Some Results About a Conjecture on Identifying Codes in Complete Suns

Olivier Hudry, Antoine Lobstein

To cite this version:

Olivier Hudry, Antoine Lobstein. Some Results About a Conjecture on Identifying Codes in Complete Suns. International Transactions in Operational Research, 2019, 26 (2), pp.732-746. hal-01613344

HAL Id: hal-01613344

https://hal.science/hal-01613344

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Some Results About a Conjecture on Identifying Codes in Complete Suns

Olivier Hudry
CNRS - LTCI \& Institut Télécom - Télécom ParisTech
46, rue Barrault, 75634 Paris Cedex 13 - France
hudry@telecom-paristech.fr
Antoine Lobstein
CNRS - LTCI \& Institut Télécom - Télécom ParisTech 46, rue Barrault, 75634 Paris Cedex 13 - France
lobstein@telecom-paristech.fr

March 17, 2016

Abstract

Consider a graph $G=(V, E)$ and, for every vertex $v \in V$, denote by $B(v)$ the set $\{v\} \cup\{u: u v \in E\}$. A subset $C \subseteq V$ is an identifying code if the sets $B(v) \cap C, v \in V$, are all nonempty and distinct. It is a locating-dominating code if the sets $B(v) \cap C, v \in V \backslash C$, are all nonempty and distinct.

Let S_{n} be the graph whose vertex set can be partitioned into two sets U_{n} and V_{n}, where $U_{n}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ induces a clique, and $V_{n}=\left\{v_{1,2}, v_{2,3}, \ldots, v_{n-1, n}, v_{n, 1}\right\}$ induces an independent set, with edges $v_{i, i+1} u_{i}$ and $v_{i, i+1} u_{i+1}, 1 \leq i \leq n$; computations are carried modulo n. This graph is called a complete sun. We prove the conjecture, stated by Argiroffo, Bianchi and Wagler in 2014, that the smallest identifying code in S_{n} has size equal to n. We also characterize and count all the identifying codes with size n in S_{n}. Finally, we determine the sizes of the smallest locating-dominating codes in S_{n}.

Key Words: Graph Theory, Identifying Codes, Locating-Dominating Codes

1 Introduction

This paper was first motivated by a conjecture, stated by Argiroffo, Bianchi and Wagler in [1], about the size of optimal identifying codes in a special class of graphs, the complete suns. We prove below that this conjecture is true, but we also investigate these graphs further: we characterize and count all their optimal identifying codes, and we determine the size of their optimal locating-dominating codes.

Consider a graph $G=(V, E)$; the order of G is its number of vertices. For every vertex $v \in V$, denote by $B(v)$ the ball of radius one and centre v, i.e., the set $\{v\} \cup\{u: u v \in E\}$. Two vertices $u \in V, v \in V$ are said to dominate each other if $u \in B(v)$, which is equivalent to $v \in B(u)$. A vertex $z \in V$ is said to separate u and v, or u from v, if it dominates u but not v (note that in this case $z=u$ is possible), or the other way round. A set of vertices $Y \subseteq V$ is said to dominate a vertex $u \in V$ (respectively, to separate two vertices $u \in V$ and $v \in V)$ if Y contains at least one vertex which dominates u (respectively, which separates u and v).

A subset $C \subseteq V$ is an identifying code if the sets $B(v) \cap C, v \in V$, are all nonempty and distinct. In other words, every vertex is dominated by C, and every pair of vertices is separated by C. The vertices in C are called codewords and those in $V \backslash C$ non-codewords. With a slight abuse of language, when the context is clear, we shall often say that "a vertex is dominated", or "a pair of vertices is separated", omitting to add ". . . by the code" or ". . .by such codeword".

When G admits an identifying code, we denote by $\gamma^{I D}(G)$ the minimum cardinality of an identifying code in G. Any identifying code C with $|C|=$ $\gamma^{I D}(G)$ is said to be optimal.

Closely related are the locating-dominating codes, which are less demanding: a subset $C \subseteq V$ is a locating-dominating code (LD code for short) if the sets $B(v) \cap C, v \in V \backslash C$, are all nonempty and distinct. In other words, every non-codeword is dominated by C, and every pair of non-codewords is separated by C. For LD codes, we shall often say that we separate two vertices also when we put one of them in the code. We denote by $\gamma^{L D}(G)$ the minimum cardinality of a LD code in G. Any LD code C with $|C|=\gamma^{L D}(G)$ is said to be optimal.

The motivations for identifying and locating-dominating codes may come, for instance, from fault diagnosis in multiprocessor systems. Identifying codes were introduced in the seminal paper [6], which establishes general bounds on $\gamma^{I D}$, then studies particular classes of graphs, such as hypercubes, trees, or the hexagonal and triangular infinite grids. Locating-dominating codes were introduced in [9] and further developed in [3], with a focus on complexity and algorithms. Both families of codes now constitute a topic of their own, as shows the bibliography at [7], which contains approximately 340 references.

Figure 1: The complete sun S_{4}.

A complete sun S_{n} is a graph whose vertex set can be partitioned into two sets U_{n} and V_{n}, where $U_{n}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ induces a clique (or complete graph), and $V_{n}=\left\{v_{1,2}, v_{2,3}, \ldots, v_{n-1, n}, v_{n, 1}\right\}$ induces an independent (or stable) set, with edges $v_{i, i+1} u_{i}$ and $v_{i, i+1} u_{i+1}, 1 \leq i \leq n$; computations are carried modulo n. See Figure 1 for $n=4$.

Complete suns belong to a larger class of graphs, the split graphs, whose vertex set can be partitioned into a clique and an independent set. Complexity results for the identifying code problem in split graphs can be found in [4].

In [1], the authors investigate the minimum cardinality of an identifying code for different families of suns, and in particular they conjecture that for $n \geq 3, \gamma^{I D}\left(S_{n}\right)=n$ (note that V_{n} is obvioulsy an identifying code in S_{n}). In Section 2, we prove that the conjecture is true. We then widen our study of complete suns: in Section 3, we characterize all the optimal identifying codes in S_{n}, and we count them in Section 4; in Section 5, we prove that $\gamma^{L D}\left(S_{3}\right)=3$ and $\gamma^{L D}\left(S_{n}\right)=\left\lfloor\frac{4 n+2}{5}\right\rfloor$ for $n \geq 4$.

