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Let S ⊆ N be a numerical semigroup, i.e. a submonoid containing 0 and with finite complement in N. The genus of S is g(S) = |N \ S|, its Frobenius number is F(S) = max(Z \ S) and its conductor is c = F(S) + 1. Thus c + N ⊆ S, and c is minimal for this property. Let S * = S \ {0}. The multiplicity of S is m = min S * . As in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF], we shall denote [START_REF] Ós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF] q = ⌈c/m⌉ and ρ = qmc; thus c = qmρ and 0 ≤ ρ ≤ m -1. An element a ∈ S * is primitive if it cannot be written as a = a 1 + a 2 with a 1 , a 2 ∈ S * . As easily seen, the subset P ⊂ S * of primitive elements is contained in the integer interval [m, m + c -1]. Therefore P is finite, and it generates S as a monoid since every nonzero element in S is a sum of primitive elements. It is well-known and easy to see that P is the unique minimal generating set of S. Its cardinality |P| is known as the embedding dimension of S. We shall denote by D ⊂ S the set of decomposable elements, i.e. D = S * + S * = S * \ P. See [START_REF] Alfonsín | The Diophantine Frobenius problem[END_REF][START_REF] Rosales | Numerical semigroups[END_REF] for extensive information about numerical semigroups.

1.1. Wilf's conjecture. Let L = S ∩ [0, c -1], the set of elements of S to the left of its conductor c, and denote

W (S) = |P||L| -c.
In 1978, Herbert Wilf asked, in equivalent terms, whether the inequality W (S) ≥ 0 always holds [START_REF] Wilf | A circle-of-lights algorithm for the money-changing problem[END_REF]. This question is known as Wilf's conjecture. So far, it has only been settled for a few families of numerical semigroups, including the five independent cases |P| ≤ 3, |L| ≤ 4, m ≤ 8, g ≤ 60 and q ≤ 3. See [START_REF] Ós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF][START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF][START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF][START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF][START_REF] Öberg | On numerical semigroups[END_REF][START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF][START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF][START_REF] Moscariello | On a conjecture by Wilf about the Frobenius number[END_REF][START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF] for more details.

1.2. The number W 0 (S). Denote S q = [c, c + m -1] and D q = D ∩ S q = S q \ P. We may now define the closely related number W 0 (S) introduced in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF]. It involves |P ∩ L| rather than |P| as in W (S), as well as D q and the numbers q, ρ given by (1).

Notation 1.1. Let S be a numerical semigroup. We set

W 0 (S) = |P ∩ L||L| -q|D q | + ρ.
As we shall see in the next section, we have W (S) ≥ W 0 (S). In particular, if W 0 (S) ≥ 0, then S satisfies Wilf's conjecture. The case W 0 (S) < 0 seems to be extremely rare. The first instances were discovered in 2015 by the second author while performing an exhaustive computer check of numerical semigroups up to genus 60. Here is the outcome.

Computational result. The more than 10 13 numerical semigroups S of genus g ≤ 60 all satisfy W 0 (S) ≥ 0, with exactly 5 exceptions. These 5 exceptions satisfy W 0 (S) = -1, W (S) ≥ 35 and g ∈ {43, 51, 55, 59}.

We shall describe these five exceptions in the next section. Prompted by their unexpected existence, we say that S is a near-miss in Wilf's conjecture if W 0 (S) < 0.

The next instances of near-misses were discovered by Manuel Delgado. More precisely, he proved the following result by explicit construction.

Theorem 1.2 ([2]

). For any z ∈ Z, there exist infinitely many numerical semigroups S such that W 0 (S) = z.

(The number W 0 (S) is denoted E(S) in [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF].) He further proved that all the near-misses in his constructions satisfy Wilf's conjecture.

Our aim in this paper is to explain the structure of the original five nearmisses of genus g ≤ 60, construct infinite families of similar ones, and show that again, they still satisfy Wilf's conjecture even though their numbers W 0 (S) get arbitrarily small in Z. Thus, both [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF] and the present paper provide constructions of families of numerical semigroups S such that W 0 (S) goes to minus infinity. The main difference is that in [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF], the cardinality |P ∩ L| remains constant at 3 and q goes to infinity, whereas here, the cardinality |P ∩ L| goes to infinity and q remains constant at 4. In a sense, the case q = 4 is best possible, as witnessed by the following result.

