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Consider a graph G = (V, E) and, for every vertex v ∈ V , denote by B(v) the set {v} ∪ {u : uv ∈ E}. A subset C ⊆ V is an identifying code if the sets B(v) ∩ C, v ∈ V , are all nonempty and distinct. It is a locating-dominating code if the sets B(v) ∩ C, v ∈ V \ C, are all nonempty and distinct.

Let S n be the graph whose vertex set can be partitioned into two sets U n and V n , where U n = {u 1 , u 2 , . . . , u n } induces a clique, and V n = {v 1,2 , v 2,3 , . . . , v n-1,n , v n,1 } induces an independent set, with edges v i,i+1 u i and v i,i+1 u i+1 , 1 ≤ i ≤ n; computations are carried modulo n. This graph is called a complete sun. We prove the conjecture, stated by Argiroffo, Bianchi and Wagler in 2014, that the smallest identifying code in S n has size equal to n. We also characterize and count all the identifying codes with size n in S n . Finally, we determine the sizes of the smallest locating-dominating codes in S n .

Introduction

This paper was first motivated by a conjecture, stated by Argiroffo, Bianchi and Wagler in [START_REF] Argiroffo | On identifying code polyhedra of families of suns[END_REF], about the size of optimal identifying codes in a special class of graphs, the complete suns. We prove below that this conjecture is true, but we also investigate these graphs further: we characterize and count all their optimal identifying codes, and we determine the size of their optimal locating-dominating codes.

Consider a graph G = (V, E); the order of G is its number of vertices. For every vertex v ∈ V , denote by B(v) the ball of radius one and centre v, i.e., the set {v} ∪ {u : uv ∈ E}. Two vertices u ∈ V , v ∈ V are said to dominate each other if u ∈ B(v), which is equivalent to v ∈ B(u). A vertex z ∈ V is said to separate u and v, or u from v, if it dominates u but not v (note that in this case z = u is possible), or the other way round. A set of vertices Y ⊆ V is said to dominate a vertex u ∈ V (respectively, to separate two vertices u ∈ V and v ∈ V ) if Y contains at least one vertex which dominates u (respectively, which separates u and v).

A subset C ⊆ V is an identifying code if the sets B(v) ∩ C, v ∈ V , are all nonempty and distinct. In other words, every vertex is dominated by C, and every pair of vertices is separated by C. The vertices in C are called codewords and those in V \ C non-codewords. With a slight abuse of language, when the context is clear, we shall often say that "a vertex is dominated", or "a pair of vertices is separated", omitting to add ". . .by the code" or ". . .by such codeword".

When G admits an identifying code, we denote by γ ID (G) the minimum cardinality of an identifying code in G. Any identifying code C with |C| = γ ID (G) is said to be optimal.

Closely related are the locating-dominating codes, which are less demanding: a subset C ⊆ V is a locating-dominating code (LD code for short) if the sets B(v)∩C, v ∈ V \C, are all nonempty and distinct. In other words, every non-codeword is dominated by C, and every pair of non-codewords is separated by C. For LD codes, we shall often say that we separate two vertices also when we put one of them in the code. We denote by γ LD (G) the minimum cardinality of a LD code in G. Any LD code C with |C| = γ LD (G) is said to be optimal.

The motivations for identifying and locating-dominating codes may come, for instance, from fault diagnosis in multiprocessor systems. Identifying codes were introduced in the seminal paper [START_REF] Karpovsky | On a new class of codes for identifying vertices in graphs[END_REF], which establishes general bounds on γ ID , then studies particular classes of graphs, such as hypercubes, trees, or the hexagonal and triangular infinite grids. Locating-dominating codes were introduced in [START_REF] Slater | Domination and location in graphs[END_REF] and further developed in [START_REF] Colbourn | Locating dominating sets in series parallel networks[END_REF], with a focus on complexity and algorithms. Both families of codes now constitute a topic of their own, as shows the bibliography at [START_REF] Lobstein | Watching systems, identifying, locating-dominating and discriminating codes in graphs[END_REF], which contains approximately 340 references. A complete sun S n is a graph whose vertex set can be partitioned into two sets U n and V n , where U n = {u 1 , u 2 , . . . , u n } induces a clique (or complete graph), and V n = {v 1,2 , v 2,3 , . . . , v n-1,n , v n,1 } induces an independent (or stable) set, with edges v i,i+1 u i and v i,i+1 u i+1 , 1 ≤ i ≤ n; computations are carried modulo n. See Figure 1 for n = 4.
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Complete suns belong to a larger class of graphs, the split graphs, whose vertex set can be partitioned into a clique and an independent set. Complexity results for the identifying code problem in split graphs can be found in [START_REF] Foucaud | The complexity of the identifying code problem in restricted graph classes[END_REF].