NB: In [1, Fig. 2], the graphs (b) and (c) are erroneously inverted.

2 Proof of the Conjecture

In the subsequent figures, black circles will represent codewords, white circles will represent non-codewords, and when necessary there will be squares for the vertices with unknown or immaterial status; we do not represent all the edges in the clique, except in Figure 4.

Since V_{n} is an identifying code, all we have to prove is that $\gamma^{I D}\left(S_{n}\right) \geq n$. Let C_{n} be an identifying code in S_{n}, optimal or not. When we speak of consecutive vertices in U_{n} or V_{n}, "consecutive" refers to the subscripts. A vertex $v_{i, i+1}$ such that $v_{i-1, i} \notin C_{n}$ and $v_{i+1, i+2} \notin C_{n}$ is called a single. A sequence of two consecutive non-codewords $v_{i-1, i}, v_{i, i+1}$ is called a duet; two duets with no vertices in common form a quartet.

Lemma 1 Let C_{n} be an identifying code in S_{n}. Then:
(a) There is no single in V_{n};
(b) There is at most one duet in V_{n}; equivalently, there is no quartet in V_{n}.

(b)

Figure 2: Codewords and non-codewords in V_{n}.

Proof. (a) If $v_{i, i+1}$ is a single, then u_{i} and u_{i+1} are not separated by the code, since $v_{i-1, i}$ and $v_{i+1, i+2}$ are the only vertices separating u_{i} and u_{i+1}.
(b) If $v_{i-1, i}, v_{i, i+1}$ and $v_{j-1, j}, v_{j, j+1}$ form a quartet, then u_{i} and u_{j} are not separated, with $j \in\{1, \ldots, n\} \backslash\{i-1, i, i+1\}$.

Proposition 2 For all integers $n \geq 3$, we have: $\gamma^{I D}\left(S_{n}\right) \geq n$.
Proof. Using Lemma 1, we study the possible sequences of codewords and non-codewords in V_{n}. In particular, no sequence of three consecutive noncodewords exists in V_{n}.

There is at least one codeword in V_{n}, because the vertices in U_{n} are separated, and without loss of generality (wlog), we assume that $v_{1,2} \in C_{n}$. Then by Lemma 1 (a) $v_{n, 1} \in C_{n}$ or $v_{2,3} \in C_{n}$: wlog, we take $v_{2,3} \in C_{n}$. We can then alternate the codewords and the non-codewords in V_{n} as in Figure 2; in Figure 2(a), we have:

- Sequences of consecutive codewords of various lengths, with at least one sequence, and the lengths at least two by Lemma 1(a).
- One duet; by Lemma $1(\mathrm{~b})$, there is at most one duet.
- Sequences of isolated non-codewords; their number can range between zero and $\left\lfloor\frac{n-4}{3}\right\rfloor$.

In Figure 2(b), we have only isolated non-codewords in V_{n}; their number can range between zero and $\left\lfloor\frac{n}{3}\right\rfloor$ (but as we shall see later on, exactly one [isolated] non-codeword in V_{n} is impossible).

We denote by q the number of codewords in V_{n}; then there are $n-q$ non-codewords in V_{n}, distributed according to Figure 2(a) or (b). These non-codewords must be dominated and separated by codewords in U_{n}. It is straightforward to observe that each isolated non-codeword requires (at least) one codeword in U_{n} (in order to be dominated), that the duet requires (at least) two codewords in U_{n} (so that its two vertices are dominated and separated), and that these tasks do not overlap. So the $n-q$ non-codewords

Figure 3: (a) How to treat isolated non-codewords in V_{n}; (b) and (c) How to treat a duet.
in V_{n} require (at least) $n-q$ codewords in U_{n}, and the total number of codewords is (at least) n.

Thus, the conjecture is proved:
Corollary 3 For all integers $n \geq 3$, we have: $\gamma^{I D}\left(S_{n}\right)=n$.

3 Characterization of the Optimal Codes

We construct all the optimal identifying codes in S_{n} by first choosing the configuration of codewords/non-codewords in V_{n}; this configuration is one of the two given in Figure 2. Then we complete the code by choosing the remaining codewords in U_{n} : for each isolated non-codeword in V_{n}, we arbitrarily choose one of the two vertices in U_{n} that dominates it, see Figure 3(a); for each duet in V_{n}, we arbitrarily choose two vertices among the three vertices in U_{n} that dominate at least one vertex of the duet, see Figure 3(b)-(c). We claim that, except in some cases that will be described below, the code C_{n} thus constructed is identifying. Since it contains n elements, it is optimal.
(1) Obviously, all the vertices are dominated by C_{n}.
(2) The vertices in U_{n} are separated between themselves:
two consecutive vertices are separated because there is no single in C_{n}; two non-consecutive vertices are separated because there is no quartet in C_{n}.
(3) The vertices in U_{n} are separated from the vertices in V_{n} : indeed, unless
(a) there is exactly one codeword u_{i} in U_{n}, or
(b) there are exactly two codewords u_{i}, u_{i+1} in U_{n},
the codewords in U_{n} perform this separating task. In Case (a) however, u_{i} and the codeword in V_{n} that u_{i} dominates are not separated (cf. Figure 3(a)); this case can be avoided only if we do not take exactly $n-1$ codewords in V_{n}. In Case (b), if u_{i} and u_{i+1} have been put in the code to dominate and separate $v_{i, i+1}$ and $v_{i+1, i+2}$, then u_{i+1} and $v_{i, i+1}$ are not separated, (cf. Figure 3(b)), but by taking rather u_{i} and u_{i+2}, like in Figure 3(c), we can overcome this difficulty.

Figure 4: All the nonisomorphic optimal identifying codes.

