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Abstract. Domain adaptation (DA) is an important and emerging field of machine
learning that tackles the problem occurring when the distributions of training
(source domain) and test (target domain) data are similar but different. This kind of
learning paradigm is of vital importance for future advances as it allows a learner
to generalize the knowledge across different tasks. Current theoretical results show
that the efficiency of DA algorithms depends on their capacity of minimizing
the divergence between source and target probability distributions. In this paper,
we provide a theoretical study on the advantages that concepts borrowed from
optimal transportation theory [17] can bring to DA. In particular, we show that the
Wasserstein metric can be used as a divergence measure between distributions to
obtain generalization guarantees for three different learning settings: (i) classic
DA with unsupervised target data (ii) DA combining source and target labeled
data, (iii) multiple source DA. Based on the obtained results, we motivate the use
of the regularized optimal transport and provide some algorithmic insights for
multi-source domain adaptation. We also show when this theoretical analysis can
lead to tighter inequalities than those of other existing frameworks. We believe
that these results open the door to novel ideas and directions for DA.

Keywords: domain adaptation, generalization bounds, optimal transport.

1 Introduction

Many results in statistical learning theory study the problem of estimating the probability
that a hypothesis chosen from a given hypothesis class can achieve a small true risk.
This probability is often expressed in the form of generalization bounds on the true risk
obtained using concentration inequalities with respect to (w.r.t.) some hypothesis class.
Classic generalization bounds make the assumption that training and test data follow
the same distribution. This assumption, however, can be violated in many real-world
applications (e.g., in computer vision, language processing or speech recognition) where
training and test data actually follow a related but different probability distribution. One
may think of an example, where a spam filter is learned based on the abundant annotated
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data collected for one user and is further applied for newly registered user with different
preferences. In this case, the performance of the spam filter will deteriorate as it does
not take into account the mismatch between the underlying probability distributions.
The need for algorithms tackling this problem has led to the emergence of a new field
in machine learning called domain adaptation (DA), subfield of transfer learning [18],
where the source (training) and target (test) distributions are not assumed to be the same.
From a theoretical point of view, existing generalization guarantees for DA are expressed
in the form of bounds over the target risk involving the source risk, a divergence between
domains and a term λ evaluating the capability of the considered hypothesis class to
solve the problem, often expressed as a joint error of the ideal hypothesis between the
two domains. In this context, minimizing the divergence between distributions is a key
factor for the potential success of DA algorithms. Among the most striking results,
existing generalization bounds based on the H-divergence [3] or the discrepancy distance
[15] have also an interesting property of being able to link the divergence between the
probability distributions of two domains w.r.t. the considered class of hypothesis.

Despite their advantages, the above mentioned divergences do not directly take into
account the geometry of the data distribution. Recently, [6,7] has proposed to tackle
this drawback by solving the DA problem using ideas from optimal transportation (OT)
theory. Their paper proposes an algorithm that aims to reduce the divergence between
two domains by minimizing the Wasserstein distance between their distributions. This
idea has a very appealing and intuitive interpretation based on the transport of one
domain to another. The transportation plan solving OT problem takes into account the
geometry of the data by means of an associated cost function which is based on the
Euclidean distance between examples. Furthermore, it is naturally defined as an infimum
problem over all feasible solutions. An interesting property of this approach is that the
resulting solution given by a joint probability distribution allows one to obtain the new
projection of the instances of one domain into another directly without being restricted to
a particular hypothesis class. This independence from the hypothesis class means that this
solution not only ensures successful adaptation but also influences the capability term
λ. While showing very promising experimental results, it turns out that this approach,
however, has no theoretical guarantees. This paper aims to bridge this gap by presenting
contributions covering three DA settings: (i) classic unsupervised DA where the learner
has only access to labeled source data and unsupervised target instances, (ii) DA where
one has access to labeled data from both source and target domains, (iii) multi-source
DA where labeled instances for a set of distinct source domains (more than 2) are
available. We provide new theoretical guarantees in the form of generalization bounds
for these three settings based on the Wasserstein distance thus justifying its use in DA.
According to [26], the Wasserstein distance is rather strong and can be combined with
smoothness bounds to obtain convergences in other distances. This important advantage
of Wasserstein distance leads to tighter bounds in comparison to other state-of-the-art
results and is more computationally attractive.

The rest of this paper is organized as follows: Section 2 is devoted to the presentation
of optimal transport and its application in DA. In Section 3, we present the generalization
bounds for DA with the Wasserstein distance for both single- and multi-source learning
scenarios. Finally, we conclude our paper in Section 4.
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2 Definitions and notations

In this section, we first present the formalization of the Monge-Kantorovich [13] opti-
mization problem and show how optimal transportation problem found its application in
DA.