In [START_REF] Argiroffo | On identifying code polyhedra of families of suns[END_REF], the authors investigate the minimum cardinality of an identifying code for different families of suns, and in particular they conjecture that for n ≥ 3, γ ID (S n ) = n (note that V n is obvioulsy an identifying code in S n ). In Section 2, we prove that the conjecture is true. We then widen our study of complete suns: in Section 3, we characterize all the optimal identifying codes in S n , and we count them in Section 4; in Section 5, we prove that γ LD (S 3 ) = 3 and γ LD (S n ) = ⌊ 4n+2 5 ⌋ for n ≥ 4. NB: In [1, Fig. 2], the graphs (b) and (c) are erroneously inverted.

Proof of the Conjecture

In the subsequent figures, black circles will represent codewords, white circles will represent non-codewords, and when necessary there will be squares for the vertices with unknown or immaterial status; we do not represent all the edges in the clique, except in Figure 4.

Since V n is an identifying code, all we have to prove is that γ ID (S n ) ≥ n. Let C n be an identifying code in S n , optimal or not. When we speak of consecutive vertices in U n or V n , "consecutive" refers to the subscripts. Proof. (a) If v i,i+1 is a single, then u i and u i+1 are not separated by the code, since v i-1,i and v i+1,i+2 are the only vertices separating u i and u i+1 . (b) If v i-1,i , v i,i+1 and v j-1,j , v j,j+1 form a quartet, then u i and u j are not separated, with j ∈ {1, . . . , n} \ {i -1, i, i + 1}. ♦

A vertex v i,i+1 such that v i-1,i / ∈ C n and v i+1,i+2 / ∈ C n is called a single. A sequence of two consecutive non-codewords v i-1,i , v i,i+1
V n . u 2 v 2,3 v 1,2 u 2 v 2,3 U n V n v 1,2 U n ... ... V n ...
Proposition 2 For all integers n ≥ 3, we have:

γ ID (S n ) ≥ n.
Proof. Using Lemma 1, we study the possible sequences of codewords and non-codewords in V n . In particular, no sequence of three consecutive noncodewords exists in V n .

There is at least one codeword in V n , because the vertices in U n are separated, and without loss of generality (wlog), we assume that v 1,2 ∈ C n . Then by Lemma 1(a) v n,1 ∈ C n or v 2,3 ∈ C n : wlog, we take v 2,3 ∈ C n . We can then alternate the codewords and the non-codewords in V n as in Figure 2; in Figure 2(a), we have:

• Sequences of consecutive codewords of various lengths, with at least one sequence, and the lengths at least two by Lemma 1(a).

• One duet; by Lemma 1(b), there is at most one duet.

• Sequences of isolated non-codewords; their number can range between zero and ⌊ n-4 3 ⌋. In Figure 2(b), we have only isolated non-codewords in V n ; their number can range between zero and ⌊ n 3 ⌋ (but as we shall see later on, exactly one [isolated] non-codeword in V n is impossible).

We denote by q the number of codewords in V n ; then there are nq non-codewords in V n , distributed according to Figure 2(a) or (b). These non-codewords must be dominated and separated by codewords in U n . It is straightforward to observe that each isolated non-codeword requires (at least) one codeword in U n (in order to be dominated), that the duet requires (at least) two codewords in U n (so that its two vertices are dominated and separated), and that these tasks do not overlap. So the nq non-codewords in V n require (at least) nq codewords in U n , and the total number of codewords is (at least) n. ♦ Thus, the conjecture is proved:

U n V n u i u i+2 v i+2,i+3 V n U n u i u i+2 v i+2,i+3 v i-1,i v i-1,i ... ... ...
Corollary 3 For all integers n ≥ 3, we have: γ ID (S n ) = n. ♦

Characterization of the Optimal Codes

We construct all the optimal identifying codes in S n by first choosing the configuration of codewords/non-codewords in V n ; this configuration is one of the two given in Figure 2. Then we complete the code by choosing the remaining codewords in U n : for each isolated non-codeword in V n , we arbitrarily choose one of the two vertices in U n that dominates it, see Figure 3(a); for each duet in V n , we arbitrarily choose two vertices among the three vertices in U n that dominate at least one vertex of the duet, see Figure 3(b)-(c). We claim that, except in some cases that will be described below, the code C n thus constructed is identifying. Since it contains n elements, it is optimal.

(1) Obviously, all the vertices are dominated by C n .

(2) The vertices in U n are separated between themselves: two consecutive vertices are separated because there is no single in C n ; two non-consecutive vertices are separated because there is no quartet in C n .

(3) The vertices in U n are separated from the vertices in V n : indeed, unless (a) there is exactly one codeword u i in U n , or (b) there are exactly two codewords u i , u i+1 in U n , the codewords in U n perform this separating task. In Case (a) however, u i and the codeword in V n that u i dominates are not separated (cf. Figure 3(a)); this case can be avoided only if we do not take exactly n -1 codewords in V n . In Case (b), if u i and u i+1 have been put in the code to dominate and separate v i,i+1 and v i+1,i+2 , then u i+1 and v i,i+1 are not separated, (cf. Figure 3(b)), but by taking rather u i and u i+2 , like in Figure 3(c), we can overcome this difficulty. (4) The vertices in V n are separated between themselves: (a) The codewords in V n are separated from all the other vertices in V n by themselves.