Figure 5: Distributions of codewords in V_{7}.
(4) The vertices in V_{n} are separated between themselves:
(a) The codewords in V_{n} are separated from all the other vertices in V_{n} by themselves.
(b) The non-codewords in V_{n} are separated between themselves by the codewords in U_{n} that dominate them.
Summarizing: in order to construct all the optimal identifying codes in S_{n}, we choose a configuration of codewords and non-codewords in V_{n} such as given by Figure 2, with the exception of the configuration with exactly $n-1$ codewords in V_{n}. We complete the code with vertices in U_{n}, in the way described in the first paragraph of this Section, being careful, in the case when $v_{i, i+1}$ and $v_{i+1, i+2}$ are the only non-codewords in V_{n}, to take u_{i} and u_{i+2} as codewords, not u_{i} and u_{i+1} nor u_{i+1} and u_{i+2}.

Finally, Figure 4 gives all the nonisomorphic optimal identifying codes in S_{n}, for $n=3, n=4, n=5$ and $n=6$, with decreasing number of codewords in V_{n}. Figure 5 gives, for $n=7$, the four possible configurations for V_{n}, giving respectively one, one, three and one nonisomorphic optimal identifying codes in S_{7}.

An open question is to determine the number of nonisomorphic optimal identifying codes in S_{n} for $n>7$, but in the following Section, we manage
(a) V_{n}

(b) V_{n}

(c) V_{n}

Figure 6: Examples of partitions of V_{n} : (a) no duet, $v_{1,2}$ not in a brick; (b) no duet, $v_{1,2}$ in the brick B; (c) one duet.
to count all the optimal identifying codes in S_{n}, isomorphic or not.

4 Counting the Optimal Codes

4.1 The case when there is no duet in V_{n}

Consider the set $V_{n}=\left\{v_{1,2}, v_{2,3}, \ldots, v_{n-1, n}, v_{n, 1}\right\}$ and an optimal identifying code C_{n} such that there is no duet in V_{n}; for $i \in\{1, \ldots, n\}$, the set $\left\{v_{i-1, i}, v_{i, i+1}, v_{i+1, i+2}\right\}$ is called a brick if $v_{i-1, i} \in C_{n}, v_{i, i+1} \notin C_{n}$, and $v_{i+1, i+2} \in C_{n}$. Let k be the number of bricks is $V_{n} ; k$ is also the number of (isolated) non-codewords in V_{n}, and we have seen previously that $k \in K_{n}=\{0\} \cup\left\{2,3, \ldots,\left\lfloor\frac{n}{3}\right\rfloor\right\}$. Two sets of vertices of V_{n} are said to be consecutive if both consist of consecutive vertices in V_{n}, and if the last vertex of one set and the first vertex of the other set are consecutive.

Assume first that $v_{1,2}$ does not belong to any brick; in particular, $v_{1,2} \in$ C_{n}. Going from $v_{2,3}$ to $v_{n, 1}$, we can partition $V_{n} \backslash\left\{v_{1,2}\right\}$ into $2 k+1$ consecutive sets in the following way (see Figure 6(a)):

$$
\begin{equation*}
V_{n} \backslash\left\{v_{1,2}\right\}=H_{0} \cup B_{1} \cup H_{1} \cup \ldots \cup H_{k-1} \cup B_{k} \cup H_{k} \tag{1}
\end{equation*}
$$

where the sets H_{i} contain only codewords and can have size zero, and the sets B_{i} are bricks (of size 3). Let $h_{i}=\left|H_{i}\right|$. The partitions of type (1) are characterized by the sizes of the sets H_{i}, and their number is given by the number of solutions of

$$
\begin{equation*}
\sum_{i=0}^{k} h_{i}=n-1-3 k, 0 \leq h_{i} \tag{2}
\end{equation*}
$$

which is known to be $\binom{n-2 k-1}{k}$, see, e.g., [8]. We have seen that for each isolated non-codeword $v_{j, j+1}$ in V_{n}, we can choose as codeword in U_{n} either u_{j} or u_{j+1}. So, under these conditions (no duet, no brick containing $v_{1,2}$), the number of optimal identifying codes is

$$
\begin{equation*}
\alpha_{n}=\sum_{k \in K_{n-1}} 2^{k}\binom{n-2 k-1}{k}=\sum_{k=0}^{\left\lfloor\frac{n-1}{3}\right\rfloor} 2^{k}\binom{n-2 k-1}{k}-2(n-3) . \tag{3}
\end{equation*}
$$

Assume next that $v_{1,2}$ belongs to one brick (hence $k \neq 0$), and let $k^{*}=k-1$. There are three possibilities according to the position of $v_{1,2}$ in the brick (leftmost, middle or rightmost). Then we can apply the previous argument, with the following differences nonetheless: $k^{*} \in\left\{1,2, \ldots,\left\lfloor\frac{n}{3}\right\rfloor-1\right\}$, and the partition is done on the $n-3$ vertices surrounding the brick containing $v_{1,2}$, with k^{*} bricks and $k^{*}+1$ sets H_{i}; see Figure 6(b). So (2) becomes

$$
\sum_{i=0}^{k^{*}} h_{i}=n-3-3 k^{*}, 0 \leq h_{i},
$$

which admits $\binom{n-2 k^{*}-3}{k^{*}}$ solutions. Keeping in mind that we have three positions for $v_{1,2}$ inside its brick, and two possibilities in the choice of the codeword in U_{n} which dominates $v_{1,2}$, we can see that the number of optimal identifying codes is in this case is given by

$$
\begin{equation*}
\beta_{n}=3 \times 2 \times \sum_{k^{*}=1}^{\left\lfloor\frac{n-3}{3}\right\rfloor} 2^{k^{*}}\binom{n-2 k^{*}-3}{k^{*}} . \tag{4}
\end{equation*}
$$

So, in the absence of duet, the number of optimal identifying codes in S_{n} is equal to

$$
\begin{equation*}
\delta_{n}=\alpha_{n}+\beta_{n}, \tag{5}
\end{equation*}
$$

where α_{n} and β_{n} are given by (3) and (4), respectively.

4.2 The case when there is one duet in V_{n}

Now we assume that C_{n} is an optimal identifying code such that there is one duet in V_{n} (we have seen previously that there can be at most one duet).

