
HAL Id: hal-01613187
https://hal.science/hal-01613187

Submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On charge conservation in a gravitational field
Mayeul Arminjon

To cite this version:
Mayeul Arminjon. On charge conservation in a gravitational field. Nineteenth International Confer-
ence on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Jun 2017, Varna, Bulgaria.
�hal-01613187�

https://hal.science/hal-01613187
https://hal.archives-ouvertes.fr


On charge conservation in a gravitational field

Mayeul Arminjon
Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France

Abstract

According to the “gravitationally-modified” Maxwell equations that
were proposed for an alternative scalar theory with an “ether”, elec-
tric charge would not be conserved in a time-dependent gravitational
field. We define an asymptotic expansion scheme for the electro-
magnetic field in a weak gravitational field. This allows us to assess
the amounts of charge production or destruction which are thus pre-
dicted. These amounts seem high enough to discard that version of the
gravitationally-modified Maxwell equations. We show that this failure
is due to the former assumption of additivity of the energy tensors:
an “interaction energy tensor” has to be added. Then the standard
Maxwell equations in a curved spacetime become compatible with that
scalar theory, and they predict charge conservation.

1 Introduction

An alternative theory of gravitation based on a scalar field alone, and having
a preferred reference frame, has been proposed previously [1, 2, 7]. Recently,
equations for the electromagnetic field in the presence of a gravitational field
have been derived for this theory [9] and it has been found that they lead to a
violation of the conservation of electric charge. The aim of this contribution
is to give a short account of the work that has been done to assess the mag-
nitude of this effect, and to outline the consequences that followed for the
theory from this assessment. (A detailed account has been given elsewhere
[10].) Let us first summarize the three main motivations for this “scalar ether
theory” of gravitation, in short SET.
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1) The first motivation is to extend to the situation with gravitation the
Lorentz-Poincaré version of special relativity. The latter version is more often
called “Lorentz ether theory”, although undoubtedly Poincaré made essen-
tial contributions to it. This is the theory according to which the “ether”
is a rigid inertial frame such that: (i) any object that is moving with re-
spect to it is subjected to the Lorentz contraction, and (ii) in this frame,
energy propagation is isotropic, in particular the Maxwell equations are as-
sumed valid in that frame. This theory obtains the Lorentz transformation
and then all “relativistic” effects as following from (a) “absolute” effects of
motion through that ether, and (b) Clock synchronization. It is exposed in
particular in Prokhovnik [19], and a summary can be found in Ref. [2]. In
that theory, the restriction “v < c” is not absolute, it concerns mass particles.

2) Newton’s 1/r2 force, which acts instantaneously at a distance, can-
not be intuitively understood. (This was already Newton himself’s opinion.)
Einstein’s general relativity (GR) sees gravity as propagating at the velocity
of light c, but says that (“free”) particles follow geodesic curves in the four-
dimensional “space-time” manifold V endowed with a curved Lorentzian met-
ric γ. This gives a fundamental physical status to the spacetime — although,
to more than one physicist, spacetime looks more like a mere mathematical
construction. (The latter certainly is its status in the Lorentz-Poincaré ver-
sion of special relativity.) In contrast, SET makes gravity thinkable as the
pressure force of the ether : Archimedes’ thrust on extended particles seen as
organized flows in the ether [1].

3) Despite its successes, GR has problems: (i) The unavoidable singu-
larities (e.g. in a gravitational collapse and in the “big bang”). (ii) The
interpretation of the necessary gauge condition. (iii) The problems regard-
ing the coupling with quantum theory. (iv) The need for dark matter. (v)
The need for dark energy. In contrast: (i) SET has no singularity either
in a gravitational collapse [4] or in the past high-density state [5] and (ii)
no gauge condition. (iii) The assumed preferred reference frame makes it
possible to write quantum theory in a gravitational field unambiguously. For
instance, this avoids the non-uniqueness problem of the covariant Dirac the-
ory [8]. (iv) Preferred-frame effects should be more important at large scales
(for they have more time to accumulate) and might possibly contribute to
explain motion at a galactical scale. (v) That theory necessarily predicts
accelerated expansion, without assuming any dark energy [5].
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2 Equations for the Electromagnetic Field

SET has a preferred reference frame E . It has also a curved spacetime metric
noted γ. The equations below are usually valid only in coordinates adapted
to that reference frame and such that the synchronization condition γ0i =
0 (i = 1, 2, 3) is verified. The spatial metric in the frame E [14, 17, 11, 3]
will be noted g. The first Maxwell group is unchanged. In terms of the
antisymmetric field tensor F :

Fσµ , ν + Fµν , σ + Fνσ , µ = Fσµ ; ν + Fµν ;σ + Fνσ ;µ = 0. (1)

(Semicolon means a covariant derivative associated with the metric γ. The
first equality is an identity for an antisymmetric tensor field and a torsion-
less connection, as is the metric (Levi-Civita) connection.) To get the second
group [9], we used the equation for continuum dynamics that is valid in SET
and we applied it to the charged medium subjected to the Lorentz force, as-
suming that:

(i) The total energy(-momentum) tensor is T total = T charged medium + T field.