2.1 Optimal transport

Optimal transportation theory was first introduced in [17] to study the problem of
resource allocation. Assuming that we have a set of factories and a set of mines, the
goal of optimal transportation is to move the ore from mines to factories in an optimal
way, i.e., by minimizing the overall transport cost. More formally, let Ω ⊆ Rd be a
measurable space and denote by P (Ω) the set of all probability measures over Ω. Given
two probability measures µS , µT ∈ P (Ω), the Monge-Kantorovich problem consists
in finding a probabilistic coupling γ defined as a joint probability measure over Ω ×Ω
with marginals µS and µT for all x, y ∈ Ω that minimizes the cost of transport w.r.t.
some function c : Ω ×Ω → R+:

argmin
γ

∫
Ω1×Ω2

c(x,y)pdγ(x,y)

s.t. PΩ1#γ = µS ,P
Ω2#γ = µT ,

where PΩi is the projection over Ωi and # denotes the pushforward measure. This
problem admits a unique solution γ0 which allows us to define the Wasserstein distance
of order p between µS and µT for any p ∈ [1; +∞] as follows:

W p
p (µS , µT ) = inf

γ∈Π(µS ,µT )

∫
Ω×Ω

c(x,y)pdγ(x,y),

where c : Ω ×Ω → R+ is a cost function for transporting one unit of mass x to y and
Π(µS , µT ) is a collection of all joint probability measures on Ω ×Ω with marginals µS
and µT .

Remark 1. In what follows, we consider only the case p = 1 but all the obtained results
can be easily extended to the case p > 1 using Hölder inequality implying for every
p ≤ q ⇒Wp ≤Wq .

In the discrete case, when one deals with empirical measures µ̂S = 1
NS

∑NS

i=1 δxi
S

and

µ̂T = 1
NT

∑NT

i=1 δxi
T

represented by the uniformly weighted sums of NS and NT Diracs
with mass at locations xiS and xiT respectively, Monge-Kantorovich problem is defined
in terms of the inner product between the coupling matrix γ and the cost matrix C:

W1(µ̂S , µ̂T ) = min
γ∈Π(µ̂S ,µ̂T )

〈C, γ〉F

where 〈·,·〉F is the Frobenius dot product,Π(µ̂S , µ̂T ) = {γ ∈ RNS×NT
+ |γ1 = µ̂S , γ

T1 =
µ̂T } is a set of doubly stochastic matrices and C is a dissimilarity matrix, i.e., Cij =
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Fig. 1: Blue points are generated to lie inside a square with a side length equal to 1. Red
points are generated inside an annulus containing the square. Solution of the regularized
optimal transport problem is visualized by plotting dashed and solid lines that correspond
to the large and small values given by the optimal coupling matrix γ.

c(xiS , x
j
T ), defining the energy needed to move a probability mass from xiS to xjT . Figure

1 shows how the solution of optimal transport between two point-clouds can look like.
It turns out that the Wasserstein distance has been successfully used in various

applications, for instance: computer vision [22], texture analysis [21], tomographic
reconstruction [12] and clustering [9]. The huge success of algorithms based on this
distance is due to [8] who introduced an entropy-regularized version of optimal transport
that can be optimized efficiently using matrix scaling algorithm. We are now ready to
present the application of OT to DA below.

2.2 Domain adaptation and optimal transport

The problem of DA is formalized as follows: we define a domain as a pair consisting of
a distribution µD on Ω and a labeling function fD : Ω → [0, 1]. A hypothesis class H
is a set of functions so that ∀h ∈ H,h : Ω → {0, 1}.

Definition 1. Given a convex loss-function l, the probability according to the distribution
µD that a hypothesis h ∈ H disagrees with a labeling function fD (which can also be a
hypothesis) is defined as

εD(h, fD) = Ex∼µD
[l(h(x), fD(x))] .

When the source and target error functions are defined w.r.t. h and fS or fT , we use the
shorthand εS(h, fS) = εS(h) and εT (h, fT ) = εT (h). We further denote by 〈µS , fS〉
the source domain and 〈µT , fT 〉 the target domain. The ultimate goal of DA then is to
learn a good hypothesis h in 〈µS , fS〉 that has a good performance in 〈µT , fT 〉.

In unsupervised DA problem, one usually has access to a set of source data instances
XS = {xiS ∈ Rd}NS

i=1 associated with labels {yiS}
NS
i=1 and a set of unlabeled target

data instances XT = {xiT ∈ Rd}NT
i=1. Contrary to the classic learning paradigm,

unsupervised DA assumes that the marginal distributions ofXS andXT are different
and given by µS , µT ∈ P (Ω).
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For the first time, optimal transportation problem was applied to DA in [6,7]. The
main underlying idea of their work is to find a coupling matrix that efficiently transports
source samples to target ones by solving the following optimization problem :

γo = argmin
γ∈Π(µ̂S ,µ̂T )

〈C, γ〉F .