(b) The non-codewords in V n are separated between themselves by the codewords in U n that dominate them. Summarizing: in order to construct all the optimal identifying codes in S n , we choose a configuration of codewords and non-codewords in V n such as given by Figure 2, with the exception of the configuration with exactly n -1 codewords in V n . We complete the code with vertices in U n , in the way described in the first paragraph of this Section, being careful, in the case when v i,i+1 and v i+1,i+2 are the only non-codewords in V n , to take u i and u i+2 as codewords, not u i and u i+1 nor u i+1 and u i+2 .

Finally, Figure 4 gives all the nonisomorphic optimal identifying codes in S n , for n = 3, n = 4, n = 5 and n = 6, with decreasing number of codewords in V n . Figure 5 gives, for n = 7, the four possible configurations for V n , giving respectively one, one, three and one nonisomorphic optimal identifying codes in S [START_REF] Lobstein | Watching systems, identifying, locating-dominating and discriminating codes in graphs[END_REF] .

An open question is to determine the number of nonisomorphic optimal identifying codes in S n for n > 7, but in the following Section, we manage to count all the optimal identifying codes in S n , isomorphic or not. [START_REF] Foucaud | The complexity of the identifying code problem in restricted graph classes[END_REF] Counting the Optimal Codes 4.1 The case when there is no duet in V n Consider the set V n = {v 1,2 , v 2,3 , . . . , v n-1,n , v n,1 } and an optimal identifying code C n such that there is no duet in V n ; for i ∈ {1, . . . , n}, the set

1,2 v n,1 v H k B 1 B 2 B k H 1 H 0 0 = H 0 B 2 B 1 0 = H 1 (c) V n ... ... duet n,1 v 1,2 v B 1 H 0 H 1 H k (a) V n ... V n (b) ...
{v i-1,i , v i,i+1 , v i+1,i+2 } is called a brick if v i-1,i ∈ C n , v i,i+1 /
∈ C n , and v i+1,i+2 ∈ C n . Let k be the number of bricks is V n ; k is also the number of (isolated) non-codewords in V n , and we have seen previously that k ∈ K n = {0} ∪ {2, 3, . . . , ⌊ n 3 ⌋}. Two sets of vertices of V n are said to be consecutive if both consist of consecutive vertices in V n , and if the last vertex of one set and the first vertex of the other set are consecutive.

Assume first that v 1,2 does not belong to any brick; in particular, v 1,2 ∈ C n . Going from v 2,3 to v n,1 , we can partition V n \ {v 1,2 } into 2k + 1 consecutive sets in the following way (see Figure 6(a)):

V n \ {v 1,2 } = H 0 ∪ B 1 ∪ H 1 ∪ . . . ∪ H k-1 ∪ B k ∪ H k , (1) 
where the sets H i contain only codewords and can have size zero, and the sets B i are bricks (of size 3). Let

h i = |H i |.
The partitions of type (1) are characterized by the sizes of the sets H i , and their number is given by the number of solutions of

k i=0 h i = n -1 -3k, 0 ≤ h i , (2) 
which is known to be n-2k-1 k , see, e.g., [START_REF] Šek | Invitation to Discrete Mathematics[END_REF]. We have seen that for each isolated non-codeword v j,j+1 in V n , we can choose as codeword in U n either u j or u j+1 . So, under these conditions (no duet, no brick containing v 1,2 ), the number of optimal identifying codes is

α n = k∈K n-1 2 k n -2k -1 k = ⌊ n-1 3 ⌋ k=0 2 k n -2k -1 k -2(n -3). ( 3 
)
Assume next that v 1,2 belongs to one brick (hence k = 0), and let k * = k -1.

There are three possibilities according to the position of v 1,2 in the brick (leftmost, middle or rightmost). Then we can apply the previous argument, with the following differences nonetheless: k * ∈ {1, 2, . . . , ⌊ n 3 ⌋ -1}, and the partition is done on the n -3 vertices surrounding the brick containing v 1,2 , with k * bricks and k * + 1 sets H i ; see Figure 6(b). So (2) becomes

k * i=0 h i = n -3 -3k * , 0 ≤ h i , which admits n-2k * -3 k *
solutions. Keeping in mind that we have three positions for v 1,2 inside its brick, and two possibilities in the choice of the codeword in U n which dominates v 1,2 , we can see that the number of optimal identifying codes is in this case is given by

β n = 3 × 2 × ⌊ n-3 3 ⌋ k * =1 2 k * n -2k * -3 k * . ( 4 
)
So, in the absence of duet, the number of optimal identifying codes in S n is equal to

δ n = α n + β n , (5) 
where α n and β n are given by ( 3) and (4), respectively.

