Emeric Bouin 
email: bouin@ceremade.dauphine.fr
  
Christopher Henderson 
email: ckhenderson@math.arizona.edu
  
Lenya Ryzhik 
email: ryzhik@math.stanford.edu
  
The Bramson delay in the non-local Fisher-KPP equation

Keywords: Reaction-diffusion equations, Logarithmic delay, Parabolic Harnack inequality AMS Class. No: 35K57, 35Q92, 45K05, 35C07

We consider the non-local Fisher-KPP equation modeling a population with individuals competing with each other for resources with a strength related to their distance, and obtain the asymptotics for the position of the invasion front starting from a localized population. Depending on the behavior of the competition kernel at infinity, the location of the front is either 2t -(3/2) log t + O(1), as in the local case, or 2t -O(t β ) for some explicit β ∈ (0, 1). Our main tools here are a local-in-time Harnack inequality and an analysis of the linearized problem with a suitable moving Dirichlet boundary condition. Our analysis also yields, for any β ∈ (0, 1), examples of Fisher-KPP type non-linearities f β such that the front for the local Fisher-KPP equation with reaction term f β is at 2t -O(t β ).

Introduction

The Fisher-KPP equation

u t = u xx + u(1 -u) (1.1)
is one of the simplest models for population spreading, accounting for a competition for resources. However, (1.1) only accounts for a local competition between individuals. When this competition is non-local, one is led to the non-local Fisher-KPP equation

u t -u xx = u(1 -φ ⋆ u), t > 0, x ∈ R, u(0, •) = u 0 . (1.2)
Here, φ is a probability density that represents the strength of the competition between individuals a given distance apart. Equation (1.2) has garnered much interest recently, mostly for two reasons. First, it does not admit a comparison principle, leading to inherent technical difficulties -even proving a uniform upper bound on u is non-trivial [START_REF] Hamel | On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds[END_REF]. Second, unusual behavior may occur, such as the existence of oscillating wave trains behind the front [START_REF] Faye | Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach[END_REF][START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF][START_REF] Gourley | Travelling front solutions of a nonlocal Fisher equation[END_REF][START_REF] Nadin | Wave-like solutions for nonlocal reactiondiffusion equations: a toy model[END_REF]. Our interest is in the spreading of the solutions of (1.2) when the initial density u 0 is localized. To motivate our work, we recall the known results for the local Fisher-KPP equation (1.1). Going back to the work of Bramson, it is known that if u 0 is compactly supported, the front of u is located at

X(t) = 2t - 3 2 log t + s 0 , (1.3) 
where s 0 is a shift depending only on u 0 [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF][START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF], with less precise asymptotics obtained earlier by Uchiyama [START_REF] Uchiyama | The behavior of solutions of some nonlinear diffusion equations for large time[END_REF]. These proofs have been simplified in recent years [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF][START_REF] Roberts | A simple path to asymptotics for the frontier of a branching Brownian motion[END_REF], with some refinements in [START_REF] Nolen | Refined long time asymptotics for Fisher-KPP fronts[END_REF][START_REF] Nolen | Convergence to a single wave in the Fisher-KPP equation[END_REF], and also extended to the spatially periodic case [START_REF] Hamel | The logarithmic delay of KPP fronts in a periodic medium[END_REF]. One may think of X(t) = 2t as the position of a traveling wave, and d(t) = (3/2) log t as the delay due to the fact that the initial condition u 0 is compactly supported, so that the solution lags behind the traveling wave.

In the non-local case considered in the present paper, we show that the front position depends on the rate of decay of the kernel φ at infinity. When φ decays fast enough, solutions of (1.2) spread as those of the local equation: the front is at a position as in (1.3), up to a constant order error. However, when φ decays slowly, and the competition at large distances is relatively strong, the delay behind the traveling wave position 2t is not logarithmic but algebraic, of the order O(t β ), with β depending only on the rate of decay of φ.

We now make our assumptions more precise. First, we assume that φ is an even, continuous, and bounded probability density: ˆR φ(x)dx = 1, and φ(x) = φ(-x) for all x ∈ R.

(

In addition, φ has some "mass" near the origin, that is, there exists σ φ > 0 such that φ(x) ≥ σ φ 1 [-σ φ ,σ φ ] .

(1.5)

The behavior of u depends strongly on the tail behavior of φ. Here we make two different assumptions, that are helpful for the upper and lower bounds, respectively. The first assumption, an upper bound on the tail of φ, is that there exists A φ > 0 and r > 1 such that, for all R ≥ 1,

ˆ∞ R φ(x)dx ≤ A φ R -r+1 . (1.6) 
Sometimes we will need to complement this with a lower bound on the tail: for all R ≥ 1, we have

ˆ∞ R φ(x)dx ≥ A -1 φ R -r+1 . (1.7)
Roughly, (1.6) and (1.7) mean that φ ∼ x -r for x ≫ 1.

For the initial condition, we assume that u 0 is localized to the left of some point x 0 : 0 ≤ u 0 ≤ 1, ∃x 0 such that u 0 (x) = 0 for all x ≥ x 0 , and lim inf x→-∞ u 0 (x) > 0.

(1.8)

We expect our results to hold when u 0 has "fast" exponential decay, that is, u 0 (x)e (1+ǫ)x → 0 as x → 0 for some ǫ > 0, rather than compactly supported on the right. However, we recall that the front position asymptotics for solutions of (1.1) with u 0 that has a sufficiently slow exponential tail on the right is different from (1.3), see [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF][START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF].

The main result of this paper is the following. If r ∈ (1, 3), then the delay is algebraic: there exists C φ > 0, depending only on r, σ φ , and

A φ , such that lim inf t→∞ inf x≤0 u t, 2t -C φ t 3-r 1+r + x > 0, (1.13) 
and, if additionally (1.7) holds, then there exists c φ ∈ (0, C φ ), depending only on σ φ , r, and A φ , such that lim

t→∞ sup x≥0 u t, 2t -c φ t 3-r 1+r + x = 0. (1.14) 
As we discuss later in greater detail, heuristically, the competition term φ⋆u acts on the scale t γ , with γ = 2/(1 + r). Note that 3 -r

1 + r = 2γ -1, (1.15) 
and that, when r > 3, γ < 1/2, which, in turn, suggests that the competition scale is smaller than the diffusive scale √ t. This is one way to see that there is a phase transition at r = 3. As a by-product of our analysis, we also obtain results for the local Fisher-KPP equation

u t = u xx + f (u). (1.16) Let us assume that f is of the KPP class: f (u)/u is decreasing in u near 0, f ∈ C 1 , and f ′ (0) = 1.
A natural question is whether these assumptions are sufficient to ensure that the front location is given by the logarithmic Bramson correction in (1.3). We show, roughly, the following: if

1 - f (u) u ∼ log 1 u 1-r with r > 1,
then the conclusion of Theorem 1.1 holds, with the logarithmic delay for r ≥ 3 and an algebraic delay of the order O(t (3-r)/(1+r) ) for 1 < r < 3. These non-linearities are not purely mathematical curiosities: they are regularly used in biology and are known as Gompertz models, see [START_REF] Dennis | Estimating density dependence, process noise, and observation error[END_REF] and the vast body of literature around it. The statement and proof of this result are contained in Section 6.

Let us mention a few related works. The model (1.2) considered here was first introduced by Britton [START_REF] Britton | Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model[END_REF] and has a quite involved history, see the introduction of [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] for a brief overview. The non-local term φ ⋆ u has different effects depending on whether one is studying the behavior of u behind the front or at the front. Behind the front, there is a possible Turing instability of the steady state of the local Fisher-KPP equation u ≡ 1, which complicates the behavior. For example, wave trains have been constructed by Faye and Holzer [START_REF] Faye | Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach[END_REF] and, in a related setting, in [START_REF] Nadin | Wave-like solutions for nonlocal reactiondiffusion equations: a toy model[END_REF]. Such wave trains have also been observed numerically by Genieys, Volpert, and Auger in [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF]. As a result, without finer assumptions on φ, one cannot hope for a stronger result than the lower bounds in Theorem 1.1. As far as the behavior at the front is concerned, the main result in this direction is that traveling waves of speed c = 2 exist [START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF][START_REF] Gourley | Travelling front solutions of a nonlocal Fisher equation[END_REF] and solutions to the Cauchy problem with compact initial data or which satisfy (1.8) propagate with speed c(t) = 2 + o(1) as t → +∞ [START_REF] Hamel | On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds[END_REF].

