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Introduction

Hyperbolic systems have been studied for several centuries, as their importance in representing physical phenomena is undeniable. From gaz dynamics to population evolution through wave equations and fluid dynamics they are found in many areas. As they represent the propagation phenomena of numerous physical or industrial systems [START_REF] Aamo | Disturbance rejection in 2 × 2 linear hyperbolic systems[END_REF][START_REF] Gugat | Gas flow in fan-shaped networks: classical solutions and feedback stabilization[END_REF][START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF], the issue of their controllability and stability is a major concern, with both theoretical and practical interest. If the question of controllability has been well-studied [START_REF] Li | Controllability and observability for quasilinear hyperbolic systems[END_REF], the problem of stabilization under boundary control, however, is only well known in the particular case of an absence of source term. However, in many case neglecting the source term is a crude approximation and reduces greatly the analysis, in particular because it implies that the system can be reduced to decoupled equations or slightly coupled equations (see [START_REF] De Halleux | Boundary feedback control in networks of open channels[END_REF] for instance). For most physical equations the source term cannot therefore be neglected and the steady-states we aim at stabilizing can be non-uniform with potentially large variations of amplitude (e.g. Saint-Venant equations, see [START_REF] Chanson | Hydraulics of open channel flow[END_REF] Chapter 5 or [START_REF] Hayat | A quadratic Lyapunov function for the Saint-Venant equations with arbitrary friction and space-varying slope in the H 2 norm[END_REF], Euler equations, see [START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF] or [START_REF] Gugat | Neumann boundary feedback stabilization for a nonlinear wave equation: A strict H 2 -Lyapunov function[END_REF], Telegrapher equations, etc.). Taking into account these nonuniform steady-states and stabilizing them is impossible when not taking the source term into account, although it is an important issue in many applications. In presence of a source term some results exist for the H 2 norm (and actually H p , p ≥ 2), however, few results exist for the more natural C 1 norm (and consequent C p norms, p ≥ 1). It has to be underlined that for nonlinear systems the stability in these two main topologies are not equivalent as shown in [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems[END_REF]. In this article we deal with the stability in C 1 norm of such hyperbolic systems of quasilinear partial differential equations with source term under boundary conditions.

Several methods are usually used to study the stability of systems. The Lyapunov approach, one of the most famous, is the one we opted for in this article. This approach has the advantage, among others, of guaranteeing some robustness and of being convenient to deal with non-linear problems [START_REF] Coron | Control and nonlinearity[END_REF][START_REF] Khalil | Nonlinear systems[END_REF]. We first introduce the basic C 1 Lyapunov functions, a kind of natural Lyapunov functions for the C 1 norm and we then find a sufficient condition such that the system admits a basic C 1 Lyapunov function. We show that this sufficient condition is twofold: a first intrinsic condition on the system and a second condition on the boundary controls. We show then that this sufficient condition on the system is in fact necessary in the general case for the existence of a basic C 1 Lyapunov function.

The organisation of this paper is as follows: In Section 1, we recall some preliminary properties about 1-D quasilinear hyperbolic system. Section 2 presents an overview of the context and previous results. Section 3 states the main results, which are proven in Section 4. Section 5 presents several remarks and further detail to the results.

Preliminary properties of 1-D quasilinear hyperbolic systems

A general quasilinear hyperbolic system can be written as:

Y t + F (Y)Y x + D(Y) = 0, (1.1) 
B(Y(t, 0), Y(t, L)) = 0, (

with Y : [0, +∞) × [0, L] → R n and F : U → M n (R) and D : U → R n where U is a non empty connected open set of R n and F is strictly hyperbolic, i.e. for all Y ∈ U, F (Y) has real, distinct eigenvalues. We suppose in addition that these eigenvalues are non-vanishing. B is a map from U × U to R whose form will be precised later on, such that the system (1.1)-(1.2) is well-posed.