The case when there is one duet in V n

Now we assume that C n is an optimal identifying code such that there is one duet in V n (we have seen previously that there can be at most one duet). First we choose the position of the duet; we have n possibilities. The duet, together with its left and right neighbouring codewords, occupies four vertices. Then we proceed as before, with k bricks, k ∈ {0, 1, 2, . . . , ⌊ n- 4 3 ⌋} (no restriction on the number of bricks when there is a duet): we have to choose a partition on the n -4 vertices surrounding the duet and its left and right neighbours (see Figure 6(c)), so we have to consider the number of solutions of

k i=0 h i = n -4 -3k, 0 ≤ h i , which is n-2k-4 k
. We have seen that there is no choice for the two codewords in U n taking care of the duet, and we can conclude that the number of optimal identifying codes is given by

ω n = n × ⌊ n-4 3 ⌋ k=0 2 k n -2k -4 k (6)
in case of a duet.

Conclusion

Gathering (3), ( 4), ( 5) and ( 6) gives the total number of optimal identifying codes, which is

Φ n = ⌊ n-1 3 ⌋ k=0 2 k n -2k -1 k + 6 • ⌊ n-3 3 ⌋ k=1 2 k n -2k -3 k + n • ⌊ n-4 3 ⌋ k=0 2 k n -2k -4 k -2(n -3). ( 7 
)
The first values given by ( 7) are Φ 3 = 1, Φ 4 = 5, Φ 5 = 6, Φ 6 = 19, Φ 7 = 50, Φ 8 = 89 and Φ 9 = 160.

In order to obtain an asymptotic estimation of Φ n , we need to approximate M n =max k∈{0,...,⌊n/3⌋} 2 k n-2k k . Setting N = n-2k and ε = k/N leads to study max ε∈]0,1[ 2 N ε N N ε , and, using a standard approximation on the binomial coefficient (see, e.g., (2.4.3) in [START_REF] Cohen | Covering Codes[END_REF]), to study max ε∈]0,1[ N (ε + H(ε)), where H(x) = -x log 2 (x) -(1x) log 2 (1x) is the (binary) entropy function. Going back to n, we have to search for max ε∈]0,1[ n ε+H (ε) 1+2ε , that is, to search for max ε∈]0, 1[ ε+H(ε) 1+2ε . This maximum is reached for ε 0 ≈ 0.41025 and k 0 ≈ 0.22535n, and is approximately 0.76181, which leads finally to M n 2 0.76181n . Since n * = 2n is the order of the complete sun S n , we have, in terms of order, about 2 0.38091n * different optimal identifying codes in the complete sun.

Let us now consider briefly the problem of finding graphs of order n * with a large number of optimal identifying codes, see [START_REF] Honkala | On the number of optimal identifying codes in a twin-free graph[END_REF]. The complete suns are graphs for which the optimal identifying codes have size equal to half their order, and as such could be candidates, since n * γ ID (G) , the number of all subsets of vertices of size γ ID (G) in any graph G of order n * , is maximum when γ ID (G) = n * /2. However, the above result, 2 0.38091n * , is modest when compared to the best known result, namely 2 0.77003n * ([5, Th. 11]). a triangle is empty if it contains no codeword. Now, with this terminology, Lemma 4(b) states that there is at most one empty triangle ▽, and Lemma 4(c) states that there is no empty triangle △.
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Amidst all the LD codes in S n with size γ LD (S n ), we take one, and we denote it by C n . Assume that V n ∩ C n = ∅; then the vertices in U n cannot be separated, unless all of them but one are codewords. This implies

|C n | ≥ n -1 ≥ ⌊ 4n+2
5 ⌋, for n ≥ 5. So from now on, we can take for granted that V n contains at least one codeword.

Step 1. Any set {v i,i+1 , v i+1,i+2 , . . . , v i+k-1,i+k , u i+1 , u i+2 , . . . , u i+k }, i ∈ {1, . . . , n}, k ∈ {1, . . . , n}, is denoted by T i,2k and is called a 2k-slice. In this first step, our goal is to show that for all i ∈ {1, . . . , n},

|T i,10 ∩ C n | ≥ 4, (9) 
with the exception of three cases which will be specifically treated. We are going to study how many codewords can be in V n ∩ T i,10 , for any i.

(1) If there are four or five codewords in V n ∩ T i,10 , then (9) is satisfied.

(2) Next, assume that there are three codewords in V n ∩ T i,10 ; then, because there are four triangles △ in T i,10 , at least one more codeword is necessary in U n ∩ T i,10 , and ( 9) is satisfied.

(3) We now turn to the case when there are two codewords (among five vertices) in V n ∩ T i,10 ; all the 5 2 = 10 configurations require at least two more codewords in U n ∩ T i,10 , and again (9) is satisfied.

