
HAL Id: hal-01613546
https://hal.science/hal-01613546v1

Submitted on 23 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CCA-Secure Inner-Product Functional Encryption from
Projective Hash Functions

Fabrice Benhamouda, Florian Bourse, Helger Lipmaa

To cite this version:
Fabrice Benhamouda, Florian Bourse, Helger Lipmaa. CCA-Secure Inner-Product Functional En-
cryption from Projective Hash Functions. PKC 2017 - IACR International Workshop on Public Key
Cryptography, Mar 2017, Amsterdam, Netherlands. pp.36-66, �10.1007/978-3-662-54388-7_2�. �hal-
01613546�

https://hal.science/hal-01613546v1
https://hal.archives-ouvertes.fr

CCA-Secure Inner-Product Functional
Encryption from Projective Hash Functions

Fabrice Benhamouda1, Florian Bourse2, and Helger Lipmaa3

1 IBM Research, Yorktown Heights, NY, USA
2 ENS, CNRS, INRIA, PSL Research University, Paris, France
3 Institute of Computer Science, University of Tartu, Estonia

Abstract. In an inner-product functional encryption scheme, the plain-
texts are vectors and the owner of the secret key can delegate the ability
to compute weighted sums of the coefficients of the plaintext of any ci-
phertext. Recently, many inner-product functional encryption schemes
were proposed. However, none of the known schemes are secure against
chosen ciphertext attacks (IND-FE-CCA).
We present a generic construction of IND-FE-CCA inner-product func-
tional encryption from projective hash functions with homomorphic
properties. We show concrete instantiations based on the DCR assump-
tion, the DDH assumption, and more generally, any Matrix DDH as-
sumption.

Keywords: DCR, DDH, inner-product functional encryption, projec-
tive hash functions, CCA-security

1 Introduction

Traditionally, encryption has been an all-or-nothing affair: either a recipient
owns the secret key (and thus can decrypt) or she does not. Functional encryp-
tion [32,21,28,10] enables a much more fine-grained handling of encrypted data.
Here, the owner of the master key can delegate partial secret keys to various
recipients. In a functional encryption scheme for functionality F , the knowledge
of a secret key corresponding to some y enables one to decrypt an encryption
of z to F(y, z). As such, functional encryption has many potential applications,
and has spurred a long line of research.

A functional encryption scheme can be required to satisfy several different
security requirements [28,10]. In the case of the adaptive IND-FE-CPA secu-
rity [28,10], it must be difficult for an adversary to distinguish functional cipher-
texts of any two plaintexts z0 and z1. This must hold even if the adversary is
given an oracle access to the partial secret key generator, where the secret key
queries must satisfy the condition that F(y, z0) = F(y, z1) for each queried y.
In the weaker selective security model, the adversary is required to choose z0
and z1 before seeing the public key and answers to any of the secret key queries.
See [28,10] for discussion.

2 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

Constructing adaptively IND-FE-CPA secure functional encryption for arbi-
trary functionalities has been an elusive goal, achieved only recently under strong
assumptions like the existence of indistinguishability obfuscation or multilin-
ear maps [19,11,33,20]. However, achieving functional encryption for restricted
classes of functionalities is often easier. One of the simplest type of functional
encryption schemes is inner-product functional encryption (IPFE).

Inner-Product Functional Encryption. In an inner-product functional en-
cryption scheme, one encrypts a possibly long vector ~z, and a recipient who has
a partial secret key k~y can obtain the inner product 〈~y, ~z〉 of ~y and ~z. Recently,
Abdalla, Bourse, De Caro, and Pointcheval [2] proposed the first IPFE schemes
based on some of the most standard (and yet useful) cryptographic assump-
tions like the DDH and the LWE [31] assumptions. Unfortunately, their IPFE
schemes are only selectively IND-FE-CPA secure. Subsequent work has reached
better security notions while still relying on standard assumptions. In the se-
cret key setting for example, function privacy has been achieved using bilinear
maps [7,17], as well as a multi-input variant [4]. Adaptively IND-FE-CPA secure
versions of the IPFE schemes of [2] were recently proposed by Agrawal, Libert,
and Stehlé [5], together with a new scheme based on the DCR [29].

CCA Security. IND-CPA is a property every public-key encryption (PKE)
scheme should have. It ensures that the plaintext is protected from any eaves-
dropping. However, it does not guarantee any security against active adversaries.
The go-to security notion in this case is IND-CCA.4 Informally, it states that
a decryption oracle cannot help the adversary break the semantic security of
the scheme, and it has been studied for years in the setting of PKE [30,12]. It
has also been examined in the context of identity-based encryption [9,23] and
attribute-based encryption [34], which are particular cases of functional encryp-
tion. It is thus natural to analyze it for inner-product functional encryption. In
our setting of inner-product functional encryption, the decryption queries are as
follows: the adversary chooses a ciphertext c and a vector ~y and gets back the
decryption of c with msk~y, a freshly generated secret key for ~y. Note that in
this case, the decryption oracle is stronger than the partial key generation oracle
because it doesn’t have any requirement over its input ~y, but on the other hand,
the adversary doesn’t get msk~y.

To the best of our knowledge, the only paper considering IND-FE-CCA se-
curity is [26]. In this paper, Nandi and Pandit construct IND-FE-CCA secure
schemes from IND-FE-CPA secure ones with some properties that are verified by
a lot of functional encryption schemes: key-policy or ciphertext-policy attribute-
based encryption, and functional encryption for regular languages for example.
However, this does not apply for inner-product functional encryption, so another
technique is required.

In [27], Naor and Yung proposed a generic way of transforming an IND-CPA
encryption scheme into an IND-CCA encryption scheme. While this transform
4 In the current paper, CCA stands for CCA2.

Inner-Product Functional Encryption from PHFs 3

could be adapted to functional encryption, it uses non-interactive zero-knowledge
proofs, the constructions of which have strong requirements, such as bilinear
groups or the random oracle model.

Our Contributions. In this paper, we propose a generic construction of IND-
FE-CCA IPFE. This generic construction yields the first IND-FE-CCA IPFE
schemes based on the DDH assumption, the DCR assumption, and any of the
MDDH assumptions [18]. MDDH assumptions generalize the DDH assumption
and might hold in settings where the DDH assumption cannot hold, as in sym-
metric bilinear groups.

Our generic construction is based on projective hash functions with ho-
momorphic properties. Projective hash functions (PHFs) were introduced by
Cramer and Shoup in [14], as a way to explain their efficient IND-CCA encryp-
tion scheme [12] and to extend it to other assumptions. Similarly to the generic
IND-CCA encryption in [14], our IND-FE-CCA IPFE uses two PHFs and the
second PHF enables to reject ciphertexts which are not well-formed.

If the second PHF is not used in the scheme, we get a generic IND-FE-CPA
IPFE. We actually start by describing this generic IND-FE-CPA IPFE as a
warm-up for our main contribution, a generic IND-FE-CCA IPFE.

Interestingly, when instantiated using the DDH assumption, this IND-FE-
CPA scheme coincides exactly with the DDH-based IPFE of Agrawal et al. [5].
When instantiated using the DCR assumption, it corresponds to a variant of the
DCR-based IPFE over Z of Agrawal et al. that has slightly worse parameters
but avoids the use of discrete Gaussian distributions.

As a side contribution, we introduce a tag-based variant of functional encryp-
tion, where tags are associated to ciphertexts, together with a slightly weaker
IND-TBFE-CCA (i.e., tag-based) security notion, in which the adversary is not
allowed to query the decryption oracle with the tag of the challenge ciphertext.
To simplify the description of our IND-FE-CCA IPFE scheme, we actually first
construct an IND-TBE-CCA IPFE scheme. We then use an adapted version of
the generic transformation from tag-based PKE to CCA secure PKE in [22]:
the tag is the hash of a fresh verification key for a one-time signature scheme,
used to sign the ciphertext. This one-time signature prevents malleability of the
ciphertext.

Overview of our Constructions. Our constructions are inspired from the
Cramer-Shoup encryption scheme [14]. A Cramer-Shoup ciphertext consists of
three parts: a random word b in some NP language (e.g., b is a DDH tuple),
the message masked by a hash of b for a (smooth) PHF, and another hash of b
for a (2-universal) PHF. The hash value of any PHF can be computed both by
someone knowing a witness for b together with the public key (called projection
key), and by someone knowing the secret key (called hashing key). The second
hash value is used to reject ill-formed ciphertexts. Without it, the scheme is
IND-CPA.

4 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

To build an IND-FE-CPA IPFE for vectors of dimension `, we mask each
coordinate of the message with a different hash value of the same word b. If
the PHF is homomorphic, a linear combination of the corresponding hashing
keys will allow for the decryption of the same linear combination of the coordi-
nates, which is the inner product of the message and the coefficients of the linear
combination. In order to reach IND-FE-CCA security and reject ill-formed ci-
phertexts, we add ` independent hash values of b for ` independent 2-universal
homomorphic PHF. We could not naively use only one such hash, because then
anyone knowing the unique hashing key would be able to fake the last part of
the ciphertext.

Road map. We first provide some general preliminaries and recall definitions
related to PHFs and functional encryption in Sect. 2. In this section, we also de-
fine the concrete assumptions we are using: DDH, DCR, and MDDH. In Sect. 3,
we formally define the properties of the PHF used in our generic IND-FE-CPA
IPFE scheme, which is described in Sect. 4. We then move to the CCA set-
ting. In Sect. 5, we define the properties of the second PHF used in our generic
IND-FE-CCA IPFE scheme, which is described in Sect. 6.

2 Preliminaries

Let Z be the set of integers. If n is a positive integer, spf(n) is its smallest prime
factor. If S ⊂ Z and t ∈ Z, then let S + t = {s+ t : s ∈ S}. If S is a finite set,
then |S| is its cardinal.

Let R be a commutative ring. We denote the set of d-dimensional column
vectors over R by Rd, the set of d-dimensional row vectors by R1×d, and the
set of ` × d matrices by R`×d. Unless explicitly said otherwise, each vector is
a column vector. We denote vectors by using either boldface lower-case letters
or lower-case letters with an arrow over it as in b and ~b. We denote matrices
by using boldface upper-case letters like in A. We have two possible notations
for vectors, as we sometimes need to consider vectors of vectors (~b) and vectors
of matrices (~A). The ith coefficient of a vector b or ~b is denoted by bi, while
the ith coefficient of a vector of vectors ~b is a vector and is denoted by bi. The
jth coefficient of this latter vector is bi,j . The same convention is used with
coefficients of matrices and coefficients of vectors of matrices.

