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Abstract

Consider a graph G = (V,E) and, for every vertex v ∈ V , denote by
B(v) the set {v} ∪ {u : uv ∈ E}. A subset C ⊆ V is an identifying
code if the sets B(v) ∩ C, v ∈ V , are all nonempty and distinct. It
is a locating-dominating code if the sets B(v) ∩ C, v ∈ V \ C, are all
nonempty and distinct.

Let Sn be the graph whose vertex set can be partitioned into two
sets Un and Vn, where Un = {u1, u2, . . . , un} induces a clique, and
Vn = {v1,2, v2,3, . . . , vn−1,n, vn,1} induces an independent set, with
edges vi,i+1ui and vi,i+1ui+1, 1 ≤ i ≤ n; computations are carried
modulo n. This graph is called a complete sun. We prove the conjec-
ture, stated by Argiroffo, Bianchi and Wagler in 2014, that the smallest
identifying code in Sn has size equal to n. We also characterize and
count all the identifying codes with size n in Sn. Finally, we determine
the sizes of the smallest locating-dominating codes in Sn.

Key Words: Graph Theory, Identifying Codes, Locating-Dominating Codes
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1 Introduction

This paper was first motivated by a conjecture, stated by Argiroffo, Bianchi
and Wagler in [1], about the size of optimal identifying codes in a special
class of graphs, the complete suns. We prove below that this conjecture
is true, but we also investigate these graphs further: we characterize and
count all their optimal identifying codes, and we determine the size of their
optimal locating-dominating codes.

Consider a graph G = (V,E); the order of G is its number of vertices.
For every vertex v ∈ V , denote by B(v) the ball of radius one and centre v,
i.e., the set {v} ∪ {u : uv ∈ E}. Two vertices u ∈ V , v ∈ V are said to
dominate each other if u ∈ B(v), which is equivalent to v ∈ B(u). A vertex
z ∈ V is said to separate u and v, or u from v, if it dominates u but not v
(note that in this case z = u is possible), or the other way round. A set of
vertices Y ⊆ V is said to dominate a vertex u ∈ V (respectively, to separate
two vertices u ∈ V and v ∈ V ) if Y contains at least one vertex which
dominates u (respectively, which separates u and v).

A subset C ⊆ V is an identifying code if the sets B(v) ∩ C, v ∈ V ,
are all nonempty and distinct. In other words, every vertex is dominated
by C, and every pair of vertices is separated by C. The vertices in C are
called codewords and those in V \ C non-codewords. With a slight abuse
of language, when the context is clear, we shall often say that “a vertex is
dominated”, or “a pair of vertices is separated”, omitting to add “. . .by the
code” or “. . .by such codeword”.

When G admits an identifying code, we denote by γID(G) the minimum
cardinality of an identifying code in G. Any identifying code C with |C| =
γID(G) is said to be optimal.

Closely related are the locating-dominating codes, which are less de-
manding: a subset C ⊆ V is a locating-dominating code (LD code for short)
if the sets B(v)∩C, v ∈ V \C, are all nonempty and distinct. In other words,
every non-codeword is dominated by C, and every pair of non-codewords is
separated by C. For LD codes, we shall often say that we separate two ver-
tices also when we put one of them in the code. We denote by γLD(G) the
minimum cardinality of a LD code in G. Any LD code C with |C| = γLD(G)
is said to be optimal.

The motivations for identifying and locating-dominating codes may come,
for instance, from fault diagnosis in multiprocessor systems. Identifying
codes were introduced in the seminal paper [6], which establishes general
bounds on γID, then studies particular classes of graphs, such as hypercubes,
trees, or the hexagonal and triangular infinite grids. Locating-dominating
codes were introduced in [9] and further developed in [3], with a focus on
complexity and algorithms. Both families of codes now constitute a topic of
their own, as shows the bibliography at [7], which contains approximately
340 references.
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Figure 1: The complete sun S4.

A complete sun Sn is a graph whose vertex set can be partitioned into two
sets Un and Vn, where Un = {u1, u2, . . . , un} induces a clique (or complete
graph), and Vn = {v1,2, v2,3, . . . , vn−1,n, vn,1} induces an independent (or
stable) set, with edges vi,i+1ui and vi,i+1ui+1, 1 ≤ i ≤ n; computations are
carried modulo n. See Figure 1 for n = 4.

Complete suns belong to a larger class of graphs, the split graphs, whose
vertex set can be partitioned into a clique and an independent set. Com-
plexity results for the identifying code problem in split graphs can be found
in [4].

In [1], the authors investigate the minimum cardinality of an identifying
code for different families of suns, and in particular they conjecture that for
n ≥ 3, γID(Sn) = n (note that Vn is obvioulsy an identifying code in Sn).
In Section 2, we prove that the conjecture is true. We then widen our study
of complete suns: in Section 3, we characterize all the optimal identifying
codes in Sn, and we count them in Section 4; in Section 5, we prove that
γLD(S3) = 3 and γLD(Sn) = ⌊4n+2

5 ⌋ for n ≥ 4.
NB: In [1, Fig. 2], the graphs (b) and (c) are erroneously inverted.

