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NEAR-MISSES IN WILF’S CONJECTURE

SHALOM ELIAHOU AND JEAN FROMENTIN

ABSTRACT. Let S ⊆ N be a numerical semigroup with multiplicity m,

conductor c and minimal generating set P. Let L = S∩ [0,c− 1] and

W (S) = |P||L| − c. In 1978, Herbert Wilf asked whether W (S) ≥ 0 al-

ways holds, a question known as Wilf’s conjecture and open since then.

A related number W0(S), satisfying W0(S)≤W (S), has recently been in-

troduced. We say that S is a near-miss in Wilf’s conjecture if W0(S)< 0.

Near-misses are very rare. Here we construct infinite families of them,

with c = 4m and W0(S) arbitrarily small, and we show that the members

of these families still satisfy Wilf’s conjecture.

Keywords. Numerical semigroup; conductor; Apéry element; Sidon set;

additive combinatorics.

1. INTRODUCTION

Let N = {0,1,2, . . .} and N+ = N \ {0}. Given rational numbers a ≤ b,

we denote [a,b] = {z ∈ Z | a ≤ z ≤ b} the integer interval they span, and

[a,∞[ = {z ∈ Z | z ≥ a}.

Let S ⊆ N be a numerical semigroup, i.e. a submonoid containing 0

and with finite complement in N. The genus of S is g(S) = |N \ S|, its

Frobenius number is F(S) = max(Z\S) and its conductor is c = F(S)+1.

Thus c+N ⊆ S, and c is minimal for this property. Let S∗ = S \ {0}. The

multiplicity of S is m = minS∗. As in [5], we shall denote

(1) q = ⌈c/m⌉ and ρ = qm− c;

thus c = qm− ρ and 0 ≤ ρ ≤ m− 1. An element a ∈ S∗ is primitive if

it cannot be written as a = a1 + a2 with a1,a2 ∈ S∗. As easily seen, the

subset P ⊂ S∗ of primitive elements is contained in the integer interval

[m,m+ c− 1]. Therefore P is finite, and it generates S as a monoid since

every nonzero element in S is a sum of primitive elements. It is well-known

and easy to see that P is the unique minimal generating set of S. Its cardinal-

ity |P| is known as the embedding dimension of S. We shall denote by D⊂ S

the set of decomposable elements, i.e. D = S∗+ S∗ = S∗ \P. See [10, 11]

for extensive information about numerical semigroups.
1
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1.1. Wilf’s conjecture. Let L = S∩ [0,c− 1], the set of elements of S to

the left of its conductor c, and denote

W (S) = |P||L|− c.

In 1978, Herbert Wilf asked, in equivalent terms, whether the inequality

W (S)≥ 0

always holds [18]. This question is known as Wilf’s conjecture. So far, it

has only been settled for a few families of numerical semigroups, including

the five independent cases |P| ≤ 3, |L| ≤ 4, m ≤ 8, g ≤ 60 and q ≤ 3. See [1,

2, 4, 5, 6, 7, 8, 9, 14] for more details.

1.2. The number W0(S). Denote Sq = [c,c+m− 1] and Dq = D∩ Sq =
Sq \P. We may now define the closely related number W0(S) introduced

in [5]. It involves |P∩L| rather than |P| as in W (S), as well as Dq and the

numbers q,ρ given by (1).

Notation 1.1. Let S be a numerical semigroup. We set

W0(S) = |P∩L||L|−q|Dq|+ρ.

As we shall see in the next section, we have W (S)≥W0(S). In particular,

if W0(S)≥ 0, then S satisfies Wilf’s conjecture. The case W0(S)< 0 seems

to be extremely rare. The first instances were discovered in 2015 by the

second author while performing an exhaustive computer check of numerical

semigroups up to genus 60. Here is the outcome.

Computational result. The more than 1013 numerical semigroups S of

genus g ≤ 60 all satisfy W0(S) ≥ 0, with exactly 5 exceptions. These 5

exceptions satisfy W0(S) =−1, W (S)≥ 35 and g ∈ {43,51,55,59}.

We shall describe these five exceptions in the next section. Prompted by

their unexpected existence, we say that S is a near-miss in Wilf’s conjecture

if W0(S)< 0.

The next instances of near-misses were discovered by Manuel Delgado.

More precisely, he proved the following result by explicit construction.

