N

N

Plasma Lab Statistical Model Checker: Architecture,
Usage and Extension

Axel Legay, Louis-Marie Traonouez

» To cite this version:

Axel Legay, Louis-Marie Traonouez. Plasma Lab Statistical Model Checker: Architecture, Usage and
Extension. SOFSEM 2017 - 43rd International Conference on Current Trends in Theory and Practice
of Computer Science, Jan 2017, Limerick, Ireland. hal-01613581

HAL Id: hal-01613581
https://hal.science/hal-01613581
Submitted on 9 Oct 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01613581
https://hal.archives-ouvertes.fr

Plasma Lab Statistical Model Checker:
Architecture, Usage and Extension

Axel Legay and Louis-Marie Traonouez

Inria, Rennes, France

Abstract. Plasma Lab is a modular statistical model checking (SMC)
platform that facilitates multiple SMC algorithms and multiple mod-
elling and query languages. Plasma Lab may be used as a stand-alone
tool with a graphical development environment or invoked from the com-
mand line for high performance scripting applications. This tutorial first
presents an overview of Plasma Lab architecture, modelling languages
and algorithms. Then we present the usage of the tool to design models
and perform various experiments Finally we propose a tutorial on how
to develop a new plugin for Plasma Lab.

1 Introduction

Statistical model checking (SMC) employs Monte Carlo methods to avoid the
state explosion problem of probabilistic (numerical) model checking. To estimate
probabilities or rewards, SMC typically uses a number of statistically indepen-
dent stochastic simulation traces of a discrete event model. Being independent,
the traces may be generated on different machines, so SMC can efficiently ex-
ploit parallel computation. Reachable states are generated on the fly and SMC
tends to scale polynomially with respect to system description. Properties may
be specified in bounded versions of the same temporal logics used in probabilis-
tic model checking. Since SMC is applied to finite traces, it is also possible to
use logics and functions that would be intractable or undecidable for numeri-
cal techniques. In recent times, dedicated SMC tools, such as YMEREI, VESPA,
APM(ﬂ and COSMOSEL have been joined by statistical extensions of established
tools such as PRISMH, UPPAAIE| and MRM(E In this work we describe Plasma
Laﬂ a modular Platform for Learning and Advanced Statistical Model checking
Algorithms [2].

SMC approximates the probabilistic model checking problem by estimating
the parameter of a Bernoulli random variable, for which there are well defined
confidence bounds (e.g., [I0]). The general principle is to simulate the model
or system in order to generate execution traces. These traces are checked with
respect to a logic such as Bounded Linear Temporal Logic (BLTL) [I] and the
results are combined with statistical techniques.

! lwww. tempastic.org/ymer/ 2 http://archive.is/0KuMY
3 www.1sv.ens-cachan.fr/~barbot/cosmos/ 4 www.prismmodelchecker.org
5 www.uppaal.org ° www.mrmc-tool.org ' https://project.inria.fr/plasma-lab/

www.tempastic.org/ymer/
http://archive.is/OKwMY
www.lsv.ens-cachan.fr/~barbot/cosmos/
www.prismmodelchecker.org
www.uppaal.org
www.mrmc-tool.org
https://project.inria.fr/plasma-lab/

BLTL restricts the classical Linear Temporal Logic by bounding the scope of
the temporal operators. Syntactically, we have

o, = true | Pl oA¢' || X<t | @ U<t ',

where ¢, ¢’ are BLTL formulas, ¢t € Q>¢, and P is an atomic proposition that
is valid in some state. As usual, we define Fci;p = true U<:p and G<rp =
—F<;—p. The semantics of BLTL, presented in Table 1] is defined with respect
to an execution trace w = (S, 0), ($1,t1);- - -, (Sn, tn) of the system, where each
state (s;,t;) comprises a discrete state s; and a time ¢; € R>o. We denote by
wh = (84,t:), ..., (8n,tn) the suffix of w starting at step i.

wE X< it Fi, i=maz{j|to<t; <to+t}andw' E o

wEei U<t iff 3i, to<t; <to+tand w' = and Vj, 0 <j <i, w’ =1

wEeiNe: il wEprandwiEe | wE-p ff wlEe
wEP iff =P w = true

Table 1: Semantics of BLTL.

Plasma Lab implements qualitative and quantitative SMC algorithms. Quan-
titative algorithms decide between two contrary hypothesis (e.g, is the proba-
bility to satisfy the requirement is above a given threshold), while quantitative
techniques compute an estimation of a stochastic measure (e.g., the probability
to satisfy a property).