Within this paper, κ is the security parameter. A function f(κ) is negligible,
if for any polynomial p, f(κ) = O(1/p(κ)).

If A is a randomized algorithm, then we denote by A(x) the output distri-
bution of A on input x. If S is a finite set, we denote by U(S) the uniform
distribution. If D is a distribution, we denote by x ←r D the assignment of a
fresh sample from D to the variable x. If D is a distribution over some set S and
if D is clear from context, x ←r D is also denoted by x ←r S. If S is a finite
set on which we did not explicitly defined any distribution, x ←r S stands for
x←r U(S).

Inner-Product Functional Encryption from PHFs 5

Statistical and computational indistinguishability. Let (Aκ)κ and (Bκ)κ
be two ensembles of distributions over some set Ω and indexed by the security
parameter κ. In the sequel the security parameter is often omitted for the sake
of simplicity. Let A be an algorithm, called an adversary. The advantage of A
in distinguishing (Aκ)κ and (Bκ)κ is defined by AdvA(κ) = |Prx←rAκ [A(x) =
1]− Prx←rBκ [A(x) = 1]|.

The distributions A and B are computationally indistinguishable if for any
(probabilistic) polynomial time A, its advantage AdvA(κ) is negligible. They are
statistically indistinguishable if this is true for any (not necessarily polynomial-
time) A. The statistical distance SD(A,B) of distributions A and B is the supre-
mum of the advantage of all adversaries in distinguishing them. Equivalently, if
A and B are defined over a finite or countable set Ω,

SD(A,B) = 1
2
∑
y∈Ω
| Pr
x←rA

[x = y]− Pr
x←rB

[x = y]| . (1)

We will often implicitly use the following lemmas.

Lemma 1. Let S1 and S2 be two finite sets. If S1 ⊆ S2, we have
SD(U(S1), U(S2)) = 1 − |S1|/|S2|. In particular, if |S2| = (1 + 1/t) · |S1| for
some positive integer t, then SD(U(S1), U(S2)) = 1/(t+ 1).

Proof. SD(U(S1), U(S2)) = 1
2 (|S2 \ S1|/|S2|+ |S1| · (1/|S1| − 1/|S2|)) = 1 −

|S1|/|S2|. ut

Lemma 2. Let S ⊆ Z be an interval and t be an integer. Then SD(U(S), U(S+
t)) = |t|/|S|.

Proof. In the sum in Eq. (1), exactly 2|t| terms are non-zero: the ones corre-
sponding to y in (S \ (S + t)) ∪ ((S + t) \ S). And these terms are equal to
1/|S|. ut

Abelian Groups. We extensively use Abelian groups. In particular, in our
concrete instantiations, we use prime-order cyclic groups over an elliptic curve
or subgroups of the (multiplicative) group Z∗N , for some positive integer N . We
denote the elements of such groups by using the Fraktur script like in g or b.
By extension, even in our generic constructions and definitions, we also use this
font to indicate values which, in our concrete instantiations, are group elements
in such group G or vectors of such elements. However, we are also considering
other Abelian groups (e.g., the group K of hashing keys of a key-homomorphic
PHF in Def. 6) that are not related to cryptographic assumptions and for which
group elements are not denoted using the Fraktur script.

Except if explicitly stated otherwise, we use additive notation for all our
Abelian groups, even when this is not usual (as in the case of subgroups of Z∗N).

Let G be an Abelian group. We recall that if g is a group element of orderM ,
then we have a canonical monomorphism w ∈ ZM 7→ w · g ∈ G. If G is a
multiplicative group, this monomorphism corresponds to exponentiation. Hence,

6 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

we denote the inverse of this monomorphism by logg. That is, if b = w · g, then
logg b = w.

Furthermore, let R be R = Z or R = ZM with M being such that the order
of any group element in G divides M . Then G can be seen as a R-module. This
means that for any w ∈ R and g ∈ G, w ·g is well defined. Importantly, by using
additive notation, we can use the standard “matrix-vector” notation without
prior explanation.

Basic Number Theory. Let N be a positive integer. Let ϕ(N) be the Euler
totient function. For any integer a and an odd prime q, the Legendre symbol(
a
q

)
is defined as

(
a
q

)
:= 0, if a ≡ 0 (mod q),

(
a
q

)
:= +1, if a 6≡ 0 (mod q)

and for some integer y, a ≡ y2 (mod q), and
(
a
q

)
:= −1, if a 6≡ 0 (mod q)

and there is no such y. For any integer a and any positive odd integer N , the
Jacobi symbol is defined as the product of the Legendre symbols corresponding
to the prime factors of N ,

(
a
N

)
:=
∏t
i=1

(
a
pi

)αi
, where N =

∏t
i=1 p

αi
i for distinct

primes pi. Let JN = {a ∈ ZN :
(
a
N

)
= 1}; clearly JN is a subgroup of Z∗N . The

Jacobi symbol can be computed in polynomial time, given only a and N [25,
Alg. 2.149].

2.1 Subset Membership Problems and Concrete Assumptions

Our framework uses subset membership problems, which were originally defined
in [14]. Basically, a subset membership problem defines an NP language L ⊂ X ,
in which a random word in L is hard to distinguish from a random word in
X \ L. In this paper, we consider a slight extension, where we instead require a
random word in L to be hard to distinguish from a random word in a given set
L̄ ⊆ X \ L.

More formally, a subset membership problem P specifies an ensemble
(Iκ)κ≥0 of distributions. For every value of a security parameter κ ≥ 0, Iκ
is a probability distribution of instance descriptions. An instance description
Λ = Λ[X ,L,W, %, L̄] specifies the following: (a) finite, non-empty sets X , L, W,
and L̄, such that L is a proper subset of X and L̄ is a non-empty subset of X \L,
(b) a binary relation % ⊂ X ×W. For b ∈ X and w ∈ W, we say that w is a
witness for b if (b, w) ∈ %. We require that instance descriptions and elements of
X and W can be uniquely encoded as bitstrings of length poly(κ).

A subset membership problem satisfies the following properties: (i) Iκ is effi-
ciently samplable, which means that there exists a probabilistic polynomial time
instance sampling algorithm that on input 1κ samples an instance Λ according to
the distribution Iκ; (ii) % is efficiently samplable, which means that there exists
a probabilistic polynomial time subset sampling algorithm that on input Λ out-
puts a random b ∈ L together with a witness w ∈ W for b; the distribution over
% implicitly defines a distribution over L; (iii) L̄ is efficiently samplable; (iv) X is
efficiently recognizable, which means that there exists a deterministic polynomial
algorithm that on input (Λ, ζ) checks whether ζ is a valid binary encoding of an

Inner-Product Functional Encryption from PHFs 7

element of X ; (v) % is efficiently recognizable; (vi) (L, L̄)-indistinguishability: a
sample from L is computationally indistinguishable from a sample from L̄.

We do not require the distributions over %, L, and L̄ to be uniform. How-
ever, when we do not specify these distributions, we implicitly use the uniform
distributions.

Let us now introduce the subset membership problems we use in our concrete
instantiations. We name them according to the assumption under which we prove
their (L, L̄)-indistinguishability property, namely DDH, MDDH, and DCR.

DDH-Based Subset Membership Problem. Let G be an additive cyclic
group of prime order q, let X = G2, let L be the subgroup of X generated by
g = (g1, g2)ᵀ ∈ G2, where gi are random generators of G, and let L̄ = X \ L. A
witness w ∈ W = Zq for b ∈ L is such that b = wg. In other words, we have
W = Zq and % = {(w · g, w) : w ∈ Zq}. We set Λ = (G,g).

This defines a subset membership problem, whose (L, L̄)-indistinguishability
property is equivalent to the DDH assumption.

MDDH-Based Subset Membership Problem. For some interesting cryp-
tographic cyclic groups, such as groups with a symmetric pairing, the DDH as-
sumption does not hold. That is why weaker assumptions, such as the decisional
linear assumption (DLIN, [8]), have been considered. More recently, Escala et
al. introduced the Matrix Diffie-Hellman (MDDH) assumption family [18] that
generalizes DDH and its weaker variants like DLIN. Let us recall the MDDH
assumption families in the context of subset membership problems.

Let G be a cyclic group of prime order q. Let D be a distribution of matrices
in Gt×d with d < t being two positive integers. Let g ←r D. Let X = Gt. Let
L be the subgroup of X generated by the columns of g and let L̄ = X \ L. A
witness w ∈ W = Zdq for b ∈ L is such that b = g ·w. In other words, we have
W = Zdq and % = {(g ·w, w) : w ∈ Zdq}. We set Λ = (G,g).

This defines a subset membership problem, whose (L, L̄)-indistinguishability
property corresponds to the D-MDDH assumption.

When d = 1, t = 2, and D is the uniform distribution over vectors of two
generators of G, then we get back the DDH-based subset membership problem.

DCR-Based Subset Membership Problem. Let N = pq be a product
of two λ-bit random safe primes p = 2p′ + 1 and q = 2q′ + 1, where p′ and
q′ are also primes and where λ is a function of the security parameter κ. Let
N ′ = p′q′. Let s ≥ 1. Write Z∗Ns+1

∼= GNs⊕GN ′⊕G2⊕T , where ∼= denotes group
isomorphism, ⊕ is the direct sum or Cartesian product, Gi are cyclic groups of
order i, and T is the order-2 cyclic group generated by −1 mod Ns+1. Let
G = X = JNs+1 ∼= GNs ⊕GN ′ ⊕ T . We recall that we use additive notation for
G. Let g be a random generator of L ∼= GN ′ , that is a subgroup of X ; g can be
thought of as a random 2Ns-th residue. A witness w ∈ W = Z for b ∈ L is such
that b = w · g. Finally, let g⊥ be an arbitrary generator of the cyclic group GNs

8 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

(for example g⊥ = 1 + N ∈ ZNs+1 , where + here is the additive law of ZNs+1)
and let L̄ = L+ g⊥. We set Λ = (N, s, g, g⊥).

One cannot sample uniform witnesses as W = Z is infinite. We cannot
set W = ZN ′ , as computing N ′ from Λ = (N, s, g) requires to factor N . In-
stead, we sample witnesses uniformly from SN := {0, . . . , bN/4c − 1}. Clearly,
SD(U(ZN ′), U(SN)) = 1− p′q′/(pq/4) = (2p′ + 2q′ + 1)/(pq) < 2(p+ q)/(pq) <
4/ spf(N). From this distribution over W, we can derive distributions over %, L,
and L̄ = L+ g⊥. The two latter distributions are statistically close to uniform.