First we choose the position of the duet; we have n possibilities. The duet, together with its left and right neighbouring codewords, occupies four vertices. Then we proceed as before, with k bricks, $k \in\left\{0,1,2, \ldots,\left\lfloor\frac{n-4}{3}\right\rfloor\right\}$ (no restriction on the number of bricks when there is a duet): we have to choose a partition on the $n-4$ vertices surrounding the duet and its left and right neighbours (see Figure 6(c)), so we have to consider the number of solutions of

$$
\sum_{i=0}^{k} h_{i}=n-4-3 k, 0 \leq h_{i},
$$

which is $\binom{n-2 k-4}{k}$. We have seen that there is no choice for the two codewords in U_{n} taking care of the duet, and we can conclude that the number of optimal identifying codes is given by

$$
\begin{equation*}
\omega_{n}=n \times \sum_{k=0}^{\left\lfloor\frac{n-4}{3}\right\rfloor} 2^{k}\binom{n-2 k-4}{k} \tag{6}
\end{equation*}
$$

in case of a duet.

4.3 Conclusion

Gathering (3), (4), (5) and (6) gives the total number of optimal identifying codes, which is

$$
\begin{array}{r}
\Phi_{n}=\sum_{k=0}^{\left\lfloor\frac{n-1}{3}\right\rfloor} 2^{k}\binom{n-2 k-1}{k}+6 \cdot \sum_{k=1}^{\left\lfloor\frac{n-3}{3}\right\rfloor} 2^{k}\binom{n-2 k-3}{k} \\
+n \cdot \sum_{k=0}^{\left\lfloor\frac{n-4}{3}\right\rfloor} 2^{k}\binom{n-2 k-4}{k}-2(n-3) . \tag{7}
\end{array}
$$

The first values given by (7) are $\Phi_{3}=1, \Phi_{4}=5, \Phi_{5}=6, \Phi_{6}=19, \Phi_{7}=50$, $\Phi_{8}=89$ and $\Phi_{9}=160$.

In order to obtain an asymptotic estimation of Φ_{n}, we need to approximate $M_{n}=\max _{k \in\{0, \ldots,\lfloor n / 3\rfloor\}} 2^{k}\binom{n-2 k}{k}$. Setting $N=n-2 k$ and $\varepsilon=k / N$ leads to study $\max _{\varepsilon \in] 0,1[} 2^{N \varepsilon}\binom{N}{N \varepsilon}$, and, using a standard approximation on the binomial coefficient (see, e.g., (2.4.3) in [2]), to study $\max _{\varepsilon \in] 0,1[} N(\varepsilon+H(\varepsilon))$, where $H(x)=-x \log _{2}(x)-(1-x) \log _{2}(1-x)$ is the (binary) entropy function. Going back to n, we have to search for $\max _{\varepsilon \in] 0,1}\left[n \frac{\varepsilon+H(\varepsilon)}{1+2 \varepsilon}\right.$, that is, to search for $\max _{\varepsilon \in] 0,1[} \frac{\varepsilon+H(\varepsilon)}{1+2 \varepsilon}$.

This maximum is reached for $\varepsilon_{0} \approx 0.41025$ and $k_{0} \approx 0.22535 n$, and is approximately 0.76181 , which leads finally to $M_{n} \gtrsim 2^{0.76181 n}$. Since $n^{*}=2 n$ is the order of the complete sun S_{n}, we have, in terms of order, about $2^{0.38091 n^{*}}$ different optimal identifying codes in the complete sun.

Let us now consider briefly the problem of finding graphs of order n^{*} with a large number of optimal identifying codes, see [5]. The complete suns are graphs for which the optimal identifying codes have size equal to half their order, and as such could be candidates, since $\binom{n^{*}}{\gamma^{I D}(G)}$, the number of all subsets of vertices of size $\gamma^{I D}(G)$ in any graph G of order n^{*}, is maximum when $\gamma^{I D}(G)=n^{*} / 2$. However, the above result, $2^{0.38091 n^{*}}$, is modest when compared to the best known result, namely $2^{0.77003 n^{*}}([5$, Th. 11]).

Figure 7: Constructions of LD codes in S_{n}.

5 Determining $\gamma^{L D}\left(S_{n}\right)$

The first two values of n are easy to study, and we have: $\gamma^{L D}\left(S_{3}\right)=3$, $\gamma^{L D}\left(S_{4}\right)=3$. From now on, we assume that $n \geq 5$.

We first give five constructions, according to the congruences of n modulo 5 , proving that for $n \geq 5$, we have:

$$
\begin{equation*}
\gamma^{L D}\left(S_{n}\right) \leq\left\lfloor\frac{4 n+2}{5}\right\rfloor . \tag{8}
\end{equation*}
$$

These constructions are given by Figure 7 and are straightforward to check (remember that only the non-codewords have to be tested).

We next turn to the lower bound which we want to prove:

$$
\gamma^{L D}\left(S_{n}\right) \geq\left\lfloor\frac{4 n+2}{5}\right\rfloor .
$$

The following lemma, where (a) and (b) match Lemma 1 for identifying codes, will prove useful.

Lemma 4 Let C_{n} be a $L D$ code in S_{n}, and $i \in\{1, \ldots, n\}$. Then:
(a) $C_{n} \cap\left\{v_{i-1, i}, u_{i}, u_{i+1}, v_{i+1, i+2}\right\}=\emptyset$ is impossible;
(b) $C_{n} \cap\left\{v_{i-1, i}, u_{i}, v_{i, i+1}\right\}=\emptyset$ is possible for at most one value of i;
(c) $C_{n} \cap\left\{u_{i}, v_{i, i+1}, u_{i+1}\right\}=\emptyset$ is impossible;
(d) $C_{n} \cap\left\{u_{i}, v_{i, i+1}, v_{i+1, i+2}, u_{i+2}\right\}$ is impossible.

Proof. (a) Because u_{i} and u_{i+1} would not be separated.
(b) Assume on the contrary that there exists $j \in\{1, \ldots, n\}, j \neq i$, such that $C_{n} \cap\left\{v_{j-1, j}, u_{j}, v_{j, j+1}\right\}=\emptyset$; then u_{i} and u_{j} are not separated.
(c) Because $v_{i, i+1}$ must be dominated.
(d) Because $v_{i, i+1}$ and $v_{i+1, i+2}$ must be separated.