We call Y * a steady-state of the previous system that we aim at stabilizing. Note that, due to the source term, Y * is not necessarily uniform and the problem cannot be directly treated as a null stabilization. We therefore use the following transformation:

u(x, t) = N (x)(Y(x, t) -Y * (x)), (1.3) 
where N is such that:

N F (Y * )N -1 = Λ, (1.4) 
where Λ is diagonal and corresponds to the eigenvalues of F (Y * ). Note that such N exists as the system is strictly hyperbolic. Therefore, the system (1.1)-(1.2) is equivalent to

u t + A(u, x)u x + B(u, x) = 0, (1.5) 
B(N (0) -1 u(0, t) + Y * (0), N (L) -1 u(L, t) + Y * (L)) = 0, (

with

A(u, x) = N (x)F (Y)N -1 (x) = N (x)F (N -1 (x)u + Y * (x))N -1 (x), (1.7) 
B(u, x) = N (F (Y)(Y * x + (N -1 ) u) + D(Y)). (1.8) 
The difficulty when there is a source term is twofold, and its first aspect can be seen in (1.7): we cannot assume that the steady state Y * we aim at stabilizing is uniform. Therefore A depends not only on u but also directly on x, and having A(u(t, x)) is different from having A(u(t, x), x) especially when u is a perturbation: if u can still be seen as a perturbation, the dependency on x can no longer be seen itself as a perturbation.

Its second aspect is that the source term creates a coupling between the two quantities which is a zero order term that can disturb the Lyapunov function and we will see in Section 2, 3 and 4 that this implies that there does not always exist a simple quadratic Lyapunov function ensuring exponential stability even when the boundary conditions can be chosen arbitrarly, while this phenomenon cannot appear in the absence of source term.

From the strict hyperbolicity we can denote by m the integer such that

Λ i > 0, ∀i ≤ m, and Λ i < 0, ∀i ∈ [m + 1, n].
(1.9)

We now denote by u + the vector of components associated to positive eigenvalues (u 1 , ..., u m ) T and similarly u -refers to (u m+1 , ..., u n ) T . In the special cases where m = 0 or m = n u is equal to u -or u + respectively. From now on we will focus on boundary conditions of the form

u + (t, 0) u -(t, L) = G u + (t, L) u -(t, 0) . (1.10)
Note that with these boundary conditions the incoming signal is a function of the outgoing signal, which is what is typically expected from a feedback control law and enables the well-posedness of the system (see Theorem 1.1 later on). However the method presented in this article could also be applied to any other boundary conditions of the form (1.2) that also ensure well-posedness.

We also introduce the consequent first order compatibility conditions for an initial condition u 0 :

u 0 + (0) u 0 -(L) = G u 0 + (L) u 0 -(0) , (1.11) 
A(u 0 (0), 0)∂ x u 0 (0) + B(u 0 (0), 0) + A(u 0 (L), L)∂ x u 0 (L) + B(u 0 (L), L) - = G u 0 + (L) u 0 -(0) A(u 0 (L), L)∂ x u 0 (L) + B(u 0 (L), L) + A(u 0 (0), 0)∂ x u 0 (0) + B(u 0 (0), 0) - .
(1.12)

Well-posedness of the system (1.5),(1.10) for any initial condition u 0 that satisfies the compatibility conditions (1.11),(1.12) is given by Li [START_REF] Li | Boundary value problems for quasilinear hyperbolic systems[END_REF] (see also [START_REF] Qin | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF]), one has the following theorem:

Theorem 1.1. For all T > 0 there exist C 1 (T ) > 0 and η(T ) > 0 such that, for every

u 0 ∈ C 1 ([0, L], R n )
satisfying the compatibility conditions (1.11), (1.12) and such that |u 0 | 1 ≤ η(T ), the system (1.5)-(1.10), with A and B of class C 1 , has a unique solution on [0, T ] × [0, L] with initial condition u 0 . Moreover one has:

|u(t, •)| 1 ≤ C 1 (T )|u(0, •)| 1 , ∀t ∈ [0, T ]. (1.13)
2 Context and previous results