Theorem 1.3 ([5]

). Let S be a numerical semigroup such that q ≤ 3. Then W 0 (S) ≥ 0. Hence Wilf's conjecture holds for q ≤ 3. For q = 1 this is trivial, and for q = 2 this was first shown in [START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF]. Informally, most numerical semigroups satisfy q ≤ 3, as proved by Zhai in [START_REF] Zhai | Fibonacci-like growth of numerical semigroups of a given genus[END_REF]. Combining these results, it follows that Wilf's conjecture is asymptotically true as the genus goes to infinity.

1.3. Contents. In Section 2, we describe the original near-misses of genus g ≤ 60, we recall some basic notions and notation, and we compare the numbers W (S) and W 0 (S). In Section 3 we construct, for any integer n ≥ 3, a numerical semigroup S for which q = 4, |P∩L| = n and W 0 (S) = -n 3 . We start with the case n = 3, and then generalize it to n ≥ 4 using the notion of B h sets from additive combinatorics, specifically for h = 3. In Section 4, we prove that the numerical semigroups S constructed in Section 3 all satisfy W (S) ≥ 9. The paper ends with the conjecture that our construction is optimal, in the sense that if q = 4 and |P ∩ L| = n, then probably W 0 (S) ≥ -n 3 .

BASIC NOTIONS AND NOTATION

Throughout this section, let S ⊆ N be a numerical semigroup with multiplicity m and conductor c. Recall that q = ⌈c/m⌉ and ρ = qmc.

2.1. On the near-misses of genus g ≤ 60. As previously mentioned, up to genus g ≤ 60, there are exactly 5 near-misses in Wilf's conjecture. The following notation will be useful to describe them. Notation 2.1. Given positive integers a 1 , . . . , a n ,t, we denote a 1 , . . .,

a n = Na 1 + • • • + Na n , a 1 , . . ., a n t = a 1 , . . ., a n ∪ [t, ∞[.
As is well-known, a 1 , . . . , a n is a numerical semigroup if and only if gcd(a 1 , . . . , a n ) = 1. On the other hand, a 1 , . . . , a n t is always a numerical semigroup, even if a 1 , . . ., a n are not globally coprime, and its conductor c satisfies c ≤ t, with equality c = t if and only if t -1 / ∈ a 1 , . . . , a n . The 5 near-misses up to genus 60 are given in Table 1. They all satisfy c = 4m, that is q = 4 and ρ = 0. 

S m |P| |L| g W 0 (S) W (S)
I q = [c, c + m -1]
, the leftmost integer interval of length m contained in S. More generally, for any j ∈ N, let us denote by I j the translate of I q by ( jq)m. That is,

I j = ( j -q)m + [c, c + m -1] = [c + ( j -q)m, c + ( j + 1 -q)m -1] = [ jm -ρ, ( j + 1)m -ρ -1].
Let us also denote S j = S ∩ I j . Observe that S j = I j if and only if j ≥ q. Thus S q = I q but S j I j for j < q. Note also that S 0 = {0} and that jm ∈ S j . Finally, for j ≥ 1, let us denote

P j = P ∩ S j , D j = D ∩ S j = S j \ P j .

2.3.

Comparing W (S) and W 0 (S). Since P ⊆ [m, c + m -1] as mentioned earlier, we have

P = P 1 ∪ • • • ∪ P q .
In particular, we have P ∩ L = P 1 ∪ • • • ∪ P q-1 = P \ P q . The following formula appears in [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF].

Proposition 2.2. We have W (S) = W 0 (S) + |P q |(|L| -q). Proof. By definition, W (S) = |P||L| -c = |P||L| -qm + ρ. Now use the two formulas |P| = |P ∩ L| + |P q | and m = |P q | + |D q |. Corollary 2.3. If W 0 (S) ≥ 0, then S satisfies Wilf's conjecture.
Proof. We have |L| ≥ q since L ⊇ {0, 1, . . ., q -1}m. Thus |P q |(|L|q) ≥ 0, implying W (S) ≥ W 0 (S) by the above proposition.

Note that if S is a leaf in the tree of all numerical semigroups [12, 13, 1], i.e. if P = P ∩ L, then P q = / 0 and so W 0 (S) = W (S) by Proposition 2.2.