In the following, we shall say that the sets $\left\{v_{i-1, i}, u_{i}, v_{i, i+1}\right\}$ and $\left\{u_{i}, v_{i, i+1}\right.$, $\left.u_{i+1}\right\}$ are triangles, denoted by ∇ and \triangle, respectively. We shall say that

Figure 8: The 10-slice $T_{i, 10}$ with three codewords, one in V_{n} and two in U_{n}.
a triangle is empty if it contains no codeword. Now, with this terminology, Lemma 4(b) states that there is at most one empty triangle ∇, and Lemma 4(c) states that there is no empty triangle \triangle.

Amidst all the LD codes in S_{n} with size $\gamma^{L D}\left(S_{n}\right)$, we take one, and we denote it by C_{n}. Assume that $V_{n} \cap C_{n}=\emptyset$; then the vertices in U_{n} cannot be separated, unless all of them but one are codewords. This implies $\left|C_{n}\right| \geq n-1 \geq\left\lfloor\frac{4 n+2}{5}\right\rfloor$, for $n \geq 5$. So from now on, we can take for granted that V_{n} contains at least one codeword.

Step 1. Any set $\left\{v_{i, i+1}, v_{i+1, i+2}, \ldots, v_{i+k-1, i+k}, u_{i+1}, u_{i+2}, \ldots, u_{i+k}\right\}, i \in$ $\{1, \ldots, n\}, k \in\{1, \ldots, n\}$, is denoted by $T_{i, 2 k}$ and is called a $2 k$-slice. In this first step, our goal is to show that for all $i \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\left|T_{i, 10} \cap C_{n}\right| \geq 4, \tag{9}
\end{equation*}
$$

with the exception of three cases which will be specifically treated. We are going to study how many codewords can be in $V_{n} \cap T_{i, 10}$, for any i.
(1) If there are four or five codewords in $V_{n} \cap T_{i, 10}$, then (9) is satisfied.
(2) Next, assume that there are three codewords in $V_{n} \cap T_{i, 10}$; then, because there are four triangles \triangle in $T_{i, 10}$, at least one more codeword is necessary in $U_{n} \cap T_{i, 10}$, and (9) is satisfied.
(3) We now turn to the case when there are two codewords (among five vertices) in $V_{n} \cap T_{i, 10}$; all the $\binom{5}{2}=10$ configurations require at least two more codewords in $U_{n} \cap T_{i, 10}$, and again (9) is satisfied.
(4) If $\left|V_{n} \cap C_{n} \cap T_{i, 10}\right|=1$, then, among the five possibilities, one can see, in particular using Lemma 4, that only one is possible with only two codewords in $U_{n} \cap T_{i, 10}$, see Figure 8, where one can see an empty triangle ∇.
(5) If $V_{n} \cap C_{n} \cap T_{i, 10}=\emptyset$, then, among the $\binom{5}{3}=10$ configurations for $U_{n} \cap T_{i, 10}$, one can see, again using Lemma 4, that only two of them can possibly lead to LD codes with three codewords in U_{n}; they are given in Figure 9. Note that both contain an empty triangle ∇.

So far, the above five cases show that for all $i \in\{1, \ldots, n\}$, the set $C_{n} \cap T_{i, 10}$ has size either (a) at least 4 , or (b) equal to 3 ; in the latter case, only three configurations are possible, given by Figures 8 and 9 , and at most

Figure 9: The 10-slice $T_{i, 10}$ with three codewords, all of them in U_{n}.

Figure 10: Two 10-slices containing each three codewords.
one of them can appear, at most once, because they all contain an empty triangle ∇; more precisely, this is true only if no intersection is allowed: see for instance Figure 10, where the configurations of Figures 8 and 9(a) coexist, but share eight vertices. Since our goal is to split S_{n} into disjoint 10 -slices, we shall go on saying, with a slight abuse of language, that at most one of them appears at most once.

Moreover, in Figure 8, $u_{i} \in C_{n}$, by Lemma $4(\mathrm{c})$, and $v_{i+5, i+6} \in C_{n}$, in order to avoid the pattern of Lemma 4(a). The same is true in Figure 9(a), by Lemma 4(d)-(b), as well as in Figure 9(b), by Lemma 4(c)-(b). We shall say that in these three cases, the left outside and right outside neighbours of $T_{i, 10}$ must be codewords.

We can now proceed to Step 2, in which we show how, according to the congruences of n modulo 5 , we can split S_{n} into 10 -slices and one smaller slice, and we prove the lower bound.

Step 2. Given C_{n}, for $k \in\{1, \ldots, n\}$ and $j \in\{0, \ldots, 2 k\}$, we say that a $2 k$-slice containing exactly (respectively, at least) j codewords is a $(2 k, j)$ slice (respectively, a $(2 k, \geq j)$-slice). With this notation, what we have just proved in Step 1 is that our graph, when arbitrarily split into disjoint 10 -slices (plus one r-slice, $r \in\{0,2,4,6,8\}$), can only contain at most one $(10,3)$-slice, and $(10, \geq 4)$-slices. Moreover, any $(10,3)$-slice has its left and right outside neighbours in the code, which in particular helps to show that

Figure 11: Illustration of Lemma 5, the (10, 4)-slice $T_{i, 10}$.
a (10,3)-slice cannot give by itself a LD code in S_{5}, and proves that

$$
\begin{equation*}
\gamma^{L D}\left(S_{5}\right) \geq 4 \tag{10}
\end{equation*}
$$

The following lemma gives information on the (10,4)-slices when there is a $(10,3)$-slice in S_{n}.

Lemma 5 Assume that we have one $(10,3)$-slice $T_{j, 10}$ in S_{n}. Let $T_{i, 10}$ be any $(10,4)$-slice with no intersection with $T_{j, 10}$. Then:
(a) It is impossible to have $v_{i, i+1} \in C_{n}$ and $u_{i+5} \in C_{n}$ simultaneously;
(b) If $v_{i, i+1} \in C_{n}$, then $v_{i+5, i+6} \in C_{n}$;
(c) If $u_{i+5} \in C_{n}$, then $u_{i} \in C_{n}$.