General hyperbolic system without source term The exponential stability of general strictly hyperbolic systems of the form (1.5) without source term, i.e. B ≡ 0, has been mainly studied in the linear or non-linear case (see for instance [START_REF] Coron | Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF][START_REF] Coron | Dissipative boundary conditions for onedimensional nonlinear hyperbolic systems[END_REF][START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF][START_REF] Slemrod | Boundary feedback stabilization for a quasilinear wave equation[END_REF][START_REF] Li | Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions[END_REF][START_REF] Bastin | Stability of linear density-flow hyperbolic systems under PI boundary control[END_REF][START_REF] Coron | Dissipative boundary conditions for 2 × 2 hyperbolic systems of conservation laws for entropy solutions in BV[END_REF]) under various boundary conditions or boundary controls (e.g. Proportional-integral control, dead beat control, single boundary control, etc.). A large part of these studies has been conducted using boundary conditions of the form (1.10). For such boundary conditions in non-linear systems the exponential stability depends on the topology [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems[END_REF] and in particular that the stability in H 2 norm does not imply the stability in C 1 norm. In [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems[END_REF] the authors also gave a sufficient condition for stability in the W 2,p norm for p ∈ [1, +∞]:

ρ p (G (0)) < 1, (2.1) 
where G is given in (1.10) and the definition of ρ p is

ρ p (M ) = inf( ∆M ∆ -1 p , ∆ ∈ D + n ), 1 ≤ p ≤ +∞ (2.2)
where • p is the usual p norm for matrices and D + n are the diagonal n×n matrices with positive eigenvalues.

The case of the C 1 norm for systems with no source term has also been treated in [START_REF] Coron | Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF] by Jean-Michel Coron and Georges Bastin by a Lyapunov approach that inspired the first part of this paper. There, they proved the following sufficient condition for exponential stability through a Lyapunov approach:

ρ ∞ (G (0)) < 1. (2.3)
However the general case with a non-zero source term changes several things. As mentioned previously it implies that the steady-states Y * are no longer necessarily uniform and as a direct consequence the matrix A defined in (1.7) depends explicitly not only on u but also on x. In addition, there are some cases where, for any G, no basic quadratic H 2 Lyapunov function can be found (see for instance [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] and in particular Proposition 5.12) or no basic C 1 Lyapunov function can be found, as shown later on.

General hyperbolic system with non-zero source term in the H p norm For general quasilinear hyperbolic systems with source term, also called inhomogeneous quasilinear hyperbolic systems, the analysis of the exponential stability is much less advanced and actual knowledge in the matter is still partial. To our knowledge the exponential stability of such systems with non zero and non negligible source term was only treated in the framework of the H p norm for p ∈ N \ {0, 1} and in [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] (in Chapter 6) the authors find a sufficient (but a priori non-necessary) condition: exponential stability of the system (1.5)-(1.13) for the H p norm where p ≥ 2 is achieved if there exists Q ∈ C 1 ([0, L], D + n ) such that the two following conditions hold: (Interior condition) the matrix

-(QΛ) (x) + Q(x)M (0, x) + M (0, x) T Q(x) T (2.4) is positive definite for all x ∈ [0, L],
(Boundary conditions) the matrix

Λ+(L)Q+(L) 0 0 -Λ-(0)Q-(0) -K T Λ+(0)Q+(0) 0 0 -Λ-(L)Q-(L) K (2.5)
is positive semi-definite where M (0, •) = ∂B ∂u (0, •) and K = G (0).

It has to be underlined that with a non-zero source term there does not always exist a simple quadratic Lyapunov function ensuring exponential stability for the H p norm whatever the boundary conditions are.

Thus appears not only a boundary condition (2.5) as in the previous paragraph but also an interior condition (2.4). This phenomenon is not specific to non-linear systems but also appears in linear systems: In [START_REF] Bastin | On boundary feedback stabilization of non-uniform linear 2× 2 hyperbolic systems over a bounded interval[END_REF] for instance, the authors study a linear 2 × 2 system and found a necessary and sufficient condition for the existence of Q such that (2.4) hold. In general for linear hyperbolic systems the condition (2.4) also appears although it is only sufficient when n > 2. This is the consequence of the non-uniformity of the steady-states combined with non-identically vanishing zero order term even close to the steady states. If this phenomenon is not new, we will see however that the interior condition that appears for the C 1 norm is different from the condition that typically appears when studying Lyapunov functions for H p norms.