(4) If |V n ∩ C n ∩ T i,10 | = 1,
then, among the five possibilities, one can see, in particular using Lemma 4, that only one is possible with only two codewords in U n ∩ T i,10 , see Figure 8, where one can see an empty triangle ▽.

(5) If V n ∩ C n ∩ T i,10 = ∅, then, among the 5 3 = 10 configurations for U n ∩ T i,10 , one can see, again using Lemma 4, that only two of them can possibly lead to LD codes with three codewords in U n ; they are given in Figure 9. Note that both contain an empty triangle ▽.

So far, the above five cases show that for all i ∈ {1, . . . , n}, the set C n ∩ T i,10 has size either (a) at least 4, or (b) equal to 3; in the latter case, only three configurations are possible, given by Figures 8 and9, and at most

V n U n v i,i+1 v i+4,i+5 u i+1 v i+1,i+2 V n u i+2 v i+4,i+5 u i+4 U n v i+1,i+2 u i+2 u i+5 u i+5 u i+1 v i,i+1 (a) (b)
Figure 9: The 10-slice T i,10 with three codewords, all of them in U n .

V n U n

Figure 10: Two 10-slices containing each three codewords. one of them can appear, at most once, because they all contain an empty triangle ▽; more precisely, this is true only if no intersection is allowed: see for instance Figure 10, where the configurations of Figures 8 and9(a) coexist, but share eight vertices. Since our goal is to split S n into disjoint 10-slices, we shall go on saying, with a slight abuse of language, that at most one of them appears at most once.

Moreover, in Figure 8, u i ∈ C n , by Lemma 4(c), and v i+5,i+6 ∈ C n , in order to avoid the pattern of Lemma 4(a). The same is true in Figure 9(a), by Lemma 4(d)-(b), as well as in Figure 9(b), by Lemma 4(c)-(b). We shall say that in these three cases, the left outside and right outside neighbours of T i,10 must be codewords.

We can now proceed to Step 2, in which we show how, according to the congruences of n modulo 5, we can split S n into 10-slices and one smaller slice, and we prove the lower bound.

Step 2. Given C n , for k ∈ {1, . . . , n} and j ∈ {0, . . . , 2k}, we say that a 2k-slice containing exactly (respectively, at least) j codewords is a (2k, j)slice (respectively, a (2k, ≥ j)-slice). With this notation, what we have just proved in Step 1 is that our graph, when arbitrarily split into disjoint 10-slices (plus one r-slice, r ∈ {0, 2, 4, 6, 8}), can only contain at most one (10, 3)-slice, and (10, ≥ 4)-slices. Moreover, any (10, 3)-slice has its left and right outside neighbours in the code, which in particular helps to show that 

V n U n u i+5 V n U n v i,i+1 v i+2,i+3 V n v i+4,i+5 v i+3,i+4 v i,i+1 u i+1 v i+1,i+2 v i+4,i+5 v i+3,i+4 v i+2,i+3 v i+1,i+2 v i+4,i+5 v i+3,i+4 u i+1 U n u i+5 u i+1 v i+2,i+3 v i+1,i+2 u i+2 v i,i+1 u i+2 u i+4 u i+5 (a) (b) (c)
The following lemma gives information on the (10, 4)-slices when there is a (10, 3)-slice in S n .

Lemma 5 Assume that we have one (10, 3)-slice T j,10 in S n . Let T i,10 be any (10, 4)-slice with no intersection with T j,10 . Then:

(a) It is impossible to have v i,i+1 ∈ C n and u i+5 ∈ C n simultaneously; (b) If v i,i+1 ∈ C n , then v i+5,i+6 ∈ C n ; (c) If u i+5 ∈ C n , then u i ∈ C n .
Proof. The fact that we have a (10, 3)-slice forbids that an empty triangle ▽ appears in T i,10 . So in Figure 11, there is at least one codeword in each of the triangles ▽. Also, by Lemma 4(c), there is at least one codeword in the triangles △. We represent only the triangles which are used in the proof. (a) Assume that v i,i+1 ∈ C n and u i+5 ∈ C n , see Figure 11(a). If v i+1,i+2 ∈ C n or u i+1 ∈ C n , then v i+2,i+3 and v i+3,i+4 are still to be dominated and separated, which is impossible with only one additional codeword.

So v i+1,i+2 / ∈ C n , u i+1 / ∈ C n , which implies that u i+2 ∈ C n (triangle △).
Then the remaining codeword is at the intersection of the two triangles ▽, v i+3,i+4 , but we have the forbidden pattern of Lemma 4(a).

(b) Assume that v i,i+1 ∈ C n and v i+5,i+6 / ∈ C n , see Figure 11(b). By (a) just above, we have u i+5 / ∈ C n . Now necessarily v i+4,i+5 ∈ C n (triangle ▽). Then by Lemma 4(a), u i+4 ∈ C n or v i+3,i+4 ∈ C n , and there remains only one codeword, which cannot dominate and separate v i+1,i+2 and v i+2,i+3 .