Proof. The fact that we have a (10,3)-slice forbids that an empty triangle ∇ appears in $T_{i, 10}$. So in Figure 11, there is at least one codeword in each of the triangles ∇. Also, by Lemma 4(c), there is at least one codeword in the triangles \triangle. We represent only the triangles which are used in the proof.
(a) Assume that $v_{i, i+1} \in C_{n}$ and $u_{i+5} \in C_{n}$, see Figure 11(a). If $v_{i+1, i+2} \in C_{n}$ or $u_{i+1} \in C_{n}$, then $v_{i+2, i+3}$ and $v_{i+3, i+4}$ are still to be dominated and separated, which is impossible with only one additional codeword. So $v_{i+1, i+2} \notin C_{n}, u_{i+1} \notin C_{n}$, which implies that $u_{i+2} \in C_{n}$ (triangle \triangle). Then the remaining codeword is at the intersection of the two triangles ∇, $v_{i+3, i+4}$, but we have the forbidden pattern of Lemma 4(a).
(b) Assume that $v_{i, i+1} \in C_{n}$ and $v_{i+5, i+6} \notin C_{n}$, see Figure 11(b). By (a) just above, we have $u_{i+5} \notin C_{n}$. Now necessarily $v_{i+4, i+5} \in C_{n}$ (triangle ∇). Then by Lemma $4(\mathrm{a}), u_{i+4} \in C_{n}$ or $v_{i+3, i+4} \in C_{n}$, and there remains only one codeword, which cannot dominate and separate $v_{i+1, i+2}$ and $v_{i+2, i+3}$.
(c) Assume that $u_{i+5} \in C_{n}$ and $u_{i} \notin C_{n}$, see Figure 11(c). By (a), we have $v_{i, i+1} \notin C_{n}$, which implies $u_{i+1} \in C_{n}$ (leftmost triangle \triangle). But $v_{i, i+1}$ and $v_{i+1, i+2}$ are not separated yet, so $v_{i+1, i+2} \in C_{n}$ or $u_{i+2} \in C_{n}$. If it is $v_{i+1, i+2}$, there remain two empty disjoint triangles, one \triangle and one ∇, with only one more codeword available. If it is u_{i+2}, then the fourth codeword is the vertex at the intersection of the two triangles $\nabla, v_{i+3, i+4}$, but we have the forbidden pattern of Lemma 4(a).

Remark 6 The previous lemma is still true if we weaken its condition, by assuming now that there is in S_{n} an empty triangle ∇ with no intersection with $T_{i, 10}$.

We are now going to consider the different congruences of n modulo 5 .
Proposition 7 For every integer $k \geq 1$, we have $\gamma^{L D}\left(S_{5 k}\right)=4 k$.
Proof. The upper bound (8) gives $\gamma^{L D}\left(S_{5 k}\right) \leq 4 k$. By (10), we can assume that $k>1$. The only way to have fewer than $4 k$ codewords in a LD code is to have one $(10,3)$-slice and $k-1(10,4)$-slices, in which case we have $4 k-1$ codewords. Assume wlog that the $(10,3)$-slice is $T_{1,10}$, and consider the $k-1(10,4)$-slices $T_{6,10}, T_{11,10}, \ldots, T_{5 k-4,10}$. We have observed just before inequality (10) that $T_{1,10}$ has its right outside neighbour in the code, i.e., $v_{6,7} \in C_{n}$. Then, by Lemma $5(\mathrm{~b}), v_{11,12} \in C_{n}, \ldots, v_{5 k-4,5 k-3}=v_{n-4, n-3} \in$ C_{n}, which implies, by Lemma $5(\mathrm{a})$ applied with $i=n-4$, that $u_{1} \notin C_{n}$, contradicting the fact that $T_{1,10}$ has its left outside neighbour in the code. Note that we could have gone the other way round, using Lemma 5(c): $T_{1,10}$ has its left outside neighbour in the code, so $u_{1} \in C_{n}, u_{5 k-4} \in C_{n}, \ldots$, $u_{11} \in C_{n}$, which implies that $v_{6,7} \notin C_{n}$, which contradicts the fact that $T_{1,10}$ has its right outside neighbour in the code.

Anyway, we have proved that the lower and upper bounds coincide. \diamond
Proposition 8 For every integer $k \geq 1$, we have $\gamma^{L D}\left(S_{5 k+1}\right)=4 k+1$.
Proof. The upper bound (8) gives $\gamma^{L D}\left(S_{5 k+1}\right) \leq 4 k+1$. Assume first that $k=1$. Is $\left|C_{6}\right|=4$ possible?

If there is a $(10,3)$-slice in S_{6}, then, since its left and right outside neighbours are codewords, we have five codewords. So we can exclude a (10,3)-slice.

Consider a $(2, \geq 1)$-slice (there must be one!). Wlog, it is $T_{1,2}$. Then the 10 -slice $T_{2,10}$ is a $(10, \geq 4)$-slice, and we have at least five codewords. So $\gamma^{L D}\left(S_{6}\right)=5$.

From now on, $k>1$. Assume first that there is a (10,3)-slice, say $T_{2,10}$, and consider the 2 -slice $T_{1,2}$. Because u_{2}, the left outside neighbour of $T_{2,10}$, is a codeword, $T_{1,2}$ is a $(2, \geq 1)$-slice, and because there can be only one (10,3)-slice, the $k-110$-slices $T_{7,10}, \ldots, T_{5 k-3,10}$ are ($10, \geq 4$)-slices. This implies, if we want to get at most $4 k$ codewords, that $T_{1,2}$ is a $(2,1)$-slice,
that the $k-110$-slices other than $T_{2,10}$ are $(10,4)$-slices, and that we have exactly $4 k$ codewords. Because the right outside neighbour of $T_{2,10}, v_{7,8}$, is a codeword, and using repeatedly Lemma $5(\mathrm{~b})$, we have $v_{7,8} \in C_{n}, v_{12,13} \in C_{n}$, $\ldots, v_{5 k+2,5 k+3}=v_{1,2} \in C_{n}$, i.e., $T_{1,2}$ has its two elements, u_{2} and $v_{1,2}$, in C_{n}, a contradiction. So there is no $(10,3)$-slice in $S_{5 k+1}$.