Once the optimal coupling γo is found, source samples XS can be transformed into
target aligned source samples X̂S using the following equation

X̂S = diag((γo1)−1)γoXT .

The use of Wasserstein distance here has an important advantage over other distances
used in DA (see Section 3.4) as it preserves the topology of the data and admits a rather
efficient estimation as mentioned above. Furthermore, as shown in [6,7], it improves
current state-of-the-art results on benchmark computer vision data sets and has a very
appealing intuition behind.

3 Generalization bounds with Wasserstein distance

In this section, we introduce generalization bounds for the target error when the diver-
gence between tasks’ distributions is measured by the Wasserstein distance.

3.1 A bound relating the source and target error

We first consider the case of unsupervised DA where no labelled data are available in the
target domain. We start with a lemma that relates the Wasserstein metric with the source
and target error functions for an arbitrary pair of hypothesis. Then, we show how the
target error can be bounded by the Wasserstein distance for empirical measures. We first
present the Lemma that introduces Wasserstein distance to relate the source and target
error functions in a Reproducing Kernel Hilbert Space.

Lemma 1. Let µS , µT ∈ P (Ω) be two probability measures on Rd. Assume that the
cost function c(x,y) = ‖φ(x)− φ(y)‖Hkl

, whereHkl is a Reproducing Kernel Hilbert
Space (RKHS) equipped with kernel kl : Ω × Ω → R induced by φ : Ω → Hkl
and kl(x,y) = 〈φ(x), φ(y)〉Hkl

. Assume further that the loss function lh,f : x −→
l(h(x), f(x)) is convex, symmetric, bounded, obeys the triangular equality and has the
parametric form |h(x)− f(x)|q for some q > 0. Assume also that kernel kl in the RKHS
Hkl is square-root integrable w.r.t. both µS , µT for all µS , µT ∈ P(Ω) where Ω is
separable and 0 ≤ kl(x,y) ≤ K, ∀ x,y ∈ Ω. Then the following holds

εT (h, h
′) ≤ εS(h, h′) +W1(µS , µT )

for every hypothesis h′, h.

Proof. As this Lemma plays a key role in the following sections, we give its proof
here. We assume that lh,f : x −→ l(h(x), f(x)) in the definition of ε(h) is a convex
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loss-function defined ∀h, f ∈ F where F is a unit ball in the RKHSHk. Considering
that h, f ∈ F , the loss function l is a non-linear mapping of the RKHSHk for the family
of losses l(h(x), f(x)) = |h(x)− f(x)|q3. Using results from [23], one may show that
lh,f also belongs to the RKHSHkl admitting the reproducing kernel kl and that its norm
obeys the following inequality:

||lh,f ||2Hkl
≤ ||h− f ||2qHk

.

This result gives us two important properties of lf,h that we use further:

– lh,f belongs to the RKHS that allows us to use the reproducing property;
– the norm ||lh,f ||Hkl

is bounded.

For simplicity, we can assume that ||lh,f ||Hkl
is bounded by 1. This assumption can

be verified by imposing the appropriate bounds on the norms of h and f and is easily
extendable to the case when ||lh,f ||Hkl

≤M by scaling as explained in [15, Proposition
2]. We also note that q does not necessarily have to appear in the final result as we
seek to bound the norm of l and not to give an explicit expression for it in terms of
‖h‖Hk

, ‖f‖Hk
and q. Now the error function defined above can be also expressed in

terms of the inner product in the corresponding Hilbert space, i.e4:

εS(h, fS) = Ex∼µS
[l(h(x), fS(x))] = Ex∼µS

[〈φ(x), l〉H].

We define the target error in the same manner:

εT (h, fT ) = Ey∼µT
[l(h(y), fT (y))] = Ey∼µT

[〈φ(y), l〉H].

With the definitions introduced above, the following holds:

εT (h, h
′) = εT (h, h

′) + εS(h, h
′)− εS(h, h′)

= εS(h, h
′) + Ey∼µT

[〈φ(y), l〉H]− Ex∼µS
[〈φ(x), l〉H]

= εS(h, h
′) + 〈Ey∼µT

[φ(y)]− Ex∼µS
[φ(x)], l〉H

≤ εS(h, h′) + ‖l‖H‖Ey∼µT
[φ(y)]− Ex∼µS

[φ(x)]‖H

≤ εS(h, h′) + ‖
∫
Ω

φd(µS − µT )‖H.