Our contribution in this article is to deal with the exponential stability for the C 1 norm of such general hyperbolic systems with source term. This article intends to give a necessary and sufficient interior condition to the existence of a simple quadratic Lyapunov function ensuring exponential stability in the C 1 (and actually C p ) norm of the system and a sufficient condition on the boundary conditions.

Useful observations and notations Before going any further let us note that by definition of B and as

Y * is a steady-state B(0, x) = N (0)(F (Y * )(Y * x ) + D(Y * )) = 0. (2.6)
Thus if we assume that F and Y * are C 3 functions, then, from (1.8), B is C 2 and there exists η 0 > 0 and

M ∈ C 1 (B η0 × [0, L], M n (R))
, where B η0 is the ball of radius η 0 in the space of continuous function endowed with the L ∞ topology, such that,

B(u, x) = M (u, x)u,
and therefore, ∂B ∂u (0, x) = M (0, x).

(2.7)

Besides, A is also a C 2 function and η 0 > 0 can be chosen small enough such that there exists

E ∈ C 2 (B η0 × [0, L], M n (R))
, satisfying (see [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] in particular Lemma 6.7),

E(u, x)A(u, x) = λ(u, x)E(u, x) ∀ (u, x) ∈ B η0 × [0, L], (2.8) 
and

E(0, x) = Id, (2.9) 
where λ is a diagonal matrix, whose diagonal entries are the eigenvalues of A(u, x).

Also we introduce the following notations:

Definition 2.1. For a C 0 function U = (U 1 , ..., U n ) T on [0, L] we define the C 0 norm |U| 0 by |U| 0 := sup i sup [0,L] (|U i |) . (2.10) For a C 1 function U = (U 1 , ..., U n ) T on [0, L],
we denote similarly the C 1 norm |U| 1 by

|U| 1 := |U| 0 + |∂ x U| 0 . (2.11) 
In the following for a C 1 function u on [0, T ] × [0, L], we will sometimes note for simplicity |u| 0 instead of

|u(t, •)| 0 and |u| 1 instead of |u(t, •)| 1 .
We recall the definition of the exponential stability for the C 1 norm:

Definition 2.2. The steady state u * = 0 of the system (1.5),(1.10) is exponentially stable for the C 1 norm if there exist γ > 0, η > 0, and C > 0 such that for every u 0 ∈ C 1 ([0, L]) satisfying the compatibility conditions (1.11),(1.12) and |u 0 | 1 ≤ η, the Cauchy problem (1.5),(1.10),(u(0, x) = u 0 ) has a unique C 1 solution and

|u(t, •)| 1 ≤ Ce -γt |u 0 | 1 , ∀t ∈ [0, +∞[. (2.12)
Remark 2.1. Given our change of variable Y → u, proving the exponential stability for the C 1 norm of the steady state 0 of the system (1.5),(1.10) is equivalent to proving the exponential stability for the C 1 norm of the steady state Y * of the system (1.1) and the associated boundary condition.

Definition 2.3. We call basic C 1 Lyapunov function a function V defined by

V (U) = ( f 1 U 1 , ..., f n U n ) T 0 + (E(U, x)(A(U, x)U x + B(U, x))) 1 f 1 , ..., (E(U, x)(A(U, x)U x + B(U, x))) n f n T 0 , (2.13) 
for some (f 1 , ...

f n ) ∈ C 1 [0, L]; R * + n
, such that there exist γ > 0 and η > 0 such that for any T > 0 and any solution u of the system (1.5)-(1.10) with

|u 0 | 1 ≤ η, V (t) ≤ V (t )e -γ(t-t ) , ∀ 0 ≤ t ≤ t ≤ T. (2.14)
Also, in that case, (f 1 , ..., f n ) are called coefficients inducing a basic C 1 Lyapunov function.