This setting defines a subset membership problem, whose (L, L̄)-
indistinguishability property can be proven under the Decisional Composite
Residuosity (DCR, [29]) assumption. More precisely, we consider the DCR as-
sumption for moduli that are product of safe primes; the DCR assumption then
basically states that in the case s = 1, no probabilistic polynomial time adver-
sary can distinguish between uniform elements of L and X .5 This is a classical
variant of DCR, which is equivalent to the original DCR assumption [29], assum-
ing that safe primes are sufficiently dense (see, e.g., [14]). We prove the following
lemma in the full version following [15]:

Lemma 3. Assuming the DCR assumption, the above subset membership prob-
lems is (L, L̄)-indistinguishable. More precisely, if there exists an adversary A
that has advantage εA in breaking (L, L̄)-indistinguishability, then there exists
an attacker B that runs in approximately the same time and that has advantage
εB in breaking DCR, such that εA ≤ 2s · εB + 8/ spf(N).

2.2 Projective Hash Functions

In [14], Cramer and Shoup defined the influential notion of projective hash func-
tions (PHFs) to construct IND-CPA and even IND-CCA secure public-key en-
cryption schemes. In this section, we recall the definition of a PHF using the
notation of [3].

Let P be a subset membership problem, specifying an ensemble (Iκ)κ of
instance distributions. A projective hash function for P is a tuple PHF =
(hashkg, projkg, hash, projhash) of four probabilistic polynomial time algorithms:

– hashkg(Λ) generates a hashing key hk in some set K for the instance Λ =
Λ[X ,L,W, %],

– projkg(hk) (deterministically) derives from the hashing key hk a projection
key hp,

– hash(hk, b) (deterministically) computes the hash value H (in some efficiently
recognizable set Π) of b ∈ X under hk ∈ K,

– projhash(hp, b, w) (deterministically) computes the projected hash value pH
of b ∈ L using a witness w ∈ W.

5 The original assumption actually does not restrict the the elements to be of Jacobi
symbol 1, but doing this restriction yields an equivalent assumption, since we can
multiply element of Jacobi symbol -1 by an arbitrary Ns-residue of Jacobi symbol
-1.

Inner-Product Functional Encryption from PHFs 9

A PHF must be complete, in the following sense:

– For any instance Λ, for any b ∈ X and w ∈ W, such that (b, w) ∈ %, for any
hashing key hk ∈ K, if hp← projkg(hk), then

hash(hk, b) = projhash(hp, b, w) .

The instance Λ is implicitly included in the hashing key hk and the projection
key hp.

2.3 Functional Encryption

A functionality F defined over (Y,Z) is a function Y × Z → Σ ∪ {⊥}, where
Y is a key space, Z is a message space, and Σ is an output space that does not
contain the special symbol ⊥.

A functional encryption scheme for functionality F [28,10] is a tuple FE =
(setup, keygen, enc, dec) of four probabilistic polynomial time algorithms:

setup(1κ, `): generates system parameters pp, and then returns a master secret
and public key pair (msk,mpk), where both msk and mpk also contain pp,

keygenmsk(y ∈ Y): given a master secret key msk and a key (or a function) y,
returns a partial secret key msky = (pp, ky, y),

encmpk(z ∈ Z): given a master public key mpk and a plaintext z, returns a
ciphertext c,

decmsky (c): returns S ∈ Σ ∪ {⊥}.

Note that according to this definition, pp and y are always a part of msky,
and thus ky is basically “the rest of” msky. The public value ` contains some
information about y and z that can be made public (e.g., their lengths).

FE must be complete, in the sense that if (y, z) is in the domain of F , then
for all (msk,mpk) ←r setup(1κ), for all msky ←r keygenmsk(y), and for all
c←r encmpk(z), it holds that decmsky (c) = F(y, z).

Definition 4 (IND-FE-CCA Security). A functional encryption scheme
FE = (setup, keygen, enc, dec) is IND-FE-CCA secure (or, secure against cho-
sen ciphertext attacks) [26], if no probabilistic polynomial time adversary A has
a non-negligible advantage in the following game:
1. The challenger sets (msk,mpk)←r setup(1κ, 1`) and sends mpk to A.
2. A makes adaptive secret key and decryption queries to the challenger. At

each secret key query, A chooses y ∈ Y and obtains msky = (pp, ky, y) ←r

keygenmsk(y). Let yi be the ith queried secret key.
At each decryption query, A chooses a ciphertext c′ and y ∈ Y, then the
challenger computes msky = (pp, ky, y) ←r keygenmsk(y) and sends back
decmsky (c′) to A.

3. A chooses z0 6= z1 such that F(yi, z0) = F(yi, z1) for for all queried yi. A
sends z0 and z1 to the challenger. The challenger chooses β ←r {0, 1}, and
sends c←r encmpk(zβ) to A.

10 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

4. A makes more secret key queries for keys yi ∈ Y , with the condition that
F(yi, z0) = F(yi, z1), and possibly some more decryption queries (c′, y), with
the condition that c′ 6= c.
Let qdec be the number of decryption queries made during the whole game,
and let (c′j , yj) be the jth decryption query.

5. A outputs a bit βA ∈ {0, 1} and wins if βA = β.
More precisely, the advantage of A is defined as

Advind−fe−cca
FE,A (κ) := 2 · |Pr[βA = β]− 1/2| .

FE is IND-FE-CCA secure, if Advind−fe−cca
FE,A is negligible for all probabilistic poly-

nomial time adversaries A.

FE is IND-FE-CPA secure (or, adaptively secure against chosen plaintexts
attacks, [28,10]), if Advind−fe−cca

FE,A is negligible for all probabilistic polynomial time
adversaries A that make no decryption queries.

The selective IND-FE-CPA security satisfied by [2] has the further require-
ment that the challenge messages ~z0 and ~z1 have to be chosen before the adver-
sary sees the public key mpk.

Definition 5 (Inner-Product Functional Encryption). In the inner-
product functional encryption [2], setup(1κ, `) in particular chooses a ring R and
two efficiently recognizable subsets Y and Z of R`, each y (resp., z) corresponds
to some vector ~y ∈ Y ⊆ R` (resp., ~z ∈ Z ⊆ R`), and F(~y, ~z) := 〈~y, ~z〉 ∈ R.

We insist on the fact that 〈~y, ~z〉 is computed in R.

3 FE-CPA-Friendly Projective Hash Function

In this section, we first present the properties we need on PHFs in order to build
an IND-FE-CPA secure IPFE. Then we show some examples of standard PHFs
satisfying them.

3.1 Key Homomorphism and Projection Key Homomorphism

For correctness of the IPFE we will need the following property.

Definition 6 (Key Homomorphism [6]). A projective hash function PHF =
(hashkg, projkg, hash, projhash) for a subset membership problem P is key-
homomorphic, if it satisfies the following additional properties:
1. the set K of hashing keys and the set Π of hash values are additive Abelian

groups, with polynomial time group operations;
2. for any instance Λ, and any word b ∈ X , the function hk ∈ K 7→

hash(hk, b) ∈ Π is a group homomorphism, that is, hash(hk, b) +
hash(hk′, b) = hash(hk + hk′, b), for any hk, hk′ ∈ K.

Inner-Product Functional Encryption from PHFs 11

We do not require K to be finite. In the DCR construction, K = Z. However,
we require that each group element of K and Π has a unique representation as
a bit-string.

The next property, projection key homomorphism, is only required in Sect. 5.3
(for the CCA security). We will introduce it already here, since all our concrete
examples from Sect. 3.5 coincidentally satisfy this property.

Definition 7 (Projection Key Homomorphism). A projective hash func-
tion PHF = (hashkg, projkg, hash, projhash) for a subset membership problem P
is projection-key-homomorphic if it satisfies the following additional properties:
1. the set K of hashing keys and the set Khp of projection keys are additive

Abelian groups, with polynomial time group operations;
2. for any instance Λ, the function hk ∈ K 7→ projkg(hk) ∈ Khp is a group

homomorphism, that is, projkg(hk + hk′) = projkg(hk) + projkg(hk′), for any
hk, hk′ ∈ K.

3.2 Strong Diversity

The second property we need for our PHFs is strong diversity. More precisely,
we require that for each b there exists a (not necessarily efficiently computable)
hashing key hk⊥(b), such that hk and hk + hk⊥(b) result in the same projection
key, while the hash value of b under the key hk⊥(b) is equal to g⊥, where g⊥ is
a fixed efficiently computable group element.

Definition 8 (Strong diversity). A key-homomorphic projective hash func-
tion PHF = (hashkg, projkg, hash, projhash) for a subset membership problem P
is (hk⊥, g⊥,M⊥)-strongly diverse for a function hk⊥ : L̄ → Π, an element g⊥ of
Π, and a positive integer M⊥, if the following properties are satisfied:
1. g⊥ and M⊥ can be efficiently computed from Λ;
2. the group element g⊥ has order M⊥,
3. for any hashing key hk ∈ K and any word b ∈ L̄:

projkg(hk + hk⊥(b)) = projkg(hk) , (2)
hash(hk⊥(b), b) = g⊥ . (3)

We do not require hk⊥ to be efficiently computable, as we are only using it to
bound statistical distance.

In what follows, we will use the following straightforward lemma.
Lemma 9. If a key-homomorphic PHF is also projection-key homomorphic,
then Eq. (2) is true iff projkg(hk⊥(b)) = 0.

Relation with Diverse Groups. Diverse groups were introduced in [14] as a
way to construct PHFs. They can be seen as key-homomorphic projection-key-
homomorphic strongly diverse PHFs with the two following differences: L̄ = X\L
(instead of L̄ ⊆ X \L), and for any hk ∈ K and any b ∈ L̄, it is only required that
hash(hk + hk⊥(b), b) 6= 0 instead of hash(hk + hk⊥(b), b) = g⊥. Nevertheless, all
the diverse groups we currently know of are also strongly diverse for L̄ = X \L.

12 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

3.3 Translation Indistinguishability

We also require one last statistical property, translation indistinguishability. In-
formally it says that translating the hashing key of the PHF by a small multiple
of hk⊥(b) cannot be detected with non-negligible probability. In the proof, we
use this as a statistical argument to conclude after using the computational
assumption.