The “crude” Monte Carlo algorithm is a quantitative technique that uses N
simulation traces w;, i € {1,..., N}, to calculate ¥ = Zfil 1(w; E ¢)/N, an
estimate of the probability v that the system satisfies a logical formula ¢, where
1(-) is an indicator function that returns 1 if its argument is true and 0 other-
wise. Using the Chernoff-Hoeffding bound [10], setting N = [(In2 — In4)/(2¢?)]
guarantees the probability of error is Pr(| ¥ — v |> ¢) < §, where € and § are the
precision and the confidence, respectively.

2 Plasma Lab Architecture

One of the main differences between Plasma Lab and other SMC tools is that
Plasma Lab proposes an API abstraction of the concepts of stochastic model
simulator, property checker (monitoring) and SMC algorithm. In other words,
the tool has been designed to be capable of using external simulators or input
languages. This not only reduces the effort of integrating new algorithms, but
also allows us to create direct plug-in interfaces with standard modelling and
simulation tools used by industry. The latter being done without using extra
compilers.

The tool architecture is displayed in Fig.[ll The core of Plasma Lab is a light-
weight controller that manages the experiments and the distribution mechanism.

Plasma
Control

!Results I. Results
1
APLASy e H
Parameters

@©

£ g Controler Distribution
E 8 and management
o

* Result
))\

Request Trace

Plasma
Plugins

SMC algorithms | Application-specific Application-specific
logics modeling languages

Fig.1: Plasma Lab architecture.

It implements an API that allows to control the experiments either through user
interfaces or through external tools. It loads three types of plugins: 1. algorithms,
2. checkers, and 3. simulators. These plugins communicate with each other and
with the controller through the API. Only a few classes must be implemented
to extend the tool with custom plugins for adding new languages or checkers.

An SMC algorithm collects samples obtained from a checker component. The
checker asks the simulator to initialize a new trace. Then, it controls the simu-
lation by requesting new states, with a state on demand approach: new states
are generated only when needed to decide the property. Depending on the prop-
erty language, the checker either returns Boolean or numerical values. Finally,
the algorithm notifies the progress and sends the results through the controller
API. Plasma Lab offers several advanced SMC algorithms that can be applied to
various models, including SMC algorithms for rare events and nondeterministic
models.

Tables 23] presents the list of simulator, checker and algorithms plugins cur-
rently available with Plasma Lab. Plasma Lab has also been used to verify other
types of models through a connection or an integration with other tools.

3 Tool Usage

Plasma Lab also includes several user interfaces capable of launching SMC exper-
iments through the controller API, either as standalone applications or integrated
with external tools:

RML Reactive Module Language: input language of the tool Prism
for Markov chains models
RML Adaptive|Extension of RML for adaptive systems
Bio Biological language for writing chemical reactions
Matlab Session|Allows to control the simulator of Matlab/Simulink
SystemC Simulation of SystemC models. The plugin requires an exter-
nal tool (MAG, https://project.inria.fr/pscv/)) to in-
strument SystemC models and generate a C++ executable
used by the plugin.
Table 2: Plasma Lab simulators
BLTL Bounded Linear Temporal Logic
ALTL Adaptive Linear Temporal Logic, and extension of BLTL
with new operators for adaptive systems
GSCL Goal and Contract Specification Language, a high level spec-
ification language for systems of systems
Nested BLTL checker enhanced with nested probability operator

RML Observer

A plugin that allows to write requirement as observers using
a language similar to RML. It is used to write rare properties.

Table 3: Plasma Lab checkers

Monte Carlo

Monte Carlo probability estimation with Chernoff-Hoeftding
bound [10].

SPRT

Sequential Probability Ratio Test for hypothesis testing [11].

Importance splitting

Estimate the probability of rare events using the importance
splitting technique [BI6[7] to decompose a requirement with
low probability into a product of higher conditional proba-
bilities that are easier to estimate.

Importance sampling
with cross entropy

Estimate the probability of rare events using importance
sampling [4], to weight the probability distribution of the
original system to favour the rare event, and cross entropy,
to determine an optimal weighted distribution.

SMC for
nondeterministic
models

“Smart sampling” algorithms [3l9] to estimate minimum and
maximum probabilities in non deterministic models.