Second line is obtained by using the reproducing property applied to l, third line follows
from the properties of the expected value. Fourth line here is due to the properties of the
inner-product while fifth line is due to ||lh,f ||H ≤ 1. Now using the definition of the
joint distribution we have the following:

‖
∫
Ω

φd(µS − µT )‖H = ‖
∫
Ω×Ω

(φ(x)− φ(y))dγ(x,y)‖H

3 If h, f ∈ H then h − f ∈ H implying that l(h(x), f(x)) = |h(x) − f(x)|q is a nonlinear
transform for h− f ∈ H.

4 For the sake of simplicity, we will further writeH meaningHkl and l meaning lf,h.
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≤
∫
Ω×Ω

‖φ(x)− φ(y)‖Hdγ(x,y).

As the last inequality holds for any γ, we obtain the final result by taking the infimum
over γ from the right-hand side, i.e.:∫

Ω

φd(µS − µT )‖H ≤ inf
γ∈Π(µS ,µT )

∫
Ω×Ω

‖φ(x)− φ(y)‖Hdγ(x,y).

which gives
εT (h, h

′) ≤ εS(h, h′) +W1(µS , µT ).

�

Remark 2. We note that the functional form of the loss-function l(h(x), f(x)) = |h(x)−
f(x)|q is just an example that was used as the basis for the proof. According to [23,
Appendix 2], we may also consider more general nonlinear transformations of h and f
that satisfy the assumption imposed on lh,f above. These transformations may include a
product of hypothesis and labeling functions and thus the proposed results is valid for
hinge-loss too.

This lemma makes use of the Wasserstein distance to relate the source and target errors.
The assumption made here is to specify that the cost function c(x,y) = ‖φ(x)−φ(y)‖H.
While it may seem too restrictive, this assumption is, in fact, not that strong. Using the
properties of the inner-product, one has:

‖φ(x)− φ(y)‖H =
√
〈φ(x)− φ(y), φ(x)− φ(y)〉H

=
√
k(x,x)− 2k(x,y) + k(x,y).

Now it can be shown that for any given positive-definite kernel k there is a distance
c (used as a cost function in our case) that generates it and vice versa (see Lemma 12
from [24]).

In order to prove our next theorem, we present first an important result showing
the convergence of the empirical measure µ̂ to its true associated measure w.r.t. the
Wasserstein metric. This concentration guarantee allows us to propose generalization
bounds based on the Wasserstein distance for finite samples rather than true population
measures. Following [4], it can be specialized for the case of W1 as follows5

Theorem 1 ([4], Theorem 1.1). Let µ be a probability measure in Rd so that for some
α > 0, we have that

∫
Rd e

α‖x‖2dµ < ∞ and µ̂ = 1
N

∑N
i=1 δxi

be its associated
empirical measure defined on a sample of independent variables {xi}Ni=1 drawn from
µ. Then for any d′ > d and ς ′ <

√
2 there exists some constant N0 depending on

d′ and some square exponential moment of µ such that for any ε > 0 and N ≥
N0 max(ε−(d

′+2), 1)

P [W1(µ, µ̂) > ε] ≤ exp

(
− ς
′

2
Nε2

)
,

where d′, ς ′ can be calculated explicitly.
5 We present the original version of this Theorem in the Supplementary material.



8 Ievgen Redko, Amaury Habrard, Marc Sebban

The convergence guarantee of this theorem can be further strengthened as shown in [11]
but we prefer this version for the ease of reading. We can now use it in combination with
the previous Lemma to prove the following theorem.

Theorem 2. Under the assumptions of Lemma 1, let XS and XT be two samples of
size NS and NT drawn i.i.d. from µS and µT respectively. Let µ̂S = 1

NS

∑NS

i=1 δxi
S

and µ̂T = 1
NT

∑NT

i=1 δxi
T

be the associated empirical measures. Then for any d′ > d

and ς ′ <
√
2 there exists some constant N0 depending on d′ such that for any δ > 0

and min(NS , NT ) ≥ N0 max(δ−(d
′+2), 1) with probability at least 1− δ for all h the

following holds:

εT (h) ≤ εS(h) +W1(µ̂S , µ̂T ) +

√
2 log

(
1

δ

)
/ς ′
(√

1

NS
+

√
1

NT

)
+ λ,

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined
error of εS(h) + εT (h).

Proof.