As far as algebraic delays are concerned, we point to the work of Fang and Zeitouni [START_REF] Fang | Slowdown for time inhomogeneous branching Brownian motion[END_REF] and Maillard and Zeitouni [START_REF] Maillard | Slowdown in branching Brownian motion with inhomogeneous variance[END_REF], as well as [START_REF] Nolen | Power-like delay in time inhomogeneous Fisher-KPP equations[END_REF] where a Fisher-KPP model with a diffusivity that changes slowly in time was studied, and a delay, roughly, of order t 1/3 was obtained. However, both the set-up and the mechanism for the large delay are quite different in these papers than in the present work. Finally, we also mention the recent paper of Ducrot [START_REF] Ducrot | On the large time behaviour of the multi-dimensional Fisher-KPP equation with compactly supported initial data[END_REF] in which he constructs a class of non-linearities f (x, u), which tend to u(1 -u) as |x| → ∞, such that if the nonlinearity u(1 -u) in (1.1) is replaced by f (x, u), then the front is at 2t -λ log(t) for any λ ≥ 3/2.

While in the final stages of preparing this paper, we learned of a very recent probabilistic study of the delay term by Penington [START_REF] Penington | The spreading speed of solutions of the non-local fisher-kpp equation[END_REF]. In our notation, she obtains the log delay up to an error term O(log log(t)), when r > 3, and an algebraic delay t (3-r)/(1+r)±ǫ for any ǫ > 0 for r ∈ (1, 3). Penington's assumptions on φ are the same as ours when r ≥ 3. However, her assumptions are weaker when r ∈ (1, 3): the R -(r-1) term in (1.6) is replaced by R -(r-1)/2 , at the expense of a slightly less precise power in the correction. The proofs in [START_REF] Penington | The spreading speed of solutions of the non-local fisher-kpp equation[END_REF] are probabilistic, involving the Feynman-Kac formula and an in-depth study of the trajectories of Brownian motion. Overall, our work and [START_REF] Penington | The spreading speed of solutions of the non-local fisher-kpp equation[END_REF] are quite different and reveal different features of the equation.

Heuristics and methods of proof

The upper bound (1.10) is obtained by a rather direct adaptation of the arguments in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. Let us outline a heuristic argument leading to the upper bound (1.14) for r ∈ [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]3). It also explains how the exponent (3 -r)/(1 + r) comes about. Let the front have a delay d(t) behind 2t, so that inf

x≤2t-d(t) u(t, x) ≥ δ 0 , (1.17) 
with some δ 0 > 0. We expect that the solution looks like an exponential to the right of x = 2t -d(t) and until the "front edge" at x = 2t + e(t):

u(t, x) ∼ exp{-(x -2t + d(t))}, for x ∈ (2t -d(t), 2t + e(t)). (1.18)
The diffusive Gaussian decay dominates the exponential "traveling wave" decay for x > 2t + e(t).

Using (1.17) and then (1.7), one may estimate φ ⋆ u(t, x) when x ∈ (2t -d(t), 2t + e(t)) as

φ ⋆ u(t, x) ≥ δ 0 ˆ2t-d(t) -∞ φ(x -y)dy (x -(2t -d(t))) 1-r (e(t) + d(t)) 1-r .
Thus, in order for the exponential in (1.18) 

d ′ (t) e(t) 1-r t 1-r 2 d(t) 1-r 2 ,
and thus necessarily d(t) t (3-r)/(1+r) .

We deduce also e(t) t γ , with γ as in (1.15). A way to estimate the solution from below, to get the lower bounds, is to study the linearized Fisher-KPP equation with a Dirichlet boundary condition at 2t + e(t), as in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. The problem that comes up after removing the exponential factor is

z t = z xx + e ′ (t)(z x -z), t > 0, x > 0, z(t, 0) = 0. (1.23)
Once again, the case r > 3 is treated similarly to [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. In particular, while the term e ′ (t)z is important and is responsible for the 3/2 pre-factor in the logarithmic correction, the drift e ′ (t)z x is negligible. Roughly, we estimate z(t, x) at x ∼ √ t, and use a "tracing back to a shifted traveling wave" argument, to construct a sub-solution for u.

When r < 3, we choose e(t) = t γ . Since now γ > 1/2, the drift e ′ (t)z x can no longer be neglected, and the choice of the exact exponent γ is necessary to get matching asymptotics. We explicitly construct a sub-solution of u to estimate the solution at the far edge, and then perform a "tracing back" argument with a travelling wave.

Lastly, in the case when r = 3, the diffusive scale and the induced drift have the same order. Here, the balance of these two scales causes a somewhat larger delay.

The local in time Harnack inequality

The main tool that allows us to get "reasonably sharp" asymptotics for the front position is a local-in-time Harnack inequality that is of an independent interest. Proposition 1.2. Suppose that u ∈ L ∞ ([0, T ] × R) is a non-negative function that solves

u t = u xx + c(t, x)u, on [0, T ] × R with c ∈ L ∞ ([0, T ] × R) and T > 0.
Then, for any p ∈ (1, ∞), there exist positive constants α, β, and C, that depend only on c L ∞ ([0,T ]×R) and p, such that, for all x, y ∈ R and t ∈ (0, T ], we have

u(T, x + y) ≤ C u 1-1 p L ∞ ([t,T ])×R u(T, x) 1 p e αt+ βy 2 t . (1.24)
This inequality is an indispensable tool to obtain "reasonably sharp" results for non-local problems. We have used a less precise form of it to obtain the logarithmic delay for solutions of the cane toads equation in [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF], and it has also been used to establish a precise lower bound on the propagation speed of solutions of a Keller-Segel-Fisher system [START_REF] Hamel | Propagation in a Fisher-KPP equation with non-local advection[END_REF]. As far as we know, [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF] is the only other non-local context where a delay asymptotics has been established. It allows us to bound solutions of the non-local Fisher-KPP equation (1.2) in terms of the solutions of a local Fisher-KPP equation with a local time-dependent nonlinearity g(t, u), that is logarithmic in u (Gompertz type). This equation has inherent difficulties coming from the time dependence and the logarithmic behavior near zero, but it is much more tractable because it admits a comparison principle.

The rest of the paper is organized as follows. In Section 2, we present the proofs of the upper bounds (1.10) and (1.14). Section 3 is where the proofs of the lower bounds (1.9), (1.11) and (1.13) are given. In order to complete the proof of the lower bounds, some estimates on linearized problems with moving Dirichlet boundary conditions are obtained in Section 4 and Section 5. In Section 6, we state and prove the result concerning the local KPP equation with logarithmic nonlinearity. The Harnack inequality is proved in Section 7.

The case r > 3 is very close to the local Fisher-KPP equation. The (3/2) log t delay is the best case scenario -in fact, the delay has to be at least that large for any r, so the bound is a quite straightforward application of bounds obtained in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF].

Proof of (1.10). Take t 0 > 0 to be determined later. Working in the moving frame with the logarithmic correction, the function

u mov (t, x) = u t, 2t - 3 2 log 1 + t t 0 + x , satisfies (u mov ) t ≤ 2 - 3 2 1 t + t 0 (u mov ) x + (u mov ) xx + u mov , for all t > 0, x ∈ R, u mov (0, x) = u 0 (x), for all x ∈ R.
We construct a super-solution u as in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. Let v be the solution to the boundary value problem

v t = 2 - 3 2 1 t + t 0 v x + v xx + v, for all t > 0 and x > 0, v(t, 0) = 0, for all t > 0, v(0, x) = 1 (0,2) (x) for all x > 0.
Then [17, Lemma 2.1] implies that, provided that t 0 is sufficiently large, there exists A 0 ≥ 1 such that for all t ≥ 0, we have v(t, 1) ≥ A -1 0 . We also have the following uniform bound on the solutions to (1.2). Then there exists M > 0 such that, u(t, x) ≤ M for all t > 0 and x ∈ R.

Let us now define ū(t, x) as

u(t, x) = M 1 x≤x 0 + min 1, A 0 v(t, x -x 0 + 1) 1 x≥x 0 ,
where M is as in Lemma 2.1. By construction, u is a super-solution to u mov , and by our assumptions on u 0 (1.8), we also have u(0, x) ≥ u mov (0, x) for all x ∈ R. In addition, [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]Lemma 2.1] implies that there exists T 0 such that, for all z and all t ≥ T 0 ,

v(t, z) ≤ A 0 ze -z .
(2.1)

We are now in a position to conclude the proof. Indeed, as u ≤ u, the upper bound in (2.1) implies lim sup

L→∞ lim sup t→∞ sup x≥L u t, 2t - 3 2 log t + x = lim sup L→∞ lim sup t→∞ sup x≥L u mov (t, x) ≤ lim sup L→∞ lim sup t→∞ sup x≥L u(t, x) ≤ lim L→∞ M A 0 Le -L = 0, (2.2) 
which concludes the proof.

The upper bound when r = 3

In this section, we show how to derive the upper bound on the location of the front assuming the lower bound on the location of the front. In other words, we prove (1.12) assuming (1.11), which we prove in the next section.

