A Proximal Approach for Solving Matrix Optimization Problems Involving a Bregman Divergence

Alessandro Benfenati*, Emilie Chouzenoux* ${ }^{*}$, and Jean-Christophe Pesquet ${ }^{\dagger}$,
* LIGM, University Paris-Est Marne-la-Vallée
${ }^{\dagger}$ Center for Visual Computing, CentraleSupelec, University Paris-Saclay

Abstract

In recent years, there has been a growing interest in problems such as shape classification, gene expression inference, inverse covariance estimation. Problems of this kind have a common underlining mathematical model, which involves the minimization in a matrix space of a Bregman divergence function coupled with a linear term and a regularization term. We present an application of the Douglas-Rachford algorithm which allows to easily solve the optimization problem.

In recent years, some applications such as shape classification models [1], gene expression [2], or inverse covariance estimation [3] have led to matrix variational formulations of the form:

$$
\begin{equation*}
\underset{C \in \mathcal{S}_{+}}{\operatorname{minimize}} D_{f}(C, S)+g(C) \tag{1}
\end{equation*}
$$

where \mathcal{S}_{+}is the cone of symmetric semidefinite positive matrices of size $n \times n, S$ is a given matrix in \mathcal{S}_{+}, f and g are proper lowersemicontinuous (lsc) convex functions defined on the space of $n \times n$ matrices, and D_{f} is the Bregman divergence associated with f. Recall that

$$
\begin{equation*}
D_{f}(C, S)=f(C)-f(S)-\operatorname{tr}(T(C-S)) \tag{2}
\end{equation*}
$$

where $T \in \partial f(S) \neq \varnothing$. Note also that solving (1) amounts to computing the proximity operator of $g+\iota \mathcal{S}_{+}$at S, ${ }^{1}$ with respect to the divergence D_{f}, which has also been found to be useful in a number of recent works [4], [5].
Very often, due to the nature of the problems, the regularization functional g has to promote the sparsity of C. A generic class of regularization is obtained by assuming that $g=g_{0}+g_{1}$ where

$$
g_{0}(C)= \begin{cases}\psi(d) & \text { if } C \in \mathcal{S}_{+} \tag{3}\\ +\infty & \text { otherwise }\end{cases}
$$

where $\left.\left.\psi: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]$ is a proper lsc function and d is the vector of eigenvalues of C, whereas g_{1} is a function which cannot be expressed under this form. Typical examples are the nuclear norm $\|\cdot\|_{*}$ (or any Schatten norm) for g_{0} and the ℓ_{1} norm $\|\cdot\|_{1}$ (of the matrix elements) for g_{1} [6].

In this paper, we will assume that function f can be expressed similarly to g_{0} as $f(C)=\varphi(d)$ if $C \in \mathcal{S}_{+}, f(C)+\infty$ otherwise, where $\left.\left.\varphi: \mathbb{R}^{n} \rightarrow\right]-\infty,+\infty\right]$ is a proper lsc convex function. In particular, this assumption is satisfied when

$$
f(C)= \begin{cases}-\log \operatorname{det}(C) & \text { if } C \succ 0 \tag{4}\\ +\infty & \text { otherwise }\end{cases}
$$

Various algorithm have been proposed to solve Problem (1) when f is the above function and some specific choices of the function g are made: the popular GLASSO algorithm [3], a Gradient Projection method [1], and a splitting technique on the regularization term [6]. Here we propose to employ the Douglas-Rachford algorithm [7], which enables us to solve (1) in a fast manner, as soon as an efficient procedure for the eigenvalue decomposition is provided. The
${ }^{1} \iota_{E}$ designates the indicator function of a set E.