Table 4: Plasma Lab algorithms

https://project.inria.fr/pscv/

— Plasma Lab Graphical User Interface (GUT). This is the main interface of
Plasma Lab. It incorporates all the functionalities of Plasma Lab and allows
to open and edit PLASMA project files.

— Plasma Lab Command Line (CLI). A terminal interface for Plasma Lab,
with experiment and simulation functionalities, that allows to incorporate
Plasma Lab algorithms into high performance scripting applications.

— Plasma Lab Service. A graphical or terminal interface for Plasma Lab dis-
tributed service. Its purpose is to be deployed on a remote computer to run
distributed experiments, in connection with the Plasma Lab main interface.

— PLASMA2Simulink. This is a small “App” running from Matlab that allows
to launch Plasma Lab SMC algorithms directly from Simulink.

We present the usage of the GUI to design a RML model, simulate it and
verify a BLTL requirement. We also present the commands of the CLI that
perform the same experiments. The GUI is composed of several panels that allow
(i) to load, create and edit projects that comprise models and requirements,
(#) to perform simulations and debugging step-by-step, and (iii) to perform
various forms of SMC experimentation and optimization, either locally or using
distributed algorithms.

3.1 Modelling

" | dice3

dtmc

New...
Create a new model or requirement —

module dice

ope I - s: [0..3] init O]

project [Dice B I::> d: [0..3] init 0;

Name - [dced 0->05:(s'=1) + 0.5: (s'=2);

1-=05: (s=3)&(d'=1) + 0.5 : (s'=3)&(d'=2);
2> 0.5: (s=3)&(d'=3) + 0.5 : (s'=0);

dule

s
s
s

[]
[]
[1
| cancel Back Finish endm

[=]

We begin a new project and we add a new model of type RML to the project.
In the edition panel we write the content of the model. The model that we design
is a discrete time Markov chain (dtmc) of a 3-sided dice, implemented with
fair-coins. RML models consist in a set of modules. Each module is a Markov
chain that consists in a set of variables and a set of transitions defined with
guarded commands. Modules can interact through global variables or transition
synchronizations. Our model consists in a single module, with two integers s
and d, that define a state and the value of the dice, respectively. We use three
guarded commands to implement the fair-coin tossing. Each command consists
in guard that is a Boolean expression (e.g. s = 0), and a set of actions that
define the next state (e.g. (8" = 3)&(d’ = 1)) and a probability (always 0.5 in
our model, as we only use fair-coins).

New... Project Explorer
Create a new model or requirement ¢ WM Dice

¢ Wl Models @m
-] :"> o - dice3 |:"> F<=#100 d=3
[=]

¢ MM Requirements

Type [BLTL

Project |Dice

Name lred i req —

B Resources

[cancer |[Back |[Finisn |

We now add a BLTL requirement to the project that appears in the project
explorer panel. In the edition panel we write the BLTL property. With this
requirement we want to determine the probability of drawing the value 3 within
100 steps.

3.2 Simulation

[simulation results | Plot |

| (®)NewrPath |

‘ (®) Simulate ‘ l# - d - <
rere <)o 1| EE) 500 20

‘ (%) Backtrack l i 88 gg
ECTIN 7 — 5 [3.0 3.0

The simulation panel allows to execute a model step by step while observing
the evolution of the variables. It is useful in the design process of a model for
testing and debugging. The simulation panel consists in a control panel that
allows to start a new simulation (New Path), add one or more states to the
trace (Simulate), or remove states (Backtrack). The simulation results display
the current trace with the step number (#) and the values of the variables (s
and d).

We can also use the CLI to simulate the model with the following command
./plasmacli.sh simu -m dice.rml:rml This starts an interactive console. We ask
for 10 steps, it produces the following trace, that has reached a deadlock after 2
steps:

Simulation started.

Enter step number (default is 1), r to restart and g to quit.
d s

10

1 0.0 2.0

2 3.0 3.0

Deadlock reached at state #3:

s: 3.0;

d: 3.0;

3.3 Experimentation

File selection:

Project: |Dice -

Model: |dice3
Requirements: req

" Experimentation results | plot
Name # Simulations | # Positive Simulation Result
Algorithm: 1 |@ |eq 26492 3812 0.3326287181...

Epsilon: [0.01
Delta: [0.01

The experimentation panel allows to run experiments using using an SMC
algorithm. We select a model and a requirement, then in the algorithm panel we
select the algorithm and we configure its parameters. We select for instance the
Monte Carlo algorithm with the Chernoff bound. We configure the parameters
Epsilon (precision) and Delta (confidence). The results show an estimate of the
probability to satisfy the BLTL property on our model.