Proof of (1.12) assuming (1.11). Our proof proceeds similarly as in the previous subsection. Set sφ < S φ to be determined. Using (1.11) and (1.7), we find L > 0 such that, for all x ≥ 0 and t ≥ L,

φ ⋆ u(t, x + 2t -sφ log(t)) ≥ 1 LA φ (x + (S φ -sφ ) log(t) + L) -2 . (2.3)
Next, we use the following result that is proved in Appendix A.

Lemma 2.2. There exists v, sφ > 3/2, and L such that

v t ≥ v xx + v(1 -ν(t, x -(2t -sφ log(t + t 0 ))), t > L, x > 2t -s φ log(t + t 0 ) + L, v(L, x) ≥ u(L, x), x > 2L -sφ log(L + t 0 ) + L, (2.4) 
v(t, L + 2t -sφ log(t)) ≥ M + 1 for all t ≥ L, and v(t, x + 2t -sφ log(t)) → 0 as x → ∞ uniformly in t ≥ L.
With Lemma 2.2 in hand, we now conclude. Notice that, (

2.3) implies that v is a super-solution of u in {(t, x) ∈ [L, ∞) × R : x ≥ 2t -sφ log(t) + L}. Let u(t, x) = M + 1, if x ≤ 2t -s φ log(t) + L, min{M + 1, v(t, x)} if x ≥ 2t -s φ log(t) + L.
As in the previous case r > 3, the comparison principle implies that u ≥ u on [L, ∞) × R. The result then follows taking s φ ∈ (s φ , 3/2).

The upper bound when r ∈ (1, 3)

In this section, we show how to derive the upper bound on the location of the front from the lower bound on the location of the front. In other words, we prove (1.14) assuming (1.13), which we prove in the next section.

Proof of the upper bound (1.14) assuming the lower bound (1.13). Note that, by (2.2), we have

lim t→∞ sup x≥2t+t γ u(t, x) = 0.
As a consequence, taking into account (1.15), it suffices to show that

lim t→∞ sup x∈(2t-c φ t 2γ-1 ,2t+t γ ) u(t, x) = 0.
We do this by creating a relevant super-solution to u on the interval (2t-c φ t 2γ-1 , 2t+t γ ). Note that the constant c φ is still to be determined at this stage. Define, for any T > 0 and C φ as in (1.13), the space-time domain (recall that γ > 1/2 for 1 < r < 3):

P T := (t, x) : t ∈ (T, ∞), x ∈ (2t -C φ t 2γ-1 , 2t + t γ ) ,
and, for (t, x) ∈ P T , the function

v(t, x) := B exp -x -2t + 2c φ t 2γ-1 .
On P T , the function v satisfies

v t = v xx + v 1 -2c φ (2γ -1)t γ(1-r) . (2.5)
The rest of the proof is devoted to showing that u is, indeed, a subsolution to (2.5) when the various constants above are suitably chosen: specifically, we show that

u t -u xx -u(1 -2c φ (2γ -1)t γ(1-r) ) ≤ 0 in P T , (2.6) 
and

u(t, x) ≤ v(t, x), on ∂P T . (2.7)
First, we show that (2.6) holds. It follows from (1.13) that there exist C φ and δ φ , depending only on φ, and T 0 such that, for all t ≥ T 0 , inf

x≤2t-C φ t 2γ-1 u(t, x) ≥ δ φ .
(2.8)

Using (2.8), we can estimate φ ⋆ u from below, for t ≥ T 0 and x > 2t -C φ t 2γ-1 :

φ ⋆ u(t, x) = ˆR φ(x -y)u(t, y) dy ≥ ˆ2t-C φ t 2γ-1 -∞ φ(x -y)u(t, y) dy ≥ δ φ ˆ2t-C φ t 2γ-1 -∞ φ(x -y) dy = δ φ ˆ+∞ x-2t+C φ t 2γ-1 φ(z) dz ≥ δ φ A -1 φ ˆ+∞ x-2t+C φ t 2γ-1 z -r dz = δ φ A φ (r -1)
x -2t + C φ t 2γ-1 1-r .

(2.9)

Note that, as r > 1, we have

2γ -1 = 3 -r 1 + r = γ + 1 -r 1 + r < γ.
Further increasing T , if necessary, the right-hand side in (2.9) can be estimated, for t ≥ T , as

δ φ A φ (r -1) x -2t + C φ t 2γ-1 1-r ≥ δ φ A φ (r -1) t γ + C φ t 2γ-1 1-r = δ φ A φ (r -1) 1 + C φ t 1-r 1+r 1-r t (1-r)γ ≥ δ φ A φ (r -1) 1 + C φ T 1-r 1+r 1-r t (1-r)γ ≥ 2 1-r δ φ A φ (r -1) t (1-r)γ ≥ 2c φ (2γ -1)t γ(1-r) , (2.10) 
as long as c φ is sufficiently small. Now, (2.6) follows from (1.2), (2.9) and (2.10).

To show (2.7), first, we consider the right spatial boundary x = 2t + t γ , t ≥ T . As this point is at the far edge of the front, it is natural to use the linearized problem

u t = u xx + u, t > 0, x ∈ R, u(t = 0, •) = u 0 .
Then, with x 0 as in (1.8), we can write for t ≥ T :

u(t, 2t + t γ ) ≤ u(t, 2t + t γ ) = e t √ 4πt ˆR e -(2t+t γ -y) 2 4t u 0 (y)dy ≤ e t √ 4πt ˆx0 -∞ e -(2t+t γ -y) 2 4t dy = e t √ π ˆ+∞ 2t+t γ -x 0 2 √ t e -y 2 dy ≤ Ce t √ t 2t + t γ -x 0 e -(2t+t γ -x 0 ) 2 4t ≤ C 0 exp -t γ - 1 4 t 2γ-1 ≤ B exp -t γ -2c φ t 2γ-1 = v(t, 2t + t γ ), (2.11) 
so long as B ≥ C 0 . Above, we have increased T and decreased c φ if necessary. The constant C 0 depends only on γ and x 0 . Thus, (2.7) holds at x = 2t + t γ for all t ≥ T as long as B ≥ C 0 . At the left boundary

x = 2t -C φ t 2γ-1 , we have v(t, 2t -C φ t 2γ-1 ) = B exp (C φ -2c φ )t 2γ-1 ≥ M ≥ u t, 2t -C φ t 2γ-1 , (2.12) 
as long as 2c φ ≤ C φ and B ≥ M . Here, M is the upper bound in Lemma 2.1. Lastly, we check that (2.7) holds at t = T , for 2T -

C φ T 2γ-1 ≤ x ≤ 2T + T γ : v(T, x) = B exp -x -2T + 2c φ T 2γ-1 ≥ B exp -T γ -2c φ T 2γ-1 .
As long as

B ≥ M exp T γ + 2c φ T 2γ-1 , we have that, for all x ∈ [2T -C φ T 2γ-1 , 2T + T γ ] v(T, x) ≥ M ≥ u(T, x), (2.13) 
and (2.7) holds on all of ∂P T . It follows from (2.6) and (2.7) that, with T and B sufficently large, and c φ sufficiently small, we have

lim t→∞ sup x≥2t-c φ t 2γ-1 u(t, x) ≤ lim t→∞ sup x≥2t-c φ t 2γ-1 v(t, x) ≤ lim t→∞ B exp -2c φ -c φ t 2γ-1 = 0,
which finishes the proof of the upper bound.

Lower bounds on the location of the front

The proofs of the lower bounds in Theorem 1.1 are much more involved. They hinge on estimating φ ⋆ u in terms of u in a local way, and then deriving precise heat kernel type estimates on the resulting local equation.

Estimating the non-local term by a local counterpart

To begin, we estimate the convolution term φ⋆u in terms of u under the assumptions of Theorem 1.1. The assumptions of these two theorems differ only in the range of r. In this section, we assume only that r > 1 so our computations apply to all cases. Lemma 3.1. There exists C conv > 0, depending only on φ, such that, for all t ≥ 1 and all x ∈ R,

φ ⋆ u(t, x) ≤ C conv max 1, 1 t log M u(t, x) r-1 2 log M u(t, x) 1-r . (3.1)
Proof. It is here that the local-in-time Harnack inequality is used crucially. Fix any time t ≥ 1 and x, y ∈ R. Proposition 1.2 with p = 2 implies that there exists α > 0 so that

u(t, x + y) ≤ C u(t, x) exp αt ′ + αy 2 t ′ , for all t ′ ∈ (0, t], . (3.2) 
Above, we absorbed the uniform bound M of u ∞ given by Lemma 2.1 into the constant C. By increasing M if necessary, we may assume that M ≥ u ∞ + 1, which allows us to simplify notation in the sequel. Using (1.6) and (3.2), we obtain, for R > 0 and t ′ ∈ (0, t] to be determined,

φ ⋆ u(t, x) ≤ ˆR φ(y)u(t, x -y) dy ≤ C ˆBR φ(y) u(t, x)e αt ′ + αR 2 t ′ dy + M ˆBc R φ(y)dy ≤ C u(t, x)R exp αt ′ + αR 2 t ′ + CM R -r+1 . (3.3) 
The constant C changes line-by-line for the remainder of the proof and depends only on φ and α.