Douglas-Rachford approach alternates proximity steps on $D_{f}(\cdot, S)+$ $g_{0}+\iota_{\mathcal{S}_{+}}$and on g_{1}. For many functions g_{1} of practical interest, the proximity operator of $g_{1}\left(\mathrm{e} . \mathrm{g}, g_{1}=\|\cdot\|_{1}\right)$ has a closed form solution [7] . Let us define $F(C)=f(C)+g_{0}(C)$. Let $\gamma \in] 0,+\infty[$. It can be noted that computing the proximity operator of $\gamma\left(D_{f}(\cdot, S)+g_{0}+\iota \mathcal{S}_{+}\right)$w.r.t. the Frobenius metric $\|\cdot\|_{\mathrm{F}}$, at some symmetric matrix \bar{C}, is equivalent to find

$$
\widehat{C}=\underset{C \in \mathbb{R}^{n \times n}}{\operatorname{argmin}}\left(F(C)-\operatorname{tr}(T C)+\frac{1}{2 \gamma}\|C-\bar{C}\|_{\mathrm{F}}^{2}\right)
$$

Classical properties of the proximity operator [7] state that

$$
\widehat{C}=\operatorname{prox}_{\gamma F-\gamma \operatorname{tr}(T \cdot)}(\bar{C})=\operatorname{prox}_{\gamma F}(\bar{C}+\gamma T)
$$

Moreover, if $\bar{C}+\gamma T=U \operatorname{Diag}(\sigma) U^{\top}$ where U is an orthogonal matrix and $\sigma \in \mathbb{R}^{n}$, then $\widehat{C}=U D U^{\top}$ with $D=$ $\operatorname{Diag}\left(\operatorname{prox}_{\gamma(\varphi+\psi)}(\sigma)\right)$. For example, if f is the log-det function (4) and $g_{0}=\mu\left\|^{\prime} \cdot\right\|_{*}$ where $\mu \in[0,+\infty[$, according to [8], the diagonal matrix of eigenvalues of \widehat{C} is given by

$$
D=\frac{1}{2}\left(\Sigma-\gamma \mu I_{n}+\sqrt{\left(\Sigma-\gamma \mu I_{n}\right)^{2}+4 \gamma I_{n}}\right)
$$

where $\Sigma=\operatorname{Diag}(\sigma)$. The operations to compute $\operatorname{prox}_{\gamma(\varphi+\psi)}$ are thus component-wise.

The proposed Douglas-Rachford approach is easy to implement: if an efficient procedure for the eigenvalue decomposition is available, according to our numerical experiments, it is also very fast.

Acknowledgements: This work was supported by the Agence Nationale de la Recherche under grant ANR-14-CE27-0001 GRAPHSIP.

REFERENCES

[1] J. Duchi, S. Gould, and D. .Koller, "Projected subgradient methods for learning sparse gaussians," in Proceedings of the Twenty-fourth Conference on Uncertainty in AI (UAI), 2008.
[2] S. Ma, L. Xue, and H. .Zou, "Alternating direction methods for latent variable gaussian graphical model selection." Neural Computation, vol. 25, no. 8, pp. 2172-2198, 2013.
[3] J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covariance estimation with the graphical lasso," Biostatistics, vol. 9, no. 3, pp. 432441, jul 2008.
[4] H. H. Bauschke, P. L. Combettes, and D. Noll, "Joint minimization with alternating bregman proximity operators," Pacific Journal of Optimization, vol. 2, no. 3, pp. 401-424, 2006.
[5] A. Benfenati and V. Ruggiero, "Inexact Bregman iteration with an application to Poisson data reconstruction," Inverse Problems, vol. 29, no. 6, pp. 1-32, 2013.
[6] V. Chandrasekaran, P. Parrilo, and A. S.Willsky, "Latent variable graphical model selection via convex optimization," Ann. Statist., vol. 40, no. 4, pp. 1935-1967, 082012.
[7] P. Combettes and J.-C. Pesquet, "Proximal Splitting Methods in Signal Processing," in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, B. B. C. E. L. W. (Eds.), Ed. Springer, 2011, pp. 185-212.
[8] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, "A variational formulation for frame-based inverse problems," Inverse Problems, vol. 23, no. 4, p. 1495, 2007.