We can also use the following command to launch this experiment:

./plasmacli.sh launch -m dice.rml:rml -r dice.bltl:bltl
-a chernoff -A Epsilon=0.01 -A Delta=0.01

oo e e o +
| Name | # Simulations | # Positive Simulation | Result |
oo Fommmmm = e~ o= +
| dice.bltl | 26492 | 8762 | 0.3307413558810 |
oo e i o +

We now add to our model a reward to count the number of coin flips before
reaching a final decision. We add a "rewards” structure in our RML model and
we add a new BLTL requirement that computes the expected number of coin
flips when the BLTL property is satisfied:

rewards "coin_flips"
[1 s<7 : 1; R { "coin_flips" } F<=#100 s=3
endrewards

The result of the Monte Carlo experiment is now the expected value of the
reward, instead of a probability:

" Experimentation results | plot |

Name # Simulations # Positive Simulation Result
1 2.6'flips 26492 26492 2,654839196738638

3.4 Distributed SMC Experiments

Plasma Lab API provides generic methods to define distributed algorithms,
which are a significant advantage of the SMC approach. The distribution of
the experiments is implemented with Restlet technology, using the architecture
presented in Fig. 2l The main interface of Plasma Lab launches an SMC algo-
rithm scheduler, while a series of services are launched on remote computers.

Simulator

=

0

o

e ...
' @ distributed o local

Port: 8111

Threads:

Batch: 500

SMC Algorithm Algorithm completed - 0.243s

J

Fig. 2: Distributed architecture.

4

h
Restlet
y

fl\

Fig. 3: Execution panel.

Each service is loaded with a copy of the model simulator and a copy of the
property checker. Then, the scheduler sends work orders to the services, via
Restlet. These orders consist in performing a certain number of simulations and
checking them with the checker. When a service has finished its work it sends
the result back to the scheduler. According to the SMC algorithm, the scheduler
either displays the results via the interface or decides that more work is needed.

We can configure the distributed mode in the GUI in the execution panel
presented in Fig.[3] . In local mode the algorithm runs the simulations locally on
one or several threads. In distributed mode the algorithm starts a scheduler and
waits for clients to connect. It will then request the clients to perform a number
of simulations configured with the Batch parameter and then it waits for the
results.

3.5 SMC and Nondeterminism

Classical SMC algorithms can only be apply to fully stochastic models, such as
Markov chains. With RML we can design Markov decision processes (MDP) that
interleave probabilistic transitions with nondeterministic transitions. The choice
and the order of nondeterministic transitions can radically affect the probability
to satisfy a given property or the expected reward. Since it is useful to evaluate
the upper and lower bounds of these quantities, we are interested in finding the
optimal schedulers that do this.

We reuse our previous model of a 3-valued dice and we construct a MDP
with two dices. We will roll each dice once and we allow to re-roll one dice. We
would like to estimate the minimum and maximum probabilities that both dices
return the same value. We modify our RML model accordingly:

mdp
global r : [0..1] init O;
module dice

s : [0..3] init O0;
d : [0..3] init O;

[1 s=0 -> 0.5 : (s’=1) + 0.5 : (s’=2);
[] s=1 -> 0.5 : (s’=3)&(d’=1) + 0.5 : (8’=3)&(d’=2);
[] s=2 -> 0.5 : (s’=3)&(d’=3) + 0.5 : (s’=0);

r=0 -> (s’=0)&(r’=1);
r=

[] s=3 &
[] s=3 & 0 -> (r’=1);
endmodule

module dice2 = dicel[s=s2,d=d2] endmodule

We change the type from dtmc to mdp. Then we add a global variable r that
will count the number of re-roll (maximum 1). In the dice module, we add two
commands, one that allows to re-roll the dice, and one that decide to stop. Since
these two commands are enabled at the same condition (s=3 & r=0) the choice
between the two is nondeterministic. Finally we add a second dice that is a copy
of the first module in which the variables s and d are renamed s2 and d2. The
order in which the two dices will be rolled is also nondeterministic.