We now optimize the right-hand side in (3.3) with respect to t ′ ∈ (0, t] and R > 0. If

t ′ = R, then φ ⋆ u(t, x) ≤ C u(t, x)Re 2αR + CM R -r+1 . (3.4)
To roughly balance the two terms in the right side of (3.4), we choose

R = 1 8α log M u(t, x) , (3.5) 
the most important point being that R should be of order log u. As we have set t ′ = R in (3.4), and we need to have 0 ≤ t ′ ≤ t, the choice (3.5) is possible only if

t ≥ 1 8α log M u(t, x) . (3.6) 
With this, we find, from (3.4):

φ ⋆ u(t, x) ≤ C u(t, x) log M u(t, x) exp - 1 4 log u(t, x) M + C log M u(t, x) 1-r ≤ C u(t, x) 1/4 log M u(t, x) r + 1 log M u(t, x) 1-r ≤ C log M u(t, x) 1-r . (3.7) When (3.6) does not hold, so that t ≤ 1 8α log M u(t, x) . (3.8) 
we choose t ′ = t and set

R = t 8α log M u(t, x) 1/2 , in (3.3), leading to φ * u(t, x) ≤ C u(t, x) √ t log 1/2 M u(t, x) exp αt + 1 8 log M u(t, x) + C t log M u(t, x) - (r-1) 2 ≤ C u(t, x) log M u(t, x) exp 1 4 log M u(t, x) + C t log M u(t, x) -(r-1) 2 ≤ Cu(t, x) 1/4 log M u(t, x) + C t log M u(t, x) -(r-1) 2 ≤ C 1 + u(t, x) 1/4 log M u(t, x) t log M u(t, x) r-1 2 t log M u(t, x) -(r-1) 2 ≤ C u(t, x) 1/4 log M u(t, x) r + 1 t log M u(t, x) -(r-1) 2 ≤ C t log M u(t, x) 1-r 2 .
(3.9)

We used (3.8) several times above, as well as the upper bound u(t, x) ≤ M in the last inequality. The combination of (3.7) and (3.9) concludes the proof of the lemma.

A local equation and related bounds

In view of Lemma 3.1, it is natural to introduce the following nonlinearity. Fix r > 1, and for any positive constants θ g and A g , set Θ g := θ g exp{-A

1/(r-1) g } and define g ∈ C 0,1 on (0, Θ g ) as

g(t, u) := A g max 1, t + A 1 r-1 g -1 log θ g u r-1 2 log θ g u 1-r , if u ∈ 0, Θ g . (3.10) 
Outside [0, Θ g ] we set g(t, u) = 0 for u < 0 and g(t, u) = 1 for u > Θ g . By construction, g(t, •) is continuous. The "A 1/(r-1) g

" term in the second part of the maximum in the definition of g does not affect the analysis in any way. In fact, any other choice of g that preserves the asymptotics as u and t tend to zero would have the desired properties that we prove in the sequel.

We will make use of the local equation with a moving boundary at the front edge:

w t = w xx + w(1 -g(t, w)), in P g,γ := (t, x) : t > 0, x > 2t + (t + t 0 ) γ -t γ 0 , w(t, 2t + (t + t 0 ) γ -t γ 0 ) = 0, for all t > 0,
w(0, x) = w 0 (x) for all x > 0.

(3.11)

The following proposition contains the crucial lower bounds for the solutions of (3.11) we will need.

Proposition 3.2. Assume that there exists δ w > 0 and x w ∈ R + such that the initial condition w 0 (x) for (3.11) satisfies w 0 (x) ≥ δ w 1 (0,xw) (x).

1. If r > 3, then there exists X w and T 0 such that if x w ≥ X w and t 0 ≥ T 0 then there exists a positive constant B 1 , depending only on x w , δ w , t 0 , γ, and g, such that, for all t sufficiently large, we have

w(t, 2t + t γ + √ t) ≥ B -1 1 t -1 e - √ t-t γ .
2. If r = 3, then set t 0 = 1. There exists N > 0 such that if x w ≥ 1 then there exists a positive constant B 2 , depending only on N , δ w , γ, and g, such that, for all t sufficiently large, we have

w(t, 2t + 2 √ t) ≥ B -1 2 t -1-N e - √ t .
3. If r ∈ (1, 3), then set t 0 = 1. There exists B 3 > 0, depending only on δ w and g, such that if x w ≥ 1 then, for all t ≥ 1, we have

w(t, 2t + t γ + √ t) ≥ B -1 3 e - √ t-t γ -B 3 t 2γ-1 .
We delay the proof of this proposition until Section 4 and now continue the proof of the lower bounds of Theorem 1.1. Having reduced the problem to estimating a delay for a local equation, we now transfer known bounds of Theorem 1.1 on w to bounds on u.

From a bound on w to a bound on u

Let us take θ g = M and A g = C conv in the definition (3.10) of g(t, u) and let the initial condition in (3.11) be w 0 (x) = e -M u 0 (x). A combination of Lemma 3.1 and Proposition 3.2 implies that u is a super-solution for w for t ≥ 1. Further, it follows from considerations as in [4, Section 3], that w(1, x) ≤ u(1, x) for all x ∈ R due to the e -M pre-factor in the definition of w 0 . The maximum principle then implies that w(t, x) ≤ u(t, x) for all t ≥ 1 and all x ∈ R.

Using the assumptions on the initial data (1.8), we can, up to translating u 0 , and thus w 0 as well, assume that w 0 satisfies the hypothesis x w = x 0 ≥ X w in Proposition 3.2. Translating further and using parabolic regularity we may remove the dependence on t 0 . As a direct consequence, we have established: Corollary 3.3. Suppose that u satisfies (1.2) and (1.8) with φ satisfying (1.4), (1.5), and (1.6). Then there exists S 0 , depending only on u 0 and φ, such that:

1. If r > 3, then there exists a positive constant B 1 , depending only on u 0 and φ such that, for all t sufficiently large, we have

u(t, 2t + t γ + √ t -S 0 ) ≥ B -1 1 t -1 e - √ t-t γ .
2. If r = 3, then there exist positive constants N , and B 2 such that, for all t sufficiently large, we have

u(t, 2t + 2 √ t -S 0 ) ≥ B -1 2 t -(1+ N ) e -2 √ t .
3. If r ∈ (1, 3), then there exists a positive constant B 3 , depending only on u 0 and φ, such that, for all t ≥ 1, we have

u(t, 2t + t γ + √ t -S 0 ) ≥ B -1 3 e -t γ -B 3 t 2γ-1 .

From a bound on u on the right to the location of the front

We are now in a position to obtain the lower bounds (1.9), (1.11), and (1.13). Thanks to Corollary 3.3, we fit a suitable translate of a traveling wave solution for (3.11) underneath u, for x ≤ 2t + t γ + √ t.

Proof. We prove the lemma for r > 3, so that γ < 1/2, the proof being the same in the other cases up to situational modifications. We use the parabolic maximum principle. First, we note that, up to increasing s 0 and A V , we may ensure that

v(T 1 , x) ≤ u(T 1 , x) for all x ≤ 2T 1 + √ T 1 + T γ 1 -S 0 .
Second, we claim that, up to increasing s 0 , we have

v(t, 2t + √ t + t γ -S 0 ) ≤ u(t, 2t + √ t + t γ -S 0 ) for all t ≥ T 1 .
Indeed, for t sufficiently large, (3.12) implies, as γ < 1/2:

v(t, 2t + √ t + t γ -S 0 ) = V √ t + t γ + 3 2 log t + s 0 -S 0 (3.14) ≤ 2κ √ t + t γ + 3 2 log t + s 0 -S 0 exp - √ t + t γ + 3 2 log t + s 0 -S 0 ≤ 4κ √ tt -3/2 exp - √ t -t γ -s 0 + S 0 ≤ 4κt -1 exp - √ t -t γ -s 0 + S 0 . It follows that v(t, 2t + √ t + t γ -S 0 ) ≤ 4κe S 0 -s 0 B 1 u(t, 2t + √ t + t γ -S 0 ) ≤ u(t, 2t + √ t + t γ -S 0 ),
for T 1 sufficiently large and all s 0 ≥ S 0 + log(4κB 1 ).