(c) Assume that u i+5 ∈ C n and u i / ∈ C n , see Figure 11(c). By (a), we

have v i,i+1 / ∈ C n , which implies u i+1 ∈ C n (leftmost triangle △). But v i,i+1 and v i+1,i+2 are not separated yet, so v i+1,i+2 ∈ C n or u i+2 ∈ C n . If it is v i+1,i+2
, there remain two empty disjoint triangles, one △ and one ▽, with only one more codeword available. If it is u i+2 , then the fourth codeword is the vertex at the intersection of the two triangles ▽, v i+3,i+4 , but we have the forbidden pattern of Lemma 4(a). ♦

Remark 6

The previous lemma is still true if we weaken its condition, by assuming now that there is in S n an empty triangle ▽ with no intersection with T i,10 .

We are now going to consider the different congruences of n modulo 5.

Proposition 7 For every integer k ≥ 1, we have γ LD (S 5k ) = 4k.

Proof. The upper bound (8) gives γ LD (S 5k ) ≤ 4k. By (10), we can assume that k > 1. The only way to have fewer than 4k codewords in a LD code is to have one (10, 3)-slice and k -1 (10, 4)-slices, in which case we have 4k -1 codewords. Assume wlog that the (10, 3)-slice is T 1,10 , and consider the k -1 (10, 4)-slices T 6,10 , T 11,10 , . . ., T 5k-4,10 . We have observed just before inequality (10) that T 1,10 has its right outside neighbour in the code, i.e., v 6,7 ∈ C n . Then, by Lemma 5(b), v 11,12 ∈ C n , . . ., v 5k-4,5k-3 = v n-4,n-3 ∈ C n , which implies, by Lemma 5(a) applied with i = n -4, that u 1 / ∈ C n , contradicting the fact that T 1,10 has its left outside neighbour in the code. Note that we could have gone the other way round, using Lemma 5(c): T 1,10 has its left outside neighbour in the code, so u 1 ∈ C n , u 5k-4 ∈ C n , . . ., u 11 ∈ C n , which implies that v 6,7 / ∈ C n , which contradicts the fact that T 1,10 has its right outside neighbour in the code.

Anyway, we have proved that the lower and upper bounds coincide. ♦ Proposition 8 For every integer k ≥ 1, we have γ LD (S 5k+1 ) = 4k + 1.

Proof. The upper bound [START_REF] Šek | Invitation to Discrete Mathematics[END_REF] gives γ LD (S 5k+1 ) ≤ 4k + 1. Assume first that k = 1. Is |C 6 | = 4 possible? If there is a (10, 3)-slice in S 6 , then, since its left and right outside neighbours are codewords, we have five codewords. So we can exclude a (10, 3)-slice.

Consider a (2, ≥ 1)-slice (there must be one!). Wlog, it is T 1,2 . Then the 10-slice T 2,10 is a (10, ≥ 4)-slice, and we have at least five codewords. So γ LD (S 6 ) = 5.

From now on, k > 1. Assume first that there is a (10, 3)-slice, say T 2,10 , and consider the 2-slice T 1,2 . Because u 2 , the left outside neighbour of T 2,10 , is a codeword, T 1,2 is a (2, ≥ 1)-slice, and because there can be only one (10, 3)-slice, the k -1 10-slices T 7,10 , . . ., T 5k-3,10 are (10, ≥ 4)-slices. This implies, if we want to get at most 4k codewords, that T 1,2 is a (2, 1)-slice, that the k -1 10-slices other than T 2,10 are (10, 4)-slices, and that we have exactly 4k codewords. Because the right outside neighbour of T 2,10 , v 7,8 , is a codeword, and using repeatedly Lemma 5(b), we have v 7,8 ∈ C n , v 12,13 ∈ C n , . . ., v 5k+2,5k+3 = v 1,2 ∈ C n , i.e., T 1,2 has its two elements, u 2 and v 1,2 , in C n , a contradiction. So there is no (10, 3)-slice in S 5k+1 .

As in the case k = 1, consider a (2, ≥ 1)-slice, say T 1,2 . Then the k 10-slices T 2,10 , T 7,10 , . . ., T 5k-3,10 , which are (10, ≥ 4)-slices, lead to at least 4k + 1 codewords.

So no LD code with 4k elements exists in S 5k+1 . ♦ Proposition 9 For every integer k ≥ 1, we have γ LD (S 5k+2 ) = 4k + 2.