Theorem 1.2 ([2]). For any z ∈ Z, there exist infinitely many numerical

semigroups S such that W0(S) = z.

(The number W0(S) is denoted E(S) in [2].) He further proved that all the

near-misses in his constructions satisfy Wilf’s conjecture.

Our aim in this paper is to explain the structure of the original five near-

misses of genus g≤ 60, construct infinite families of similar ones, and show

that again, they still satisfy Wilf’s conjecture even though their numbers

W0(S) get arbitrarily small in Z.
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Thus, both [2] and the present paper provide constructions of families of

numerical semigroups S such that W0(S) goes to minus infinity. The main

difference is that in [2], the cardinality |P∩ L| remains constant at 3 and

q goes to infinity, whereas here, the cardinality |P∩L| goes to infinity and

q remains constant at 4. In a sense, the case q = 4 is best possible, as

witnessed by the following result.

Theorem 1.3 ([5]). Let S be a numerical semigroup such that q ≤ 3. Then

W0(S)≥ 0.

Hence Wilf’s conjecture holds for q ≤ 3. For q = 1 this is trivial, and for

q = 2 this was first shown in [8]. Informally, most numerical semigroups

satisfy q ≤ 3, as proved by Zhai in [19]. Combining these results, it follows

that Wilf’s conjecture is asymptotically true as the genus goes to infinity.

1.3. Contents. In Section 2, we describe the original near-misses of genus

g ≤ 60, we recall some basic notions and notation, and we compare the

numbers W (S) and W0(S). In Section 3 we construct, for any integer n ≥ 3,

a numerical semigroup S for which q= 4, |P∩L|= n and W0(S)=−
(

n
3

)
. We

start with the case n = 3, and then generalize it to n ≥ 4 using the notion of

Bh sets from additive combinatorics, specifically for h = 3. In Section 4, we

prove that the numerical semigroups S constructed in Section 3 all satisfy

W (S)≥ 9. The paper ends with the conjecture that our construction is opti-

mal, in the sense that if q = 4 and |P∩L|= n, then probably W0(S)≥−
(

n
3

)
.

2. BASIC NOTIONS AND NOTATION

Throughout this section, let S ⊆ N be a numerical semigroup with multi-

plicity m and conductor c. Recall that q = ⌈c/m⌉ and ρ = qm− c.

2.1. On the near-misses of genus g ≤ 60. As previously mentioned, up

to genus g ≤ 60, there are exactly 5 near-misses in Wilf’s conjecture. The

following notation will be useful to describe them.

Notation 2.1. Given positive integers a1, . . . ,an, t, we denote

〈a1, . . . ,an〉 = Na1 + · · ·+Nan,

〈a1, . . . ,an〉t = 〈a1, . . . ,an〉∪ [t,∞[.

As is well-known, 〈a1, . . . ,an〉 is a numerical semigroup if and only if

gcd(a1, . . . ,an) = 1. On the other hand, 〈a1, . . . ,an〉t is always a numerical

semigroup, even if a1, . . . ,an are not globally coprime, and its conductor c

satisfies c ≤ t, with equality c = t if and only if t −1 /∈ 〈a1, . . . ,an〉.

The 5 near-misses up to genus 60 are given in Table 1. They all satisfy

c = 4m, that is q = 4 and ρ = 0.
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S m |P| |L| g W0(S) W (S)

〈14,22,23〉56 14 7 13 43 −1 35

〈16,25,26〉64 16 9 13 51 −1 53

〈17,26,28〉68 17 10 13 55 −1 62

〈17,27,28〉68 17 10 13 55 −1 62

〈18,28,29〉72 18 11 13 59 −1 71

TABLE 1. All near-misses of genus g ≤ 60

2.2. Slicing N. Coming back to our given numerical semigroup S, we shall

denote

Iq = [c,c+m−1],

the leftmost integer interval of length m contained in S. More generally, for

any j ∈ N, let us denote by I j the translate of Iq by ( j−q)m. That is,

I j = ( j−q)m+[c,c+m−1]

= [c+( j−q)m,c+( j+1−q)m−1]

= [ jm−ρ,( j+1)m−ρ−1].

Let us also denote

S j = S∩ I j.

Observe that S j = I j if and only if j ≥ q. Thus Sq = Iq but S j ( I j for j < q.