2 Proof of the Conjecture

In the subsequent figures, black circles will represent codewords, white circles
will represent non-codewords, and when necessary there will be squares for
the vertices with unknown or immaterial status; we do not represent all the
edges in the clique, except in Figure 4.

Since Vn is an identifying code, all we have to prove is that γID(Sn) ≥ n.
Let Cn be an identifying code in Sn, optimal or not. When we speak of
consecutive vertices in Un or Vn, “consecutive” refers to the subscripts. A
vertex vi,i+1 such that vi−1,i /∈ Cn and vi+1,i+2 /∈ Cn is called a single. A
sequence of two consecutive non-codewords vi−1,i, vi,i+1 is called a duet; two
duets with no vertices in common form a quartet.

Lemma 1 Let Cn be an identifying code in Sn. Then:
(a) There is no single in Vn;
(b) There is at most one duet in Vn; equivalently, there is no quartet

in Vn.
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Figure 2: Codewords and non-codewords in Vn.

Proof. (a) If vi,i+1 is a single, then ui and ui+1 are not separated by the
code, since vi−1,i and vi+1,i+2 are the only vertices separating ui and ui+1.

(b) If vi−1,i, vi,i+1 and vj−1,j , vj,j+1 form a quartet, then ui and uj are
not separated, with j ∈ {1, . . . , n} \ {i− 1, i, i+ 1}. ♦

Proposition 2 For all integers n ≥ 3, we have: γID(Sn) ≥ n.

Proof. Using Lemma 1, we study the possible sequences of codewords and
non-codewords in Vn. In particular, no sequence of three consecutive non-
codewords exists in Vn.

There is at least one codeword in Vn, because the vertices in Un are
separated, and without loss of generality (wlog), we assume that v1,2 ∈ Cn.
Then by Lemma 1(a) vn,1 ∈ Cn or v2,3 ∈ Cn: wlog, we take v2,3 ∈ Cn.
We can then alternate the codewords and the non-codewords in Vn as in
Figure 2; in Figure 2(a), we have:

• Sequences of consecutive codewords of various lengths, with at least
one sequence, and the lengths at least two by Lemma 1(a).

• One duet; by Lemma 1(b), there is at most one duet.
• Sequences of isolated non-codewords; their number can range between

zero and ⌊n−4
3 ⌋.

In Figure 2(b), we have only isolated non-codewords in Vn; their number
can range between zero and ⌊n3 ⌋ (but as we shall see later on, exactly one
[isolated] non-codeword in Vn is impossible).

We denote by q the number of codewords in Vn; then there are n − q
non-codewords in Vn, distributed according to Figure 2(a) or (b). These
non-codewords must be dominated and separated by codewords in Un. It
is straightforward to observe that each isolated non-codeword requires (at
least) one codeword in Un (in order to be dominated), that the duet requires
(at least) two codewords in Un (so that its two vertices are dominated and
separated), and that these tasks do not overlap. So the n−q non-codewords
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Figure 3: (a) How to treat isolated non-codewords in Vn; (b) and (c) How
to treat a duet.

in Vn require (at least) n − q codewords in Un, and the total number of
codewords is (at least) n. ♦

Thus, the conjecture is proved:

Corollary 3 For all integers n ≥ 3, we have: γID(Sn) = n. ♦

3 Characterization of the Optimal Codes

We construct all the optimal identifying codes in Sn by first choosing the con-
figuration of codewords/non-codewords in Vn; this configuration is one of the
two given in Figure 2. Then we complete the code by choosing the remain-
ing codewords in Un: for each isolated non-codeword in Vn, we arbitrarily
choose one of the two vertices in Un that dominates it, see Figure 3(a); for
each duet in Vn, we arbitrarily choose two vertices among the three vertices
in Un that dominate at least one vertex of the duet, see Figure 3(b)–(c). We
claim that, except in some cases that will be described below, the code Cn

thus constructed is identifying. Since it contains n elements, it is optimal.

(1) Obviously, all the vertices are dominated by Cn.

(2) The vertices in Un are separated between themselves:
two consecutive vertices are separated because there is no single in Cn;

two non-consecutive vertices are separated because there is no quartet in Cn.

(3) The vertices in Un are separated from the vertices in Vn: indeed, unless
(a) there is exactly one codeword ui in Un, or
(b) there are exactly two codewords ui, ui+1 in Un,

the codewords in Un perform this separating task. In Case (a) however,
ui and the codeword in Vn that ui dominates are not separated (cf. Fig-
ure 3(a)); this case can be avoided only if we do not take exactly n − 1
codewords in Vn. In Case (b), if ui and ui+1 have been put in the code to
dominate and separate vi,i+1 and vi+1,i+2, then ui+1 and vi,i+1 are not sepa-
rated, (cf. Figure 3(b)), but by taking rather ui and ui+2, like in Figure 3(c),
we can overcome this difficulty.

