P, =1n(0.5(K, + 1)) —In (k).
The initialization of CMA-ES requires the user to specify the
value of the exploration rate, a number between O and 1, that
affects the first value of the covariance matrix.

The classical CMA-ES is not designed to solve constrained
black-box optimization problems, but there exist several
variants of it in the literature that handle constraints. In [5]
we benchmarked different ones and we showed that (1+1)-
CMA-ES with Covariance Constrained Adaptation (CCA)
[25] was the most appropriate for our robotics problems
with several parameters and constraints. So we adopt it here.
The constraints satisfaction is ensured by combining (i) a
rejection rule that prevents the mean update when at least one
constraint is violated and (ii) a different exploration strategy
that exploits the information from violated constraints to
change the covariance and steer the optimization inside the
feasible region. In its basic version (1+1)-CMA-ES shows
small differences with CMA-ES. In every generation only
one sample (7, therefore K = 1) is drawn from the search
distribution according to the following rule: 7; = 7w+ oDz,
where D is the Cholesky factor of the covariance matrix

Y =D’D and z is a standard normal distributed vector
z~ .4 (0,1). The information about the successful steps are
stored in a search path s € R™". For a detailed description of
the update procedure of the original algorithm please refer
to [26]. In [25] the authors kept in place the original update
scheme when the candidate belongs to the free region while
adding a new update procedure for the constraints violation
case. To reduce the probability that the candidate may belong
to the infeasible region, the authors propose to reduce the
covariance matrix in the direction that is orthogonal to the
constraint boundary. Each time the j-th constraint is violated,
we update the corresponding constraint vector trace vj € R"?
and the matrix D according to:

Vi =(1—c.)vj+cDz
wT
\\id

J
B -
Y Yeymi>0) gy

Dnew — D _ nC
it Lgj(m>0) =1

where ¢, and f are constants that control the update step
respectively for v; and D, w; =D~ !v; and Ligi(z>00 18
equal to one when g;(7;) > 0 and zero otherwise.

To summarize, the method tests one sample every gener-
ation and extends the covariance update to take into account
the localization of the infeasible region in a neighborhood of
the search distribution. The algorithm proceeds to update the
mean of the search distribution only if the current candidate
have a better fitness and the new sample belongs to the
feasible region; these two conditions guarantees that the
solution of the optimization problem always stays outside
the infeasible region.

This method requires the starting point to satisfy all
constraints in order to function properly. It means that we
cannot initialize the method from scratch with random values
but we need to provide a feasible starting point. To overcome
this known limitation in this work we provide an extension
of the current method with the introduction of a new step
in the algorithm. In order to find a feasible starting point
we start the algorithm with an unconstrained optimization
problem with the subsequent fitness:

if constraints violation

—Y X e, i, )],

(Tyne) =
¢b ( n ) {_ZZTZ;IE] SA(t,l.~,7r)‘7

if no constraints violation

where T is the number of control steps, é(t,i,m) =
1ig(n)>018i(7) and é(z,i, ) = 1y, (x)20y hi(7) respectively
for the inequality and equality constraints that are not sat-
isfied at time ¢ and $(¢,i,7) = Lyg (n)<—0) &i(7), §(t,i,7) =
1, (w)=0 hi(7) represent all the satisfied constraints at time
t. To summarize during an experiment we sum all the
constraints violations while ignoring all the satisfied one.
Only if the candidate is feasible throughout the experiment,
we sum the total amount of constraints satisfaction.

IV. EXPERIMENTS

In this section we present our experiments with the iCub
humanoid performing a “stand-up from the chair” movement.
All experiments are simulated in Gazebo. Our method is
capable of optimizing the task trajectories to generate a safe



Posture | Torso (deg) Larm (deg) Lleg (deg)
i 60,0.62,0.40 67.2,34.1,4.8,43.2 | 84.3,0.8,0.1,-99.2,-15.8,0.1
Qi -10,0,0 -20,30,0,45 25.5,0,0,-18.5,-5.5,0

TABLE I. The intermediate (qy) and the final joint pose
(qs) that define the secondary task.

motion even when the robot is switching contacts in physical
interaction with the environment.