Note also that S0 = {0} and that jm ∈ S j. Finally, for j ≥ 1, let us denote

Pj = P∩S j,

D j = D∩S j = S j \Pj.

2.3. Comparing W (S) and W0(S). Since P ⊆ [m,c+m−1] as mentioned

earlier, we have

P = P1 ∪· · ·∪Pq.

In particular, we have P∩L = P1 ∪ · · · ∪Pq−1 = P \Pq. The following for-

mula appears in [5].

Proposition 2.2. We have W (S) =W0(S)+ |Pq|(|L|−q).

Proof. By definition, W (S) = |P||L|−c= |P||L|−qm+ρ. Now use the two

formulas |P|= |P∩L|+ |Pq| and m = |Pq|+ |Dq|. �

Corollary 2.3. If W0(S)≥ 0, then S satisfies Wilf’s conjecture.

Proof. We have |L| ≥ q since L⊇{0,1, . . . ,q−1}m. Thus |Pq|(|L|−q)≥ 0,

implying W (S)≥W0(S) by the above proposition. �

Note that if S is a leaf in the tree of all numerical semigroups [12, 13, 1],

i.e. if P = P∩L, then Pq = /0 and so W0(S) =W (S) by Proposition 2.2.
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2.4. Apéry elements. As customary, let Ap(S) = Ap(S,m) be the set of

Apéry elements of S with respect to m, namely

Ap(S) = {s ∈ S | s−m /∈ S}

= {min(S∩ (i+mN)) | 0 ≤ i ≤ m−1}.

Thus |Ap(S)| = m, and each element of Ap(S) is the smallest element of

its class mod m in S. Note that minAp(S) = 0 and maxAp(S) = c+m−1.

Note also that P\{m} ⊆ Ap(S).

For convenience, we shall denote X =Ap(S) and Xi = X ∩Si for all i ≥ 0.

Note then that X0 = {0}.

Proposition 2.4. We have

|L| = q|X0|+(q−1)|X1|+ · · ·+ |Xq−1|,(2)

|Dq| = |X0|+ |X1|+ · · ·+ |Xq−1|+ |Xq∩D|.(3)

Proof. There is the partition

L =
⊔

0≤i≤q−1

(
Xi +[0,q− i−1] ·m

)
.

Indeed, for all 0 ≤ i ≤ q−1, all x ∈ Xi and all j ≥ 0, we have Xi+ jm ⊆ Si+ j

and

(x+mN)∩L = {x,x+m, . . . ,x+(q− i−1)m}.

Conversely, every a∈ L belongs to a unique subset of this form, where x∈X

is uniquely determined by the condition a≡ x mod m. This yields the stated

partition of L. Moreover, we have

|(Xi +[0,q− i−1] ·m) |= (q− i)|Xi|.

Whence formula (2). Similar arguments give rise to the decomposition

(4) Dq = (Xq∩D) ⊔
⊔

0≤i≤q−1

(
Xi +(q− i)m

)
.

Whence formula (3). �

3. CONSTRUCTIONS

In this section, we construct numerical semigroups S such that c= 4m and

where W0(S) is arbitrarily small in Z. We start with a construction yielding

infinitely many instances satisfying W0(S) = −1. Then, after recalling the

notion of Bh sets from additive combinatorics, we use it to construct, for

any n ≥ 3, infinitely many instances satisfying W0(S) =−
(

n
3

)
.
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3.1. Realizing W0(S) = −1. First a notation from additive combinatorics.

For nonempty subsets A,B of Z or of any additively written group G, denote

A+B = {a+ b | a ∈ A,b ∈ B} and 2A = A+A. More generally, for any

h ∈ N+, denote hA = A+ · · ·+A
︸ ︷︷ ︸

h

.

Proposition 3.1. Let m,a,b∈N+ satisfy (3m+1)/2≤ a< b≤ (5m−1)/3.

Let A = {a,b}, and assume that the elements of

A∪2A∪3A = {a,b,2a,a+b,2b,3a,2a+b,a+2b,3b}

are pairwise distinct mod m. Let S = 〈m,a,b〉4m. Then W0(S) =−1.

Proof. Note that the inequality (3m+ 1)/2 < (5m− 1)/3 implies m ≥ 6,

while the hypothesis on A ∪ 2A ∪ 3A implies m ≥ 9. The computation

of W0(S) requires several steps.