2.4. Apéry elements. As customary, let Ap(S) = Ap(S, m) be the set of Apéry elements of S with respect to m, namely

Ap(S) = {s ∈ S | s -m / ∈ S} = {min(S ∩ (i + mN)) | 0 ≤ i ≤ m -1}.
Thus |Ap(S)| = m, and each element of Ap(S) is the smallest element of its class mod m in S. Note that min Ap(S) = 0 and max Ap(S) = c + m -1. Note also that P \ {m} ⊆ Ap(S).

For convenience, we shall denote X = Ap(S) and X i = X ∩ S i for all i ≥ 0. Note then that X 0 = {0}. Proposition 2.4. We have

|L| = q|X 0 | + (q -1)|X 1 | + • • • + |X q-1 |, (2) |D q | = |X 0 | + |X 1 | + • • • + |X q-1 | + |X q ∩ D|. (3)
Proof. There is the partition

L = 0≤i≤q-1 X i + [0, q -i -1] • m .
Indeed, for all 0 ≤ i ≤ q -1, all x ∈ X i and all j ≥ 0, we have X i + jm ⊆ S i+ j and (x + mN) ∩ L = {x, x + m, . . . , x + (qi -1)m}.

Conversely, every a ∈ L belongs to a unique subset of this form, where x ∈ X is uniquely determined by the condition a ≡ x mod m. This yields the stated partition of L. Moreover, we have

| (X i + [0, q -i -1] • m)| = (q -i)|X i |.
Whence formula [START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF]. Similar arguments give rise to the decomposition (4)

D q = (X q ∩ D) ⊔ 0≤i≤q-1 X i + (q -i)m .
Whence formula (3).

CONSTRUCTIONS

In this section, we construct numerical semigroups S such that c = 4m and where W 0 (S) is arbitrarily small in Z. We start with a construction yielding infinitely many instances satisfying W 0 (S) = -1. Then, after recalling the notion of B h sets from additive combinatorics, we use it to construct, for any n ≥ 3, infinitely many instances satisfying W 0 (S) = -n 3 . Proof. Note that the inequality (3m + 1)/2 < (5m -1)/3 implies m ≥ 6, while the hypothesis on A ∪ 2A ∪ 3A implies m ≥ 9. The computation of W 0 (S) requires several steps.

Claim 1. We have m + 1 ≤ a < b ≤ 2m -2, 3m + 1 ≤ 2a < 2b ≤ 4m -2, 4m + 1 ≤ 3a < 3b ≤ 5m -1.
Indeed, these rather loose inequalities follow from the hypotheses on a, b. 

Thus A ⊆ [m + 1, 2m -2], 2A ⊆ [3m + 1, 4m -2] and 3A ⊆ [4m + 1, 5m -1].
[3m + 1, 4m -1] = (A + 2m) ∪ 2A ⊆ [3m + 1, 4m -2]. Therefore 4m -1 /
∈ m, a, b , implying c = 4m as desired. Since q = ⌈c/m⌉ and ρ = qmc, we have q = 4, ρ = 0.

Claim 3. The elements of {0} ∪

A ∪ 2A ∪ 3A are pairwise distinct mod m.
Indeed, the elements of A ∪ 2A ∪ 3A are pairwise distinct mod m by hypothesis, and it follows from Claim 1 that they are nonzero mod m. Claim 4. We have

X 1 = A, X 2 = / 0, X 3 = 2A, X 4 ∩ D = 3A.
Indeed, it follows from Claim 3 that

(5) {0} ∪ A ∪ 2A ∪ 3A ⊆ X .
Since ρ = 0 by Claim 2, we have 

I j = [ jm, jm + m -1] for all j ≥ 0. Hence S 1 = S ∩ [m, 2m -1], S 2 = S ∩ [2m, 3m -1], S 3 = S ∩ [3m, 4m - 
X 4 ∩ D ⊆ a, b . Claim 1 then implies X ∩ S 1 ⊆ A, X ∩ S 2 = / 0, X ∩ S 3 ⊆ 2A and X ∩ S 4 ∩ D ⊆ 3A.
The fact that these inclusions are equalities follows from (5) and the claim is proved.