Proof. The upper bound [START_REF] Šek | Invitation to Discrete Mathematics[END_REF] gives γ LD (S 5k+2 ) ≤ 4k + 2. Assume first that k = 1. Is |C 7 | = 5 possible? If there is a (10, 3)-slice in S 7 , say T 1,10 , then, since its two outside neighbours, u 1 and v 6,7 , are codewords, we have already five codewords. So u 7 / ∈ C 7 and v 7,1 / ∈ C 7 . Then, taking the configurations of the (10, 3)-slice as given by Figures 8 or 9(b), where neither v i,i+1 (here, v 1,2 ) nor u i+1 (here, u 2 ) are codewords, we can see that v 7,1 and v 1,2 are not separated, i.e., at least six codewords are necessary. If we use the configuration of Figure 9(a), where v i+4,i+5 and u i+5 (here, v 5,6 and u 6 ) are not codewords, we have the pattern forbidden by Lemma 4(a). So no (10, 3)-slice is possible. If we have a (10, 4)-slice, see the general case with k (10, 4)-slices. If we have a (10, 5)-slice, and since the 4-slice must be a (4, ≥ 1)-slice (existence of a △), we have also at least six codewords. So γ LD (S 7 ) = 6.

From now on, k > 1. Can we have 4k + 1, or fewer, codewords? Assume first that there is a (10, 3)-slice, say T 1,10 . Its outside neighbours, u 1 and v 6,7 , are codewords.

Consider the 4-slice T 6,4 . Because v 6,7 ∈ C n , and because there is a triangle △ in T 6,4 , T 6,4 is a (4, ≥ 2)-slice. The k -1 10-slices T 8,10 , . . ., T 5k-2,10 are (10, ≥ 4)-slices, so that necessarily we have: one (10, 3)-slice, one (4, 2)-slice, k -1 (10, 4)-slices, and exactly 4k + 1 codewords.

Assume first that T 1,10 is given by Figure 9(a), so that v 5,6 / ∈ C n , u 6 / ∈ C n . The fact that u 1 ∈ C n ∩ T 5k-2,10 implies, by Lemma 5(c), that u 5k-2 ∈ C n , . . ., u 8 ∈ C n , so that the two non-codewords in T 6,4 must be u 7 and v 7,8 . Now the non-codewords v 5,6 , u 6 , u 7 and v 7,8 form a forbidden pattern.

Assume next that we are in one of the configurations of Figures 8 or 9(b): in particular, v 1,2 / ∈ C n and u 2 / ∈ C n . Now we consider the 4-slice T n-1,4 , which contains the codeword u 1 , and a second codeword because it contains a triangle ▽, and there is already an empty ▽ in T 1,10 . Since v 6,7 ∈ C n ∩T 6,10 , we have, as previously seen several times, v 11,12 ∈ C n , . . ., v 5k+1,5k+2 = v n-1,n ∈ C n , i.e., C n ∩T n-1,4 = {u 1 , v 5k+1,5k+2 }. But now the non-codewords u 5k+2 , v 5k+2,1 , v 1,2 and u 2 form a forbidden pattern.

Both cases lead to a contradiction, showing that there is no (10, 3)-slice in S 5k+2 .

Then, to have 4k + 1 codewords, we can only have k (10, 4)-slices and one (4, 1)-slice. Take one codeword v ℓ,ℓ+1 in V n (we know that there is one), and consider the 4-slice T ℓ,4 . Because there is a triangle △ in T ℓ,4 , there are at least two codewords in T ℓ,4 and we cannot reach 4k + 1 codewords. ♦ Proposition 10 For every integer k ≥ 1, we have γ LD (S 5k+3 ) = 4k + 2.

Proof. The upper bound [START_REF] Šek | Invitation to Discrete Mathematics[END_REF] gives γ LD (S 5k+3 ) ≤ 4k + 2. Observe that any 6-slice is necessarily a (6, ≥ 2)-slice: if there is only one codeword, it must be the middle vertex in U n , because it is at the intersection of the two triangles △, but then there is the forbidden pattern of Lemma 4(d).

Assume first that k = 1. Is |C 8 | = 5 possible? If there is a (10, ≥ 4)-slice, then there are at least 4 + 2 = 6 codewords. So we assume that there is a (10, 3)-slice. Its two outside neighbours are codewords, but there is still one empty triangle △ in the 6-slice (and also one ▽), so at least one additional codeword is required. We can conclude that γ LD (S 8 ) = 6.

Assume next that k > 1. The only way to have at most 4k +1 codewords is to have one (10, 3)-slice, k-1 (10, 4)-slices and one (6, 2)-slice, and we have exactly 4k+1 codewords. Wlog, the (10, 3)-slice is T 4,10 , and we consider the (6, 2)-slice T 1,6 . Then u 4 , the left outside neighbour of T 4,10 , is a codeword; the second codeword in T 1,6 must belong to the triangle △ consisting of u 2 , v 2,3 , u 3 , but each of the three possibilities leads to a forbidden pattern, either by Lemma 4(a) or (b) (since an empty triangle ▽ already appears in T 4,10 ). This concludes the case k > 1.

♦ Proposition 11 For every integer k ≥ 1, we have γ LD (S 5k+4 ) = 4k + 3.