Claim 1. We have

m+1 ≤ a < b ≤ 2m−2,
3m+1 ≤ 2a < 2b ≤ 4m−2,
4m+1 ≤ 3a < 3b ≤ 5m−1.

Indeed, these rather loose inequalities follow from the hypotheses on a,b.

Thus A ⊆ [m+1,2m−2], 2A ⊆ [3m+1,4m−2] and 3A ⊆ [4m+1,5m−1].

Claim 2. Let c be the conductor of S. Then c = 4m, q = 4 and ρ = 0.

Indeed, since S= 〈m,a,b〉4m, we have c≤ 4m by construction. By Claim 1,

we have

〈m,a,b〉∩ [3m+1,4m−1] = (A+2m)∪2A ⊆ [3m+1,4m−2].

Therefore 4m−1 /∈ 〈m,a,b〉, implying c = 4m as desired. Since q = ⌈c/m⌉
and ρ = qm− c, we have q = 4,ρ = 0.

Claim 3. The elements of {0}∪A∪2A∪3A are pairwise distinct mod m.

Indeed, the elements of A∪2A∪3A are pairwise distinct mod m by hy-

pothesis, and it follows from Claim 1 that they are nonzero mod m.

Claim 4. We have

X1 = A, X2 = /0, X3 = 2A, X4 ∩D = 3A.

Indeed, it follows from Claim 3 that

(5) {0}∪A∪2A∪3A ⊆ X .

Since ρ = 0 by Claim 2, we have I j = [ jm, jm+m−1] for all j ≥ 0. Hence

S1 = S∩ [m,2m−1], S2 = S∩ [2m,3m−1], S3 = S∩ [3m,4m−1] and S4 =
[4m,5m− 1]. Claim 1 then implies A ⊆ S1, 2A ⊆ S3 and 3A ⊆ S4. On the

other hand, since c = 4m, we have L = S0 ∪S1 ∪S2 ∪S3, and L ⊆ 〈m,a,b〉
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by construction. Consequently, since X ∩ (S+m) = /0, we have X ∩ L ⊆
〈a,b〉, and similarly X4 ∩ D ⊆ 〈a,b〉. Claim 1 then implies X ∩ S1 ⊆ A,

X ∩S2 = /0, X ∩S3 ⊆ 2A and X ∩S4∩D ⊆ 3A. The fact that these inclusions

are equalities follows from (5) and the claim is proved.

We are now in a position to compute W0(S) = |P∩L||L|−q|Dq|+ρ. We

have P∩L = {m,a,b}, q = 4 and ρ = 0. Thus W0(S) = 3|L|−4|D4| here.

By Proposition 2.4, we have

|L| = 4|X0|+3|X1|+2|X2|+ |X3|,

|D4| = |X0|+ |X1|+ |X2|+ |X3|+ |X4∩D|.

Of course X0 = {0}, as noted in Section 2.4. Moreover |X1| = 2, |X2| = 0,

|X3|= 3 and |X4∩D|= 4. It follows that |L|= 4 ·1+3 ·2+2 ·0+1 ·3 = 13

and |D4| = 1+2+0+3+4 = 10. Therefore W0(S) = 3|L|−4|D4| = −1,

as stated. �

As an application, we now provide an explicit construction satisfying the

hypotheses, and hence the conclusion, of the above result.

Corollary 3.2. Let k,m be integers such that k ≥ 2, m ≥ 3k+ 8 and m ≡
k mod 2. Let a = (3m+k)/2 and let S = 〈m,a,a+1〉4m. Then W0(S) =−1.

Proof. Let b = a+ 1 and A = {a,b}. It suffices to see that the hypotheses

of Proposition 3.1 on a,b and A are satisfied. The inequalities

(6) (3m+1)/2 ≤ a < b ≤ (5m−1)/3

follow from the hypotheses k ≥ 2 and m ≥ 3k+8. It remains to see that the

elements of A∪2A∪3A are pairwise distinct mod m. It is equivalent to see

that the elements of (A+3m)∪ (2A+m)∪3A are pairwise distinct mod m.