We are now in a position to compute W 0 (S) = |P ∩ L||L| -q|D q | + ρ. We have P ∩ L = {m, a, b}, q = 4 and ρ = 0. Thus W 0 (S) = 3|L| -4|D 4 | here. By Proposition 2.4, we have

|L| = 4|X 0 | + 3|X 1 | + 2|X 2 | + |X 3 |, |D 4 | = |X 0 | + |X 1 | + |X 2 | + |X 3 | + |X 4 ∩ D|. Of course X 0 = {0}, as noted in Section 2.4. Moreover |X 1 | = 2, |X 2 | = 0, |X 3 | = 3 and |X 4 ∩ D| = 4. It follows that |L| = 4 • 1 + 3 • 2 + 2 • 0 + 1 • 3 = 13 and |D 4 | = 1 + 2 + 0 + 3 + 4 = 10. Therefore W 0 (S) = 3|L| -4|D 4 | = -1, as stated.
As an application, we now provide an explicit construction satisfying the hypotheses, and hence the conclusion, of the above result. This in turn follows from the chain of inequalities

4m + 1 ≤ 2a + m < a + b + m < 2b + m < a + 3m < b + 3m < 3a < 2a + b < a + 2b < 3b ≤ 5m -1,
all straightforward consequences of the hypotheses and (6).

The five near-misses up to genus 60 listed in Table 1, and satisfying W 0 (S) = -1, are all covered by the above two results. Indeed, four of them are of the form S = m, a, a + 1 4m and derive from Corollary 3.2, namely with parameters (m, k) = (14, 2), (16, 2), (17, 3) and (18, 2), respectively. The fifth one, that is 17, 26, 28 68 , is not of this form but is still In order to generalize the above construction and get numerical semigroups S with q = 4 and W 0 (S) negative arbitrarily small, we need the notion of B h sets from additive combinatorics, specifically for h = 3.

B h sets.

Let G be an abelian group. Let A ⊆ G be a nonempty finite subset, and let h ≥ 1 be a positive integer. Then [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF] |hA|

≤ |A| + h -1 h .
See [START_REF] Tao | Additive Combinatorics[END_REF]Section 2.1]. This upper bound is best understood by noting that the right-hand side counts the number of monomials of degree h in |A| commuting variables. We say that A is a B h set if equality holds in [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF]; equivalently, if for all a 1 , . . . , a h , b 1 , . . ., b h ∈ A, we have

a 1 + • • • + a h = b 1 + • • • + b h
if and only if (a 1 , . . ., a h ) is a permutation of (b 1 , . . . , b h ). See [START_REF] Tao | Additive Combinatorics[END_REF]Section 4.5].

Here are some remarks and examples. The property of being a B h set is stable under translation in G. Clearly, every nonempty finite subset of G is a B 1 set and, if h ≥ 2, every B h set is a B h-1 set.

In G = Z, any subset A = {a, b} of cardinality 2 is a B h set for all h ≥ 1, since |hA| = h + 1 = |A|+h-1 h . On the other hand, the subset A = {3, 4, 5} ⊂ Z is not a B 2 set since 3 + 5 = 4 + 4 in 2A. Note that B 2 sets are also called Sidon sets.

For any integer h ≥ 2, there are arbitrarily large B h sets in N + . Take for instance A = {1, h, h 2 , . . ., h t } for any t ≥ 1.

Note that a B h set in Z does not necessarily induce a B h set in the group Z/mZ. However, for any finite subset

A ⊂ Z and integer m ≥ |A|, if A induces a B h set of cardinality |A| in Z/mZ, then clearly A itself is a B h set in Z.
An instance of a B 3 set in Z/mZ is provided by Proposition 3.1. Indeed, given m, a, b and A = {a, b} as in that proposition, the hypothesis there on A ∪ 2A ∪ 3A means that A induces a B 3 set in Z/mZ.

3.3.

Towards arbitrarily small W 0 (S). We now generalize Proposition 3.1, allowing for more than 3 left primitive elements, and yielding numerical semigroups S, still with c = 4m, but now with W 0 (S) arbitrarily small in Z. The construction requires large B 3 sets in N + . Proposition 3.3. Let m, a, b, n ∈ N + satisfy n ≥ 3 and

(3m + 1)/2 ≤ a < b ≤ (5m -1)/3. Let A ⊂ N + be a subset of cardinality |A| = n -1 with min A = a, max A = b and inducing a B 3 set in Z/mZ. Let S = {m} ∪ A 4m . Then W 0 (S) = -n 3 .
Note that for n = 3, Proposition 3.3 exactly reduces to Proposition 3.1.