εT (h) ≤ εT (h∗) + εT (h
∗, h) = εT (h

∗) + εS(h, h
∗) + εT (h

∗, h)− εS(h, h∗)
≤ εT (h∗) + εS(h, h

∗) +W1(µS , µT )

≤ εT (h∗) + εS(h) + εS(h
∗) +W1(µS , µT )

= εS(h) +W1(µS , µT ) + λ

≤ εS(h) +W1(µS , µ̂S) +W1(µ̂S , µT ) + λ

≤ εS(h) +

√
2 log

(
1

δ

)
/NSς ′ +W1(µ̂S , µ̂T ) +W1(µ̂T , µT ) + λ

≤ εS(h) +W1(µ̂S , µ̂T ) + λ+

√
2 log

(
1

δ

)
/ς ′
(√

1

NS
+

√
1

NT

)
.

Second and fourth lines are obtained using the triangular inequality applied to the error
function. Third inequality is a consequence of Lemma 1. Fifth line follows from the
definition of λ, sixth, seventh and eighth lines use the fact that Wasserstein metric is a
proper distance and Theorem 1. �

A first immediate consequence of this theorem is that it justifies the use of the optimal
transportation in DA context. However, we would like to clarify the fact that the bound
does not suggest that minimization of the Wasserstein distance can be done independently
from the minimization of the source error nor it says that the joint error given by the
lambda term becomes small. First, it is clear that the result of W1 minimization provides
a transport of the source to the target such as W1 becomes small when computing the
distance between newly transported sources and target instances. Under the hypothesis
that class labeling is preserved by transport, i.e.Psource(y|xs) = Ptarget(y|Transport(xs)),
the adaptation can be possible by minimizing W1 only. However, this is not a reasonable
assumption in practice. Indeed, by minimizing the W1 distance only, it is possible that
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the obtained transformation transports one positive and one negative source instance to
the same target point and then the empirical source error cannot be properly minimized.
Additionally, the joint error will be affected since no classifier will be able to separate
these source points. We can also think of an extreme case where the positive source
examples are transported to negative target instances, in that case the joint error λ
will be dramatically affected. A solution is then to regularize the transport to help the
minimization of the source error which can be seen as a kind of joint optimization.
This idea was partially implemented as a class-labeled regularization term added to the
original optimal transport formulation in [6,7] and showed good empirical results in
practice. The proposed regularized optimization problem reads

min
γ∈Π(µ̂S ,µ̂T )

〈C, γ〉F −
1

λ
E(γ) + η

∑
j

∑
L
‖γ(IL, j)‖pq .

Here, the second term E(γ) = −
∑NS ,NT

i,j γi,j log(γi,j) is the regularization term that
allows one to solve optimal transportation problem efficiently using Sinkhorn-Knopp
matrix scaling algorithm [25]. Second regularization term η

∑
j

∑
c ‖γ(Ic, j)‖pq is used

to restrict source examples of different classes to be transported to the same target
examples by promoting group sparsity in the matrix γ thanks to ‖ · ‖pq with q = 1

and p = 1
2 . In some way, this regularization term influences the capability term by

ensuring the existence of a good hypothesis that will be able to be discriminant on
both source and target domains data. Another recent paper of [28] also suggests that
transport regularization is important for the use of OT in domain adaptation tasks. Thus,
we conclude that the regularized transport formulations such as the one of [6,7] can
be seen as algorithmic solutions for controlling the trade-off between the terms of the
bound.

Assuming that εS(h) is properly minimized, only λ and the Wasserstein distance
between empirical measures defined on the source and target samples have an impact on
the potential success of adaptation. Furthermore, the fact that the Wasserstein distance
is defined in terms of the optimal coupling used to solve the DA problem and is not
restricted to any particular hypothesis class directly influences λ as discussed above. We
now proceed to give similar bounds for the case where one has access to some labeled
instances in the target domain.

3.2 A learning bound for the combined error

In semi-supervised DA, when we have access to an additional small set of labeled
instances in the target domain, the goal is often to find a trade-off between minimizing
the source and the target errors depending on the number of instances available in each
domain and their mutual correlation. Let us now assume that we possess βn instances
drawn independently from µT and (1 − β)n instances drawn independently from µS
and labeled by fS and fT , respectively. In this case, the empirical combined error [2] is
defined as a convex combination of errors on the source and target training data:

ε̂α(h) = αε̂T (h) + (1− α)ε̂S(h),

where α ∈ [0, 1].
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The use of the combined error is motivated by the fact that if the number of instances
in the target sample is small compared to the number of instances in the source domain
(which is usually the case in DA), minimizing only the target error may not be appropriate.
Instead, one may want to find a suitable value of α that ensures the minimum of ε̂α(h)
w.r.t. a given hypothesis h. We now prove a theorem for the combined error similar to
the one presented in [2].

