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Abstract—In recent years, there has been a growing interest in
problems such as shape classification, gene expression inference, inverse
covariance estimation. Problems of this kind have a common underlining
mathematical model, which involves the minimization in a matrix space
of a Bregman divergence function coupled with a linear term and a
regularization term. We present an application of the Douglas-Rachford
algorithm which allows to easily solve the optimization problem.

In recent years, some applications such as shape classification
models [1], gene expression [2], or inverse covariance estimation [3]
have led to matrix variational formulations of the form:

minimize
C∈S+

Df (C, S) + g(C) (1)

where S+ is the cone of symmetric semidefinite positive matrices of
size n × n, S is a given matrix in S+, f and g are proper lower-
semicontinuous (lsc) convex functions defined on the space of n×n
matrices, and Df is the Bregman divergence associated with f . Recall
that

Df (C, S) = f(C)− f(S)− tr (T (C − S)) (2)

where T ∈ ∂f(S) 6= ∅. Note also that solving (1) amounts to
computing the proximity operator of g + ιS+ at S,1 with respect
to the divergence Df , which has also been found to be useful in a
number of recent works [4], [5].
Very often, due to the nature of the problems, the regularization
functional g has to promote the sparsity of C. A generic class of
regularization is obtained by assuming that g = g0 + g1 where

g0(C) =

{
ψ(d) if C ∈ S+
+∞ otherwise,

(3)

where ψ : Rn →] −∞,+∞] is a proper lsc function and d is the
vector of eigenvalues of C, whereas g1 is a function which cannot
be expressed under this form. Typical examples are the nuclear norm
‖ · ‖∗ (or any Schatten norm) for g0 and the `1 norm ‖ · ‖1 (of the
matrix elements) for g1 [6].

In this paper, we will assume that function f can be expressed
similarly to g0 as f(C) = ϕ(d) if C ∈ S+, f(C) +∞ otherwise,
where ϕ : Rn →] − ∞,+∞] is a proper lsc convex function. In
particular, this assumption is satisfied when

f(C) =

{
− log det(C) if C � 0

+∞ otherwise.
(4)

Various algorithm have been proposed to solve Problem (1) when f
is the above function and some specific choices of the function g
are made: the popular GLASSO algorithm [3], a Gradient Projection
method [1], and a splitting technique on the regularization term [6].
Here we propose to employ the Douglas–Rachford algorithm [7],
which enables us to solve (1) in a fast manner, as soon as an
efficient procedure for the eigenvalue decomposition is provided. The

1ιE designates the indicator function of a set E.

Douglas–Rachford approach alternates proximity steps on Df (·, S)+
g0 + ιS+ and on g1. For many functions g1 of practical interest,
the proximity operator of g1 (e.g, g1 = ‖ · ‖1) has a closed
form solution [7] . Let us define F (C) = f(C) + g0(C). Let
γ ∈]0,+∞[. It can be noted that computing the proximity operator
of γ

(
Df (·, S)+g0 + ιS+

)
w.r.t. the Frobenius metric ‖ ·‖F, at some

symmetric matrix C, is equivalent to find

Ĉ = argmin
C∈Rn×n

(
F (C)− tr (TC) +

1

2γ
‖C − C‖2F

)
.

Classical properties of the proximity operator [7] state that

Ĉ = proxγF−γtr(T ·)(C) = proxγF (C + γT ).

Moreover, if C + γT = UDiag(σ)U> where U is an orthog-
onal matrix and σ ∈ Rn, then Ĉ = UDU> with D =
Diag(proxγ(ϕ+ψ)(σ)). For example, if f is the log-det function (4)
and g0 = µ‖ · ‖∗ where µ ∈ [0,+∞[, according to [8], the diagonal
matrix of eigenvalues of Ĉ is given by

D =
1

2

(
Σ− γµIn +

√
(Σ− γµIn)2 + 4γIn

)
where Σ = Diag(σ). The operations to compute proxγ(ϕ+ψ) are thus
component–wise.

The proposed Douglas–Rachford approach is easy to implement: if
an efficient procedure for the eigenvalue decomposition is available,
according to our numerical experiments, it is also very fast.
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