Proof. The proof generalizes that of Proposition 3.1. For convenience, we repeat most of the arguments while adapting them to the present context.

Claim 1. We have m + 1 ≤ a < b ≤ 2m -2 3m + 1 ≤ 2a < 2b ≤ 4m -2 4m + 1 ≤ 3a < 3b ≤ 5m -1
These are easy consequences of the hypotheses on a, b. It follows that

A ⊆ [m + 1, 2m -2], 2A ⊆ [3m + 1, 4m -2] and 3A ⊆ [4m + 1, 5m -1].
Claim 2. Let c be the conductor of S. Then c = 4m, q = 4 and ρ = 0. Indeed, since S = {m} ∪ A 4m , we have c ≤ 4m, and equality holds since 4m -1 / ∈ S by Claim 1.

Claim 3. The elements of {0} ∪ A ∪ 2A ∪ 3A are pairwise distinct mod m.

Indeed, the elements of A ∪ 2A ∪ 3A are pairwise distinct mod m since A induces a B 3 set in Z/mZ by hypothesis. Furthermore, it follows from Claim 1 that they are nonzero mod m. Claim 4. We have

X 1 = A, X 2 = / 0, X 3 = 2A, X 4 ∩ D = 3A.
This directly follows from the preceding claims. See the corresponding point in the proof of Proposition 3.1.

We may now compute W 0 (S) = |P ∩ L||L| -q|D q | + ρ. We have P ∩ L = {m} ∪ A, q = 4 and ρ = 0. Hence |P ∩ L| = |A| + 1 = n, and so W 0 (S) = n|L| -4|D 4 | here. By Proposition 2.4, we have 

|L| = 4|X 0 | + 3|X 1 | + 2|X 2 | + |X 3 |, |D 4 | = |X 0 | + |X 1 | + |X 2 | + |X 3 | + |X 4 ∩ D|.

It follows that

|L| = 4 + 3(n -1) + n 2 = n 2 + 3n + 1, ( 8 
)
|D 4 | = n -2 0 + n -1 1 + n 2 + n + 1 3 = n + 2 3 . (9) 
A direct computation then yields W 0 (S) = n|L| -4|D 4 | = -n 3 , as desired.

Here is an application of Proposition 3.3. We only need a B 3 set A in Z; the other hypotheses will force A to induce a B 3 set in Z/mZ, as required. 

C = A ∪ 2A ∪ 3A, C ′ = (A + 3m) ∪ (2A + m) ∪ 3A. Claim. C ′ ⊆ [4m + 1, 5m -1] and A + 3m, 2A + m, 3A are pairwise disjoint.
Indeed, this follows from the chain of inequalities

4m + 1 ≤ 2a + m < a + b + m < 2b + m < a + 3m < b + 3m < 3a < 2a + b < a + 2b < 3b ≤ 5m -1,
all straightforward consequences of the hypotheses and [START_REF] Alfonsín | The Diophantine Frobenius problem[END_REF]. Since A is a B 3 set, the elements of C are pairwise distinct in Z, and hence so are the elements of C ′ by the above claim. Moreover, since C ′ ⊆ [4m + 1, 5m -1], its elements are also pairwise distinct mod m. Hence A is a B 3 set mod m, as desired.

Given n ≥ 3, here is an explicit infinite family of numerical semigroups S for which W 0 (S) = -n 3 . Let

A ′ = {3 0 -1, 3 -1, . . ., 3 n-2 -1}.
Then A ′ is a B 3 set of cardinality n -1 containing 0, and hence can be used in the above corollary. Let r = max

A ′ = 3 n-2 -1. Let k be any integer such that k ≥ r + 1. Let then m = 3k + 6r + 2, a k = (3m + k)/2, A k = a k + A ′ and S k = {m} ∪ A k 4m . Then W 0 (S k ) = -n
3 for all k ≥ r + 1.