5



S4 S4S3

S5S5

S6S6

S6 S6

Figure 4: All the nonisomorphic optimal identifying codes.

V7

V7

Figure 5: Distributions of codewords in V7.

(4) The vertices in Vn are separated between themselves:
(a) The codewords in Vn are separated from all the other vertices in Vn

by themselves.
(b) The non-codewords in Vn are separated between themselves by the

codewords in Un that dominate them.

Summarizing: in order to construct all the optimal identifying codes in Sn,
we choose a configuration of codewords and non-codewords in Vn such as
given by Figure 2, with the exception of the configuration with exactly n−1
codewords in Vn. We complete the code with vertices in Un, in the way
described in the first paragraph of this Section, being careful, in the case
when vi,i+1 and vi+1,i+2 are the only non-codewords in Vn, to take ui and
ui+2 as codewords, not ui and ui+1 nor ui+1 and ui+2.

Finally, Figure 4 gives all the nonisomorphic optimal identifying codes
in Sn, for n = 3, n = 4, n = 5 and n = 6, with decreasing number of
codewords in Vn. Figure 5 gives, for n = 7, the four possible configurations
for Vn, giving respectively one, one, three and one nonisomorphic optimal
identifying codes in S7.

An open question is to determine the number of nonisomorphic optimal
identifying codes in Sn for n > 7, but in the following Section, we manage
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Figure 6: Examples of partitions of Vn: (a) no duet, v1,2 not in a brick;
(b) no duet, v1,2 in the brick B; (c) one duet.

to count all the optimal identifying codes in Sn, isomorphic or not.

4 Counting the Optimal Codes

4.1 The case when there is no duet in Vn

Consider the set Vn = {v1,2, v2,3, . . . , vn−1,n, vn,1} and an optimal identi-
fying code Cn such that there is no duet in Vn; for i ∈ {1, . . . , n}, the
set {vi−1,i, vi,i+1, vi+1,i+2} is called a brick if vi−1,i ∈ Cn, vi,i+1 /∈ Cn, and
vi+1,i+2 ∈ Cn. Let k be the number of bricks is Vn; k is also the num-
ber of (isolated) non-codewords in Vn, and we have seen previously that
k ∈ Kn = {0} ∪ {2, 3, . . . , ⌊n3 ⌋}. Two sets of vertices of Vn are said to be
consecutive if both consist of consecutive vertices in Vn, and if the last vertex
of one set and the first vertex of the other set are consecutive.

Assume first that v1,2 does not belong to any brick; in particular, v1,2 ∈
Cn. Going from v2,3 to vn,1, we can partition Vn \ {v1,2} into 2k+1 consec-
utive sets in the following way (see Figure 6(a)):

Vn \ {v1,2} = H0 ∪B1 ∪H1 ∪ . . . ∪Hk−1 ∪Bk ∪Hk, (1)

where the sets Hi contain only codewords and can have size zero, and the
sets Bi are bricks (of size 3). Let hi = |Hi|. The partitions of type (1) are
characterized by the sizes of the sets Hi, and their number is given by the
number of solutions of

k
∑

i=0

hi = n− 1− 3k, 0 ≤ hi, (2)
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which is known to be
(

n−2k−1
k

)

, see, e.g., [8]. We have seen that for each
isolated non-codeword vj,j+1 in Vn, we can choose as codeword in Un either
uj or uj+1. So, under these conditions (no duet, no brick containing v1,2),
the number of optimal identifying codes is

αn =
∑

k∈Kn−1

2k
(

n− 2k − 1

k

)

=

⌊n−1

3
⌋

∑

k=0

2k
(

n− 2k − 1

k

)

− 2(n− 3). (3)

Assume next that v1,2 belongs to one brick (hence k 6= 0), and let k∗ = k−1.
There are three possibilities according to the position of v1,2 in the brick
(leftmost, middle or rightmost). Then we can apply the previous argument,
with the following differences nonetheless: k∗ ∈ {1, 2, . . . , ⌊n3 ⌋ − 1}, and the
partition is done on the n− 3 vertices surrounding the brick containing v1,2,
with k∗ bricks and k∗ + 1 sets Hi; see Figure 6(b). So (2) becomes

k∗
∑

i=0

hi = n− 3− 3k∗, 0 ≤ hi,

which admits
(

n−2k∗−3
k∗

)

solutions. Keeping in mind that we have three
positions for v1,2 inside its brick, and two possibilities in the choice of the
codeword in Un which dominates v1,2, we can see that the number of optimal
identifying codes is in this case is given by

βn = 3× 2×

⌊n−3

3
⌋

∑

k∗=1

2k
∗

(

n− 2k∗ − 3

k∗

)

. (4)

So, in the absence of duet, the number of optimal identifying codes in Sn is
equal to

δn = αn + βn, (5)

where αn and βn are given by (3) and (4), respectively.