This in turn follows from the chain of inequalities

4m+1 ≤ 2a+m < a+b+m < 2b+m

< a+3m < b+3m

< 3a < 2a+b < a+2b < 3b

≤ 5m−1,

all straightforward consequences of the hypotheses and (6). �

The five near-misses up to genus 60 listed in Table 1, and satisfying

W0(S) = −1, are all covered by the above two results. Indeed, four of

them are of the form S = 〈m,a,a+ 1〉4m and derive from Corollary 3.2,

namely with parameters (m,k) = (14,2),(16,2),(17,3) and (18,2), respec-

tively. The fifth one, that is 〈17,26,28〉68, is not of this form but is still
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covered by Proposition 3.1. Indeed, let m = 17,a = 26,b = 28. Then these

numbers satisfy all the hypotheses of Proposition 3.1, namely

(3m+1)/2 ≤ a < b ≤ (5m−1)/3,

and setting A = {a,b}, we have 2A+m = {69,71,73}, A+3m = {77,79}
and 3A = {78,80,82,84}, showing that the elements of A∪ 2A∪ 3A are

pairwise distinct mod m, as required.

In order to generalize the above construction and get numerical semi-

groups S with q= 4 and W0(S) negative arbitrarily small, we need the notion

of Bh sets from additive combinatorics, specifically for h = 3.

3.2. Bh sets. Let G be an abelian group. Let A ⊆ G be a nonempty finite

subset, and let h ≥ 1 be a positive integer. Then

(7) |hA| ≤

(
|A|+h−1

h

)

.

See [17, Section 2.1]. This upper bound is best understood by noting that

the right-hand side counts the number of monomials of degree h in |A| com-

muting variables.

We say that A is a Bh set if equality holds in (7); equivalently, if for all

a1, . . . ,ah,b1, . . . ,bh ∈ A, we have

a1 + · · ·+ah = b1 + · · ·+bh

if and only if (a1, . . . ,ah) is a permutation of (b1, . . . ,bh). See [17, Section

4.5].

Here are some remarks and examples. The property of being a Bh set is

stable under translation in G. Clearly, every nonempty finite subset of G is

a B1 set and, if h ≥ 2, every Bh set is a Bh−1 set.

In G = Z, any subset A = {a,b} of cardinality 2 is a Bh set for all

h ≥ 1, since |hA| = h+ 1 =
(|A|+h−1

h

)
. On the other hand, the subset A =

{3,4,5} ⊂ Z is not a B2 set since 3+5 = 4+4 in 2A. Note that B2 sets are

also called Sidon sets.

For any integer h ≥ 2, there are arbitrarily large Bh sets in N+. Take for

instance A = {1,h,h2, . . . ,ht} for any t ≥ 1.

Note that a Bh set in Z does not necessarily induce a Bh set in the group

Z/mZ. However, for any finite subset A ⊂ Z and integer m ≥ |A|, if A

induces a Bh set of cardinality |A| in Z/mZ, then clearly A itself is a Bh set

in Z.

An instance of a B3 set in Z/mZ is provided by Proposition 3.1. Indeed,

given m,a,b and A = {a,b} as in that proposition, the hypothesis there on

A∪2A∪3A means that A induces a B3 set in Z/mZ.
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3.3. Towards arbitrarily small W0(S). We now generalize Proposition 3.1,

allowing for more than 3 left primitive elements, and yielding numerical

semigroups S, still with c = 4m, but now with W0(S) arbitrarily small in Z.

The construction requires large B3 sets in N+.

Proposition 3.3. Let m,a,b,n ∈ N+ satisfy n ≥ 3 and

(3m+1)/2 ≤ a < b ≤ (5m−1)/3.

Let A ⊂N+ be a subset of cardinality |A|= n−1 with minA = a, maxA = b

and inducing a B3 set in Z/mZ. Let S = 〈{m}∪A〉4m. Then W0(S) =−
(

n
3

)
.

Note that for n = 3, Proposition 3.3 exactly reduces to Proposition 3.1.

Proof. The proof generalizes that of Proposition 3.1. For convenience, we

repeat most of the arguments while adapting them to the present context.

Claim 1. We have

m+1 ≤ a < b ≤ 2m−2

3m+1 ≤ 2a < 2b ≤ 4m−2

4m+1 ≤ 3a < 3b ≤ 5m−1

These are easy consequences of the hypotheses on a,b. It follows that

A ⊆ [m+1,2m−2], 2A ⊆ [3m+1,4m−2] and 3A ⊆ [4m+1,5m−1].