Remark 2.2. Note from (1.5), that when u is a solution of the system (1.5), (1.10), V (u(t, •)) becomes

V (u(t, •)) = ( f 1 u 1 , ..., f n u n ) T 0 + (Eu t ) 1 f 1 , ..., (Eu t ) n f n ) T 0 , (2.15) 
where we denoted E = E(u(t, x), x) to lighten the notations. The previous definition (2.13) is used so that V is actually defined as function on C 1 ([0, L]) only and to underline that therefore, the function V (u) : t → V (u(t, •)) does only depend on the state of the system at time t. Looking at (2.15), one could wonder why we consider the components of u while we consider the components of Eu t for the derivative. The interest of considering Eu t instead of u t is that E diagonalizes A and therefore when differentiating the Lyapunov function appears 2(Eu t ) n (E(u) tt ) n = -λ n (u, x)((Eu tx ) 2 n ) and first order derivative terms, and there is no crossed term of second order derivative which would be impossible to bound with the C 1 norm (the full computation is done in Appendix A.1). Differentiating u 2 n , though, gives -λ n (u 2 n ) x -u n ((A -λ).u x ) n and zero order derivative terms, and the second term is a cubic perturbation that can be bounded by the cube of the C 1 norm. Nevertheless, the proof would work as well with Eu instead of u, but we consider u to keep the computations as simple as we can in the main proof (Section 4). Finally, we use in the definition (2.13) the weights √ f i instead of using directly the weights f i to be coherent with the existing definition of basic quadratic Lyapunov function for the L 2 norm introduced in [START_REF] Bastin | On boundary feedback stabilization of non-uniform linear 2× 2 hyperbolic systems over a bounded interval[END_REF] (see in particular (34) ) for linear systems and to facilitate a potential comparison.

Remark 2.3. Note also that, in Definition 2.3, the condition (2.14) is actually equivalent to the condition

dV (u) dt ≤ -γV (u), (2.16) 
in a distributional sense on (0, T ), where we say that d ≥ 0 in a distributional sense on (0, T )

with d ∈ D (0, T ) when, for any φ ∈ C ∞ c ((0, T ), R + ), < d, φ > ≥ 0. (2.17)
Note that the existence of such basic C 1 Lyapunov function for a system guaranties the exponential stability of the system for the C 1 norm. More precisely we have the following proposition:

Proposition 2.1. Let a quasilinear hyperbolic system be of the form (1.5),(1.10), with A and B of class C 1 such that there exists a basic C 1 Lyapunov function, then the system is exponentially stable for the C 1 norm.

Proof of proposition 2.1. From Theorem 1.1, let T > 0 and

u 0 ∈ C 1 ([0, L], R n ) satisfying the compatibility conditions (1.11) and such that |u 0 | 1 ≤ min(η(T ), η 0 /C 1 (T ))
, where η(T ) and C 1 (T ) are given by Theorem 1.1 and η 0 is given by (2.7)-(2.9). From Theorem 1.1 there exists a unique solution

u ∈ C 1 ([0, T ] × [0, L]).
Suppose that V is a basic C 1 Lyapunov function, induced by (f 1 , ...f n ) and γ and η 1 are the constants associated. From its definition V (u(t, •)) is closely related to |u(t, •)| 1 , indeed, using that for all i ∈ {1, n}, f i are positive and bounded on [0, L], it is easy to see that there exists a constant c 2 > 0 such that

1 c 2 (|u(t, •)| 0 + |E∂ t u(t, •)| 0 ) ≤ V (u(t, •)) ≤ c 2 (|u(t, •)| 0 + |E∂ t u(t, •)| 0 ). (2.18)
But as, from (1.13) and the assumption on

|u 0 | 1 , |u(t, •)| 1 ≤ η 0 for any t ∈ [0, T ]. Thus from (2.8)-(2.9)
there exists a constant c 1 depending only on η 0 and the system such that

1 c 1 |∂ t u(t, •)| 0 ≤ |E∂ t u(t, •)| 0 ≤ c 1 |∂ t u(t, •)| 0 , (2.19) 
thus, there exists c 0 > 0 such that

1 c 0 (|u(t, •)| 0 + |∂ t u(t, •)| 0 ) ≤ V (u(t, •)) ≤ c 0 (|u(t, •)| 0 + |∂ t u(t, •)| 0 ). (2.20)
But observe that, as u is a solution of (1.5), there exists η a > 0 such that for |u(t,