Definition 10 (Translation indistinguishability). A key-homomorphic pro-
jective hash function PHF = (hashkg, projkg, hash, projhash) is (hk⊥,Mz, εti)-
translation-indistinguishable for a function hk⊥ : L̄ → Π, a positive integer
Mz, and εti ∈ [0, 1], if for any integer z ∈ {−Mz, . . . ,Mz} and for any b ∈ L̄,

SD(hashkg(Λ), hashkg(Λ) + z · hk⊥(b)) ≤ εti .

Important Particular Case: Key Uniformity. For many key-homomorphic
PHFs, like the above described ones based on DDH and MDDH, the output of
hashkg is actually uniform over the group K. In this case, the PHF is automati-
cally (·, ·, 0)-translation-indistinguishable. More formally, we have the following
lemma.

Lemma 11. Let PHF = (hashkg, projkg, hash, projhash) be a key-homomorphic
PHF such that the distribution of hashkg(Λ) is uniform over K. Let L̄ be a non-
empty subset of X , hk⊥ be a function from L̄ to Π and Mz be a positive integer.
Then PHF is (L̄, hk⊥,Mz, 0)-translation-indistinguishable.

Proof. Both hashkg(Λ) and hashkg(Λ) + z · hk⊥(b) are uniform group elements
in K. ut

3.4 FE-CPA Friendliness

In the following, we regroup all 3 properties we have defined under the FE-CPA
friendliness property.

Definition 12 (FE-CPA Friendliness). A projective hash function PHF =
(hashkg, projkg, hash, projhash) is (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly for a
function hk⊥ from L̄ to Π, an element g⊥ of Π, and two positive integers
M⊥ and Mz, if it is key-homomorphic, (hk⊥, g⊥,M⊥)-strongly diverse, and
(hk⊥,Mz, εti)-translation-indistinguishable.

3.5 Examples

In this section, we describe FE-CPA-friendly PHFs for the subset membership
problems described in Sect. 2.1.

Inner-Product Functional Encryption from PHFs 13

DDH. Let G be an additive cyclic group of prime order q, let X = G2, let L
be the subgroup of X generated by g = (g1, g2)ᵀ ∈ G2, where gi are random
generators of G. A witness w ∈ W = Zq for b ∈ L is such that b = w ·g. We set
Λ = (G,g).

We recall the PHF of Cramer and Shoup [13, Section 8.1.1] defined as follows:
hashkg(Λ): output hk←r Z2

q = K ,
projkg(hk): output hp← hkᵀ · g ∈ G,
hash(hk,b): output H← hkᵀ · b ∈ G = Π,
projhash(hp,b, w): output pH← hp · w ∈ G = Π.

Lemma 13. Using above notation, let g⊥ an arbitrary generator of G, M⊥ = q,
Mz be a positive integer, and εti = 0. For any b ∈ X \ L, let hk⊥(b) be defined
as follows:

hk⊥(b) =
logg1 g⊥

logg1 b1 · logg1 g2 − logg1 b2
·
(

logg1 g2
−1

)
with b =

(
b1
b2

)
∈ G2 .

Then, the PHF described above is (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly.

Proof. We first remark that hk⊥(b) is well defined, as logg1 b1 ·logg1 g2 6= logg1 b2
since b /∈ L.

Key Homomorphism is straightforward.
Strong Diversity. Since the space of projection keys is also a group and

projkg is a group homomorphism, we can use Lem. 9. Hence, we just need to
prove that projkg(hk⊥(b)) = 0 and hash(hk⊥(b),b) = g⊥. This follows from the
following two facts:

projkg(hk⊥(b)) =
logg1 g⊥

logg1 b1 · logg1 g2 − logg1 b2
·
(
logg1 g2 −1

)
·
(
g1
g2

)
,

hash(hk⊥(b),b) =
logg1 g⊥

logg1 b1 · logg1 g2 − logg1 b2
·
(
logg1 g2 −1

)
·
(
b1
b2

)
.

Translation Indistinguishability follows from Lem. 11. ut

MDDH. Let Λ = (G, g) be defined as in the MDDH subsubsection of Sect. 2.1
on page 7. We recall that g ∈ Gt×d, X = Gt, L is the subgroup generated by
the columns of g, and L̄ = X \L. A witness w ∈ W = Zdq for b ∈ L is such that
b = g ·w.

We recall the PHF defined by Escala et al. in [18]:
hashkg(Λ): output hk←r Ztq = K ,
projkg(hk): output hp← gᵀ · hk ∈ Gd,
hash(hk,b): output H← hkᵀ · b ∈ G = Π,
projhash(hp,b, w): output pH← hpᵀ ·w ∈ G = Π.

We can prove the following lemma similarly to Lem. 13:

14 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

Lemma 14. Using above notation, let g⊥ an arbitrary generator of G, M⊥ = q,
Mz be a positive integer, and εti = 0. Let hk⊥(b) be an arbitrary vector satisfying
hk⊥(b)ᵀ · g = 0 and hk⊥(b)ᵀ · ~b = g⊥, which exists as ~b is not in the span of
the columns of g. Then, the PHF described above is (hk⊥, g⊥,M⊥,Mz, εti)-FE-
CPA-friendly.

DCR. Let Λ = (N, s, g, g⊥) be defined as in the DCR subsubsection of Sect. 2.1
on page 7. We have: G = X = JNs+1 ∼= GNs⊕GN ′⊕T , L = GN ′ , and L̄ = L+g⊥.
The element g is a generator of L, while g⊥ is a generator of GNs . We recall
that we use additive notation for the group G.

We define the DCR-based PHF as follows:
hashkg(Λ): output hk ←r {0, . . . , bMNs+1/4c} =: K∗ ⊆ Z =: K, where M is

a positive integer and is a parameter of the scheme,
projkg(hk): output hp← hk · g ∈ G,
hash(hk, b): output H← hk · b ∈ G =: Π,
projhash(hp, b, w): output pH← hp · w ∈ G = Π.
When M = 2, this PHF corresponds to the one of Cramer and Shoup in [14].

We insist on the fact that the set of hashing keys is K = Z so that it is a
group. However, hashkg only samples a hashing key from a finite subset K∗ of
K.

Lemma 15. Using above notation, let M⊥ = Ns, Mz be a positive integer, and
εti = Mz/M . Let hk⊥ be defined as follows:

hk⊥(b) = N ′ · (N ′−1 mod Ns) (< N ′Ns < Ns+1/4) .

Then, the PHF described above is (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly.

Key homomorphism and strong diversity are proven similarly as in the DDH
case, while translation indistinguishability follows from Lem. 2. The complete
proof is given in the full version.

Interestingly, because of our choice of L̄, hk⊥(b) does not depend on b. Note
also that for M < Mz/εti, this PHF is still key-homomorphic and strongly
diverse, but might lack the translation indistinguishability property that is nec-
essary for our application.

4 IND-FE-CPA Inner-Product Functional Encryption

In this section, we first show a generic construction of an IND-FE-CPA secure
inner-product functional encryption scheme from a FE-CPA-friendly projective
hash function. Then, we show two concrete instantiations, based on the DDH
and on the DCR assumptions.

Inner-Product Functional Encryption from PHFs 15

4.1 Generic Construction

We now define our generic construction for IND-FE-CPA secure IPFEs. Intu-
itively, we use ` PHFs in parallel, that are combined during decryption in order
to only reveal a linear combination of the hashes, which implies that it only
reveals this same linear combination of the messages. This restriction is enforced
by the key generation algorithm, which only outputs linear combinations of the
hashing keys.

Construction. We suppose that we have a (hk⊥, g⊥,M⊥, z, εti)-FE-CPA-
friendly projective hash function PHF = (hashkg, projkg, hash, projhash) for a
subset membership problem P. Let R be the ring Z or ZM⊥ , let ` be a positive
integer parameter corresponding to the length of the message and key vectors,
and let Y and Z two subsets of R`.6 We always suppose ` to be polynomial in
the security parameter κ.

We suppose that the following condition is satisfied.
Condition 1. Using the above notation:
1. if R = ZM⊥ , the order of any hashing key hk ∈ K divides M⊥;
2. Y and Z are efficiently recognizable subsets of R`;
3. for any ~z ∈ Z and any i, zi ∈ {−Mz, . . . ,Mz};
4. there exists a polynomial time algorithm (in the security parameter κ) that

given as input c~y = 〈~y, ~z〉 · g⊥ for ~y ∈ Y and ~z ∈ Z, can compute logg⊥
c~y =

〈~y, ~z〉;
5. for any ~y ∈ Y and ~z ∈ Z, 〈~y, ~z〉 is the same over R and over ZM⊥ (this

condition is trivial when R = ZM⊥).
The first subcondition implies that K is a R-module, which implies that, for

any t ∈ R, t ·hk is well defined. The second subcondition enables keygen and enc
to check in polynomial-time the validity of their arguments y and z respectively.
The third subcondition is used in the proof to apply the (hk⊥,Mz, εti)-translation
indistinguishability property. The fourth subcondition ensures that decryption
can be performed in polynomial time. The last subcondition is similar as the
condition in the “over Z constructions in [5]. If R = ZM⊥ , then—as in [5]—
a simple way to guarantee that subconditions 3 and 5 hold is to assume that
|yi|, |zi| < (M⊥/`)1/2 for each ~y ∈ Y, ~z ∈ Z, and i ≤ `. The fourth subcondition
can potential restrict the values |yi| and |zi| even more.

Our generic IND-FE-CPA IPFE scheme FEphf is depicted in Fig. 1.

Security. We define the following set:

∆Z := {~z1 − ~z0 : ~z0, ~z1 ∈ Z} .

Its cardinality |∆Z| is at most (4Mz − 1)`, as the cardinality of Z is at most
2Mz.

We have the following security theorem.
6 Formally, Y and Z are collections of subsets indexed by ` and Λ.

16 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

1. Let P be a subset membership problem. Let PHF = (hashkg, projkg, hash,
projhash) be a (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly PHF. We assume
that Cond. 1 is satisfied.

2. setup(1κ, `): Sample Λ ←r Iκ, and set pp ← (κ, `, Λ). Define ~hk ∈ K` and
~hp ∈ K`hp by setting

hki ←r hashkg(Λ) , hpi ← projkg(hki) .