Claim 2. Let c be the conductor of S. Then c = 4m, q = 4 and ρ = 0.

Indeed, since S = 〈{m}∪A〉4m, we have c ≤ 4m, and equality holds since

4m−1 /∈ S by Claim 1.

Claim 3. The elements of {0}∪A∪2A∪3A are pairwise distinct mod m.

Indeed, the elements of A∪ 2A∪ 3A are pairwise distinct mod m since

A induces a B3 set in Z/mZ by hypothesis. Furthermore, it follows from

Claim 1 that they are nonzero mod m.

Claim 4. We have

X1 = A, X2 = /0, X3 = 2A, X4 ∩D = 3A.

This directly follows from the preceding claims. See the corresponding

point in the proof of Proposition 3.1.

We may now compute W0(S) = |P∩L||L|−q|Dq|+ρ. We have P∩L =
{m}∪A, q = 4 and ρ = 0. Hence |P∩ L| = |A|+ 1 = n, and so W0(S) =
n|L|−4|D4| here. By Proposition 2.4, we have

|L| = 4|X0|+3|X1|+2|X2|+ |X3|,

|D4| = |X0|+ |X1|+ |X2|+ |X3|+ |X4∩D|.
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Of course X0 = {0}. Moreover, we have |X1| = |A|, |X2| = 0, |X3| = |2A|
and |X4 ∩D| = |3A|. Now, since A is a B3 set of cardinality |A| = n−1, in

Z/mZ and hence in Z, we have

|2A|=

(
n

2

)

, |3A|=

(
n+1

3

)

.

It follows that

|L| = 4+3(n−1)+

(
n

2

)

=

(
n

2

)

+3n+1,(8)

|D4| =

(
n−2

0

)

+

(
n−1

1

)

+

(
n

2

)

+

(
n+1

3

)

=

(
n+2

3

)

.(9)

A direct computation then yields W0(S)= n|L|−4|D4|=−

(
n

3

)

, as desired.

�

Here is an application of Proposition 3.3. We only need a B3 set A in Z;

the other hypotheses will force A to induce a B3 set in Z/mZ, as required.

Corollary 3.4. Let n ≥ 3 be an integer. Let A′ ⊂N be a B3 set of cardinality

n− 1 containing 0. Let r = maxA′. Let k,m ∈ N+ satisfy k ≥ r+ 1, m ≥
3k + 6r + 2 and m ≡ k mod 2. Let a = (3m+ k)/2 and A = a+A′. Let

S = 〈{m}∪A〉4m. Then W0(S) =−
(

n
3

)
.

Proof. It suffices to see that A satisfies the hypotheses of Proposition 3.3.

We have a = minA. Let b = maxA = a+ r. The required inequalities

(10) (3m+1)/2 ≤ a < b ≤ (5m−1)/3

then follow from the hypotheses on k,m,A. Of course A is a B3 set, being

a translate of the B3 set A′. It remains to see that A induces a B3 set of the

same cardinality in Z/mZ. Let

C = A∪2A∪3A,

C′ = (A+3m)∪ (2A+m)∪3A.

Claim. C′ ⊆ [4m+1,5m−1] and A+3m, 2A+m, 3A are pairwise disjoint.

Indeed, this follows from the chain of inequalities

4m+1 ≤ 2a+m < a+b+m < 2b+m

< a+3m < b+3m

< 3a < 2a+b < a+2b < 3b

≤ 5m−1,

all straightforward consequences of the hypotheses and (10). Since A is a

B3 set, the elements of C are pairwise distinct in Z, and hence so are the
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elements of C′ by the above claim. Moreover, since C′ ⊆ [4m+1,5m−1],
its elements are also pairwise distinct mod m. Hence A is a B3 set mod m,

as desired. �

Given n ≥ 3, here is an explicit infinite family of numerical semigroups S

for which W0(S) =−
(

n
3

)
. Let

A′ = {30 −1,3−1, . . . ,3n−2 −1}.

Then A′ is a B3 set of cardinality n−1 containing 0, and hence can be used

in the above corollary. Let r = maxA′ = 3n−2−1. Let k be any integer such

that k ≥ r+1. Let then m = 3k+6r+2, ak = (3m+k)/2, Ak = ak +A′ and

Sk = 〈{m}∪Ak〉4m. Then W0(Sk) =−
(

n
3

)
for all k ≥ r+1.