As in the case $k=1$, consider a $(2, \geq 1)$-slice, say $T_{1,2}$. Then the k 10-slices $T_{2,10}, T_{7,10}, \ldots, T_{5 k-3,10}$, which are ($10, \geq 4$)-slices, lead to at least $4 k+1$ codewords.

So no LD code with $4 k$ elements exists in $S_{5 k+1}$.
Proposition 9 For every integer $k \geq 1$, we have $\gamma^{L D}\left(S_{5 k+2}\right)=4 k+2$.
Proof. The upper bound (8) gives $\gamma^{L D}\left(S_{5 k+2}\right) \leq 4 k+2$. Assume first that $k=1$. Is $\left|C_{7}\right|=5$ possible? If there is a $(10,3)$-slice in S_{7}, say $T_{1,10}$, then, since its two outside neighbours, u_{1} and $v_{6,7}$, are codewords, we have already five codewords. So $u_{7} \notin C_{7}$ and $v_{7,1} \notin C_{7}$. Then, taking the configurations of the $(10,3)$-slice as given by Figures 8 or $9(\mathrm{~b})$, where neither $v_{i, i+1}$ (here, $v_{1,2}$) nor u_{i+1} (here, u_{2}) are codewords, we can see that $v_{7,1}$ and $v_{1,2}$ are not separated, i.e., at least six codewords are necessary. If we use the configuration of Figure $9(\mathrm{a})$, where $v_{i+4, i+5}$ and u_{i+5} (here, $v_{5,6}$ and u_{6}) are not codewords, we have the pattern forbidden by Lemma 4(a). So no $(10,3)$-slice is possible. If we have a $(10,4)$-slice, see the general case with $k(10,4)$-slices. If we have a $(10,5)$-slice, and since the 4 -slice must be a $(4, \geq 1)$-slice (existence of a \triangle), we have also at least six codewords. So $\gamma^{L D}\left(S_{7}\right)=6$.

From now on, $k>1$. Can we have $4 k+1$, or fewer, codewords? Assume first that there is a $(10,3)$-slice, say $T_{1,10}$. Its outside neighbours, u_{1} and $v_{6,7}$, are codewords.

Consider the 4 -slice $T_{6,4}$. Because $v_{6,7} \in C_{n}$, and because there is a triangle \triangle in $T_{6,4}, T_{6,4}$ is a $(4, \geq 2)$-slice. The $k-110$-slices $T_{8,10}, \ldots$, $T_{5 k-2,10}$ are $(10, \geq 4)$-slices, so that necessarily we have: one $(10,3)$-slice, one (4, 2)-slice, $k-1$ (10, 4)-slices, and exactly $4 k+1$ codewords.

Assume first that $T_{1,10}$ is given by Figure 9 (a), so that $v_{5,6} \notin C_{n}, u_{6} \notin C_{n}$. The fact that $u_{1} \in C_{n} \cap T_{5 k-2,10}$ implies, by Lemma 5 (c), that $u_{5 k-2} \in C_{n}$, $\ldots, u_{8} \in C_{n}$, so that the two non-codewords in $T_{6,4}$ must be u_{7} and $v_{7,8}$. Now the non-codewords $v_{5,6}, u_{6}, u_{7}$ and $v_{7,8}$ form a forbidden pattern.

Assume next that we are in one of the configurations of Figures 8 or $9(\mathrm{~b})$: in particular, $v_{1,2} \notin C_{n}$ and $u_{2} \notin C_{n}$. Now we consider the 4 -slice $T_{n-1,4}$, which contains the codeword u_{1}, and a second codeword because it contains a triangle ∇, and there is already an empty ∇ in $T_{1,10}$. Since $v_{6,7} \in C_{n} \cap T_{6,10}$, we have, as previously seen several times, $v_{11,12} \in C_{n}, \ldots, v_{5 k+1,5 k+2}=$ $v_{n-1, n} \in C_{n}$, i.e., $C_{n} \cap T_{n-1,4}=\left\{u_{1}, v_{5 k+1,5 k+2}\right\}$. But now the non-codewords $u_{5 k+2}, v_{5 k+2,1}, v_{1,2}$ and u_{2} form a forbidden pattern.

Both cases lead to a contradiction, showing that there is no $(10,3)$-slice in $S_{5 k+2}$.

Then, to have $4 k+1$ codewords, we can only have $k(10,4)$-slices and one $(4,1)$-slice. Take one codeword $v_{\ell, \ell+1}$ in V_{n} (we know that there is one), and consider the 4 -slice $T_{\ell, 4}$. Because there is a triangle \triangle in $T_{\ell, 4}$, there are at least two codewords in $T_{\ell, 4}$ and we cannot reach $4 k+1$ codewords.

Proposition 10 For every integer $k \geq 1$, we have $\gamma^{L D}\left(S_{5 k+3}\right)=4 k+2$.
Proof. The upper bound (8) gives $\gamma^{L D}\left(S_{5 k+3}\right) \leq 4 k+2$. Observe that any 6 -slice is necessarily a $(6, \geq 2)$-slice: if there is only one codeword, it must be the middle vertex in U_{n}, because it is at the intersection of the two triangles \triangle, but then there is the forbidden pattern of Lemma 4(d).

Assume first that $k=1$. Is $\left|C_{8}\right|=5$ possible? If there is a $(10, \geq 4)$-slice, then there are at least $4+2=6$ codewords. So we assume that there is a $(10,3)$-slice. Its two outside neighbours are codewords, but there is still one empty triangle \triangle in the 6 -slice (and also one ∇), so at least one additional codeword is required. We can conclude that $\gamma^{L D}\left(S_{8}\right)=6$.