Set msk← (pp, ~hk) and mpk← (pp, ~hp), and return (msk,mpk).
3. keygenmsk(~y ∈ Y): Set hk~y ← 〈~y, ~hk〉 ∈ K, and return msk~y ← (pp, hk~y, ~y).
4. encmpk(~z ∈ Z): Sample a random pair (b, w) ∈ %. Define ~c ∈ Π` by setting

ci ← projhash(hpi, b, w) + zi · g⊥ .

Return (b,~c).
5. decmsk~y (b,~c): Check that b ∈ X and ~c ∈ Π`; return ⊥ if any check fails. Set

c~z ← 〈~y,~c〉 − hash(hk~y, b) .

Return logg⊥
c~z.

Fig. 1. Generic inner-product functional encryption FEphf scheme

Theorem 16. Let P be a subset membership problem. Let PHF = (hashkg,
projkg, hash, projhash) be a (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly projective
hash function. We assume that Cond. 1 is satisfied. Then the scheme FEphf
depicted in Fig. 1 is complete and adaptively IND-FE-CPA secure.

More precisely, if there exists an attacker A = AFE that has advantage εA
in breaking the IND-FE-CPA security of FEphf , then there exists an attacker B
that runs in approximately the same time and that has advantage εB in breaking
the (L, L̄)-indistinguishability, such that

εA ≤ 2 · εB + ` · |∆Z| · εti .

The proof is provided in App. 16. As a quick overview, the proof is structured
in two parts: first we use a computational assumption to show that sampling a
word outside of the language for the challenge ciphertext is indistinguishable to
the adversary. One this is done, the second part is a statistical argument claiming
that the view of the adversary is then almost independent of the chosen bit β.

Remark 17. When εti 6= 0, there is an exponential loss in the security proof in
the term `|∆Z|εti. This term comes from the fact that at one point we guess
the value of ~z1 − ~z0. This is not complexity leveraging, as the reduction loss
is with regards to a statistical property. In particular, we do not need to rely
on subexponential computational assumptions. Concretely, in our instantiations
with DCR, we just need to take this security loss into account in the parameter

Inner-Product Functional Encryption from PHFs 17

M defining the bound on the size of the hashing key (see Sect. 3.5 and 4.3). This
approximately multiplies by log |∆Z| the size of the secret keys which would be
obtained if this security loss was not taken into account.

We also remark that if we used a selective security notion, where the ad-
versary announces ~z0 and ~z1 before obtaining the public key, we would not lose
the factor |∆Z|. We could then use classical complexity leveraging to go from
this selective notion to the adaptive one we are considering. But then, we would
need to use sub-exponential (L, L̄)-indistinguishability (if ` is polynomial in the
security parameter), and the size of the ciphertexts, of the secret and public
keys, and of the public parameters (and not just of the secret keys) would be
multiplied by |∆Z|.

4.2 DDH-Based Instantiation

Let us instantiate the framework with the DDH-based PHF defined in Sect. 3.5
on page 13. We set R = Zq andMz = q (or any large enough integer). To satisfy
Cond. 1, we need to choose the efficiently recognizable subsets Y and Z of R`
so that the discrete logarithm of 〈~y, ~z〉 · g⊥ ∈ G is efficient to compute, for any
~y ∈ Y and ~z ∈ Z. We recall that there exist generic algorithms to compute the
discrete logarithm of an element t · g⊥ in O(

√
|T |) group operations, when t is

in an interval T ; and in O(T) group operations, when t is in an arbitrary subset
of T ⊆ Zq.

The resulting construction FEddh coincides with the DDH-based scheme
in [5]. An explicit description of FEddh is provided in the full version. It can be
easily extended to use any MDDH-based PHF defined in Sect. 3.5.

Applying Thm. 16, we immediately get the following security theorem.

Theorem 18. Under the DDH assumption in G, the scheme FEddh is complete
and IND-FE-CPA.

More precisely, if there exists an attacker A = AFE that has advantage εA
in breaking the IND-FE-CPA security of FEddh, then there exists an attacker B
that runs in approximately the same time and that has advantage εB in breaking
the DDH assumption, such that εA ≤ 2 · εB .

It is worth noting that the term ` · |∆Z| · εti has disappeared because of the
key-uniformity.

4.3 DCR-based Instantiation

Let us instantiate the framework with the DCR-based PHF defined in Sect. 3.5
on page 14. We set R = Z. Contrary the DDH-based instantiation, the discrete
logarithm problem in the subgroup generated by g⊥ is easy: given t · g⊥, we can
always efficiently recover t. However, to satisfy Cond. 1, we need to choose Y
and Z so that for any ~y ∈ Y and ~z ∈ Z, 〈~y, ~z〉 is the same modulo M⊥ = Ns

and over the integers.
There are many ways to choose the parameters to satisfy this condition. We

propose one possible way here.

18 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

Example 19 (Example of parameters for our DCR-based instantiation). Let My

and Mz be positive integers such that 2MyMz + 1 ≤M⊥ = Ns. We set:

Y := {~y ∈ Z` : ‖~y‖ ≤My} , Z := {~z ∈ Z` : ‖~z‖ ≤Mz} ,

M := ` · 2κ ·Mz · |∆Z| ≤ ` · 2κ ·Mz · (4 ·Mz)` ,

where ‖.‖ denotes the Euclidean norm, so that |〈~y, ~z〉| ≤MyMz (when the inner-
product is over the integers). For the last inequality, we use the rough inequality
|∆Z| ≤ (4 ·Mz)`. ut

Then, we fix My and Mz so that 2MyMz + 1 ≤ M⊥. And we choose M so
that Mz/M is negligible.

The concrete DCR-based IPFE scheme FEdcr is fully described in the full
version. FEdcr is length-flexible in the same sense as the cryptosystems of [15,16].
Namely, by fixing the parameter s ∈ Z+, one can obtain bigger or smaller setsMz

and My. Larger s however makes the scheme less efficient. Note that the sizes of
our secret keys is slightly larger than those of [5], due to our security reduction;
but we do not need to sample discrete Gaussian, as all the distributions we are
using are uniform.

Applying Thm. 16 and Lem. 3, we immediately get the following security
theorem.

Theorem 20. Under the DCR assumption, the scheme FEdcr is complete and
IND-FE-CPA.

More precisely, if there exists an attacker A = AFE that has advantage εA
in breaking the IND-FE-CPA security of FEdcr, then there exists an attacker B
that runs in approximately the same time and that has advantage εB in breaking
the DCR assumption, such that εA ≤ 4s · εB + 16/ spf(N) + ` · |∆Z| ·Mz/M .

Using parameters from Ex. 19, we have the following security bound: εA ≤
4s · εB + 16/ spf(N) + 2−κ. Although there is an exponential loss in the security
reduction of Thm. 16, we emphasize that there is no exponential loss using these
parameters: the security loss is compensated by these well-chosen parameters.
Most importantly, all the algorithms of the resulting scheme run in polynomial
time (in the security parameter κ)7 and the reduction to DCR is polynomial
time. There is no complexity leveraging and we do not require subexponential
assumption nor exponential-size keys or ciphertexts.

5 FE-CCA-Friendly Projective Hash Functions

In order to achieve IND-FE-CCA security, we will require another kind of PHFs:
tag-based projective hash functions [1]. In this section, we first define this new
tool, as well as the properties we need for our construction. Then we show
tag-based PHFs satisfying these properties based on the same 3 examples as
previously: DDH, MDDH and DCR.
7 We recall that the length ` of the vectors is assumed to be polynomial in κ.

Inner-Product Functional Encryption from PHFs 19

As both a FE-CPA-friendly PHF and a FE-CCA-friendly PHF are used in
our constructions of IND-FE-CCA inner-product functional encryption scheme
in Sect. 6, we distinguish the two PHFs by adding a dagger to all the symbols
defining the latter PHF. Both PHFs will be used on the same subset membership
problem P.

5.1 Tag-Based Projective Hash Function

A tag-based projective hash function [1] is defined as a PHF, except that hash†
and projhash† take an additional input (in some efficiently recognizable set T)
called a tag τ . We suppose that we can efficiently uniquely encode any 2κ-bit
string as a tag τ , as a tag is usually the output of a collision-resistant hash-
function. In our constructions, T is ZM for some large integer M .

Definition 21 (Tag-based Projective Hash Function [1]). Let P be a
subset membership problem, specifying an ensemble (I`)`≥0 of instance dis-
tributions. A tag-based projective hash function for P is a tuple PHF† =
(hashkg†, projkg†, hash†, projhash†) of four probabilistic polynomial time algo-
rithms:

– hashkg†(Λ) generates a hashing key hk† in some set K† for the instance
Λ = Λ[X ,L,W, %],

– projkg†(hk†) (deterministically) derives from the hashing key hk† a projection
key hp† from the set Khp of possible projection keys,

– hash†(hk†, b, τ) (deterministically) computes the hash value H† (in some ef-
ficiently recognizable set Π), of b ∈ X under hk† ∈ K†, for the tag τ ∈ T ,

– projhash†(hp†, b, w, τ) (deterministically) computes the projected hash value
pH† of b ∈ L using a witness w ∈ W, for the tag τ ∈ T .

It has to satisfy the following correctness property:

– For any instance Λ, for any b ∈ X and w ∈ W, s.t. (b, w) ∈ %, for any
hashing key hk† ∈ K†, for any tag τ ∈ T , if hp† ← projkg†(hk†), then:

hash†(hk†, b, τ) = projhash†(hp†, b, w, τ) .

The notions of key homomorphism and projection key homomorphism can
be adapted to tag-based PHFs in a straightforward way (key homomorphism has
to hold for any tag τ ∈ T).

In the sequel, we sometimes omit the term “tag-based” when it is clear from
context.

5.2 2-Universality

We now recall the notion of 2-universality, first introduced by Cramer and Shoup
in [14], in order to ensure non-malleability. This will not be directly required by
the tag-based PHF we use in the construction, but by a slight modification on it
that will be used during the proof. It will ensure that decryption queries made
by the adversary do not leak too much information.

