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Abstract-In recent years, there has been a growing interest in problems such as shape classification, gene expression inference, inverse covariance estimation. Problems of this kind have a common underlining mathematical model, which involves the minimization in a matrix space of a Bregman divergence function coupled with a linear term and a regularization term. We present an application of the Douglas-Rachford algorithm which allows to easily solve the optimization problem.

In recent years, some applications such as shape classification models [START_REF] Duchi | Projected subgradient methods for learning sparse gaussians[END_REF], gene expression [START_REF] Ma | Alternating direction methods for latent variable gaussian graphical model selection[END_REF], or inverse covariance estimation [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] have led to matrix variational formulations of the form:

minimize C∈S + D f (C, S) + g(C) (1) 
where S+ is the cone of symmetric semidefinite positive matrices of size n × n, S is a given matrix in S+, f and g are proper lowersemicontinuous (lsc) convex functions defined on the space of n × n matrices, and D f is the Bregman divergence associated with f . Recall that

D f (C, S) = f (C) -f (S) -tr (T (C -S)) (2) 
where T ∈ ∂f (S) = ∅. Note also that solving (1) amounts to computing the proximity operator of g + ιS + at S, 1 with respect to the divergence D f , which has also been found to be useful in a number of recent works [START_REF] Bauschke | Joint minimization with alternating bregman proximity operators[END_REF], [START_REF] Benfenati | Inexact Bregman iteration with an application to Poisson data reconstruction[END_REF]. Very often, due to the nature of the problems, the regularization functional g has to promote the sparsity of C. A generic class of regularization is obtained by assuming that g = g0 + g1 where

g0(C) = ψ(d) if C ∈ S+ +∞ otherwise, (3) 
where ψ : R n →] -∞, +∞] is a proper lsc function and d is the vector of eigenvalues of C, whereas g1 is a function which cannot be expressed under this form. Typical examples are the nuclear norm • * (or any Schatten norm) for g0 and the 1 norm • 1 (of the matrix elements) for g1 [START_REF] Chandrasekaran | Latent variable graphical model selection via convex optimization[END_REF].

In this paper, we will assume that function f can be expressed similarly to g0 as

f (C) = ϕ(d) if C ∈ S+, f (C) + ∞ otherwise,
where ϕ : R n →] -∞, +∞] is a proper lsc convex function. In particular, this assumption is satisfied when

f (C) = -log det(C) if C 0 +∞ otherwise. ( 4 
)
Various algorithm have been proposed to solve Problem (1) when f is the above function and some specific choices of the function g are made: the popular GLASSO algorithm [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF], a Gradient Projection method [START_REF] Duchi | Projected subgradient methods for learning sparse gaussians[END_REF], and a splitting technique on the regularization term [START_REF] Chandrasekaran | Latent variable graphical model selection via convex optimization[END_REF].

Here we propose to employ the Douglas-Rachford algorithm [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF], which enables us to solve (1) in a fast manner, as soon as an efficient procedure for the eigenvalue decomposition is provided. The 1 ι E designates the indicator function of a set E.

Douglas-Rachford approach alternates proximity steps on D f (•, S)+ g0 + ιS + and on g1. For many functions g1 of practical interest, the proximity operator of g1 (e.g, g1 =

• 1) has a closed form solution [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF] . Let us define F (C) = f (C) + g0(C). Let γ ∈]0, +∞[. It can be noted that computing the proximity operator of γ D f (•, S) + g0 + ιS + w.r.t. the Frobenius metric • F, at some symmetric matrix C, is equivalent to find

C = argmin C∈R n×n F (C) -tr (T C) + 1 2γ C -C 2 F .
Classical properties of the proximity operator [START_REF] Combettes | Proximal Splitting Methods in Signal Processing[END_REF] state that

C = prox γF -γtr(T •) (C) = prox γF (C + γT ).
Moreover, if C + γT = U Diag(σ)U where U is an orthogonal matrix and σ ∈ R n , then C = U DU with D = Diag(prox γ(ϕ+ψ) (σ)). For example, if f is the log-det function ( 4) and g0 = µ • * where µ ∈ [0, +∞[, according to [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF], the diagonal matrix of eigenvalues of C is given by

D = 1 2 Σ -γµIn + (Σ -γµIn) 2 + 4γIn
where Σ = Diag(σ). The operations to compute prox γ(ϕ+ψ) are thus component-wise.

The proposed Douglas-Rachford approach is easy to implement: if an efficient procedure for the eigenvalue decomposition is available, according to our numerical experiments, it is also very fast.
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