Assume next that $k>1$. The only way to have at most $4 k+1$ codewords is to have one $(10,3)$-slice, $k-1(10,4)$-slices and one $(6,2)$-slice, and we have exactly $4 k+1$ codewords. Wlog, the $(10,3)$-slice is $T_{4,10}$, and we consider the (6,2)-slice $T_{1,6}$. Then u_{4}, the left outside neighbour of $T_{4,10}$, is a codeword; the second codeword in $T_{1,6}$ must belong to the triangle \triangle consisting of $u_{2}, v_{2,3}, u_{3}$, but each of the three possibilities leads to a forbidden pattern, either by Lemma $4(\mathrm{a})$ or (b) (since an empty triangle ∇ already appears in $\left.T_{4,10}\right)$. This concludes the case $k>1$.

Proposition 11 For every integer $k \geq 1$, we have $\gamma^{L D}\left(S_{5 k+4}\right)=4 k+3$.
Proof. The upper bound (8) gives $\gamma^{L D}\left(S_{5 k+4}\right) \leq 4 k+3$. If we consider any 8 -slice, say $T_{1,8}$, it is straigthforward to see (for instance by checking the nine possibilities given by the two disjoint triangles \triangle) that the only possibility with two codewords in $T_{1,8}$ that avoids any forbidden pattern is $C_{n} \cap T_{1,8}=$ $\left\{u_{3}, u_{4}\right\}$, which however contains an empty triangle ∇, incompatible with a (10, 3)-slice.

If $k=1$, to have only six codewords would lead to a $(10,3)$-slice with a $(8,3)$-slice, or a $(10,4)$-slice with a $(8,2)$-slice. In the first case, if the $(10,3)$ slice is $T_{5,10}$, its outside neighbours u_{5} and $v_{1,2}$ are codewords, the third codeword in $T_{1,8}$ is u_{3}, because it is at the intersection of two triangles \triangle with no codeword yet, but then the forbidden pattern of Lemma 4(d) appears. In the second case, if the $(10,4)$-slice is $T_{5,10}$, and, remembering that the only two codewords in $T_{1,8}$ are u_{3} and u_{4}, we can see immediately that $u_{1} \in C_{9}$ (to avoid an empty triangle \triangle) and $v_{5,6} \in C_{9}$ (to avoid a second empty triangle ∇). This however contradicts, for $n=9$ and $i=5$, Lemma 5(a), used together with Remark 6, since there is an empty triangle ∇ outside $T_{5,10}$. So $\gamma^{L D}\left(S_{9}\right)=7$.

Now $k>1$, and we assume that there is a $(10,3)$-slice, say $T_{5,10}$. Then, to obtain $4 k+2$ codewords, we have one $(8,3)$-slice and $k-1(10,4)$-slices.

Consider the 8 -slice $T_{1,8}$. Then the right outside neighbour of $T_{5,10}, v_{10,11} \in$ $T_{10,10}$, is a codeword, and so are, by Lemma $5(\mathrm{~b}), v_{15,16}, \ldots, v_{5 k+5,5 k+6}=$ $v_{1,2}$. Also, the left outside neighbour of $T_{5,10}, u_{5}$, is a codeword. So we have $\left\{v_{1,2}, u_{5}\right\} \subset C_{n} \cap T_{1,8}$, and, exactly as above, in the first case for $k=1$, we are led to a contradiction. Conclusion: there is no (10, 3)-slice in $S_{5 k+4}$.

Now the only way to have at most $4 k+2$ codewords is to have $k(10,4)$ slices and one (8,2)-slice.

Consider the $(8,2)$-slice $T_{1,8}$; we have, as in the second case for $k=1$, $u_{1} \in C_{n}$ and $v_{5,6} \in C_{n}$. Then again, because we are allowed to use Lemma 5 thanks to the existence of an empty triangle ∇ in the $(8,2)$-slice, we have, by Lemma $5(\mathrm{~b}), v_{10,11} \in C_{n}, \ldots, v_{5 k, 5 k+1}=v_{n-4, n-3} \in C_{n}$, but the fact that $v_{n-4, n-3} \in C_{n}$, together with $u_{1} \in C_{n}$, leads to a contradiction by Lemma 5(a), applied to $i=n-4$.

We gather all our results in the following proposition.
Proposition 12 (a) $\gamma^{L D}\left(S_{3}\right)=3$;
(b) For every integer $n \geq 4, \gamma^{L D}\left(S_{n}\right)=\left\lfloor\frac{4 n+2}{5}\right\rfloor$.

It would be interesting to do the same as for identifying codes and be able to characterize all the optimal locating-dominating codes in S_{n}, but from what we have seen above, it seems quite intricate to try to do so, and this remains an open problem.

References

[1] G. R. ARGIROFFO, S. M. BIANCHI and A. K. WAGLER: On identifying code polyhedra of families of suns, Proc. of VIII-th ALIO/EURO Workshop on Applied Combinatorial Optimization, Montevideo, Uruguay, Dec. 2014.
[2] G. D. COHEN, I. S. HONKALA, S. LITSYN and A. C. LOBSTEIN: Covering Codes, Amsterdam: Elsevier, xxii+542 pp., 1997.
[3] C. J. COLBOURN, P. J. SLATER and L. K. STEWART: Locating dominating sets in series parallel networks, Congressus Numerantium, Vol. 56, pp. 135-162, 1987.
[4] F. FOUCAUD: The complexity of the identifying code problem in restricted graph classes, Lecture Notes in Computer Science, No. 8288, pp. 150-163, Springer-Verlag, 2013.
[5] I. HONKALA, O. HUDRY and A. LOBSTEIN: On the number of optimal identifying codes in a twin-free graph, Discrete Applied Mathematics, Vol. 180, pp. 111-119, 2015.
[6] M. G. KARPOVSKY, K. CHAKRABARTY and L. B. LEVITIN: On a new class of codes for identifying vertices in graphs, IEEE Transactions on Information Theory, Vol. IT-44, pp. 599-611, 1998.
[7] A. LOBSTEIN: Watching systems, identifying, locating-dominating and discriminating codes in graphs, a bibliography, http://www.perso.enst.fr/~lobstein/debutBIBidetlocdom.pdf
[8] J. MATOUŠEK and J. NEŠETŘIL: Invitation to Discrete Mathematics, Oxford University Press, 1998.
[9] P. J. SLATER: Domination and location in graphs, National University of Singapore, Research Report No. 93, 1983.