4.2 The case when there is one duet in Vn

Now we assume that Cn is an optimal identifying code such that there is one
duet in Vn (we have seen previously that there can be at most one duet).

First we choose the position of the duet; we have n possibilities. The
duet, together with its left and right neighbouring codewords, occupies four
vertices. Then we proceed as before, with k bricks, k ∈ {0, 1, 2, . . . , ⌊n−4

3 ⌋}
(no restriction on the number of bricks when there is a duet): we have to
choose a partition on the n − 4 vertices surrounding the duet and its left
and right neighbours (see Figure 6(c)), so we have to consider the number
of solutions of

k
∑

i=0

hi = n− 4− 3k, 0 ≤ hi,
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which is
(

n−2k−4
k

)

. We have seen that there is no choice for the two codewords
in Un taking care of the duet, and we can conclude that the number of
optimal identifying codes is given by

ωn = n×

⌊n−4

3
⌋

∑

k=0

2k
(

n− 2k − 4

k

)

(6)

in case of a duet.

4.3 Conclusion

Gathering (3), (4), (5) and (6) gives the total number of optimal identifying
codes, which is

Φn =

⌊n−1

3
⌋

∑

k=0

2k
(

n− 2k − 1

k

)

+ 6 ·

⌊n−3

3
⌋

∑

k=1

2k
(

n− 2k − 3

k

)

+n ·

⌊n−4

3
⌋

∑

k=0

2k
(

n− 2k − 4

k

)

− 2(n− 3).

(7)

The first values given by (7) are Φ3 = 1, Φ4 = 5, Φ5 = 6, Φ6 = 19, Φ7 = 50,
Φ8 = 89 and Φ9 = 160.

In order to obtain an asymptotic estimation of Φn, we need to approxi-
mate Mn =maxk∈{0,...,⌊n/3⌋}2

k
(

n−2k
k

)

. Setting N = n−2k and ε = k/N leads

to study maxε∈]0,1[2
Nε

(

N
Nε

)

, and, using a standard approximation on the bi-
nomial coefficient (see, e.g., (2.4.3) in [2]), to study maxε∈]0,1[N(ε+H(ε)),
where H(x) = −x log2(x)− (1− x) log2(1− x) is the (binary) entropy func-

tion. Going back to n, we have to search for maxε∈]0,1[n
ε+H(ε)
1+2ε , that is, to

search for maxε∈]0,1[
ε+H(ε)
1+2ε .

This maximum is reached for ε0 ≈ 0.41025 and k0 ≈ 0.22535n, and is
approximately 0.76181, which leads finally to Mn & 20.76181n. Since n∗ = 2n
is the order of the complete sun Sn, we have, in terms of order, about
20.38091n

∗

different optimal identifying codes in the complete sun.
Let us now consider briefly the problem of finding graphs of order n∗ with

a large number of optimal identifying codes, see [5]. The complete suns are
graphs for which the optimal identifying codes have size equal to half their
order, and as such could be candidates, since

(

n∗

γID(G)

)

, the number of all

subsets of vertices of size γID(G) in any graph G of order n∗, is maximum
when γID(G) = n∗/2. However, the above result, 20.38091n

∗

, is modest when
compared to the best known result, namely 20.77003n

∗

([5, Th. 11]).
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Figure 7: Constructions of LD codes in Sn.

5 Determining γLD(Sn)

The first two values of n are easy to study, and we have: γLD(S3) = 3,
γLD(S4) = 3. From now on, we assume that n ≥ 5.

We first give five constructions, according to the congruences of n mod-
ulo 5, proving that for n ≥ 5, we have:

γLD(Sn) ≤

⌊

4n+ 2

5

⌋

. (8)

These constructions are given by Figure 7 and are straightforward to check
(remember that only the non-codewords have to be tested).

We next turn to the lower bound which we want to prove:

γLD(Sn) ≥

⌊

4n+ 2

5

⌋

.

The following lemma, where (a) and (b) match Lemma 1 for identifying
codes, will prove useful.

Lemma 4 Let Cn be a LD code in Sn, and i ∈ {1, . . . , n}. Then:
(a) Cn ∩ {vi−1,i, ui, ui+1, vi+1,i+2} = ∅ is impossible;
(b) Cn ∩ {vi−1,i, ui, vi,i+1} = ∅ is possible for at most one value of i;
(c) Cn ∩ {ui, vi,i+1, ui+1} = ∅ is impossible;
(d) Cn ∩ {ui, vi,i+1, vi+1,i+2, ui+2} is impossible.