Third, up to increasing A V , the ordering holds true near -∞. Indeed, using Lemma 3.1 and the assumptions (1.8) on u 0 , it is easy to see that there exists δ > 0, depending only on u 0 and φ such that, for any x < 0 with |x| is sufficiently large, the function u(x) = δ cos((x -x)/100) is a sub-solution for u for all t ≥ 1, so that δ = u(x) ≤ u(t, x) for all t ≥ 1. Thus, increasing A V , if necessary, we have that, for all t > 0, 

lim x→-∞ v(t, x) < M e -A 1/(r-1) V < δ ≤ inf t≥1 lim inf x→-∞ u(t,
v(t, 2t + √ t + t γ -S 0 ) = V √ t + t γ + 3 2 log(t) + s 0 -S 0 ≥ κ 2 √ t + t γ + 3 2 log t + s 0 -S 0 exp - √ t + t γ + 3 2 log t + s 0 -S 0 ≥ κ 2t 3/2 √ t + t γ + 3 2 log t + s 0 -S 0 exp - √ t -t γ -s 0 + S 0 . (3.15)
Since V is monotonic, γ < 1, and

x ft ≤ 2t ft + t 1 2
ft + t γ ft -S 0 , it follows that up to increasing T 1 , we have that u(t ft , x ft ) = v(t ft , x ft ) ≥ M e -t ft , which, in turn, implies that log M u(t ft , x ft )

-(r-1) ≥ t -r-1 2 ft log M u(t ft , x ft ) -r-1 2 .
In view of the bound on φ ⋆ u obtained in Lemma 3.1, we have that, at (t ft , x ft ),

u t -u xx -u 1 -A V log M u -(r-1) ≥ A V -C conv u log M u 1-r > 0, (3.16)
where we used the fact that A V > C conv in the last inequality. In addition, we note that

v t -v xx -v 1 -A V log M v -(r-1) = 3 2(t + 1) -2 V ′ -V ′′ -V 1 -A V log M V -(r-1) = 3 2(t + 1)
V ′ ≤ 0.

(3.17)

Hence, setting ψ = u -v, (3.16) and (3.17), imply that

ψ t -ψ xx -cψ > 0,
where we define

c := u 1 -A V log M u -(r-1) -v 1 -A V log M v -(r-1) u -v .
Notice that, due to the Lipschitz continuity of w → w 1 -

A V log M w -(r-1)
on compact subsets of [0, M ), c ∈ L ∞ . On the other hand, using that t ft is the first time that ψ touches zero and x ft is the location of a minimum of ψ, we have that

ψ t -ψ xx -cψ ≤ 0.
This yields a contradiction, finishing the proof.

The lower bounds now follow easily.

Proof of (1.9), (1.11), and (1.13). We conclude the proof by noticing that, for all t ≥ T 1 ,

inf x≤2t-(3/2) log t u(t, x) = inf x≤0 u t, x + 2t - 3 2 log t ≥ inf x≤0 v t, x + 2t - 3 2 log t = inf x≤0 V x + s 0 = V (s 0 ), (3.18) 
which means that (1.9) holds. The proofs of (1.13) and (1.11) are similar and, thus, omitted.

Proof of Proposition 3.2

To obtain estimates on the solution of (3.11), we consider the corresponding linearized problem with the Dirichlet boundary condition: ṽt = ṽxx + ṽ, on {(t, x) : t > 0, x > 2t + (t + t 0 ) γ -t γ 0 }, ṽ(t, 2t + (t + t 0 ) γ -t γ 0 ) = 0, for all t > 0, ṽ(0, x) = w 0 (x), for all x > 0, (

where w 0 is as in Proposition 3.2.

The case r > 3

The following key lemma about solutions to (4.1) allows us to prove Proposition 3.2 when r > 3.

We prove this lemma in Section 5.1.

Lemma 4.1. Assume r > 3. If t 0 and x w are sufficiently large, depending only on γ, there exist positive constants T and B, depending only on w 0 and t 0 , such that, for all t ≥ T , we have ṽ(t, •) ∞ ≤ Be -t γ and

ṽ(t, 2t + t γ + √ t) ≥ B -1 t -1 exp - √ t -t γ .
We now finish the proof of Proposition 3.2. Let ṽ be as in Lemma 4.1. We may assume, without loss of generality, that T ≥ 1, and set

δ = min B -1 , B -1 θ g e -A 1/(r-1) g , e -T .
We also take a continuous function a(t) ≤ 1 for all t ≥ 0, to be determined, and set v(t, x) = δa(t)ṽ(t, x).

(4.2)

Using (4.1), we obtain

v t -v xx -v(1 -g(t, v
)) = δa ′ ṽ + δaṽ t -δaṽ xx -δaṽ + δaṽg(t, δaṽ) = δṽ a ′ + ag(t, δaṽ) . (4.3)

Thus, v is a sub-solution of w for t ≥ T as long as a ′ + ag(t, δaṽ) ≤ 0.

Using the upper bound on ṽ along with the definition of δ, we see that this inequality would hold if

a ′ + aA g max 1, t + A 1 r-1 g -1 log 1 ae -t γ r-1 2 log 1 ae -t γ 1-r ≤ 0. ( 4 

.4)

A lengthy but straightforward computation using, in particular, that A g ≥ 1, shows that (4.4) is satisfied if we take

a(t) = exp β (t + 1) 2γ-1 -1 , with a suitable β > 0.
Hence v is a sub-solution of w. Further, arguing as in [4, Section 3] and using the choice of δ and a, we have that v(T, x) ≤ w(T, x) for all x ≥ 2T + (T + t 0 ) γ -t γ 0 . The maximum principle then implies that v(t, x) ≤ w(t, x) for all t > T and x > 2t + (t + t 0 ) γ -t γ 0 . The conclusion of the proposition follows immediately from Lemma 4.1 since 2t + t γ ≥ 2t + (t + t 0 ) γ -t γ 0 .

The case r = 3

We follow here the same strategy as for r > 3, but the estimates on ṽ are obtained differently.

Lemma 4.2. For r = 3 and t sufficiently large, there exist λ and B > 0 such that

ṽ(t, •) ∞ ≤ Be - √ t ,
and

ṽ(t, 2t + 2 √ t) ≥ B -1 t -1-λ exp -2 √ t .
With this lemma, proved in Section 5.2, one may repeat the argument for r > 3, building a sub-solution v(t, x) as in (4.2), with δ > 0 sufficiently small, and a(t) such that

a ′ + aA g max 1, t + √ A g -1 log e √ t Cδa log e √ t Cδa -2 ≤ 0.
The above inequality is satisfied with a(t) = (t + √ A g ) -N for all t ≥ 1 so long as δ is chosen small enough and N is chosen large enough, depending only on A g and C.

The estimate when r ∈ (1, 3)

Here we directly construct a sub-solution of w. We seek a sub-solution ṽ solving ṽt ≤ ṽxx + ṽ, for t > 0, x > 2t + (t + 1) γ -1, ṽ(t, 2t + (t + 1) γ -1) = 0, for t > 0. (

Recall that t 0 = 1 in parts 2 and 3 of Proposition 3.2. Given a > 0, set

v(t, x) = x (1 + t) 3 exp -x- γ 2 x 1+t γ-1 -1+t γ - γ 2 4(2γ -1) +a (1+t) 2γ-1 - x 2 2(1 + t) . (4.6) 
Here, the key computation is the following:

Lemma 4.3. There exists a 0 > 0 such that if a ≥ a 0 then ṽ(t, x) = v(t, x -(2t + (t + 1) γ -1)) solves (4.5).
We delay the proof of Lemma 4.3 until Section 5.3 and proceed with the proof of Proposition 3.2.

A bound for small times. Unfortunately, v is not compactly supported at t = 0, so we need to "fit it under" w at a later time. To do this, we first obtain a preliminary lower bound on w at time 1 by using the infinite speed of propagation of the heat equation. Recall that w 0 ≥ δ w 1 (-∞,xw) and 1 -g(t, w) ≥ 0. Hence, we have w t -w xx ≥ 0, so that w is a super-solution to the heat equation with a Dirichlet boundary condition fixed at 

x 0 := 2 • 2 + (2 + t 0 ) γ -t γ 0 = 3 γ + 3,
≥ δ w e -x 2 /8-(xw-x 0 ) 2 /8 √ 8π 2 x cosh x(x w -x 0 ) 4 -1 ≥ x C δ w e -x 2 /8 , (4.7) 
for some C independent of all parameters, as long as x w ≥ x 0 + 1. We used here that cosh(x) -1 ≥ x 2 /C for some universal C > 0. On the other hand, from the explicit expression (4.6) for v, we get

v(2, x -x0 ) ≤ C(x -x 0 ) exp -x -x γ 2 3 γ-1 - x 2 6 + xx 0 3 .
Thus, there exists ǫ > 0 such that

ǫṽ(2, x) = ǫv(2, x -x0 ) ≤ w(2, x) for x ≥ x0 = 3 γ + 3.
The subsolution. We now follow the same strategy as before, constructing a sub-solution of the form v(t, x) = δa(t)ṽ(t, x) on

P := {(t, x) : t ≥ 1, x > 2t + (1 + t) γ -1}.
Another lengthy but straightforward computation shows that v(t, x) is a sub-solution for w on P if we choose a(t) = exp -βt 2γ-1 for a suitable β and δ sufficiently small. Note also that ṽ and w satisfy the same boundary conditions at x = 2t + (1 + t) γ -1. Finally, choosing δ ≤ ǫ and using the computation (4.7) and the discussion following it, we see that v(2, x) ≤ w(2, x) for all x > 3 + 3 γ .