Theorem 3. Under the assumptions of Theorem 2 and Lemma 1, let D be a labeled
sample of size n with βn points drawn from µT and (1− β)n from µS with β ∈ (0, 1),
and labeled according to fS and fT . If ĥ is the empirical minimizer of ε̂α(h) and
h∗T = min

h
εT (h) then for any δ ∈ (0, 1) with probability at least 1− δ (over the choice

of samples),

εT (ĥ) ≤ εT (h∗T ) + c1 + 2(1− α)(W1(µ̂S , µ̂T ) + λ+ c2),

where

c1 =2

√√√√2K
(

(1−α)2
1−β + α2

β

)
log(2/δ)

n
+ 4
√
K/n

(
α

nβ
√
β
+

(1− α)
n(1− β)

√
1− β

)
,

c2 =

√
2 log

(
1

δ

)
/ς ′
(√

1

NS
+

√
1

NT

)
.

Proof.

εT (ĥ) ≤ εα(ĥ) + (1− α)(W1(µS , µT ) + λ)

≤ ε̂α(ĥ) +

√√√√2K
(

(1−α)2
1−β + α2

β

)
log(2/δ)

n
+ (1− α)(W1(µS , µT ) + λ)

+ 2
√
K/n

(
α

nβ
√
β
+

(1− α)
n(1− β)

√
1− β

)

≤ ε̂α(h∗T ) +

√√√√2K
(

(1−α)2
1−β + α2

β

)
log(2/δ)

n
+ (1− α)(W1(µS , µT ) + λ)

+ 2
√
K/n

(
α

nβ
√
β
+

(1− α)
n(1− β)

√
1− β

)

≤ εα(h∗T ) + 2

√√√√2K
(

(1−α)2
1−β + α2

β

)
log(2/δ)

n
+ (1− α)(W1(µS , µT ) + λ)

+ 4
√
K/n

(
α

nβ
√
β
+

(1− α)
n(1− β)

√
1− β

)
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≤ εT (h∗T ) + 2

√√√√2K
(

(1−α)2
1−β + α2

β

)
log(2/δ)

n
+ 2(1− α)(W1(µS , µT ) + λ)

+ 4
√
K/n

(
α

nβ
√
β
+

(1− α)
n(1− β)

√
1− β

)
≤ εT (h∗T ) + c1 + 2(1− α)(W1(µ̂S , µ̂T ) + λ+ c2).

The proof follows the standard theory of uniform convergence for empirical risk mini-
mizers where lines 1 and 5 are obtained by observing that |εα(h)− εT (h)| = |αεT (h) +
(1−α)εS(h)− εT (h)| = |(1−α)(εS(h)− εT (h))| ≤ (1−α)(W1(µT , µS)+λ) where
the last inequality comes from line 4 of the proof of Theorem 2, line 3 follows from the
definition of ĥ and h∗T and line 6 is a consequence of Theorem 1.Finally, lines 2 and 4
are obtained based on the concentration inequality obtained for εα(h). Due to the lack
of space, we put this result in the Supplementary material. �

This theorem shows that the best hypothesis that takes into account both source and
target labeled data (i.e., 0 ≤ α < 1) performs at least as good as the best hypothesis
learned on target data instances alone (α = 1). This result agrees well with the intuition
that semi-supervised DA approaches should be at least as good as unsupervised ones.

4 Multi-source domain adaptation

We now consider the case where not one but many source domains are available during
the adaptation. More formally, we define N different source domains (where T can
either be or not a part of this set). For each source j, we have a labelled sample Sj
of size nj = βjn

(∑N
j=1 βj = 1,

∑N
j=1 nj = n

)
drawn from the associated unknown

distribution µSj
and labelled by fj . We now consider the empirical weighted multi-

source error of a hypothesis h defined for some vector α = {α1, . . . , αN} as follows:

ε̂α(h) =

N∑
j=1

αj ε̂Sj
(h),

where
∑N
j=1 αj = 1 and each αj represents the weight of the source domain Sj .

In what follows, we show that generalization bounds obtained for the weighted
error give some interesting insights into the application of the Wasserstein distance to
multi-source DA problems.

Theorem 4. With the assumptions from Theorem 2 and Lemma 1, let S be a sample of
size n, where for each j ∈ {1, . . . , N}, βjn points are drawn from µSj

and labelled
according to fj . If ĥα is the empirical minimizer of ε̂α(h) and h∗T = min

h
εT (h) then for

any fixed α and δ ∈ (0, 1) with probability at least 1− δ (over the choice of samples),

εT (ĥα) ≤ εT (h∗T ) + c1 + 2

N∑
j=1

αj (W1(µ̂j , µ̂T ) + λj + c2) ,
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where

c1 = 2

√√√√2K
∑N
j=1

α2
j

βj
log(2/δ)

n
+ 2

√√√√ N∑
j=1

Kαj
βjn

,

c2 =

√
2 log

(
1

δ

)
/ς ′

(√
1

NSj

+

√
1

NT

)
,

where λj = min
h

(εSj
(h) + εT (h)) represents the joint error for each source domain j.