Robotics setup - Our experiments were performed with the
iCub humanoid robot. iCub is a 53-DOF humanoid robot
[27], but only 23-DOF are torque-controlled and used for
balancing tasks. It is equipped with 6 force/torque sensors,
placed in the middle of arms, legs and feet, that are used to
compute the whole-body dynamics [28]. We developed our
controller in Matlab/Simulink using the WBToolbox [29],
which can be applied to both the simulated and real robot,
whereas the learning and trajectory optimisation is done with
our framework for learning task priorities [5]. Considering
the high chance of breaking the real robot during learning,
we perform all the learning procedure in simulation. The
rollouts are performed in Gazebo.

Stand-up problem - We apply our method to solve the
problem of finding a safe trajectory for the robot to stand
up from a chair, where “safe” means physically feasible and
that it does not violate any problem/robot constraint. The
goal of the experiment is to learn an optimal CoM trajectory
to move the robot from a sitting position to a double support
stance that guarantees constraints satisfaction and minimizes
the risk of falling. The desired trajectory is executed by the
centroidal momentum controller described in Section III-B.
For this experiment we constrain the desired CoM trajectory
to lay on the sagittal plane of the robot (x,z plane in the robot
world frame). For each trajectory component, we associate a
RBFs network with nf = 5 and we add two fixed viapoints for
the starting and the final CoM positions. Then we use a third
RBFs network to model the time law. To allow for the stand
up movements in the controller, we need to switch from the
lower back/legs contact points (when the robot is sitting on
the chair) to the feet contact points. Therefore we introduce
a switching time fq,,;;¢;,. This induces a natural segmentation
of the movement in two distinct phases: the first is when
the robot is sitting, the second is when the robot breaks the
contacts with the chair and starts to stand up to reach the
standing position. For the posture task we set two different
keyframe joint postures: one at the end of sitting phase (qs;)
and one a the end of the sit up movement (qy).

To ensure a smooth transition in the joint space, we used
the method from [30]. To assure the feasibility of the optimal
solution and to lighten the burden of the deployment on
the real robot we introduce a set of constraints. For this
experiment we set n¢c = njc = 93 inequality constraints: joint
position limits, joint torque limits and a dynamic balance
constraint to assure that after the tq,;., the Zero Moment
Point (ZMP) is located inside the support polygon of the
robot.

A. Optimization for the simulated iCub in Gazebo

To obtain an optimal CoM trajectory that never vio-
lates the constraints we apply (1+1)-CMA-ES with CCA
to our framework. As described in Section III-D, to avoid
stalling, the algorithm requires a starting point that verifies
the constraints, but for our application scenario it is not
straightforward to set the right parameters that verify all the
constraints at once.

Therefore we split the optimisation problem in two. In
the first, we run an unconstrained optimisation problem,
where we want to minimize the constraints violation to 0
(no constraint violation). In the second, we run a constrained
optimization problem to find a solution that satisfies our
“true* cost function. The two problems have similar settings
(tswirch = 1.5s, 3 RBFs networks with 5 RBFs each, for a total
number of parameters equal to 15, T = 4.5s with a control
step of 10ms) but different fitness functions.

The fitness function for the first problem, or bootstrap
problem, (unconstrained optimization) is:

I,
P = {¢bs(T7 nc)

where @ is the fitness function from Section III-D, and Iis
a penalty that we apply when the robot falls.

The fitness function for the second problem, (constrained
optimization) is:

if fallen
otherwise

if fallen
] , otherwise

2
Peo = {_):?lm [Wl):,T ‘p;:;Lii)7p20111| 4 %2 )iif(i) + Ws});i:(i)
where ¢, € [—1,0], w; are fixed weights, Euax,Umax,Pmax
are normalization factors for, respectively, the CoM position
error (where p,,,,(i) is the current CoM position and p;,,
is the desired CoM), the effort penalty (u(i) is the torque at
time i) and the backward penalty. The latter is defined as

(29)
(30)

b(l) :1{p§0m(i71)>p'§0,,,(i)} (p)ccom(i - l) - pﬁom(i))—’_
1{p§0m(i—1)>p§0m(i)} (pf‘om(i - 1) - piom(i))

where p7,,.,P%, are the x and z coordinate of the CoM
position. This term penalizes all the trajectories that produce
backward movements along the x or z direction. We use it
to minimize undesirable oscillations of the robot along the
sagittal plane.