(ii) The total energy tensor T total obeys the general equation for continuum
dynamics, without any non-gravitational force.

After some algebra using the explicit form of the energy tensor T field of the
electromagnetic (e.m.) field, this gives (writing the equations “in SI units”):

F µ
σ F

σν
;ν = µ0 [bµ (T field)− F µ

σ J
σ] (2)

where

b0(T ) ≡ 1

2
γ00 gij,0 T

ij, bi(T ) ≡ 1

2
gijgjk,0 T

0k. (3)

3 Charge Non-Conservation

If detF 6= 0 (where F is the matrix F ≡ (F µ
ν)), which is equivalent [9] to

E.B 6= 0 with E and B the electric and magnetic fields, we get from Eq. (2)
[9]:

ρ̂ ≡ Jµ;µ = (Gµ
ν b

ν(T field));µ , (Gµ
ν) ≡ (F µ

ν)
−1. (4)
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Thus, charge conservation (Jµ;µ = 0) is not true in general with the second
group (2), in contrast with what happens with the second Maxwell group
assumed in GR and other metric theories of gravitation [9].

Let Ω be any “substantial” domain of the charged continuum, i.e., it is
followed in its motion. We can prove that the evolution rate of the charge
contained in Ω is

d

d t

(∫
Ω

δq

)
=

∫
Ω

ρ̂
√
−γ d3 x ( γ ≡ det (γµν) ) (5)

in any coordinates xµ. (Here t ≡ x0/c.) Of course the domain Ω as well as
its boundary depend on t in general spatial coordinates xi.

4 Weak-Field Approximation of the Gravita-

tional Field

The gravitational field is assumed weak and slowly varying for the system of
interest S (e.g. the Earth with some e.m. source on it). We use an asymptotic
post-Newtonian (PN) scheme. This scheme associates with S a family (Sλ)
of systems, depending on λ → 0, with λ = 1/c2 in a specific λ-dependent
time unit [7]. It leads to write Taylor expansions with respect to c−2, using
also a λ-dependent mass unit. E.g.

β ≡ √γ00 = 1− U c−2 +O(c−4) (6)

where U ≥ 0 is the Newtonian potential, which obeys the Poisson equation
[7]. The spatial metric assumed in the theory is [7]:

g = β−2g0 (7)

with g0 an invariable Euclidean metric. We will take Cartesian coordinates
for g0, i.e., g0

ij = δij.

5 Asymptotic Expansions for the E.M. Field

and Current

We assume that F and the 4-current J depend smoothly on λ, hence they too
admit Taylor expansions w.r.t. λ (with λ = c−2 in the specific λ-dependent
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units):

F = cn
(

0

F + c−2
1

F +O(c−4)

)
(8)

and

J = cm
(

0

J + c−2
1

J +O(c−4)

)
. (9)

The integers n and m are not known and can be positive, negative, or zero.
Since λ = 1/c2 is the gravitational weak-field parameter, this means that
the fields F and J are not assumed weak. Moreover, F is not assumed
slowly varying: in this respect, the expansions (8)–(9) are similar to post-
Minkowskian (PM) expansions.

6 Expansion of the Modified Maxwell Second

Group

For the PM-like expansions (8)-(9), the time variable (such that the expan-
sions are true at a fixed value of it) is x0 = cT [6, 12], not T as it is for PN
expansions [7, 12]. (This is not neutral since c =

√
λ−1 with λ the weak-field

parameter.) Moreover, from dimensional analysis we get that, with the λ-
dependent units, we have µ0 = µ00c

2 with µ00 a constant. From this, we find
by examining the orders in Eq. (2) that we must have

2n = n+m+ 2, i.e. m = n− 2. (10)

Using the foregoing, one gets the lowest-order term in the weak-field expan-
sion of (2) as

0

F µ
σ

0

F σν
,ν = −µ00

0

F µ
σ

0

J σ. (11)