Proof. (a) Because ui and ui+1 would not be separated.
(b) Assume on the contrary that there exists j ∈ {1, . . . , n}, j 6= i, such

that Cn ∩ {vj−1,j , uj , vj,j+1} = ∅; then ui and uj are not separated.
(c) Because vi,i+1 must be dominated.
(d) Because vi,i+1 and vi+1,i+2 must be separated. ♦

In the following, we shall say that the sets {vi−1,i, ui, vi,i+1} and {ui, vi,i+1,
ui+1} are triangles, denoted by ▽ and △, respectively. We shall say that

10



v i+4,i+5v i+1,i+2
Vn

Un
ui+5ui+2ui+1

v i,i+1

Figure 8: The 10-slice Ti,10 with three codewords, one in Vn and two in Un.

a triangle is empty if it contains no codeword. Now, with this terminol-
ogy, Lemma 4(b) states that there is at most one empty triangle ▽, and
Lemma 4(c) states that there is no empty triangle △.

Amidst all the LD codes in Sn with size γLD(Sn), we take one, and
we denote it by Cn. Assume that Vn ∩ Cn = ∅; then the vertices in Un

cannot be separated, unless all of them but one are codewords. This implies
|Cn| ≥ n− 1 ≥ ⌊4n+2

5 ⌋, for n ≥ 5. So from now on, we can take for granted
that Vn contains at least one codeword.

Step 1. Any set {vi,i+1, vi+1,i+2, . . . , vi+k−1,i+k, ui+1, ui+2, . . . , ui+k}, i ∈
{1, . . . , n}, k ∈ {1, . . . , n}, is denoted by Ti,2k and is called a 2k-slice. In
this first step, our goal is to show that for all i ∈ {1, . . . , n},

|Ti,10 ∩ Cn| ≥ 4, (9)

with the exception of three cases which will be specifically treated. We are
going to study how many codewords can be in Vn ∩ Ti,10, for any i.

(1) If there are four or five codewords in Vn ∩ Ti,10, then (9) is satisfied.

(2) Next, assume that there are three codewords in Vn∩Ti,10; then, because
there are four triangles △ in Ti,10, at least one more codeword is necessary
in Un ∩ Ti,10, and (9) is satisfied.

(3) We now turn to the case when there are two codewords (among five
vertices) in Vn ∩ Ti,10; all the

(

5
2

)

= 10 configurations require at least two
more codewords in Un ∩ Ti,10, and again (9) is satisfied.

(4) If |Vn∩Cn∩Ti,10| = 1, then, among the five possibilities, one can see, in
particular using Lemma 4, that only one is possible with only two codewords
in Un ∩ Ti,10, see Figure 8, where one can see an empty triangle ▽.

(5) If Vn ∩ Cn ∩ Ti,10 = ∅, then, among the
(

5
3

)

= 10 configurations for
Un ∩ Ti,10, one can see, again using Lemma 4, that only two of them can
possibly lead to LD codes with three codewords in Un; they are given in
Figure 9. Note that both contain an empty triangle ▽.

So far, the above five cases show that for all i ∈ {1, . . . , n}, the set Cn∩Ti,10

has size either (a) at least 4, or (b) equal to 3; in the latter case, only
three configurations are possible, given by Figures 8 and 9, and at most

11
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Figure 9: The 10-slice Ti,10 with three codewords, all of them in Un.

Vn
Un

Figure 10: Two 10-slices containing each three codewords.

one of them can appear, at most once, because they all contain an empty
triangle ▽; more precisely, this is true only if no intersection is allowed:
see for instance Figure 10, where the configurations of Figures 8 and 9(a)
coexist, but share eight vertices. Since our goal is to split Sn into disjoint
10-slices, we shall go on saying, with a slight abuse of language, that at most
one of them appears at most once.

Moreover, in Figure 8, ui ∈ Cn, by Lemma 4(c), and vi+5,i+6 ∈ Cn, in
order to avoid the pattern of Lemma 4(a). The same is true in Figure 9(a),
by Lemma 4(d)-(b), as well as in Figure 9(b), by Lemma 4(c)-(b). We shall
say that in these three cases, the left outside and right outside neighbours
of Ti,10 must be codewords.

We can now proceed to Step 2, in which we show how, according to the
congruences of n modulo 5, we can split Sn into 10-slices and one smaller
slice, and we prove the lower bound.

Step 2. Given Cn, for k ∈ {1, . . . , n} and j ∈ {0, . . . , 2k}, we say that a
2k-slice containing exactly (respectively, at least) j codewords is a (2k, j)-
slice (respectively, a (2k,≥ j)-slice). With this notation, what we have
just proved in Step 1 is that our graph, when arbitrarily split into disjoint
10-slices (plus one r-slice, r ∈ {0, 2, 4, 6, 8}), can only contain at most one
(10, 3)-slice, and (10,≥ 4)-slices. Moreover, any (10, 3)-slice has its left and
right outside neighbours in the code, which in particular helps to show that
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Vn
Un ui+5

Vn
Un

v i,i+1 v i+2,i+3

Vn

v i+4,i+5v i+3,i+4v i,i+1

ui+1

v i+1,i+2 v i+4,i+5v i+3,i+4

v i+2,i+3

v i+1,i+2 v i+4,i+5v i+3,i+4

ui+1
Un ui+5

ui+1

v i+2,i+3

v i+1,i+2

ui+2

v i,i+1

ui+2

ui+4 ui+5

(a)

(b)

(c)

Figure 11: Illustration of Lemma 5, the (10, 4)-slice Ti,10.

a (10, 3)-slice cannot give by itself a LD code in S5, and proves that

γLD(S5) ≥ 4. (10)

The following lemma gives information on the (10, 4)-slices when there is a
(10, 3)-slice in Sn.