The conclusion of the proposition when r ∈ (1, 3) follows by simply using the explicit form of v(t, x).

Estimates on the linearized KPP equation

In this section, we adopt the convention that any constant denoted C may chance line-by-line but depends only on φ and u 0 .

5.1 The case r > 3: the proof of Lemma 4.1

The key observation is that γ < 1/2 when r > 3. Thus, the t γ term is of a lower order than the diffusive scale √ t. This allows us to use the strategy in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], obtaining energy estimates in self-similar variables. Since the present proof is similar to that in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF], we provide a rather brief treatment.

Proof of Lemma 4.1. We begin by removing an exponential factor from ṽ and changing to the moving frame: let z(t, x) := e x ṽ(t, 2t + (t + t 0 ) γ -t γ 0 + x), x > 0. This function satisfies

z t = z xx + γ(t + t 0 ) γ-1 z x -z ,
for t > 0, x > 0, z(t, 0) = 0, for t > 0, z(0, x) = e x w 0 (x), for x > 0.

(

We now turn to self-similar variables, which are natural for the diffusive process. Let

τ = log 1 + t t 0 , y = (t + t 0 ) -1/2 x,
and ζ(τ, y) = z t 0 (e τ -1), t 1/2 0 e τ /2 y . Then ζ satisfies the equation

ζ τ = ζ yy + y 2 ζ y + 1 + γ(t 0 e τ ) γ-1/2 ζ y -1 + γ(t 0 e τ ) γ ζ.
We remove the integrating factor above, setting

ζ(τ, y) = e -(τ +t γ 0 (e γτ -1)) ζ(τ, y), so that ζ satisfies ζτ = L ζ + γt γ-1/2 0 e (γ-1/2)τ ζy , (5.2) 
with

L := ∂ 2 y + y 2 ∂ y + 1. (5.3) 
It is now heuristically clear that the last term in (5.2) should be not important due to the e (γ-1/2)τ term and the fact that γ < 1/2. The following lemma is proved in Appendix A.

Lemma 5.1. Let ζ solve ζτ = L ζ + εe (γ-1/2)τ ζy ,
with initial data ζ(τ = 0, •) = ζ0 . There exists ε 0 > 0 such that for all compact subsets K ⊂ R + there exists C K > 0 such that for all ε < ε 0 ,

ζ(τ, y) = y e -y 2 /4 2 √ π ˆ∞ 0 ξ ζ0 (ξ)dξ + O(ε) + e (γ-1/2)τ h(τ, y) ,
for all y > 0, τ > 0, and such that | h(τ, y)| ≤ C K for all τ > 0 and y ∈ K.

Undoing the various changes of variable, we get

ṽ(t, 2t + (t + t 0 ) γ -t γ 0 + x) = e -x z(t, x) = e -x ζ log 1 + t t 0 , x (t + t 0 ) 1/2 (5.4) = xe -x t 0 e -((t+t 0 ) γ -t γ 0 ) (t + t 0 ) 3/2 e -x 2 4(t+t 0 ) 2 √ π ˆ∞ 0 ξe ξ w 0 ( √ t 0 ξ)dξ + O t γ-1 2 0 + 1 + t t 0 γ-1 2 h(t, x) ,
where h(t, x) = h log 1 + t t 0 , (t + t 0 ) -1 2 x . First, notice that the L ∞ bound on ṽ in Lemma 4.1 follows immediately from the expression above on sets of the form [2t + t γ , 2t + t γ + σ √ t]. To obtain bounds on sets of the form [2t + t γ + σ √ t, ∞), we simply use that e -t ṽ is a sub-solution to the heat equation on R (see, e.g., (1.20)). Hence, we obtain that, for x ≥ 0, ṽ(t, 2t + t γ + σ

√ t + x) ≤ Ce t √ t exp - (2t + t γ + σ √ t + x) 2 4t ≤ Ce - √ t-t γ , (5.5) 
where C is some constant depending only on the initial data and γ. Second, we have

ˆ∞ 0 ξe ξ w 0 (t 1/2 0 ξ)dξ + O(t γ-1 2 0 ) ≥ δ w ˆxw/t 1/2 0 0 ξe ξ dξ + O(t γ-1 2 0
).

Choosing first x w ≥ √ t 0 and t 0 ≫ 1 so that the first two terms in the parentheses in (5.4) are positive and then choosing T 0 large depending on t 0 and α, we have that, for all 0 ≤ x ≤ √ t + t 0 and t ≥ T 0 , ṽ(t, 2t + (t

+ t 0 ) γ -t γ 0 + x) ≥ x C e -x-((t+t 0 ) γ -t γ 0 ) (t + t 0 ) 3/2 .
The lower bound on ṽ(t, 2t + t γ + √ t) is immediate after evaluating at x = t γ -(t + t 0 ) γ -t γ 0 + √ t. This concludes the proof.

5.2

The case r = 3: the proof of Lemma 4.2 Note that in this case γ = 1/2. As a consequence, the drift induced by the moving boundary has the same order as the diffusion. It is thus useful to modify the t γ term in the moving boundary by a small multiplicative factor.

Proof of Lemma 4.2. To begin, fix ǫ > 0. Work in the moving frame 2t + [(t + 1) 1/2 -1] and remove an exponential factor, as previously:

z(t, x) := e x ṽ(t, x + 2t + [(1 + t) 1/2 -1]).
Passing then to self-similar coordinates τ = log(t + 1) and y = (t + 1) -1/2 x, so that ζ(τ, y) := z e τ -1, e τ /2 y , we see that ζ satisfies 

ζ τ = Lζ + 1 2 ζ y -1 + 1 2 e τ /
We finish using the following lemma, proved in Appendix A. This result falls outside of [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF] and Lemma 5.1 because the ζy term in (5.6) is no longer a remainder term. Here, µ > λ > 0, ψ 2 = 1, and ψ and h(τ, y) are bounded on all compact subsets of [0, ∞). Also, for every compact set K ⊂ [0, ∞), there exists C K > 0 such that C -1 K y ≤ ψ(y) ≤ C K y. for all y ∈ K.

We are now able to establish the upper bound on ṽ for all x ∈ [2t + ((1 + t) 1/2 -1), 2t + 2 √ t]. Indeed, returning to the original variables in (5.7), we find

|ṽ(t, x)| = e -(1+t) 1/2 y ζ(τ, y) = e -(1+t) 1/2 y-τ -(e τ /2 -1) ζ(τ, y) ≤ Ce -(1+t) 1/2 y-τ -(e τ /2 -1)-y 2 8 -y 4 ψ(y)e -λτ + h(τ, y)e -µτ ≤ Ce - √ t .
(5.8)

In fact, the estimate (5.8) holds for all x ≥ 2t + [(1 + t) 1/2 -1] since, as above, ṽ may be estimated for x ∈ [2t + 2 √ t, ∞) using the same approach as in (5.5) (see also (1.20)). Indeed,

ṽ(t, x) ≤ C √ t x e t-x 2 2t ≤ C √ t e t-(2t+2 √ t) 2 4t = C √ t e -2 √ t-1 ≤ Ce - √ t .
We now establish the lower bound from (5.7). Taking t sufficiently large and evaluating at x = 2t + 2 √ t, we see that ṽ

(t, 2t + 2 √ t) ≥ α t 1+λ e -2 √ t ,
for some α depending only on u 0 . This concludes the proof.