•)| 0 < η a |∂ t u(t, •)| 0 ≤ 2 sup i (|Λ i | 0 ) |∂ x u(t, •)| 0 + 2 sup i,j (|M ij (0, •)| 0 ) |u(t, •)| 0 , (2.21) 
and similarly

|∂ x u(t, •)| 0 ≤ 2 inf i,x∈[0,L] (Λ i (x)) |∂ t u(t, •)| 0 + sup i,j (|M ij (0, •)| 0 ) |u(t, •)| 0 , (2.22) 
which implies that there exists c > 0 constant such that for |u(t,

•)| 0 < η a 1 c |u(t, •)| 1 ≤ V (u) ≤ c|u(t, •)| 1 . (2.23)
Let T ∈ R * + , with T > 0 and T large enough such that c 2 e -γT < 1 2 . From (2.14), for all solution u such that

|u 0 | 1 < min(η(T ), η 1 , η a /C(T )) where C(T ) is defined in (1.13), V (u, T ) ≤ V (u, 0)e -γT .
(2.24)

Now, using (2.23) we get |u(T, •)| 1 ≤ |u(0, •)| 1 c 2 e -γT , (2.25) 
And from the hypothesis on T

|u(T, •)| 1 ≤ 1 2 |u(0, •)| 1 , (2.26) 
and this imply that u is defined on [0, +∞) and that we can find C and γ 1 such that

|u(t, 0) -u * | 1 ≤ Ce -γt |u 0 -u * | 1 , ∀t ∈ [0, +∞[, (2.27) 
which gives the exponential stability and concludes the proof.

Main results

The aim of this article is to show the following results:

Theorem 3.1. Let a quasilinear hyperbolic system be of the form (1.5), (1.10), with A and B of class C 1 , Λ defined as in (1.4) and M as in (2.7). Let assume that the two following properties hold 1. (Interior condition) the system

Λ i f i ≤ -2   -M ii (0, x)f i + n k=1,k =i |M ik (0, x)| f 3/2 i √ f k   , (3.1) 
admits a solution (f 1 , ..., f n ) on [0, L] such that for all i ∈ [1, n], f i > 0,
2. (Boundary conditions) there exists a diagonal matrix ∆ with positive coefficients such that

∆G (0)∆ -1 ∞ < inf i fi(di) ∆ 2 i sup i fi(L-di) ∆ 2 i , (3.2) 
where

d i = L if Λ i > 0 and d i = 0 otherwise.
Then there exists a basic C 1 Lyapunov function for the system (1.5), (1.10).

Remark 3.1. Note that when M ≡ 0 we recover the result found in [START_REF] Coron | Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF] in the absence of source term: the interior condition is always verified by any positive constant functions (f 1 , ..., f n ) and when choosing

f i = ∆ 2 i the boundary condition reduces to the existence of ∆ ∈ D n + such that ∆G (0)∆ -1 ∞ < 1 which is equivalent to ρ ∞ (G (0)) < 1.
Note also that the existence of a solution (f 1 , ...f n ) with f i > 0 on [0, L] for all i ∈ {1, ..., n} for the system

f i = - 2 Λ i   -M ii (0, x)f i + n k=1,k =i |M ik (0, x)| f 3/2 i √ f k   (3.3)
is also a sufficient interior condition as it obviously implies the existence of a solution with positive components for (3.1).

Moreover, we show in the following Theorem that condition (3.1) is also necessary in order to ensure the existence of a basic C 1 Lyapunov function.

Theorem 3.2. Let a quasilinear hyperbolic system be of the form (1.5) with A and B of class C 3 , there exists a control of the form (1.10) such that there exists a basic C 1 Lyapunov function for the system (1.5),(1.10) if and only if

Λ i f i ≤ -2   n k=1,k =i |M ik (0, x)| f 3/2 i √ f k -M ii (0, x)f i   , (3.4 
)

admits a solution (f 1 , ..., f n ) on [0, L] such that for all i ∈ [1, n], f i > 0.
Remark 3.2. Note that Theorem 3.2 illustrates the sharpness of (3.1) by showing that it is a necessary condition. This is not trivial as, to our knowledge, there is no similar condition for the H p norm when n > 2 yet. Note also that we have not imposed anything on the initial values of the (f 1 , ..., f n ) but we see from Theorem 3.1 and (3.2) that the more liberty we give them, the more restrictive the condition on the boundary (3.2) might become.