Lemma 5 Assume that we have one (10, 3)-slice Tj,10 in Sn. Let Ti,10 be
any (10, 4)-slice with no intersection with Tj,10. Then:

(a) It is impossible to have vi,i+1 ∈ Cn and ui+5 ∈ Cn simultaneously;
(b) If vi,i+1 ∈ Cn, then vi+5,i+6 ∈ Cn;
(c) If ui+5 ∈ Cn, then ui ∈ Cn.

Proof. The fact that we have a (10, 3)-slice forbids that an empty triangle▽
appears in Ti,10. So in Figure 11, there is at least one codeword in each of
the triangles ▽. Also, by Lemma 4(c), there is at least one codeword in the
triangles △. We represent only the triangles which are used in the proof.

(a) Assume that vi,i+1 ∈ Cn and ui+5 ∈ Cn, see Figure 11(a). If
vi+1,i+2 ∈ Cn or ui+1 ∈ Cn, then vi+2,i+3 and vi+3,i+4 are still to be domi-
nated and separated, which is impossible with only one additional codeword.
So vi+1,i+2 /∈ Cn, ui+1 /∈ Cn, which implies that ui+2 ∈ Cn (triangle △).
Then the remaining codeword is at the intersection of the two triangles ▽,
vi+3,i+4, but we have the forbidden pattern of Lemma 4(a).

(b) Assume that vi,i+1 ∈ Cn and vi+5,i+6 /∈ Cn, see Figure 11(b). By (a)
just above, we have ui+5 /∈ Cn. Now necessarily vi+4,i+5 ∈ Cn (triangle ▽).
Then by Lemma 4(a), ui+4 ∈ Cn or vi+3,i+4 ∈ Cn, and there remains only
one codeword, which cannot dominate and separate vi+1,i+2 and vi+2,i+3.
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(c) Assume that ui+5 ∈ Cn and ui /∈ Cn, see Figure 11(c). By (a), we
have vi,i+1 /∈ Cn, which implies ui+1 ∈ Cn (leftmost triangle △). But vi,i+1

and vi+1,i+2 are not separated yet, so vi+1,i+2 ∈ Cn or ui+2 ∈ Cn. If it is
vi+1,i+2, there remain two empty disjoint triangles, one △ and one ▽, with
only one more codeword available. If it is ui+2, then the fourth codeword is
the vertex at the intersection of the two triangles ▽, vi+3,i+4, but we have
the forbidden pattern of Lemma 4(a). ♦

Remark 6 The previous lemma is still true if we weaken its condition, by
assuming now that there is in Sn an empty triangle ▽ with no intersection
with Ti,10.

We are now going to consider the different congruences of n modulo 5.

Proposition 7 For every integer k ≥ 1, we have γLD(S5k) = 4k.

Proof. The upper bound (8) gives γLD(S5k) ≤ 4k. By (10), we can assume
that k > 1. The only way to have fewer than 4k codewords in a LD code is
to have one (10, 3)-slice and k−1 (10, 4)-slices, in which case we have 4k−1
codewords. Assume wlog that the (10, 3)-slice is T1,10, and consider the
k − 1 (10, 4)-slices T6,10, T11,10, . . ., T5k−4,10. We have observed just before
inequality (10) that T1,10 has its right outside neighbour in the code, i.e.,
v6,7 ∈ Cn. Then, by Lemma 5(b), v11,12 ∈ Cn, . . ., v5k−4,5k−3 = vn−4,n−3 ∈
Cn, which implies, by Lemma 5(a) applied with i = n − 4, that u1 /∈ Cn,
contradicting the fact that T1,10 has its left outside neighbour in the code.
Note that we could have gone the other way round, using Lemma 5(c): T1,10

has its left outside neighbour in the code, so u1 ∈ Cn, u5k−4 ∈ Cn, . . .,
u11 ∈ Cn, which implies that v6,7 /∈ Cn, which contradicts the fact that T1,10

has its right outside neighbour in the code.
Anyway, we have proved that the lower and upper bounds coincide. ♦

Proposition 8 For every integer k ≥ 1, we have γLD(S5k+1) = 4k + 1.

Proof. The upper bound (8) gives γLD(S5k+1) ≤ 4k+1. Assume first that
k = 1. Is |C6| = 4 possible?