To find a solution for the first problem (bootstrap) we
performed 500 rollouts of (1+1)-CMA-ES (without CCA)
with an exploration rate equal to 0.1. The solution is used
as the starting point for the second problem, which is solved
with (1+1)-CMA-ES with CCA, with the same exploration
rate. A typical fitness profile for ¢, after 500 rollouts is
shown in Figure 4. For this experiment, the weights for the
penalty terms are respectively w; = 1.3 for the CoM error,
wy =1 for the effort and wz = 3 for the backward penalty.

We compare the optimized solution with one that was
hand-tuned by an expert. The hand-tuned solution lasts for
11s, with #,,,;,cn = 4.53s. Even if the hand-tuned solution has
a smoother profile for the CoM, it makes the robot move
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Fig. 3: Comparison of three typical different solutions. Rows: in the first row we show the results for a trajectory that is
manually hand-tuned by an expert, while in second and third rows we show the final solutions after the bootstrapping and
the final trajectory obtained by the constrained optimization. Columns: A plots the joint torques, B plots the joints positions
during the experiment, C shows the CoM trajectory of the robot on the sagittal plane, D shows the evolution of the ZMP
on the ground plane. In D, the square is a conservative estimation of the support polygon of the robot: for this reason,
even if the ZMP of the hand-tuned experiment moves outside the support polygon, the robot does not fall. However, our
optimization algorithm finds solutions that satisfy the conservative ZMP constraint.

faster during the stand-up and with higher torques (with a
peak of torques at ty,;). The optimized trajectory, on the
contrary, is faster (Iess than 5s), has lower energy consump-
tion and lower CoM tracking error, as shown in Table II. By
design, our solution satisfies all the problem constraints: as
shown in Figure 3, it satisfies a very conservative constraint
on the ZMP, that the hand-tuned solution was violating even
if it was generating a physically feasible movement.

V. CONCLUSIONS

In this paper we propose a method to compute safe
task trajectories for whole-body control of humanoid robots,

where ‘“safe” means that we ensure that the optimized
trajectories lead to behaviors that never violate any of the
problem/robot constraints. We propose to use (1+1)-CMA-
ES with CCA, that we previously benchmarked in [5], to
optimize the parameters of the task trajectories, while for
controlling the robot we rely on a whole-body multi-task
centroidal momentum controller from [6], [7].

We demonstrate our method on the iCub humanoid, to find
a safe trajectory for the motion “stand-up from the chair”,
with multiple switching contacts and several constraints. By
comparing the optimal solution with an hand-tuned one we
showed that our method improves the task trajectories satis-
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Fig. 4: Evolution of a typical fitness value for ¢,.

[ Solution | CoM error [ effort penalty | backward penalty |
hand-tuned 1.0 1.0 0.186292
unconstrained 0.806484 0.945829 0.962220
constrained 0.580518 0.646327 0.844451

TABLE II: Comparison of three typical solutions: hand-
tuned, unconstrained (used for bootstrapping) and the final
found by the constrained optimization. For each solution we
separately compute each cost that composes the fitness @, in
Equation IV-A. The constrained solution computed at the end
of the whole optimization process has a better performance
than the hand-tuned both in terms of COM error and total
effort.

fying all constraints and reducing the energetic consumption.
Realizing this kind of motions was not possible in our
previous framework where task priorities were optimized [5].

Currently, the solution is optimized in simulation, as the
number of roll-outs is too high for executing the algorithm
directly on the real robot. However, the feedback controller
and the good dynamics model make it applicable with minor
adaptations to the real robot. In the future, we plan to
leverage transferability approaches for deploying and refining
the solution directly on the real robot> We plan to take
inspiration from the “Intelligent Trial and Error” approach,
which essentially suggests to generate a large diversity of
high-performing trajectories offline and select the best one
to test on the robot online by trial and error [31].
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