The proof of these two results is given in the next section.

C 1 Lyapunov stability of n × n quasilinear hyperbolic system

In this Section we shall prove Theorem 3.1 and Theorem 3.2. We will first start by proving the following Lemma which will be useful for finding the interior condition in the proof of Theorem 3.1 and for proving Theorem 3.2:

Lemma 4.1. Let (a i , b ij ) (i,j)∈ 1,n 2 ∈ C([0, L], R) n × C([0, L], R) n 2 , If (i) ∃p 1 ∈ N * : n i=1   a i (x)y 2p i + n j=1 b ij (x)y 2p-1 i y j   > 0, ∀p > p 1 , ∀y ∈ R n \ {0}, ∀x ∈ [0, L], (4.1) 
then (ii) a i (x) ≥ n j=1,j =i |b ij (x)| -b ii (x), ∀i ∈ [1, n], ∀x ∈ [0, L]. (4.2)
And if

(iii) a i (x) > n j=1,j =i |b ij (x)| -b ii (x), ∀i ∈ [1, n], ∀x ∈ [0, L], (4.3) 
then (i) holds.

Proof of Lemma 4.1. We start with (i) ⇒ (ii). Let x ∈ [0, L], let i 1 ∈ [1, n], assuming (i) is true for all y ∈ R n \ {0}, we take m ∈ N * , and define y i1 := 1, y j := -sgn(b i1j )m/(m + 1) for j = i 1 . Then as (4.1) is true there exists

p 1 ∈ N * such that n i=1,i =i1   a i (x)y 2p i + n j=1 b ij (x)y 2p-1 i y j   + a i1 (x) + b i1i1 + n j=1,j =i1 b i1j (x)y j > 0, ∀p > p 1 , ∀x ∈ [0, L]. (4.4) 
Note that for any i = i 1 , lim p→+∞ |y i | 2p = 0. Thus, by letting p → +∞ one gets

a i1 (x) + b i1i1 (x) ≥ m m + 1 n j=1,j =i1 |b i1j (x)|, ∀x ∈ [0, L]. (4.5)
Hence, as it is true for all m ∈ N * , letting m → +∞

a i1 (x) + b i1i1 (x) ≥ n j=1,j =i1 |b i1j (x)|, ∀x ∈ [0, L]. (4.6) 
This can be done for any

i 1 ∈ [1, n], which concludes (i) ⇒ (ii).
Now let us prove that (iii) ⇒ (i). First of all observe that we can suppose without loss of generality that

∀i ∈ [1, n], b ii := 0: one just has to redefine a i := a i + b ii . Then by (4.3), a i > n j=1 |b ij |, ∀i ∈ [1, n]
, then let us define:

d i (x) := a i (x) - n k=1 |b ik (x)|, (4.7) 
then d i is C 0 and positive on [0, L]. We denote by

d (0) i := inf [0,L] (d i ) = min [0,L] (d i ) > 0. (4.8)
Now, let y ∈ R n \ {0}, we can select i 1 such that

|y i1 | = max i∈[1,n] (|y i |), (4.9) 
thus y i1 = 0 and proving (4.1) is equivalent to proving that there exists p 1 ∈ N * such that for all p > p 1 ,

n i=1 a i (x) y i y i1 2p + n k=1 b ik (x) y i y i1 2p-1 y k y i1 > 0, ∀x ∈ [0, L]. (4.10) 
Denoting z i = y i /y i1 , (4.10) becomes

I := n i=1 a i z 2p i + n k=1 b ik z 2p-1 i z k > 0, on [0, L]. (4.11) 
Using (4.7) we know that