If there is a (10, 3)-slice in S6, then, since its left and right outside
neighbours are codewords, we have five codewords. So we can exclude a
(10, 3)-slice.

Consider a (2,≥ 1)-slice (there must be one!). Wlog, it is T1,2. Then the
10-slice T2,10 is a (10,≥ 4)-slice, and we have at least five codewords. So
γLD(S6) = 5.

From now on, k > 1. Assume first that there is a (10, 3)-slice, say T2,10,
and consider the 2-slice T1,2. Because u2, the left outside neighbour of T2,10,
is a codeword, T1,2 is a (2,≥ 1)-slice, and because there can be only one
(10, 3)-slice, the k − 1 10-slices T7,10, . . ., T5k−3,10 are (10,≥ 4)-slices. This
implies, if we want to get at most 4k codewords, that T1,2 is a (2, 1)-slice,
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that the k − 1 10-slices other than T2,10 are (10, 4)-slices, and that we have
exactly 4k codewords. Because the right outside neighbour of T2,10, v7,8, is a
codeword, and using repeatedly Lemma 5(b), we have v7,8 ∈ Cn, v12,13 ∈ Cn,
. . ., v5k+2,5k+3 = v1,2 ∈ Cn, i.e., T1,2 has its two elements, u2 and v1,2, in Cn,
a contradiction. So there is no (10, 3)-slice in S5k+1.

As in the case k = 1, consider a (2,≥ 1)-slice, say T1,2. Then the k
10-slices T2,10, T7,10, . . ., T5k−3,10, which are (10,≥ 4)-slices, lead to at least
4k + 1 codewords.

So no LD code with 4k elements exists in S5k+1. ♦

Proposition 9 For every integer k ≥ 1, we have γLD(S5k+2) = 4k + 2.

Proof. The upper bound (8) gives γLD(S5k+2) ≤ 4k + 2. Assume first
that k = 1. Is |C7| = 5 possible? If there is a (10, 3)-slice in S7, say
T1,10, then, since its two outside neighbours, u1 and v6,7, are codewords,
we have already five codewords. So u7 /∈ C7 and v7,1 /∈ C7. Then, taking
the configurations of the (10, 3)-slice as given by Figures 8 or 9(b), where
neither vi,i+1 (here, v1,2) nor ui+1 (here, u2) are codewords, we can see that
v7,1 and v1,2 are not separated, i.e., at least six codewords are necessary. If
we use the configuration of Figure 9(a), where vi+4,i+5 and ui+5 (here, v5,6
and u6) are not codewords, we have the pattern forbidden by Lemma 4(a).
So no (10, 3)-slice is possible. If we have a (10, 4)-slice, see the general case
with k (10, 4)-slices. If we have a (10, 5)-slice, and since the 4-slice must be
a (4,≥ 1)-slice (existence of a △), we have also at least six codewords. So
γLD(S7) = 6.

From now on, k > 1. Can we have 4k+1, or fewer, codewords? Assume
first that there is a (10, 3)-slice, say T1,10. Its outside neighbours, u1 and
v6,7, are codewords.

Consider the 4-slice T6,4. Because v6,7 ∈ Cn, and because there is a
triangle △ in T6,4, T6,4 is a (4,≥ 2)-slice. The k − 1 10-slices T8,10, . . .,
T5k−2,10 are (10,≥ 4)-slices, so that necessarily we have: one (10, 3)-slice,
one (4, 2)-slice, k − 1 (10, 4)-slices, and exactly 4k + 1 codewords.

Assume first that T1,10 is given by Figure 9(a), so that v5,6 /∈ Cn, u6 /∈ Cn.
The fact that u1 ∈ Cn ∩ T5k−2,10 implies, by Lemma 5(c), that u5k−2 ∈ Cn,
. . ., u8 ∈ Cn, so that the two non-codewords in T6,4 must be u7 and v7,8.
Now the non-codewords v5,6, u6, u7 and v7,8 form a forbidden pattern.

Assume next that we are in one of the configurations of Figures 8 or 9(b):
in particular, v1,2 /∈ Cn and u2 /∈ Cn. Now we consider the 4-slice Tn−1,4,
which contains the codeword u1, and a second codeword because it contains
a triangle▽, and there is already an empty▽ in T1,10. Since v6,7 ∈ Cn∩T6,10,
we have, as previously seen several times, v11,12 ∈ Cn, . . ., v5k+1,5k+2 =
vn−1,n ∈ Cn, i.e., Cn∩Tn−1,4 = {u1, v5k+1,5k+2}. But now the non-codewords
u5k+2, v5k+2,1, v1,2 and u2 form a forbidden pattern.