5.3

The case r ∈ (1, 3): the proof of Lemma 4.3 To motivate some of the steps in the following proof, we briefly discuss a heuristic. In the stationary frame, as we did in (1.20), we may always estimate ṽ above by ignoring the Dirichlet boundary condition and using the fact that e -t ṽ solves the heat equation. Thus, ṽ(t, x+2t+t γ ) t -1/2 exp t-

(x + 2t + t γ ) 2 4t = t -1/2 exp -x- x 2 4t - x √ t t γ-1/2 2 -t γ - t 2(γ-1/2) 4 .
Recalling that γ > 1/2, we see that on the diffusive scale x ∼ √ t, the Gaussian term x 2 /4t and the t -1/2 in front are (much) lower order and, thus, negligible, but all other terms are large. Hence, our sub-solution should contain all such terms to be reasonably sharp. In particular, while the xt γ-1 term appears small at first glance since γ < 1, it is not negligible in the diffusive scale x ∼ √ t. While the terms depending only on t show up as obvious integrating factors, this term will not. Hence, the key to the proof below is in carefully taking account of this term. Note that here we see the effect of γ > 1/2.

Proof of Lemma 4.3. We show how to "guess" the form of the sub-solution v. We begin by removing an exponential from ṽ and changing to the moving frame. Define, for x ∈ R + , z(t, x) := e x ṽ(t, 2t + (t + 1) γ -1 + x), so that (4.5) becomes z t ≤ z xx + γ(t + 1) γ-1 (z x -z), t > 0, x > 0, z(t, 0) = 0, z(0, x) = e x w 0 (x).

(5.9)

Turning to self-similar variables, τ = log(1 + t), y = (t + 1) -1/2 x, and ζ(τ, y) = z(e τ -1, e τ /2 y),

we wish to construct ζ that satisfies the inequality

ζ τ ≤ ζ yy + y 2 ζ y + γe (γ-1/2)τ ζ y -γe γτ ζ. (5.10) 
As γ > 1/2, the drift in (5.10) is not a perturbation anymore. The heuristic discussion preceding this proof indicates that we should consider ζ(τ, y) = e -αye (γ-1/2)τ ψ(τ, y), with α ∈ R to be determined. Then we require .11) with L as in (5.3). To remove the drift term, we set α = γ/2. Then (5.11) becomes

ψ τ ≤ Lψ + (γ -2α)e (γ-1/2)τ ψ y -1 + α(γ -α)e (2γ-1)τ + γe τ γ ψ -α(1 -γ)ye (γ-1/2)τ ψ. ( 5 
ψ τ -Lψ + 1 + γ 2 4 e (2γ-1)τ + γe τ γ ψ + γ 2 (1 -γ)ye (γ-1/2)τ ψ ≤ 0.
Further, writing ψ(τ, y) = exp -τ -e γτγ 2 4(2γ -1) e (2γ-1)τ Ψ(τ, y),

we arrive at Ψ τ -LΨ + 1 2 γ(1 -γ)ye (γ-1/2)τ Ψ ≤ 0.
(5.12)

To deal with the last term in (5.12), let a, a ′ , b > 0 be constants to be determined and define

Ψ(τ, y) = y exp -ae τ (2γ-1) -a ′ τ - y 2 b .
By a direct computation, we see that

Ψ τ -LΨ + γ 2 (1 -γ)ye (γ-1/2)τ Ψ = -a ′ -a(2γ -1)e τ (2γ-1) - y 2 b 4 b -1 + 6 b - 3 2 + γ(1 -γ) 2 ye (γ-1/2)τ Ψ.
(5.13)

It is clear that to have (5.12), we must choose b < 4. For simplicity, we take b = 2, and

a ′ = 6 b - 3 2 = 3 2 , so that (5.13) becomes Ψ τ -LΨ + γ 2 (1 -γ)ye (γ-1/2)τ Ψ = -a(2γ -1)e τ (2γ-1) + γ(1 -γ) 2 ye (γ-1/2)τ - y 2 2 Ψ.
The choice

a ≥ γ 2 (1 -γ) 2 8(2γ -1)
ensures that (5.12) holds. Returning to our original variables, we see that

v(t, x) = ṽ(t, 2t + (t + 1) γ -1 + x) = e -x ζ(log(1 + t), (t + 1) -1/2 x) = e -x e -α(t+1) -1/2 x(1+t) γ-1/2 ψ(log(1 + t), (t + 1) -1/2 x) = 1 1 + t exp -x - γ 2 x 1 + t γ-1 -(1 + t) γ - γ 2 (1 + t) 2γ-1 4(2γ -1) Ψ(log(1 + t), (t + 1) -1/2 x) = x (1 + t) 3 exp -x - γ 2 x(1 + t) γ-1 -(1 + t) γ - γ 2 4(2γ -1) + a (1 + t) 2γ-1 - x 2 2(1 + t) .
This concludes the proof.

The Fisher-KPP equation with a Gompertz non-linearity

A side effect of our analysis gives the asymptotics for a related local equation:

u t -∆u = f r (u). (6.1)
Here, we assume that f r ∈ C 1 , r ∈ (1, ∞), and there exist positive constants θ f , δ f , and A f such that

f r (0) = 0, f r (u) > 0 for all u ∈ (0, θ f ), f r (θ f ) = 0, f r (u) = 0 for all u ≥ θ f , (6.2) 
and

u 1 -A f log 1 u 1-r ≤ f r (u) ≤ u 1 -A -1 f log 1 u 1-r , (6.3) 
for u ∈ (0, δ f ).

Theorem 6.1. Suppose that the initial condition u 0 (x) for (6. 

sup x≤0 u t, 2t -C f t 3-r 1+r + x -θ f = 0. ( 6.9) 
The proof of (6.4) follows directly from Section 3. The proofs of (6.5), (6.6), and (6.9) follow from what was done in Section 4, combined with a standard argument saying that the convergence is necessarily to the steady state θ f (see, e.g., [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]). The bounds (6.7) and (6.8) need additional ingredients; the work is similar so we only detail the computations for (6.8). Indeed, since our non-linearity is local, we cannot "pull" information from the front as we did above when we used the value of u at the front to bound φ ⋆ u far ahead of the front. In order to get around this, we state a weak lower bound on u. Lemma 6.2. Let the hypotheses of Theorem 6.1 be satisfied. Then there exists δ f > 0, depending only on f , such that u(t, x) ≥ exp{-δ f t γ } for all t sufficiently large and all x ≤ 2t + t γ , where we again define γ = 2/(1 + r).

Such a bound follows from the analysis of the lower bound in part (3) of Proposition 3.2 and requires no new ideas. As such, we omit the proof.

The main point in the proof of Theorem 6.1 is to use the lower bound in Lemma 6.2 on u along with the form of the non-linearity to replace the estimate of φ ⋆ u that we used in the proof of the upper bound in Theorem 1.1 when r ∈ (1, 3).

Proof of (6.8) assuming Lemma 6.2. We use a super-solution v(t, x) := B exp -x -2t + 2c f t 2γ-1 , with c f > 0 to be determined. Then v satisfies

v t = v xx + v 1 -2c f (2γ -1)t 2γ-2 .
On the other hand, using the bound on f (6.3) along with Lemma 6.2, we have that, for all t sufficiently large and x ≤ 2t + t γ ,

u t -u xx = f r (u) ≤ u 1 -A f log 1 u(t, x) 1-r ≤ u 1 -A f δ 1-r f t γ(1-r) .
Recalling 2γ -2 = γ(1 -r), and choosing c f such that A f δ r-1 f ≥ 2c f (2γ -1), we see that v is a super-solution for u.

7 The local-in-time Harnack inequality: Proposition 1.2

Proof of Proposition 1.2. Up to a shift in time, we may assume that t = 0. We may also assume that c ≡ 0. Indeed, let u ± (t, x) = e ±t c L ∞ ([0,T ]×R) w(t, x),

where w solves the heat equation w t = w xx , with the initial condition w(t = 0, x) = u(t = 0, x). Then u + is a super-solution to u while u -is a sub-solution to u. Hence, we have In view of this inequality, it is enough to prove the claim for w, that is, solutions to the heat equation.

Let G be the one-dimensional heat kernel G(t, x) = (4πt) -1/2 e -x 2 /(4t) . Fix s = (p + 1)/2p, notice that s ∈ (0, 1) and sp > 1, and let q be the dual exponent of p. Then we have w(T, x + y) = ˆR w(0, z)G(T, x + y -z)dz ≤ w 1-1/p ∞ ˆR w(0, z) 1/p G(T, x + y -z) s G(T, x + y -z) 1-s dz ≤ w 1-1/p ∞ ˆR w(0, z)G(T, x + y -z) sp dz e -q(1-s) x 2 4T dx 1 q = (4πT ) -1 2 (1-s)

4T π q(1 -s)

1 2 1 q = C p T 1 2q -1 2 (1-s) = C p T s 2 -1 2p .
We now seek a bound on G(T, x+y -z) sp in terms of G(T, x-z). To this end, we recall that sp > 1, let x ′ = x -z and we compute G(T, x ′ + y) sp G(T, x ′ ) = (4πT ) In the second line we used the explicit choice of s to simplify the exponent of T . This concludes the proof.

(
A Proofs of Lemmas 2.2, 5.1 and 5.2.