Proof. The upper bound [START_REF] Šek | Invitation to Discrete Mathematics[END_REF] gives γ LD (S 5k+4 ) ≤ 4k + 3. If we consider any 8-slice, say T 1,8 , it is straigthforward to see (for instance by checking the nine possibilities given by the two disjoint triangles △) that the only possibility with two codewords in T 1,8 that avoids any forbidden pattern is C n ∩ T 1,8 = {u 3 , u 4 }, which however contains an empty triangle ▽, incompatible with a (10, 3)-slice.

If k = 1, to have only six codewords would lead to a (10, 3)-slice with a (8, 3)-slice, or a (10, 4)-slice with a (8, 2)-slice. In the first case, if the (10, 3)slice is T 5,10 , its outside neighbours u 5 and v 1,2 are codewords, the third codeword in T 1,8 is u 3 , because it is at the intersection of two triangles △ with no codeword yet, but then the forbidden pattern of Lemma 4(d) appears. In the second case, if the (10, 4)-slice is T 5,10 , and, remembering that the only two codewords in T 1,8 are u 3 and u 4 , we can see immediately that u 1 ∈ C 9 (to avoid an empty triangle △) and v 5,6 ∈ C 9 (to avoid a second empty triangle ▽). This however contradicts, for n = 9 and i = 5, Lemma 5(a), used together with Remark 6, since there is an empty triangle ▽ outside T 5,10 . So γ LD (S 9 ) = 7. Now k > 1, and we assume that there is a (10, 3)-slice, say T 5,10 . Then, to obtain 4k + 2 codewords, we have one (8, 3)-slice and k -1 (10, 4)-slices.
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 6 Figure 6: Examples of partitions of V n : (a) no duet, v 1,2 not in a brick; (b) no duet, v 1,2 in the brick B; (c) one duet.

Figure 8 :

 8 Figure 8: The 10-slice T i,10 with three codewords, one in V n and two in U n .
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 11 Figure 11: Illustration of Lemma 5, the (10, 4)-slice T i,10 .

  is called a duet; two duets with no vertices in common form a quartet.

	Lemma 1 Let C n be an identifying code in S n . Then:
	(a) There is no single in V n ;
	(b) There is at most one duet in V n ; equivalently, there is no quartet
	in

The first two values of n are easy to study, and we have: γ LD (S 3 ) = 3, γ LD (S 4 ) = 3. From now on, we assume that n ≥ 5.

We first give five constructions, according to the congruences of n modulo 5, proving that for n ≥ 5, we have:

These constructions are given by Figure 7 and are straightforward to check (remember that only the non-codewords have to be tested).

We next turn to the lower bound which we want to prove:

The following lemma, where (a) and (b) match Lemma 1 for identifying codes, will prove useful.

Lemma 4 Let C n be a LD code in S n , and i ∈ {1, . . . , n}. Then:

Proof. (a) Because u i and u i+1 would not be separated. (b) Assume on the contrary that there exists j ∈ {1, . . . , n}, j = i, such that C n ∩ {v j-1,j , u j , v j,j+1 } = ∅; then u i and u j are not separated.

(c) Because v i,i+1 must be dominated. (d) Because v i,i+1 and v i+1,i+2 must be separated. ♦

In the following, we shall say that the sets {v i-1,i , u i , v i,i+1 } and {u i , v i,i+1 , u i+1 } are triangles, denoted by ▽ and △, respectively. We shall say that Consider the 8-slice T 1,8 . Then the right outside neighbour of T 5,10 , v 10,11 ∈ T 10,10 , is a codeword, and so are, by Lemma 5(b), v 15,16 , . . ., v 5k+5,5k+6 = v 1,2 . Also, the left outside neighbour of T 5,10 , u 5 , is a codeword. So we have {v 1,2 , u 5 } ⊂ C n ∩ T 1,8 , and, exactly as above, in the first case for k = 1, we are led to a contradiction. Conclusion: there is no (10, 3)-slice in S 5k+4 . Now the only way to have at most 4k + 2 codewords is to have k (10, 4)slices and one (8, 2)-slice.

Consider the (8, 2)-slice T 1,8 ; we have, as in the second case for k = 1, u 1 ∈ C n and v 5,6 ∈ C n . Then again, because we are allowed to use Lemma 5 thanks to the existence of an empty triangle ▽ in the (8, 2)-slice, we have, by Lemma 5(b), v 10,11 ∈ C n , . . ., v 5k,5k+1 = v n-4,n-3 ∈ C n , but the fact that v n-4,n-3 ∈ C n , together with u 1 ∈ C n , leads to a contradiction by Lemma 5(a), applied to i = n -4.

♦

We gather all our results in the following proposition.

Proposition 12 (a) γ LD (S 3 ) = 3; (b) For every integer n ≥ 4, γ LD (S n ) = 4n+2

5

.

♦

It would be interesting to do the same as for identifying codes and be able to characterize all the optimal locating-dominating codes in S n , but from what we have seen above, it seems quite intricate to try to do so, and this remains an open problem.