4. SATISFYING WILF’S CONJECTURE

In this section, we show that all the near-misses constructed above satisfy

Wilf’s conjecture.

Proposition 4.1. Let S = 〈{m}∪A〉4m be a numerical semigroup as con-

structed in Proposition 3.3. Then W (S)≥ 9.

Proof. We shall freely use any information about S provided in the proof of

Proposition 3.3. To start with, since q = 4 here, Proposition 2.2 gives

(11) W (S) = |P4|(|L|−4)+W0(S).

Claim. We have |P4| ≥ m/6 ≥ |D4|/6.

Indeed, as S4 = P4 ⊔D4 and |S4| = m, it follows that m = |P4|+ |D4|. A

decomposition of D4 is provided by (4), namely

(12) D4 = (X4∩D) ⊔
⊔

0≤i≤3

(
Xi +(4− i)m

)
.

By Claim 4 in the proof of Proposition 3.3, we have

X1 = A, X2 = /0, X3 = 2A, X4 ∩D = 3A,

and X0 = {0} as always. Injecting this information into (12) yields

(13) D4 = {4m}⊔ (A+3m)⊔ (2A+m)⊔3A.

By the hypotheses on a,b in Proposition 3.3, and since a,b are integers, we

have

⌈(3m+1)/2⌉ ≤ a < b ≤ ⌊(5m−1)/3⌋ .

As easily seen, this implies the following inequalities:

m+ ⌈(m+1)/2⌉ ≤ a < b ≤ m+ ⌊(2m−1)/3⌋,
3m+1 ≤ 2a < 2b ≤ 3m+ ⌊(m−2)/3⌋,

4m+ ⌈(m+3)/2⌉ ≤ 3a < 3b ≤ 4m+(m−1).
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It follows that

A+3m ⊆ 4m+[⌈(m+1)/2⌉,⌊(2m−1)/3⌋] ,

2A+m ⊆ 4m+[1,⌊(m−2)/3⌋] ,

3A ⊆ 4m+[⌈(m+3)/2⌉,m−1] .

Now, the point is that these subsets of S4 = 4m+[0,m−1] completely avoid

the subinterval

J = 4m+[⌊(m−2)/3⌋+1,⌈(m+1)/2⌉−1]

= 4m+[⌊(m+1)/3⌋,⌈(m−1)/2⌉] .

Thus by (13), we have

D4 ∩ J = /0.

Since J ⊆ S4 = P4 ⊔D4, it follows that J ⊆ P4. Now, as easily seen by

considering the six possible classes of m mod 6, we have

|J| = ⌈(m−1)/2⌉−⌊(m+1)/3⌋+1 ≥ m/6

for all m ∈N+. It follows as claimed that |P4| ≥m/6, and also |P4| ≥ |D4|/6

since m ≥ |D4|.

Plugging the latter estimate on |P4| into (11) yields

(14) W (S) ≥ |D4|(|L|−4)/6+W0(S).

By (8), we have |L| − 4 =

(
n

2

)

+ 3(n− 1), where n = |P∩ L| = |A|+ 1.

Hence (|L|−4)/6 ≥ 1 since n ≥ 3 by assumption. By (14), this implies

W (S) ≥ |D4|+W0(S).

By Proposition 3.3 and its proof, we have

|D4|=

(
n+2

3

)

, W0(S) =−

(
n

3

)

.

Whence W (S)≥ 9, as desired. �

4.1. Conjectures. For q = 4, the lower bound on W0(S) in terms of |P∩L|
provided by Proposition 3.3 might well be optimal.

Conjecture 4.2. Let S be a numerical semigroup with q= 4 and |P∩L|= n.

Then W0(S)≥−

(
n

3

)

.

Here is a more precise formulation.

Conjecture 4.3. Let S be a numerical semigroup of multiplicity m with

q = 4 and |P∩L| = n. Then the minimum of W0(S)−ρ should be attained

exactly when the following conditions simultaneously hold:
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(1) P∩L ⊆ S1,

(2) X1 induces a B3 set in Z/mZ,
(3) X2 = /0, X3 = 2X1 and X4 ∩D = 3X1.

We leave it to the reader to see that Conjecture 4.3 implies Conjecture 4.2,

for instance by following the proof of Proposition 4.1.
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