Thus if
0

F ≡ (
0

F σ
ν) is invertible, it is an exact solution of the flat-spacetime

Maxwell equation:
0

F σν
,ν = −µ00

0

J σ. (12)

7 Expansion of the Charge Production Rate

Due to (8)-(9),
0

F ,
0

G, etc., do not have the physical dimensions of the cor-

responding fields F ,G, etc. However, F 1 ≡ cn
0

F and J1 ≡ cm
0

J are solu-
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tions of the flat-spacetime Maxwell equation with the correct dimensions in
the SI units. Define T 1 as the e.m. T-tensor associated with F 1. Assume
matrix F 1, with components (F1) σ ν , is invertible. DefineG1 ≡ F −1

1 . Using
(8), we can show that

ρ̂ = c−3
[(
G1

µ0 T1
jj −G1

µi T1
0i
)
∂TU

]
,µ

+O(c−5). (13)

Expressing F in terms of the electric and magnetic fields E and B, we can
rewrite (13) as

ρ̂ = c−3
(
ei∂TU

)
,i

+O(c−5) (14)

with

ei =


B1

3 c2+B1B2
2 c2+B1B3

2 c2+B1 E1
2−B1 E2

2−B1 E3
2+2B2 E1 E2+2B3 E1 E3

2 c µ0 (B1 E1+B2 E2+B3 E3)
B1

2B2 c2+2B1 E1 E2+B2
3 c2+B2B3

2 c2−B2 E1
2+B2 E2

2−B2 E3
2+2B3 E2 E3

2 c µ0 (B1 E1+B2 E2+B3 E3)
B1

2B3 c2+2B1 E1 E3+B2
2B3 c2+2B2 E2 E3+B3

3 c2−B3 E1
2−B3 E2

2+B3 E3
2

2 c µ0 (B1 E1+B2 E2+B3 E3)

 .

(15)
To evaluate (14), we have to assess ∂TU and ∂T∇U . Both have to be cal-
culated in the preferred reference frame E , since it is in that frame that the
equations are valid. The system of interest producing the e.m. field should
move through E , with a velocity field v. One expects that |v| should be in the
range 10− 1000 km/s. We can show that, for such velocities, the main con-
tribution to ∂TU comes from the translation motion of a nearly spherically
symmetric body (with center a(T )) through E :

∂TU ' −V.∇U ' GM(r)

r2
V.er, r ≡ |x− a(T )| , er ≡ (x− a(T ))/r

(16)
with V ≡ ȧ and M(r) ≡ 4π

∫ r
0
u2ρ(u) du, ρ(r) being the Newtonian mass

density. On the Earth’s surface, this gives ∂TU ' gVr / 10V ' 105 (MKSA)
for V = 10 km/s. If moreover the rotating spherical body is homogeneous
(which can be assumed to get an order-of-magnitude estimate), we have

∂T∇U =
GM(r)

r3
V. (17)

On Earth: ∂T∇U ' gV/R, hence |∂T∇U | ' 10−2 (MKSA) for V = 10 km/s.
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8 Application to Representative Fields

8.1 Case of a Plane Wave

A monochromatic, “pure”, plane e.m. wave propagating in the direction
i ‖ Ox has

E1 = 0, Ei = Ei
0 cos(kx− ωT + ϕi) (i = 2, 3), cB = i ∧ E. (18)

Then of course E.B = 0, hence the field matrix F ≡ (F µ
ν) is not invertible.

But we may add any constant e.m. field (E′,B′): the field is still a plane
wave (though not a pure one, in that the condition cB = i∧E is lost). Then
generically F is invertible. Moreover, ei [Eq. (14)] has ei,i = 0, for e1 = 0
and ei = ei(x1). Neglecting the term c−3ei(∂TU),i in view of (17) and the
extremely small figure c−3 ' 3.7× 10−26 (MKSA), we get that

ρ̂ = 0 (Plane wave, c−3ei(∂TU),i neglected). (19)

However, for very strong values of the constant e.m. field, the neglected term
may give high values of ρ̂. (Check the case without the wave part.)

8.2 The Case with Hertzian Dipoles

Hertz’s oscillating dipole is the charge distribution

ρ = Td,b,ω ≡ −e− iωt d.∇δb (20)

with b the dipole position, and d the dipole vector. The associated 3-current
is:

j = − iωd e− iωt δb. (21)

With this source distribution, corresponds a solution [13, 16] of the flat
Maxwell equations (in the distributional sense):

E = α

{
k2

r
(d− (n.d)n) cosϕ+ [3(n.d)n− d]

(
cosϕ

r3
+
k sinϕ

r2

)}
(22)

B = βk2(n ∧ d)

(
cosϕ

r
− sinϕ

kr2

)
, k =

ω

c
, ϕ ≡ kr − ωt. (23)

Here α ≡ 1
4πε0

= 9×109, β ≡ c
4π
' 2.39×107 (MKSA). This solution can be

shown to be exact. It has E.B = 0. However, adding dipoles with different
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b’s and d’s gives generically E.B 6= 0.