Both cases lead to a contradiction, showing that there is no (10, 3)-slice
in S5k+2.
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Then, to have 4k + 1 codewords, we can only have k (10, 4)-slices and
one (4, 1)-slice. Take one codeword vℓ,ℓ+1 in Vn (we know that there is one),
and consider the 4-slice Tℓ,4. Because there is a triangle △ in Tℓ,4, there are
at least two codewords in Tℓ,4 and we cannot reach 4k + 1 codewords. ♦

Proposition 10 For every integer k ≥ 1, we have γLD(S5k+3) = 4k + 2.

Proof. The upper bound (8) gives γLD(S5k+3) ≤ 4k + 2. Observe that
any 6-slice is necessarily a (6,≥ 2)-slice: if there is only one codeword, it
must be the middle vertex in Un, because it is at the intersection of the two
triangles △, but then there is the forbidden pattern of Lemma 4(d).

Assume first that k = 1. Is |C8| = 5 possible? If there is a (10,≥ 4)-slice,
then there are at least 4 + 2 = 6 codewords. So we assume that there is a
(10, 3)-slice. Its two outside neighbours are codewords, but there is still one
empty triangle △ in the 6-slice (and also one ▽), so at least one additional
codeword is required. We can conclude that γLD(S8) = 6.

Assume next that k > 1. The only way to have at most 4k+1 codewords
is to have one (10, 3)-slice, k−1 (10, 4)-slices and one (6, 2)-slice, and we have
exactly 4k+1 codewords. Wlog, the (10, 3)-slice is T4,10, and we consider the
(6, 2)-slice T1,6. Then u4, the left outside neighbour of T4,10, is a codeword;
the second codeword in T1,6 must belong to the triangle △ consisting of
u2, v2,3, u3, but each of the three possibilities leads to a forbidden pattern,
either by Lemma 4(a) or (b) (since an empty triangle ▽ already appears in
T4,10). This concludes the case k > 1. ♦

Proposition 11 For every integer k ≥ 1, we have γLD(S5k+4) = 4k + 3.

Proof. The upper bound (8) gives γLD(S5k+4) ≤ 4k+3. If we consider any
8-slice, say T1,8, it is straigthforward to see (for instance by checking the nine
possibilities given by the two disjoint triangles △) that the only possibility
with two codewords in T1,8 that avoids any forbidden pattern is Cn ∩T1,8 =
{u3, u4}, which however contains an empty triangle ▽, incompatible with a
(10, 3)-slice.

If k = 1, to have only six codewords would lead to a (10, 3)-slice with a
(8, 3)-slice, or a (10, 4)-slice with a (8, 2)-slice. In the first case, if the (10, 3)-
slice is T5,10, its outside neighbours u5 and v1,2 are codewords, the third
codeword in T1,8 is u3, because it is at the intersection of two triangles△ with
no codeword yet, but then the forbidden pattern of Lemma 4(d) appears. In
the second case, if the (10, 4)-slice is T5,10, and, remembering that the only
two codewords in T1,8 are u3 and u4, we can see immediately that u1 ∈ C9

(to avoid an empty triangle △) and v5,6 ∈ C9 (to avoid a second empty
triangle ▽). This however contradicts, for n = 9 and i = 5, Lemma 5(a),
used together with Remark 6, since there is an empty triangle ▽ outside
T5,10. So γLD(S9) = 7.

Now k > 1, and we assume that there is a (10, 3)-slice, say T5,10. Then,
to obtain 4k + 2 codewords, we have one (8, 3)-slice and k − 1 (10, 4)-slices.
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Consider the 8-slice T1,8. Then the right outside neighbour of T5,10, v10,11 ∈
T10,10, is a codeword, and so are, by Lemma 5(b), v15,16, . . ., v5k+5,5k+6 =
v1,2. Also, the left outside neighbour of T5,10, u5, is a codeword. So we have
{v1,2, u5} ⊂ Cn ∩ T1,8, and, exactly as above, in the first case for k = 1, we
are led to a contradiction. Conclusion: there is no (10, 3)-slice in S5k+4.

Now the only way to have at most 4k+2 codewords is to have k (10, 4)-
slices and one (8, 2)-slice.

Consider the (8, 2)-slice T1,8; we have, as in the second case for k = 1,
u1 ∈ Cn and v5,6 ∈ Cn. Then again, because we are allowed to use Lemma 5
thanks to the existence of an empty triangle ▽ in the (8, 2)-slice, we have,
by Lemma 5(b), v10,11 ∈ Cn, . . ., v5k,5k+1 = vn−4,n−3 ∈ Cn, but the fact
that vn−4,n−3 ∈ Cn, together with u1 ∈ Cn, leads to a contradiction by
Lemma 5(a), applied to i = n− 4. ♦

We gather all our results in the following proposition.

Proposition 12 (a) γLD(S3) = 3;
(b) For every integer n ≥ 4, γLD(Sn) =

⌊

4n+2
5

⌋

. ♦

It would be interesting to do the same as for identifying codes and be able
to characterize all the optimal locating-dominating codes in Sn, but from
what we have seen above, it seems quite intricate to try to do so, and this
remains an open problem.
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