Proof of Lemma 5.1. The proof of this lemma is similar to that of a corresponding estimate in [START_REF] Hamel | A short proof of the logarithmic Bramson correction in Fisher-KPP equations[END_REF]. However, the proof there only deals with moving boundary conditions of the form 2t + r log(t). Hence, for completeness, we provide a streamlined proof. Recall that ζ solves ζτ = L ζ + εe (γ-1/2)τ ζy .

To rectify the fact that the operator L is not self-adjoint, we remove a Gaussian term. Let 

Lemma 2 . 1 .

 21 [START_REF] Hamel | On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds[END_REF] Theorem 1.2] Suppose that u satisfies (1.2) with initial data u 0 satisfying (1.8).

  on the time interval [0, 2]. It follows that w(2, x + x 0 ) ≥ 1 √ 8π ˆ∞ 0 w 0 (y+x 0 ) e -|x-y| 2 /8 -e -|x+y| 2 /8 dy ≥ δ w e -x 2 /8 √ 8π ˆxw-x0 0 e -y 2 /8 e xy/4 -e -xy/4 dy

  2 ζ, with L as in (5.3). Finally, pulling out the zeroth order factor ζ(τ, y) = e -τ -(e τ /2 -1) ζ(τ, y), we see that ζ solves ζτ = Lζ + 1 2 ζ y .

Lemma 5 . 2 .

 52 Let ζ solve (5.6), then it can be represented as ζ(τ, y) = exp -y) dy ψ(y)e -λτ + y h(τ, y)e -µτ .(5.7)

L

  ∞ u(T, x) 1/p ≤ u + (T, x + y) u - 1-1/p L ∞ u -(T, x) 1/p ≤ e 2 c L ∞ T w(T, x + y) w 1-1/p L ∞ w(T, x) 1/p.

∞

  ˆR w(0, z)G(T, x + y -z) sp dz

  ˆRn

=

  Ce βy 2 /T w 1-1/p ∞ w(t, x) 1/p .

  ζ(τ, y) = e -y 2 /8 ζ * (τ, y), then ζ * satisfies ζ * τ + M ζ * = εe (γ-1/2)τ ζ * y -

  Theorem 1.1. Suppose that u satisfies (1.2) and (1.8) with φ satisfying (1.4), (1.5), and (1.6). If r > 3, then the solution u propagates with a logarithmic delay: If r = 3, then the solution u propagates with a larger logarithmic delay: there exists S φ > s φ > 3/2

		lim inf t→∞	inf x≤0	u t, 2t -	3 2	log t + x > 0,	(1.9)
	and	lim L→∞	lim sup t→∞	sup x≥L	u t, 2t -	3 2	log t + x = 0.	(1.10)
	such that							
		lim inf t→∞	inf x≤0	u t, 2t -S φ log t + x > 0,	(1.11)
	and							
		lim					

t→∞ sup x≥0 u t, 2t -s φ log t + x = 0.

(1.12)

  We also need the exponential to be above u(t, x) at the front edge. To control u there, we use that, letting h = e -t u, h is a sub-solution to the heat equation. In other words,

		h t ≤ h xx	
	and, hence, for all x ≫ 1, e -t u(t, x) = h(t, x) ≤ ˆe-|x-y| 2 4t	u 0 (y)dy	√ t x	e -x 2 4t .	(1.20)
	Thus, for u to sit below the exponential super-solution at x = 2t + e(t), we require
	exp t -	(2t + e(t)) 2 4t		exp{-(e(t) + d(t))},
	that is,				
		e(t) 2 ≥ 4td(t).	(1.21)
	Since e(t) should be o(t), we get				
		lim t→+∞	d(t) e(t)	= 0.	(1.22)
	Combining (1.19), (1.21) and (1.22) gives, for t large,	
		to be a super-solution to (1.2) inside (2t-d(t), 2t+e(t)),
	we need				
		(e(t) + d(t)) 1-r d ′ (t).	(1.19)

  x). Now, assume for the sake of a contradiction that there exists a first touching time (t ft , x ft ) such that t ft ≥ T 1 , x ft ≤ 2t ft + √ t ft + t γ ft -S 0 , and u(t ft , x

ft ) = v(t ft , x ft ), and u(t, x) > v(t, x) for all t ∈ [T 1 , t ft ) and x < 2t + √ t + t γ -S 0 . Our goal is to obtain a contradiction by estimating φ ⋆ u and looking at the equation satisfied by u -v.

First, we estimate φ ⋆ u(t ft , x ft ) using Lemma 3.1. By increasing s 0 if necessary, we obtain

  1) is as in(1.8). If r > 3, then the solution u(t, x) propagates with a logarithmic delay:

		lim L→∞	lim sup t→∞	sup x≥L	u t, 2t -	3 2	log t + x = 0,	(6.4)
	and	lim L→∞	lim sup t→∞	sup x≤-L	u t, 2t -	3 2	log t + x -θ f = 0.	(6.5)
			lim t→∞	sup x≥0	u t, 2t -c f t	3-r 1+r + x = 0,	(6.8)
	and							
		lim t→∞					

If r = 3, u(t, x) propagates with a larger logarithmic delay: there exists

S A > s A > 3/2 such that lim inf t→∞ sup x≤0 u t, 2t -S A log t + x -θ f = 0,

(6.6)

and lim t→∞ sup x≤0 u t, 2t -s A log t + x = 0, (

6.7)

If r ∈ (1, 3), then the delay is algebraic: there exist C f > c f > 0, depending only on f r , such that

Upper bounds on the location of the frontIn this section, we prove the upper bounds (1.10) and(1.14) in Theorem 1.1.
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Fix any A V > C conv and let V be a traveling wave solution of

and V (+∞) = 0.

The existence, uniqueness up to translation, and monotonicity of V is given by, for example, [START_REF] Berestycki | Travelling fronts in cylinders[END_REF]. We also recall (see [START_REF] Hamel | Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity[END_REF]3]) the fact that there exists β r,Av > 0, depending only on r and A V , and κ > 0 such that, as ξ → ∞

where the shift s 0 is to be determined below and λ is as in Proposition 3.2 and Corollary 3.3.

Lemma 3.4. There exists T 1 > 0 and s 0 such that if s 0 ≥ s 0 , then v(t, x) ≤ u(t, x) if r = 3, t ≥ T 1 , and x ≤ 2t + t γ + √ t -S 0 where S 0 is the shift given in Corollary 3.3.

The principle eigenvalue of M is associated to the eigenfunction

Define the non-negative quadratic form

Multiplying (A.1) by ζ * and integrating, we obtain

Integrating this inequality in τ and using the L 2 bound above, we obtain

We now show that the component of ζ * that is orthogonal to ψ decays in time. Let

Using (A.1), we obtain

from which we deduce that ζ⊥ (τ,

Gathering all estimates concludes the proof.

Proof of Lemma 5.2. Recall that ζ solves

To pass to a self-adjoint form, write

This operator is now self-adjoint with a compact resolvent. Let ψ and λ be the principal eigenfunction and eigenvalue of the operator above satisfying the boundary condition ψ(0) = 0 and the normalisation ψ

and thus λ > 0. Write

where µ is the second eigenvalue of M . After a time differentiation we have

and as a consequence of (A.4), that

Then, locally we have ζ * ⊥ ∞ (τ ) e -µτ by parabolic regularity. This yields

where h is bounded in τ , locally in y. To finish, we simply note that, by elliptic regularity theory, for any compact set K ⊂ [0, ∞), there exists

since ψ(0) = 0. This concludes the proof.

Proof of Lemma 2.2. As before, we pass to the moving frame and remove an exponential: let

Then, we want

Changing now to self-similar variables and recalling the definition

and N (τ, y) := t 0 e τ ν t 0 (e τ -1), t

The important point here is that N (∞, •) is neither infinity nor zero as it would be for another choice of r. This is what induces the larger delay.

Then we must find ζ that satisfies:

We have changed the order to emphasize that the right hand side is a small error. We now define ζ. As above M +N (0, •) is self-adjoint with a compact resolvent. Let ζ0 and λ 0 be its principle eigenelements. Using the Rayleigh quotient and testing with ye -y 2 /8 , we see immediately that λ 0 > 0. We need only verify that ζ satisfies (A.6); indeed, setting sφ = 3/2 + λ 0 /2, The first, third, and fourth terms are all positive. A simple maximum principle argument yields that -ζy is positive for all y ≥ y 0 for some y 0 > 0. The Hopf maximum principle implies (λ 0 /2) ζsφ εe -τ /2 ζy > 0 for all y > e -τ /2 /C for some C > 0. Thus, ζ satisfies (A.6) on [e -τ /2 /C, ∞), which, after translating back to physical variables, concludes the proof.