SATISFYING WILF'S CONJECTURE

In this section, we show that all the near-misses constructed above satisfy Wilf's conjecture. Proof. We shall freely use any information about S provided in the proof of Proposition 3.3. To start with, since q = 4 here, Proposition 2.2 gives 

D 4 = (X 4 ∩ D) ⊔ 0≤i≤3 X i + (4 -i)m . (12) 
By Claim 4 in the proof of Proposition 3.3, we have

X 1 = A, X 2 = / 0, X 3 = 2A, X 4 ∩ D = 3A,
and X 0 = {0} as always. Injecting this information into (12) yields Whence W (S) ≥ 9, as desired.

4.1. Conjectures. For q = 4, the lower bound on W 0 (S) in terms of |P ∩ L| provided by Proposition 3.3 might well be optimal.

Conjecture 4.2. Let S be a numerical semigroup with q = 4 and |P∩L| = n.

Then W 0 (S) ≥ -n 3 .

Here is a more precise formulation.

Conjecture 4.3. Let S be a numerical semigroup of multiplicity m with q = 4 and |P ∩ L| = n. Then the minimum of W 0 (S)ρ should be attained exactly when the following conditions simultaneously hold:

  N = {0, 1, 2, . . .} and N + = N \ {0}. Given rational numbers a ≤ b, we denote [a, b] = {z ∈ Z | a ≤ z ≤ b} the integer interval they span, and [a, ∞[ = {z ∈ Z | z ≥ a}.

3. 1 ..Proposition 3 . 1 .

 131 Realizing W 0 (S) = -1. First a notation from additive combinatorics. For nonempty subsets A, B of Z or of any additively written group G, denoteA + B = {a + b | a ∈ A, b ∈ B} and 2A = A + A. More generally, for any h ∈ N + , denote hA = A + • • • + A h Let m, a, b ∈ N + satisfy (3m +1)/2 ≤ a < b ≤ (5m -1)/3. Let A = {a,b}, and assume that the elements of A ∪ 2A ∪ 3A = {a, b, 2a, a + b, 2b, 3a, 2a + b, a + 2b, 3b} are pairwise distinct mod m. Let S = m, a, b 4m . Then W 0 (S) = -1.

Claim 2 .

 2 Let c be the conductor of S. Then c = 4m, q = 4 and ρ = 0. Indeed, since S = m, a, b 4m , we have c ≤ 4m by construction. By Claim 1, we have m, a, b ∩

  1] and S 4 = [4m, 5m -1]. Claim 1 then implies A ⊆ S 1 , 2A ⊆ S 3 and 3A ⊆ S 4 . On the other hand, since c = 4m, we have L = S 0 ∪ S 1 ∪ S 2 ∪ S 3 , and L ⊆ m, a, b by construction. Consequently, since X ∩ (S + m) = / 0, we have X ∩ L ⊆ a, b , and similarly

Corollary 3 . 2 .

 32 Let k, m be integers such that k ≥ 2, m ≥ 3k + 8 and m ≡ k mod 2. Let a = (3m + k)/2 and let S = m, a, a + 1 4m . Then W 0 (S) = -1. Proof. Let b = a + 1 and A = {a, b}. It suffices to see that the hypotheses of Proposition 3.1 on a, b and A are satisfied. The inequalities (6) (3m + 1)/2 ≤ a < b ≤ (5m -1)/3 follow from the hypotheses k ≥ 2 and m ≥ 3k + 8. It remains to see that the elements of A ∪ 2A ∪ 3A are pairwise distinct mod m. It is equivalent to see that the elements of (A + 3m) ∪ (2A + m) ∪ 3A are pairwise distinct mod m.

  covered by Proposition 3.1. Indeed, let m = 17, a = 26, b = 28. Then these numbers satisfy all the hypotheses of Proposition 3.1, namely (3m + 1)/2 ≤ a < b ≤ (5m -1)/3, and setting A = {a, b}, we have 2A + m = {69, 71, 73}, A + 3m = {77, 79} and 3A = {78, 80, 82, 84}, showing that the elements of A ∪ 2A ∪ 3A are pairwise distinct mod m, as required.

  Of course X 0 = {0}. Moreover, we have|X 1 | = |A|, |X 2 | = 0, |X 3 | = |2A| and |X 4 ∩ D| = |3A|. Now, since A is a B 3 set of cardinality |A| = n -1, in Z/mZand hence in Z, we have

Corollary 3 . 4 .