Proof. The proof of this Theorem is very similar to the proof of Theorem 4. The final
result is obtained by applying the concentration inequality for εα(h) (instead of those
used for εα(ĥ) in the proof of Theorem 4) and by using the following inequality that can
be obtained easily by following the principle of the proof of [2, Theorem 4]:

|εα(h)− εT (h)| ≤
N∑
j=1

αj (W1(µj , µT ) + λj) ,

where λj = min
h

(εSj (h) + εT (h)). For the sake of completness, we present the concen-

tration inequality for εα(h) in the Supplementary material.�

While the results for multi-source DA may look like a trivial extension of the theo-
retical guarantees for the case of two domains, they can provide a very fruitful impli-
cation on their own. As in the previous case, we consider that the potential term that
should be minimized in this bound by a given multi-source DA algorithm is the term∑N
j=1 αjW1(µ̂j , µ̂T ).
Assume that µ̂ is an arbitrary unknown empirical probability measure on Rd. Using

the triangle inequality and bearing in mind that αj ≤ 1 for all j, we can bound this term
as follows:

N∑
j=1

αjW1(µ̂j , µ̂T ) ≤ (

N∑
j=1

αjW1(µ̂j , µ̂)) +NW1(µ̂, µ̂T ).

Now, let us consider the following optimization problem

inf
µ̂∈P(Ω)

1

N

N∑
j=1

αjW1(µ̂j , µ̂) +W1(µ̂, µ̂T ). (1)

In this formulation, the first term 1
N

∑N
j=1 αjW1(µ̂j , µ̂) corresponds exactly to the

problem known in the literature as the Wasserstein barycenters problem [1] that can be
defined for W1 as follows.

Definition 2. ForN probability measures µ1, µ2, . . . , µN ∈ P(Ω), an empirical Wasser-
stein barycenter is a minimizer µ∗N ∈ P(Ω) of JN (µ) = minµ

1
N

∑N
i=1 aiW1(µ, µi),

where for all i, ai > 0 and
∑N
i=1 ai = 1.
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The second term W1(µ̂, µ̂T ) of Equation 1 finds the probability coupling that transports
the barycenter to the target distribution. Altogether, this bound suggests that in order to
adapt in the multi-source learning scenario, one can proceed by finding a barycenter of
the source probability distributions and transport it to the target probability distribution.

On the other hand, the optimization problem related to the Wasserstein barycenters is
closely related to the Multimarginal optimal transportation problem [19] where the goal
is to find a probabilistic coupling that aligns N distinct probability measures. Indeed, as
shown in [1], for a quadratic Euclidean cost function the solution µ∗N of the barycenter
problem in the Wasserstein space is given by the following equation:

µ∗N =
∑

k∈{k1,...,kN}

γkδAk(x),

where Ak(x) =
∑N
j=1 γjxkj and γ ∈ R

∏N
j=1 nj is an optimal coupling solving for all

k ∈ {1, . . . , N} the multimarginal optimal transportation problem with the following
cost:

ck =
∑ aj

2
‖xkj −Ak(x)‖2.

We note that this reformulation is particularly useful when the source distributions
are assumed to be Gaussians. In this case, there exists a closed form solution for the
multimarginal optimal transportation problem [14] and thus for Wasserstein barycenters
problem too. Finally, it is also worth noticing that the optimization problem Equation 1
has already been introduced to solve the multiview learning task[12]. In their formulation,
the second term is referred to as an a priori knowledge about the barycenter which, in
our case, is explicitly given by the target probability measure simultaneously.

5 Comparison to other existing bounds

As mentioned in the introduction, there are numerous papers that proposed DA general-
ization bounds. The main difference between them lies in the distance used to measure
the divergence between source and target probability distributions. The seminal work of
[3] considered a modification of the total variation distance called H-divergence given
by the following equation:

dH(p, q) = 2 sup
h∈H
|p(h(x) = 1)− q(h(x) = 1)|.

On the other hand, [15] and [5] proposed to replace it with the discrepancy distance:

disc(p, q) = max
h,h′∈H

|εp(h, h′)− εq(h, h′)|.

The latter one was shown to be tighter in some plausible scenarios. A more recent work
on generalization bounds using integral probability metric

DF (p, q) = sup
f∈F
|
∫
fdp−

∫
fdq|
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and Rényi divergence

Dα(p‖q) =
1

α− 1
log

(
n∑
i=1

pαi
qα−1i

)

were presented in [27] and [16], respectively. [27] provides a comparative analysis of
discrepancy and integral metric based bounds and shows that the former are less tight.
[16] derives the domain adaptation bounds in multisource scenario by assuming that the
good hypothesis can be learned as a weighted convex combination of hypothesis from all
the sources available. Considering a reasonable amount of previous work on the subject,
a natural question about the tightness of the DA bounds based on the Wasserstein metric
introduced above arises in spite of the Theorem 3.