20 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

Definition 22 (2-universality). A key-homomorphic tag-based projective hash
function PHF† = (hashkg†, projkg†, hash†, projhash†) for a subset membership
problem P is ε†2u-2-universal if for any instance Λ, for any b ∈ X and b′ ∈ X \L,
for any distinct tags τ, τ ′ ∈ T , for any hp† ∈ Khp, and for any H† ∈ Π, H̃† ∈ Π:

Pr
hk†

[
H† = hash†(hk†, b, τ) ∧ H′† = hash†(hk†, b′, τ ′) ∧ hp† = projkg†(hk†)

]
≤ ε†2u · Pr

hk†

[
H† = hash†(hk†, b, τ) ∧ hp† = projkg†(hk†)

]
,

where probabilities are taken over hk† ←r hashkg†(Λ). The PHF is 2-universal
if it is ε†2u(κ)-2-universal for some negligible function ε†2u(κ).

In our generic construction, we will not require the PHF used in the con-
struction to be 2-universal, but a variant of it where hashkg† is replaced by some
other (not necessarily polynomial time) algorithm.

5.3 Universal Translation Indistinguishability

We also need one last statistical property to conclude the proof, as in the IND-
FE-CPA case: universal translation indistinguishability. It is a strengthening
of the previous translation indistinguishability in the sense that the algorithm
defining the translation has to be the same for all words.

Definition 23 (Universal translation indistinguishability).
A key-homomorphic tag-based projective hash function PHF† =
(hashkg†, projkg†, hash†, projhash†) is (hashkg′†,Mz, ε

†
uti)-universally-translation-

indistinguishable for a (not necessarily polynomial time) algorithm hashkg′†

taking as input Λ and outputting a hashing key hk† in some set K′∗† ⊆ K, and
for a positive integer Mz, if for any integer z such that |z| ≤Mz,

SD(hashkg†(Λ), hashkg†(Λ) + z · hashkg′†(Λ)) ≤ ε†uti .

Important Particular Case: Key Uniformity. For many key-homomorphic
tag-based PHFs, the output of hashkg† is actually uniform over the group K†.
In this case, as for translation indistinguishability (Lem. 11), the PHF is auto-
matically (hashkg′†, ·, 0)-universally-translation-indistinguishable, for hashkg′† =
hashkg†. More formally, we have the following lemma.

Lemma 24. Let PHF† = (hashkg†, projkg†, hash†, projhash†) be a key-
homomorphic tag-based PHF such that the distribution of hashkg†(Λ) is uniform
over K†. Let Mz be a positive integer. Then PHF is (hashkg†,Mz, 0)-universally-
translation-indistinguishable.

Proof. Both hashkg†(Λ) and hashkg†(Λ) + z · hashkg†(Λ) are uniform group ele-
ments in K†. ut

Inner-Product Functional Encryption from PHFs 21

5.4 FE-CCA Friendliness
In the following, we regroup the properties we need under the FE-CCA friendli-
ness property. It is used as a shorthand for the sake of readability and regroups
projection key homomorphism, universal translation indistinguishability, and 2-
universality on a slight modification of the PHF.
Definition 25 (FE-CCA Friendliness). A tag-based projective hash func-
tion PHF† = (hashkg†, projkg†, hash†, projhash†) is (hashkg′†, Σ†, ε†2u,Mz, ε

†
uti)-

FE-CCA-friendly for a (not necessarily polynomial time) algorithm hashkg′†

taking as input Λ and outputting a hashing key hk† in some set K′∗† ⊆ K, and
for a positive integer Mz, for a subset Σ† of Z, and for a positive integer Mz,
if PHF† is key-homomorphic, projection-key-homomorphic, (hashkg′†,Mz, ε

†
uti)-

universally-translation-indistinguishable and if for any t ∈ Σ†, the PHF
(t · hashkg′†, projkg†, hash†, projhash†) is ε†2u-2-universal, where the algorithm
t · hashkg′† runs hashkg′† and multiplies the output by t.

Important Particular Case: Key Uniformity. For many key-homomorphic
PHFs, the output of hashkg† is actually uniform over the group K†. In this
case, we have the following lemma which proves FE-CCA friendliness from 2-
universality.
Lemma 26. Let PHF† = (hashkg†, projkg†, hash†, projhash†) be a ε†2u-2-universal
tag-based PHF such that the distribution of hashkg†(Λ) is uniform over K†. Then
for any t ∈ Z, (t · hashkg†, projkg†, hash†, projhash†) is ε†2u-2-universal.
Proof. Since hashkg†(Λ) is uniformly distributed, t·hashkg†(Λ) is as well, so both
schemes are equal. ut

5.5 Examples
2-universal tag-based PHFs can be constructed from diverse groups, as in [14]. All
the constructions in [14] are key-homomorphic and projection-key-homomorphic.
And for well-chosen parameters, they actually are FE-CCA-friendly. Let us now
describe these FE-CCA-friendly constructions for our three usual example subset
membership problems: DDH, MDDH, and DCRA.

DDH. Let G be a cyclic group of prime order q, let X = G2, let L be the
subgroup of X generated by g = (g1, g2)ᵀ ∈ G2, where gi are random generators
of G∗. A witness w ∈ W = Zq for b ∈ L is such that b = w ·g. We set Λ = (G,g).

We first recall the following 2-universal hash from [1]:
Tag set: T = Zq,
hashkg†(Λ): output hk† ←r Z4

q =: K,
projkg†(hk†): output hp† ←

(
g 0
0 g

)ᵀ · hk† ∈ G2 =: Khp,
hash†(hk†,b, τ): output H† ← hk†ᵀ ·

(
b
τ ·b
)
∈ G =: Π;

projhash†(hp†,b, w, τ): output pH† ← hp†ᵀ · (w
τ ·w) ∈ G = Π.

We prove the following lemma in the full version.

22 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

Lemma 27. Using above notation, let hashkg′† = hashkg†, Σ† = Zq, ε†2u = 1/q,
Mz be a positive integer, and ε†uti = 0. Then, the PHF described above is a
(hashkg′†, Σ†, ε†2u,Mz, ε

†
uti)-FE-CCA-friendly.

We use a slight extension of this PHF because we need an exponen-
tially small security parameter ε†2u, due our security reduction. The fol-
lowing PHF can be seen as repeating ν times the PHF of Lem. 27:
Tag set: T = Zq,
hashkg†(Λ): output hk† ←r Z4×ν

q =: K;
projkg†(hk†): output hp† ←

(
g 0
0 g

)
· hk† ∈ G2×ν =: Khp;

hash†(hk†,b, τ): output H† ← hk†ᵀ ·
(

b
τ ·b
)
∈ Gν =: Π;

projhash†(hp†,b, w, τ): output pH† ← (w
τ ·w)ᵀ · hp† ∈ Gν = Π.

We prove the following lemma in the full version.

Lemma 28. Using above notation, let hashkg′† = hashkg†, Σ† = Zq, ε†2u =
1/qν , Mz be a positive integer, and ε†uti = 0. Then, the PHF described above is
a (hashkg′†, Σ†, ε†2u,Mz, εti)-FE-CCA-friendly.

MDDH. The previous construction can be extended in a straightforward way to
any MDDH-based subset membership problem in a straightforward way, similar
to what is done for our FE-CPA-friendly construction in Sect. 3.5 in page 3.5.

DCR. Let Λ = (N, s, g, g⊥) be defined as in the DCR subsubsection of Sect. 2.1
on page 7. We have: G = X = JNs+1 ∼= GNs⊕GN ′⊕T , L = GN ′ , and L̄ = L+g⊥.
The element g is a generator of L, while g⊥ is a generator of GNs . We recall
that we use additive notation for the group G.

We define a PHF as follows:
Tag set: T = {0, . . . , bN/2c} ⊆ ZN ′

hashkg†(Λ): output hk† ←r {0, . . . , bνM†Ns+1/2c}2×ν =: K∗ ⊆ Z2×ν =: K,
where M† is a positive integer and is a parameter of the scheme,

projkg†(hk†): output hp† ←
(
g 0
0 g

)ᵀ · hk† ∈ G2×ν =: Khp;
hash†(hk†, b, τ): output H† ← hk†ᵀ ·

(
b
τ ·b
)
∈ Gν =: Π;

projhash†(hp†, b, w, τ): output pH† ← hp†ᵀ · (w
τ ·w) ∈ Gν = Π.

We prove the following lemma in the full version.

Lemma 29. Using above notation, Σ† = {−Ns + 1, . . . , Ns − 1} \ {0}, ε†2u =
1/2ν , Mz be a positive integer, and ε†uti = Mz/M

†. Define in addition the fol-
lowing algorithm:

hashkg′†(Λ): output hk† ←r Z2×ν
N ′Ns = K∗†.

Then, the PHF described above is a (hashkg′†, Σ†, ε†2u,Mz, ε
†
uti)-FE-CCA-

friendly.

Inner-Product Functional Encryption from PHFs 23

6 IND-FE-CCA Inner-Product Functional Encryption

In this section, we construct IND-FE-CCA inner-product functional encryption
from FE-CPA-friendly PHFs and FE-CCA-friendly PHFs. For the sake of read-
ability, we split our construction into two parts: we first show how to construct
a CCA secure tag-based variant of inner-product functional encryption from
PHFs with the right properties. Then we show how to construct a non tag-based
functional encryption that reaches CCA security from the tag-based variant.

6.1 Tag-Based Functional Encryption

We now define tag-based functional encryption. It is an adaptation from the
concept of tag-based encryption [24] to the context of functional encryption.

Definition 30. A tag-based functional encryption scheme for functionality F
is a tuple TBFE = (setup, keygen, enc, dec) of four probabilistic polynomial time
algorithms:

setup(1κ, `): first generates system parameters pp, and then returns a master
secret and public key pair (msk,mpk), where both msk and mpk also contain
pp,

keygenmsk(y ∈ Y): given a master secret key msk and y, returns a partial secret
key msky = (pp, ky, y),

encmpk,τ (z ∈ Z): given a master public key mpk, a tag τ , and a plaintext z,
returns a ciphertext c,

decmsky,τ (c): given a partial secret key msky, a tag τ , and a ciphertext c, returns
S ∈ Σ ∪ {⊥}.

TBFE must be complete, in the sense that if (y, z) is in the domain of F ,
and τ is a tag, then for all (msk,mpk)← setup(1κ), msky ← keygenmsk(y), and
c←r encmpk,τ (z; r), it holds that decmsky,τ (c) = F(y, z).

In the following definition, we have highlighted differences with the IND-FE-
CCA definition, Def. 4.