We thus consider a group of Hertzian dipoles. All of them are at rest in
a common frame EV, moving at a constant velocity V w.r.t. E . Their e.m.
field is obtained in the moving frame EV by summing the fields (22)–(23) of
each dipole. It is then Lorentz-transformed to E . In view of (14), we compute

ρ̂(T,x) = c−3
(
ei∂TU

)
,i
≈ c−3

∫
∂CE(T )

eini ∂TU dS/v(CE(T )). (24)

Here, C being a small cube bound to the moving frame EV, centered at the
calculation point x, we denote CE(T ) the domain occupied by this cube at
the time T in the ether frame E . (n is the external normal to the boundary
∂CE(T ) of the domain CE(T ), dS is the surface element on ∂CE(T ), and
v(CE(T )) is the volume of CE(T ).) For three dipoles with d = 100 nC.m,
ν = 100 MHz (λ = 3 m), situated at / λ from one another, we get fields
E / a few 105 V/m, B / 15 T. With V = 10 km/s, ρ̂(T,x) has peaks at
≈ ±2 × 108 e/m3/period. This seems untenable, even though the peaks are
very narrow and their sign alternates in space.

Hence, this version of the gravitationally-modified Maxwell equations
seems discarded.

9 The Reason for the Problem and its Solu-

tion

9.1 Why Were’nt These the Right Maxwell Equations
of the Theory?

In SET, the dynamical equation for a general continuous medium having a
well-defined velocity field v, subjected to an external force density field f , is
[9]:

T 0ν
medium ;ν = b0(Tmedium) +

f .v

cβ
, T iνmedium ;ν = bi(Tmedium) + f i. (25)

Assumption (i) (Sect. 2) says: T total = T charged medium + T field.
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Assumption (ii) (Sect. 2) states: T 0ν
total ;ν = b0(T total), T iνtotal ;ν = bi(T total).

Assumptions (i) and (ii), plus Eq. (25) with “medium” = “charged
medium”, lead easily to:

T 0ν
field ;ν = b0(T field)− f .v

cβ
, T iνfield ;ν = bi(T field)− f i. (26)

This has the form (25) applied to the e.m. field (“medium” = “field”), with
f ifield = −f icharged medium ≡ −f i and vfield = vcharged medium ≡ v. But vfield 6=
vcharged medium! Also, the action-reaction opposition, f ifield = −f icharged medium,
is not true in a theory with finite velocity of propagation [18, 15].

9.2 What Are the Right Maxwell Equations of the
Theory?

Equation (25) is derived from Newton’s second law of the theory, at least if
the continuous medium behaves like a dust. Also, Assumption (ii) is neces-
sary to the theory of gravitation. However, we may abandon Assumption (i),
which means to write

T total = T charged medium + T field +T interact (27)

where T interact ≡ T total − T charged medium − T field is some “interaction energy
tensor”. With (27), Assumption (ii) and Eq. (25) do not imply Eq. (26) any
more, and do not determine the second group any more. One may postulate
the standard gravitationally-modified second group (e.g. Refs. [14, 20]):

F σν
;ν = −µ0 J

σ (28)

which, one may show [10], is writing almost the usual (3-vector-form) second
group in terms of the local time and the space metric in the frame E .

10 Conclusion

Maxwell equations for the “scalar ether theory” of gravity (SET) were pro-
posed in a previous work [9]. They predict charge non-conservation in a vari-
able gravitational field. This occurs already for a translation through SET’s
“ether”. Using asymptotic PN and asymptotic “PM-like” expansions for the
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gravitational field and the e.m. field respectively, an explicit expression for
the charge production rate ρ̂ was obtained. For a group of Hertzian dipoles
producing a strong but realistic e.m. field (and with a moderate translation
velocity V = 10 km/s), |ρ̂| seems unrealistically high. In fact, those Maxwell
equations are not consistent with the continuum dynamics of SET as applied
to the e.m. field itself. There must be an additional, “interaction”, energy
tensor. Then the standard gravitationally-modified Maxwell equations be-
come consistent with SET. The interaction energy might contribute to the
“dark matter” [10].
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