Several algorithms of Plasma Lab can be use with nondeterministic models.
When using Monte Carlo algorithms, the default behavior is to simulate the
model using a uniform distribution for nondeterministic choices. However the
MDP option in the Chernoff algorithm allows to specify the number of schedulers
to evaluate. Scheduler are randomly chosen and evaluated by an SMC experiment
using the confidence bound for multiple schedulers [8]. The result displays both
the minimum and the maximum probability.

.
Epsilon: |0.1 =
L # Name | # Simulations | Min positive | Max positive

Driie | I::> 1 |@ |equal |ass000 0.24017467... |0,574235807...

MDP

M: |1000

This simple sampling has the disadvantage of allocating equal budget to all
schedulers, regardless of their merit. To maximize the probability of finding an
optimal scheduler with finite budget, Plasma Lab implements “smart sampling”
algorithms [3[9], comprising three stages:

1. An initial undirected sampling experiment to approximate the distribution
of schedulers and discover the nature of the problem.

2. A targeted sampling experiment to generate a candidate set of schedulers
with high probability of containing an optimal scheduler.

3. Iterative refinement of the candidate set of schedulers, to identify the best
scheduler with specified confidence.

Note that smart hypothesis testing may quit at any stage if an individual sched-
uler is found to satisfy the hypothesis with required confidence or if individual
schedulers do not satisfy the hypothesis with required confidence but the average
of all schedulers satisfies the hypothesis.

This algorithm has several options, several of them being optional. The nec-
essary parameters are Epsilon, Delta, that define the confidence bound, and
Budget, that defines a fix number of simulations to perform at each stage. The
other parameters have default values that can be substituted to optimize the
performances of the algorithm:

— Max Budget, equal to Budget by default, is the number of simulations for
the first stage.

— Reduction factor, by default 2, is the proportion of schedulers kept after each
iteration.

— Initial probability allows to skip the first stage if not zero.

— Reward name, SPRT, Threshold, Alpha are used to compute the minimum
or maximum value of a reward property, instead of a probability.

Algorithm: |Chernoff ND i

) Minimum
® Maximum

Epsilon: ’017

Delta: ’017

Budget: [10000 # Name Max probability lterations # Simulations

gaxpuioely |:> 1 equal 0.5859375 10 89936

Reduction Factor: ’7

Initial probability: ’7

Reward name: ’7

[1SPRT

Threshold:

Alpha:

3.6 Rare Events Algorithms

Rare properties (i.e., with low probability) pose a problem for SMC because
they are infrequently observes in simulations. Plasma Lab addresses this with
the standard variance reduction techniques of importance sampling [4] and im-
portance splitting [BI6[T].

Importance sampling works by weighting the probability distribution of the
original system to favour the rare event. Since the weights are known, the correct
result can be computed on the fly while simulating under the favourable impor-
tance sampling distribution. Importance sampling is implemented in Plasma Lab
with the RML language. A language extension allows to add sampling param-
eters to the model to modify the rates of the actions. Then the cross entropy
algorithm can be used to determine an optimal distribution of the sampling
parameters.

Importance splitting decomposes a property with low probability into a prod-
uct of higher conditional probabilities that are easier to estimate. It proceeds
by estimating the probability of passing from one level to another, defined in
Plasma Lab with respect to the range of a score function that maps states of the
system xproperty product automaton to values. The lowest level is the initial
state. The highest level satisfies the property. The initial states of intermediate
simulations are the terminal states of simulations reaching the previous level. The
best performance is generally achieved with many levels of equal probability, re-
quiring suitable score functions. Plasma Lab includes a “wizard” to construct
observers in a reactive modules-like syntax from BLTL properties. The score
function is defined within the observer and has access to all the variables of the

system [7].

Plasma Lab implements a fixed level algorithm and an adaptive level algo-
rithm [6l7]. The fixed level algorithm requires the user to define a monotonically
increasing sequence of score values whose last value corresponds to satisfying
the property. The adaptive algorithm finds optimal levels automatically and re-
quires only the maximum score to be specified. Both algorithms estimate the
probability of passing from one level to the next by the proportion of a constant
number of simulations that reach the upper level from the lower. New simula-
tions to replace those that failed to reach the upper level are started from states
chosen uniformly at random from the terminal states of successful simulations.
The overall estimate is the product of the estimates of going from one level to
the next.