Definition 31 (IND-TBFE-CCA Security). A tag-based functional encryp-
tion scheme TBFE = (setup, keygen, enc, dec) is IND-TBFE-CCA secure (or,
secure against chosen ciphertext attacks), if no probabilistic polynomial time
adversary A has a non-negligible advantage in the following game:
1. The challenger sets (msk,mpk)← setup(1κ, `) and sends mpk to A.
2. A makes adaptive secret key and decryption queries to the challenger. At

each secret key query, A chooses y ∈ Y and obtains msky = (pp, ky, y) ←
keygenmsk(y). At each decryption query, A chooses a ciphertext c′, a tag τ ′,
and y ∈ Y, then the challenger computes msky = (pp, ky, y)← keygenmsk(y)
and sends back decmsky,τ ′

(c′) to A. Let yi be the ith queried secret key.
3. A chooses a tag τ , and z0 6= z1 such that F(yi, z0) = F(yi, z1) for all queried

yi. She sends τ , z0, and z1 to the challenger. The challenger chooses β ←r

{0, 1}, and sends c←r encmpk,τ (zβ) to A.

24 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

4. A makes more secret key queries for keys yi ∈ Y , with the condition that
F(yi, z0) = F(yi, z1), and decryption queries, with the condition that τ ′ 6= τ .
Let qdec be the number of decryption queries made during the whole game,
and let (yj , τ ′j , c′j) be the jth decryption query.

5. A outputs a bit βA ∈ {0, 1} and wins if βA = β.
More precisely, the advantage of A is defined as

Advind−tbfe−cca
TBFE,A (κ) := 2 · |Pr[βA = β]− 1/2| .

TBFE is secure against chosen ciphertext attacks (or, IND-TBFE-CCA secure),
if Advind−tbfe−cca

TBFE,A is negligible for all probabilistic polynomial time adversaries
Adv.

6.2 Generic Construction

Intuition. The core idea of our construction is similar to the one used in
the Cramer-Shoup encryption scheme [12,14]: adding a hash value (from a 2-
universal PHF) to ensure that the word b is in the language L, to our generic
IND-FE-CPA construction in Sect. 4.1. Then, at least information-theoretically,
the values hash(hki, b) used to decrypt a ciphertext (b,~c) could be computed
using only hpi and do not leak any information from hki. We can then con-
clude using the same ideas as in the IND-FE-CPA security proof of our generic
construction.

However, this does not work directly, as checking a 2-universal hash value
require to know the corresponding hashing key hk†, and knowing this hashing
key enables to fake these hash values. In other words, with the naive scheme
described previously, an attacker knowing a secret key for any ~y could then
generate a ciphertext with b /∈ L, but a valid 2-universal hash values. This
completely removes the usefulness of the 2-universal hash value.

Our new idea is the following: instead of using only one hash value, we use `
such values. The secret key msk~y only enables to check that a linear combination
(with coefficient ~y) of these hash values is valid. This uses the key homomorphism
property. Knowing msk~y enables to generate hash values that would be accepted
by the decryption oracle with ~y, and knowing msk~y for multiple vectors ~y enables
to generate hash values for any vector in the span of these ~y. But intuitively, this
is not really an issue, as if the attacker already knows msk~y, calling the decryption
oracle for ~y is of no use to him, as he could decrypt the given ciphertext himself.
The proof however is more subtle and requires a careful design of hybrid games
to deal with adaptivity and the fact that we are working over a ring and not
a field. In particular, we cannot directly rely on the notion of span of vectors.
Details can be found in the proof.

Construction. We suppose that we have a (hk⊥, g⊥,M⊥, z, εti)-FE-CPA-
friendly projective hash function PHF = (hashkg, projkg, hash, projhash) and a
(hashkg′†, Σ†, ε†2u,Mz, ε

†
uti)-FE-CCA-friendly projective hash function PHF† =

(hashkg†, projkg†, hash†, projhash†) for the subset membership problem P. Let R

Inner-Product Functional Encryption from PHFs 25

1. Let P be a subset membership problem. Let PHF = (hashkg, projkg, hash,
projhash) be a (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly PHF, and PHF† =
(hashkg†, projkg†, hash†, projhash†) be a (hashkg′†, Σ†, ε†2u,Mz, ε

†
uti)-FE-

CCA-friendly tag-based PHF. We assume that Cond. 1 is satisfied.
2. setup(1κ, `): Sample Λ←r Iκ, and set pp← (κ, `, Λ). For i = 1, . . . , `, set

hki ←r hashkg(Λ) , hpi ← projkg(hki) ,
hk†i ←r hashkg†(Λ) , hp†i ← projkg†(hk†i) ,

Set msk← (pp, ~hk, ~hk
†
) and mpk← (pp, ~hp, ~hp

†
), and return (msk,mpk).

3. keygenmsk(~y ∈ Y): Set hk~y ← 〈~y, ~hk〉 ∈ K and hk†~y ←r 〈~y, ~hk
†
〉 ∈ K†, and

return msk~y ← (pp, hk~y, hk†~y, ~y).
4. encmpk,τ (~z ∈ Z): Sample a random pair (b, w) ∈ %. For i = 1, . . . , `, set

ci ← projhash(hpi, b, w) + zi · g⊥ , c†i ← projhash†(hp†i , b, w, τ) .

Return (b,~c,~c †).
5. decmsk~y,τ (b,~c,~c †): Check that b ∈ X , and ci ∈ Π and 〈~y,~c †〉 =

hash†(hk†~y, b, τ) for i = 1, . . . , `; return ⊥ if any check fails. Set

c~z ← 〈~y,~c〉 − hash(hk~y, b) .

Return logg⊥
c~z.

Fig. 2. Generic inner-product tag-based functional encryption TBFEphf from a FE-
CPA-friendly PHF and a FE-CCA-friendly tag-based PHF

be the ring Z or ZM⊥ , let ` be a positive integer parameter corresponding to the
length of the message and key vectors, and let Y and Z be two subsets of R`.
We always suppose ` to be polynomial in the security parameter κ.

We suppose that Cond. 1 is satisfied, in addition to the following new condi-
tion.

Condition 2. Using the above notation:
1. if R = ZM⊥ , the order of any hashing key hk ∈ K† divides M⊥; and
2. for any ~y ∈ Y and ~z ∈ Z, 〈~y, ~z〉 ∈ Σ† ∪ {0} ⊆ R.

Security. We have the following security theorem.

Theorem 32. Let P be a subset membership problem. Let PHF =
(hashkg, projkg, hash, projhash) be a (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly
PHF. (hashkg′†, Σ†, ε†2u,Mz, ε

†
uti)-FE-CCA-friendly projective hash function.

Then the scheme TBFEphf is complete and IND-TBFE-CCA.

26 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

More precisely, if there exists an adversary A = AFE that has advantage
εA in breaking the IND-TBFE-CCA security of TBFEphf , then there exists an
attacker B that runs in approximately the same time and that has advantage εB
in breaking the (L, L̄)-indistinguishability, such that

εA ≤ 2 · εB + ` · |∆Z| · (εti + 2 · ε†uti) + 2 · qdec · |∆Z| · ε†2u ,

where qdec is the number of queries to the decryption oracle.

The proof is in the full version.

Remark 33. In addition to the exponential loss ` · |∆Z| · (εti + 2 · ε†uti) similar to
the one for the generic IND-FE-CPA construction (Thm. 16), there is an addi-
tion exponential loss in the security proof in the term 2qdec|∆Z|ε†2u. We point
out however that the resulting requirement that |∆Z|ε†2u is negligible in the se-
curity parameter can easily to achieve: given a ε†2u-2-universal PHF, we can get
a (ε†2u)ν-2-universal PHF, by repeating it ν-times in parallel. This transforma-
tion preserves FE-CCA friendliness. Our examples in Sect. 5.5 actually already
uses this trick. We emphasize that the resulting key and ciphertext sizes remain
polynomial in the security parameter κ, and that we do not rely on complexity
leveraging nor subexponential assumptions (see Rk. 17 on page 16).

Furthermore, as for the IND-FE-CPA construction from translation-
indistinguishable key-homomorphic PHF in Sect. 4.1, if we only consider a selec-
tive version of IND-TBFE-CCA where the adversary announces ~z0 and ~z1 before
receiving the public key, then we would not have this factor |∆Z|.

6.3 DDH-Based Instantiation

Let us instantiate the framework with the DDH-based FE-CPA-friendly PHF
defined in Sect. 3.5 on page 13, and the DDH-based FE-CCA-friendly tag-based
PHF defined in Sect. 5.5 on page 21. We set R = Zq and Mz = q (or any large
enough integer). As for the IND-FE-CPA scheme in Sect. 4.2, we need to choose
the efficiently recognizable subsets Y and Z of R` so that the discrete logarithm
of 〈~y, ~z〉 · g⊥ ∈ G is efficient to compute, for any ~y ∈ Y and ~z ∈ Z in order to
satisfy Cond. 2. The resulting construction TBFEddh is depicted in Fig. 3 and
can be easily extended to use any MDDH-based PHF defined in Sect. 5.5.

Applying Thm. 32, we immediately get the following security theorem.

Theorem 34. Under the DDH assumption in G, the scheme TBFEddh depicted
in Fig. 3 is complete and IND-TBFE-CCA.

More precisely, if there exists an attacker A = ATBFE that has advantage
εA in breaking the IND-TBFE-CCA security of TBFEddh, then there exists an
attacker B that runs in approximately the same time and that has advantage εB
in breaking the DDH assumption, such that εA ≤ 2 · εB + 2 · qdec · q`−ν .

In particular, setting ν = `+ 1, we have the following bound: εA ≤ 2 · εB +
2 · qdec

q .

Inner-Product Functional Encryption from PHFs 27

1. Let G be a cyclic group of prime order q, g⊥ a generator of G.
2. setup(1κ, `): Choose g←r G2. Set pp = (κ, `,g). For i = 1, . . . , `, set

hki ←r Z2
q , hpi ← hkᵀ

i · g ∈ G ,

hk†i ←r Z4×ν
q , hp†i ←

(
g 0
0 g

)ᵀ · hk†i ∈ G2×nu .

Set msk ← (pp, ~hk ∈ Z`q, ~hk
†
∈ (Z4×ν

q)`) and mpk ← (pp, ~hp ∈ G, ~hp
†
∈

(G2×ν)`). Return (msk,mpk).
3. keygenmsk(~y ∈ Z`q): Set hk~y ← 〈~y, ~hk〉 ∈ Z2

q and hk†~y ← 〈~y, ~hk
†
〉 ∈ Z4×ν

q .
Return msk~y ← (pp, hk~y, hk†~y, ~y).