The answer to this question is partially given by the Csiszàr-Kullback-Pinsker in-
equlity [20] defined for any two probability measures p, q ∈ P(Ω) as follows:

W1(p, q) ≤ diam(Ω)‖p− q‖TV ≤
√
2diam(Ω)KL(p‖q),

where diam(Ω) = supx,y∈Ω{d(x, y)} and KL(p‖q) is the Kullback-Leibler divergence.
A first consequence of this inequality shows that the Wasserstein distance not only

appears naturally and offers algorithmic advantages in DA but also gives tighter bounds
than total variation distance (L1) used in [2, Theorem 1]. On the other hand, it is also
tighter than bounds presented in [16] as the Wasserstein metric can be bounded by the
Kullback-Leibler divergence which is a special case of Rényi divergence when α→ 1
as shown in [10]. Regarding the discrepancy distance and omitting the hypothesis class
restriction, one has dmindisc(p, q) ≤ W1(p, q), where dmin = minx6=y∈Ω{d(x, y)}.
This inequality, however, is not very informative as minimum distance between two
distinct points can be dramatically small thus making it impossible to compare the
considered distances directly.

Regarding computational guarantees, we note that the H-divergence used in [3] is
defined as the error of the best hypothesis distinguishing between the source and target
domain samples pseudo-labeled with 0’s and 1’s and thus presents an intractable problem
in practice. For the discrepancy distance, authors provided a linear time algorithm for its
calculation in 1D case and showed that in other cases it scales as O(N2

Sd
2.5 +NT d

2)
when the squared loss is used [15]. In its turn, the Wasserstein distance with entropic
regularization can be calculated based on the linear time Sinkhorn-Knopp algorithm
regardless the choice of the cost function c that presents a clear advantage over the other
distances considered above.

Finally, none of the distances previously introduced in the generalization bounds for
DA take into account the geometry of the space meaning that the Wasserstein distance is
a powerful and precise tool to measure the divergence between domains.

6 Conclusion

In this paper, we studied the problem of DA in the optimal transportation context. Mo-
tivated by the existing algorithmic advances in domain adaptation, we presented the
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generalization bounds for both single and multi-source learning scenarios where the
distance between source and target probability distributions is measured by the Wasser-
stein metric. Apart from the distance term that taken alone justifies the use of optimal
transport in domain adaptation, the obtained bounds also included the capability term
depicting the existence of a good hypothesis for both source and target domains. A
direct consequence of its appearance in the bounds is the need to regularize optimal
transportation plan in a way that allows to ensure efficient learning in the source domain
once the interpolation was done. This regularization, achieved in [6,7] by the means of
the class-based regularization, thus can be also viewed as an implication of the obtained
results. Furthermore, it explains the superior performance of both class-based and Lapla-
cian regularized optimal transport in domain adaptation compared to it simple entropy
regularized form. On the other hand, we also showed that the use of the Wasserstein
distance leads to tighter bounds compared to the bounds based on the total variation
distance and Rényi divergence and is more computationally attractive than some other
existing results. From the analysis of the bounds obtained for the multi-source DA,
we derived a new algorithmic idea that suggests the minimization of two terms: first
term corresponds to the Wasserstein barycenter problem calculated on the empirical
source measures while the second one solves the optimal transport problem between this
barycenter and the empirical target measure.

Future perspectives of this work are many and concern both the derivation of new
algorithms for domain adaptation and the demonstration of new theoretical results. First
of all, we would like to study the extent to which the cost function used in the derivation
of the bounds can be used on actual real-world DA problems. This distance, defined as a
norm of difference between two feature maps, can offer a flexibility in the calculation
of the optimal transport metric due to its kernel representation. Secondly, we aim to
produce new concentration inequalities for the λ term that will allow to bound the true
best joint hypothesis by its empirical counter-part. These concentration inequalities will
allow to access the adaptability of two domains from the given labelled samples while
the speed of convergence may show how many data instances from the source domains
is needed to obtain a reliable estimate of λ. Finally, the introduction of the Wasserstein
distance to the bounds means that new DA algorithms can be designed based on the other
optimal coupling techniques. These include, for instance, Knothe-Rosenblatt coupling
and Moser coupling.

Acknowledgments. This work was supported in part by the French ANR project LIVES
ANR-15-CE23-0026-03.
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