We consider a simple DTMC model that implements a chain of 100 states,
with at each state a probability of 0.9 to pass to the next state, and a prob-
ability of 0.1 to exit to a state s=101. We want to estimate the probability to
reach the final state s=100. We can use Monte Carlo with the BLTL property
F<=#100 s=100. However the number of simulations must be very large to ob-
serve a significant number of successful traces. Otherwise we can use importance
splitting with an observer that compute a score function: the score is equal to
the last state reached in the trace.

dtmc observer chainObserver
score : double init O;
module chain decided : bool init false;
s : [0..101] init O;
[l s<100 -> 0.90 : (s’=s+1) [l s!'=101 & score<s -> (score’=score+l);
+ 0.10 : (s’=101); [l s>=100 -> (decided’>=true);
endmodule endobserver

We compare in Table 5| the Monte Carlo algorithm, with 1°000°000 simula-
tions, the fixed levels importance splitting algorithm, with 4 levels and 1’000
simulations, and the adaptive importance splitting algorithm with 1’000 simu-
lations. Each experiment is performed 10 times and the table shows the average
and the standard deviation of these 10 executions. The results show that the fixed
levels algorithm produces an answer with a similar variance to Monte Carlo in
a much faster time. The adaptive algorithm also produces a fast answer, and
additionally improves the variance.

Algorithm: llmportance splitt... v‘
Budget: 1000 \ Probability Time Std. dev.

© Adaptive algorithm Monte Carlo 2.8E-5 7.93s 5.08E-6

Fixed levels 2.61E-5 0.58s 5.35E-6

@ Fixed levels algorithm Adaptive 2.56E-5 0.2s 1.88E-6
Levels: |2550 75100

Maximum score:

Fig.5: Comparison between importance

Fig.4: Plasma Lab parameters for splitting algorithms and Monte Carlo
importance splitting.

4 Plugin Development Tutorial

This tutorial explains how to develop a new simulator plugin for Plasma Lab.
The sources of this tutorial can be downloaded on our documentation website
(http://plasma-lab.gforge.inria.fr/plasma_lab_doc/i.44O/html/developer/tutorials/index.html).

In Plasma Lab the concepts of simulator and model are mixed together.
We could say that a model executes itself. For this reason, a simulator inherits
from the AbstractModel class, that in turn inherits from the AbstractData class.
The AbstractData class describes an object, model or requirement, editable in
the Plasma Lab GUI edition panel. The AbstractModel class adds simulation
methods.

In this section, we explain some of the implementation needed for a new
simulator plugin. The language executed by our tutorial simulator is a succession
of '+’and ’-’. Starting from 0 it will add or remove one to the single value of
the state. For instance the model +++-- will produce a trace 0 1 2 3 2 1. Of
course this language is only used to illustrate the plugin creation and it has no
stochastic property. We begin our simulator with the class declaration:

public class MySimulator extends AbstractModel

4.1 Factory

To load our simulator plugin in Plasma Lab we need a factory class that ex-
tends AbstractModelFactory. The factory class implements a new JSPF Plugin.
Its plugin nature is declared using the annotation @Pluginlmplementation before
the class declaration.

@PluginImplementation
public class MySimulatorFactory extends AbstractModelFactory

The main purpose of the factory is to instantiate a simulator or a checker
without knowing its class. This is done by implementing the createAbstractModel
methods to call the simulator constructor. For instance:

public AbstractModel createAbstractModel (String name, String content) {
return new MySimulator (name, content, getId());

}

The factory also implements methods to identify a plugin by returning the
name of the factory as it appears in the GUI menus (getName), a short textual
description (getDescription), and a unique identifier (getld).

4.2 State and Identifiers

To create our new simulator we first need some companion objects to manipulate
values and states. Identifiers are a shared objects to identify values (e.g. variables,
constants) through different components of Plasma Lab. We create a new class
Myld that implements the Interfaceldentifier interface:

http://plasma-lab.gforge.inria.fr/plasma_lab_doc/1.4.0/html/developer/tutorials/index.html

public class MyId implements InterfaceIldentifier {
String name;

public MyId(String name) {
this.name = name;

}

In our model we manipulate only two variables, the value and the time. We
can declare them as static identifiers in the MySimulator class:

protected static final MyId VALUEID = new MyId("X"); //VALUE
protected static final MyId TIMEID = new MyId("#"); //TIME

The state object is used to store the values of the model. It inherits from the
InterfaceState interface. Our state object is pretty simple as we store only the
two variables, time and value.

public class MyState implements InterfaceState {
double value, time;

public MyState (double value, double time) {
this.value = value;
this.time = time;