4. encmpk,τ (~z ∈ Z`q): Pick r ←r Zq and set b← r · g ∈ G2.
For i = 1, . . . , `, set

ci ← zi · g⊥ + r · hpi ∈ G , c †i ← hp†i · (r
τ ·r) ∈ Gν .

Return (b, ~c ∈ G`, ~c † ∈ (Gν)`).
5. decmsk~y,τ (b,~c,~c †): Check that 〈~y,~c †〉 = hk†~y

ᵀ
·
(

b
τ ·b
)
; return ⊥ if it fails.

Set
c~z ← 〈~y,~c〉 − hkᵀ

~y · b ∈ G.

Return logg⊥
c~z.

Fig. 3. DDH-based inner-product tag-based functional encryption TBFEddh

6.4 DCR-Based Instantiations

Let us now instantiate the framework with the DCR-based FE-CPA-friendly
PHF defined in Sect. 3.5 on page 14, and the DDH-based FE-CCA-friendly tag-
based PHF defined in Sect. 5.5 on page 22. We use the same parameters as for
the IND-FE-CPA scheme in Sect. 4.3. The resulting construction TBFEdcr is
depicted in Fig. 4. We switch back to the multiplicative notation so that the
scheme looks more familiar.

Applying Thm. 32 and Lem. 3, we immediately get the following security
theorem.

Theorem 35. Under the DCR assumption, the scheme TBFEdcr depicted in
Fig. 4 is complete and IND-TBFE-CCA.

More precisely, if there exists an attacker A = ATBFE that has advantage
εA in breaking the IND-TBFE-CCA security of TBFEddh, then there exists an
attacker B that runs in approximately the same time and that has advantage εB
in breaking the DCR assumption, such that εA ≤ 4s · εB+ 16/ spf(N) + ` · |∆Z| ·
Mz · (1/M + 2/M†) + 2 · qdec · |∆Z|/2ν .

Using parameters from Ex. 19 and setting M† = M and ν ≥ κ + log2(2 ·
qdec · |∆Z|) = O(poly(κ)), we have the following security bound: εA ≤ 4s · εB +

28 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

1. Let N = pq be a product of two λ-bit random safe primes. We suppose
that Cond. 2 is satisfied. Let u←r Z∗Ns+1 , g← u2Ns , and g⊥ ← 1 +N .

2. setup(1κ, `): Set pp ← (κ, `,N, g). For i = 1, . . . , `, j = 1, 2, and k =
1, . . . , ν, set

hki ←r {0, . . . ,
⌊
MNs+1/4

⌋
} , hpi ← ghki ∈ G ,

hk†k,i,j ←r {0, . . . ,
⌊
νM†Ns+1/2

⌋
} , hp†k,i,j ← ghk†

k,i,j ∈ G .

Set msk ← (pp, ~hk ∈ Z`, ~hk
†
∈ (Z2×ν)`) and mpk ← (pp, ~hp ∈ G`, ~hp

†
∈

(G2×ν)`). Return (msk,mpk).
3. keygenmsk(~y ∈ Y): Set hk~y ← 〈~y, ~hk〉 over Z and hk†~y ← 〈~y, ~hk

†
〉 over Z2×ν .

Return msk~y ← (pp, hk~y,hk†~y, ~y).
4. encmpk,τ (~z ∈ Z): Sample r ←r {0, . . . , bN/4c}. Set b← gr. For i = 1, . . . , `

and k = 1, . . . , ν, set

ci ← (1 +N)zi · hpri ∈ Z∗Ns+1 , c †k,i = gr·hp
†
i,k,1+r·τ ·hp†

i,k,2 ∈ G .

Return (b, ~c ∈ G`, ~c † ∈ (Gν)`).
5. decmsk~y,τ (b,~c,~c †): Check that

∑`
i=1 yi · c

†
i,k = bhk†

~y,1,k+τ ·hk†
~y,2,k for k =

1, . . . , ν; return ⊥ if any check fails. Set c~z ←
∏`
i=1 c

yi
i /b

hk~y , and return
(c~z − 1)/N mod Ns.

Fig. 4. DCR-based inner-product tag-based functional encryption TBFEdcr over the
integers (using multiplicative notation for elements of G = J∗

Ns+1)

16/ spf(N)+4 ·2−κ. Similarly to what happens in our DCR-based IND-FE-CPA
instantiation in Sect. 4.3, although there is an exponential loss in the security
reduction of Thm. 32, we emphasize that there is no exponential loss using these
parameters: the security loss is compensated by these well-chosen parameters.

6.5 From Tag-Based Inner-Product Functional Encryption to CCA
Security

In the full version, we show how to construct a CCA-secure inner-product func-
tional encryption from the tag-based variant, a one-time signature, and a collision
resistant hash function. The transformation is a straightforward application of
the generic transformation that has been applied to PKE in [22]: the tag is the
hash of a fresh verification key for the one-time signature scheme, used to sign
the ciphertext. This prevents malleability.

Acknowledgments. We would like to thank David Pointcheval for useful dis-
cussions. This work was partially done while the first author was student at ENS,

Inner-Product Functional Encryption from PHFs 29

CNRS, INRIA, and PSL Research University, Paris, France. The first author
was supported in part by the CFM Foundation and by the Defense Advanced
Research Projects Agency (DARPA) and Army Research Office (ARO) under
Contract No. W911NF-15-C-0236. The second author was supported by the
European Research Council under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).
This third author was supported by the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 653497 (project
PANORAMIX), and by institutional research funding IUT2-1 of the Estonian
Ministry of Education and Research.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for Hash Proof Sys-
tems: New Constructions and Applications. In: EUROCRYPT 2015. LNCS, vol.
9057, pp. 69–100

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple Functional Encryp-
tion Schemes for Inner Products. In: PKC 2015. LNCS, vol. 9020, pp. 733–751

3. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth Projective Hashing for Con-
ditionally Extractable Commitments. In: CRYPTO 2009. LNCS, vol. 5677, pp.
671–689

4. Abdalla, M., Raykova, M., Wee, H.: Multi-input inner-product functional en-
cryption from pairings. Cryptology ePrint Archive, Report 2016/425 (2016)
http://eprint.iacr.org/.

5. Agrawal, S., Libert, B., Stehlé, D.: Fully Secure Functional Encryption for Linear
Functions from Standard Assumptions. In: CRYPTO 2016. LNCS, vol. 9816, pp.
333–362

6. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3) (2016)

7. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: CRYPTO 2004.
LNCS, vol. 3152, pp. 41–55

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229

10. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Chal-
lenges. In: TCC 2011. LNCS, vol. 6597, pp. 253–273

11. Boyle, E., Chung, K., Pass, R.: On Extractability Obfuscation. In: TCC 2014.
LNCS, vol. 8349, pp. 52–73

12. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: CRYPTO 1998. LNCS, vol. 1462,
pp. 13–25

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. Cryptology ePrint Archive, Report
2001/085 (2001) Full version of [14]. http://eprint.iacr.org/2001/085.

14. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: EUROCRYPT 2002. LNCS, vol.
2332, pp. 45–64

http://eprint.iacr.org/
http://eprint.iacr.org/2001/085

30 Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

15. Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-Key System. In: PKC 2001. LNCS, vol. 1992, pp.
119–136

16. Damgård, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Appli-
cations. In: ACISP 2003. LNCS, vol. 2727, pp. 350–364

17. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: PKC 2016. LNCS, vol. 9614, pp. 164–195

18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An Algebraic Framework
for Diffie-Hellman Assumptions. In: CRYPTO (2) 2013. LNCS, vol. 8043, pp.
129–147

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
Indistinguishability Obfuscation and Functional Encryption for all Circuits. In:
FOCS 2013, pp. 40–49

20. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional Encryption Without
Obfuscation. In: TCC 2016-A (2). LNCS, vol. 9563, pp. 480–511

21. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: EUROCRYPT 2008. LNCS, vol.
4965, pp. 146–162

22. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: TCC 2006.
LNCS, vol. 3876, pp. 581–600

23. Kiltz, E., Vahlis, Y.: CCA2 secure IBE: standard model efficiency through au-
thenticated symmetric encryption. In: CT-RSA 2008. Lecture Notes in Computer
Science, vol. 4964, pp. 221–238

24. MacKenzie, P., Reiter, M.K., Yang, K. In: Alternatives to Non-malleability: Defi-
nitions, Constructions, and Applications. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2004) pp. 171–190

25. Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

26. Nandi, M., Pandit, T.: Generic conversions from cpa to cca secure functional
encryption. Cryptology ePrint Archive, Report 2015/457 (2015) http://eprint.
iacr.org/2015/457.

27. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437

28. O’Neill, A.: Definitional Issues in Functional Encryption. Technical Report
2010/556, IACR (2010) Available at http://eprint.iacr.org/2010/556, last retrieved
version from 18 Mar 2011.

29. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238

30. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: CRYPTO 1991. LNCS, vol. 576, pp. 433–444

31. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: STOC 2005, pp. 84–93

32. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: EUROCRYPT 2005.
LNCS, vol. 3494, pp. 457–473

33. Waters, B.: A Punctured Programming Approach to Adaptively Secure Functional
Encryption. In: CRYPTO (2) 2015. LNCS, vol. 9216, pp. 678–697

34. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions
for chosen-ciphertext secure attribute based encryption. In: PKC 2011. LNCS, vol.
6571, pp. 71–89

http://eprint.iacr.org/2015/457
http://eprint.iacr.org/2015/457

	CCA-Secure Inner-Product Functional Encryption from Projective Hash Functions
	Introduction
	Preliminaries
	Subset Membership Problems and Concrete Assumptions
	Projective Hash Functions
	Functional Encryption

	FE-CPA-Friendly Projective Hash Function
	Key Homomorphism and Projection Key Homomorphism
	Strong Diversity
	Translation Indistinguishability
	FE-CPA Friendliness
	Examples

	IND-FE-CPA Inner-Product Functional Encryption
	Generic Construction
	DDH-Based Instantiation
	DCR-based Instantiation

	FE-CCA-Friendly Projective Hash Functions
	Tag-Based Projective Hash Function
	2-Universality
	Universal Translation Indistinguishability
	FE-CCA Friendliness
	Examples

	IND-FE-CCA Inner-Product Functional Encryption
	Tag-Based Functional Encryption
	Generic Construction
	DDH-Based Instantiation
	DCR-Based Instantiations
	From Tag-Based Inner-Product Functional Encryption to CCA Security