 34 Let n ≥ 3 be an integer. Let A ′ ⊂ N be a B 3 set of cardinality n -1 containing 0. Let r = max A ′ . Let k, m ∈ N + satisfy k ≥ r + 1, m ≥ 3k + 6r + 2 and m ≡ k mod 2. Let a = (3m + k)/2 and A = a + A ′ . Let S = {m} ∪ A 4m . Then W 0 (S) = -n 3 . Proof. It suffices to see that A satisfies the hypotheses of Proposition 3.3. We have a = min A. Let b = max A = a + r. The required inequalities (10) (3m + 1)/2 ≤ a < b ≤ (5m -1)/3 then follow from the hypotheses on k, m, A. Of course A is a B 3 set, being a translate of the B 3 set A ′ . It remains to see that A induces a B 3 set of the same cardinality in Z/mZ. Let

Proposition 4 . 1 .

 41 Let S = {m} ∪ A 4m be a numerical semigroup as constructed in Proposition 3.3. Then W (S) ≥ 9.

( 11 )

 11 W (S) = |P 4 |(|L| -4) +W 0 (S). Claim. We have |P 4 | ≥ m/6 ≥ |D 4 |/6. Indeed, as S 4 = P 4 ⊔ D 4 and |S 4 | = m, it follows that m = |P 4 | + |D 4 |. A decomposition of D 4 is provided by (4), namely

( 13 ) D 4 =

 134 {4m} ⊔ (A + 3m) ⊔ (2A + m) ⊔ 3A.By the hypotheses on a, b in Proposition 3.3, and since a, b are integers, we have⌈(3m + 1)/2⌉ ≤ a < b ≤ ⌊(5m -1)/3⌋.As easily seen, this implies the following inequalities:m + ⌈(m + 1)/2⌉ ≤ a < b ≤ m + ⌊(2m -1)/3⌋, 3m + 1 ≤ 2a < 2b ≤ 3m + ⌊(m -2)/3⌋, 4m + ⌈(m + 3)/2⌉ ≤ 3a < 3b ≤ 4m + (m -1).It follows thatA + 3m ⊆ 4m + [⌈(m + 1)/2⌉, ⌊(2m -1)/3⌋], 2A + m ⊆ 4m + [1, ⌊(m -2)/3⌋], 3A ⊆ 4m + [⌈(m + 3)/2⌉, m -1].Now, the point is that these subsets of S 4 = 4m +[0, m -1] completely avoid the subintervalJ = 4m + [⌊(m -2)/3⌋ + 1, ⌈(m + 1)/2⌉ -1] = 4m + [⌊(m + 1)/3⌋, ⌈(m -1)/2⌉].Thus by[START_REF] Rosales | Fundamental gaps in numerical semigroups[END_REF], we haveD 4 ∩ J = / 0. Since J ⊆ S 4 = P 4 ⊔ D 4 ,it follows that J ⊆ P 4 . Now, as easily seen by considering the six possible classes of m mod 6, we have |J| = ⌈(m -1)/2⌉ -⌊(m + 1)/3⌋ + 1 ≥ m/6 for all m ∈ N + . It follows as claimed that |P 4 | ≥ m/6, and also |P 4 | ≥ |D 4 |/6 since m ≥ |D 4 |. Plugging the latter estimate on |P 4 | into (11) yields (14) W (S) ≥ |D 4 |(|L| -4)/6 +W 0 (S). By (8), we have |L| -4 = n 2 + 3(n -1), where n = |P ∩ L| = |A| + 1. Hence (|L| -4)/6 ≥ 1 since n ≥ 3 by assumption. By (14), this implies W (S) ≥ |D 4 | +W 0 (S). By Proposition 3.3 and its proof, we have |D 4 | = n + 2 3 , W 0 (S) = -n 3 .

TABLE 1 .

 1 All near-misses of genus g ≤ 60 2.2. Slicing N. Coming back to our given numerical semigroup S, we shall denote

	14, 22, 23 56 14 7 13 43 -1	35
	16, 25, 26 64 16 9 13 51 -1	53
	17, 26, 28 68 17 10 13 55 -1	62
	17, 27, 28 68 17 10 13 55 -1	62
	18, 28, 29 72 18 11 13 59 -1	71

(1)

We leave it to the reader to see that Conjecture 4.3 implies Conjecture 4.2, for instance by following the proof of Proposition 4.1.