The class MyState additionally implements getters and setters to access and
modify the values of the state, either through an Interfaceldentifier object or
through their name. For instance the following method returns the values the
state according to the identifier:

public Double getValueOf (Interfaceldentifier id) {
if (id.equals (MySimulator.VALUEID))
return value;
else if (id.equals(MySimulator.TIMEID))
return time;
else
throw new PlasmaRunException("Unknown_identifier:, "+id.getName());

4.3 Check for errors

The checkForErrors method is called before each experimentation/simulation and
when modifying the content of the edition panel of the GUI. The purpose of this
function is double: to detect any syntax error and to build the model before
running it. Our checkForErrors method checks if the sequence contains any other
characters than '+, ’-’. In the eventuality of a syntax error, a PlasmaSyntaxEx-
ception is added to the list of errors. Finally we create the initial state that will
be used to initialize each trace.

@Override

public boolean checkForErrors() {
// Empty from previous errors
errors.clear ();

// Verify model content
InputStream is = new ByteArrayInputStream(content.getBytes());

br = new BufferedReader (new InputStreamReader (is));

try {
while (br.ready ()){
int ¢ = br.read();
if (1 (c==’+"||c=="-"))
errors.add(
new PlasmaSyntaxException("Notyayvalidycommand"));
}

} catch (IOException e) {
errors.add(new PlasmaException(e));

}

initialState = new MyState(0,0);

return !errors.isEmpty();

4.4 New path

The newPath method initializes a new trace and returns the first state of the
trace. content is a String inherited from AbstractData that contains the text
entered in the edition panel. In our simulator we initialize a stream reader to
read content character by character. We also initialize the trace with the initial
state created by the checkForErrors method.

public InterfaceState newPath() {
trace = new ArrayList<InterfaceState>();
trace.add(initialState);
InputStream is = new ByteArrayInputStream(content.getBytes());
br = new BufferedReader(new InputStreamReader (is));
return initialState;

4.5 Simulate

The simulate method adds a new state to the trace. In our simulator we read the
next character ("4’ or ’-’) and we either add or subtract 1 to the value of the cur-
rent state. We also add 1 to the time. Finally we build a new state with the new
values. If there is no more character to read we throw a PlasmaDeadlockException
instead of adding a new state to the trace.

public InterfaceState simulate() throws PlasmaDeadlockException {
try {
if (!br.ready())
throw new PlasmaDeadlockException(getCurrentState(),
getTracelength());

else {
int ¢ = br.read();
InterfaceState current = getCurrentState();

double currentV = current.getValueOf (VALUEID);
double currentT = current.getValueOf (TIMEID);

if (c==’+7)
trace.add(new MyState(currentV+1,currentT+1));
else if(c==’-7)

trace.add(new MyState(currentV-1,currentT+1));
¥
} catch (IOException e) {
throw new PlasmaSimulationException(e);
}

return getCurrentState ();

References

10.

11.

. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear Encod-

ings of Bounded LTL Model Checking. Logical Methods in Computer Science 2(5)
(2006)

Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A Flexible, Dis-
tributable Statistical Model Checking Library. In: Proceedings of QEST. LNCS,
vol. 8054, pp. 160-164. Springer (2013)

D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for
lightweight verification of markov decision processes. STTT 17(4), 469-484 (2015)
Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Proceedings of CAV. LNCS,
vol. 7358, pp. 327-342. Springer (2012)

Jegourel, C., Legay, A., Sedwards, S.: Importance Splitting for Statistical Model
Checking Rare Properties. In: Proceedings of CAV. LNCS, vol. 8044, pp. 576-591.
Springer (2013)

Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Proceedings of ISoLA (2). LNCS, vol.
8803, pp. 143-159. Springer (2014)

Jegourel, C., Legay, A., Sedwards, S., Traonouez, L.: Distributed verification of
rare properties using importance splitting observers. ECEASST 72 (2015)

Legay, A., Sedwards, S., Traonouez, L.: Scalable verification of markov decision pro-
cesses. In: SEFM Collocated Workshops. LNCS, vol. 8938, pp. 350-362. Springer
(2014)

Legay, A., Sedwards, S., Traonouez, L.: Estimating rewards & rare events in non-
deterministic systems. ECEASST 72 (2015)

Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Annals of the Institute of Statistical Mathematics 10, 29-35 (1959)

Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics 16(2), 117-186 (1945)

	Plasma Lab Statistical Model Checker: Architecture, Usage and Extension