I = n i=1 d i z 2p i + n k=1 |b ik |z 2p i + n k=1 b ik z 2p-1 i z k . (4.12) By definition for i = i 1 , |z i1 | = 1, and for i = i 1 , |z k | ≤ 1, therefore d i1 z 2p i1 + n k=1 |b i1k |z 2p i1 + n k=1 b i1k z 2p-1 i1 z k ≥ d i1 ≥ d (0) i1 . (4.13) Therefore I ≥ d (0) i1 + n i=1,i =i1 d i z 2p i + n k=1 |b ik ||z i | 2p - n k=1 |b ik ||z i | 2p-1 , = d (0) i1 + n i=1,i =i1 d i z 2p i - n k=1 |b ik |(1 -|z i |)|z i | 2p-1 . (4.14)
We introduce

g : z → g(z) = -(1 -z)z 2p-1 , (4.15) 
We know that g is C 1 on [0,1] and admits a minimum on [0, 1] at z = 1 -1 2p , as one can check that

g (z) = (2pz -(2p -1))z 2p-2 . (4.16) Therefore I ≥ d (0) i1 - 1 2p n i=1,i =i1 n k=1 |b ik (x)|, (4.17) 
and this is true for all x ∈ [0, L]. Let us point out that there exists p 1 > 0 such that

1 2p n i=1,i =i1 n k=1 |b ik | 0 < d (0) i1 , ∀p > p 1 . (4.18)
Here p 1 is a constant and does not depend on x. Hence we can conclude that Proof of Theorem 3.1. Let T ∈ R * + . Let assume that A and B are of class C 2 , and let u be a C 2 solution of system (1.5),(1.10) such that |u 0 | 1 ≤ ε. Such solution exists for ε small enough and u 0 ∈ C 2 ([0, L], R n ) which verifies the compatiblity conditions (1.11) (see [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] in particular Theorem 4.21). We suppose here a C 2 regularity for technical reason but the final estimate will not depend on the C 2 norm and will be also true by density for A and B of class C 1 and for u a C 1 solution. Recall that λ i are the eigenvalues of A as defined in (1.7). We denote s i := sgn(λ i (u, x)) which only depends on i from the hypothesis of non-vanishing eigenvalues and the continuity of A. We define:

I > 0, ∀p > p 1 , ∀x ∈ [0, L], ∀y ∈ R n . Therefore
W 1,p := L 0 n i=1 f i (x) p u 2p i e -2pµsix dx 1/2p , (4.19) 
with p ∈ N * , and f i > 0 on [0, L] to be determined. Clearly W 1,p > 0 for u = 0, and W 1,p = 0 when u ≡ 0.

If we differentiate W 1,p with respect to time along the C 2 trajectories, we have

dW 1,p dt =W 1-2p 1,p L 0 n i=1 f i (x) p u 2p-1 i - n k=1 a ik (u, x)u kx - n k=1 M ik (u, x)u k e -2pµsix dx, (4.20) 
where (a ij ) (i,j)∈[1,n] 2 = A and M is defined in (2.7). We know that the a ij are C 2 and from (2.7) that a ij (0, •) = δ i,j Λ i (•). Here δ i,j stands for the Kronecker delta. Hence

a ij (u, •) = δ i,j Λ i (•) + V ij .u, (4.21) 
where V ij are C 1 . Therefore using integration by parts

dW 1,p dt = - W 1-2p 1,p 2p n i=1 λ i f i (x) p u 2p i e -2pµsix L 0 -W 1-2p 1,p L 0 n i=1 f i (x) p u 2p-1 i n k=1 M ik u k + n k=1 (V ik (u, x).u)u kx e -2pµsix dx + W 1-2p 1,p 2 L 0 n i=1 λ i (u, x)f i (x) p-1 f i u 2p i + d dx (λ i (u, x)) p f i (x) p u 2p i e -2pµsix dx -µW 1-2p 1,p L 0 n i=1 |λ i |f p i u 2p i e -2pµsix dx. (4.22) 
We denote

I 2 := W 1-2p 1,p 2p n i=1 λ i f i (x) p u 2p i e -2pµsix L 0 , (4.23) 
and

I 3 :=W 1-2p 1,p L 0 n i=1 f i (x) p u 2p-1 i n k=1 M ik u k e -2pµsix dx - W 1-2p 1,p 2 L 0 n i=1 λ i (u, x)f i (x) p-1 f i u 2p i e -2pµsix dx. (4.24) 
We supposed that |u 0 | 1 ≤ ε, where ε > 0 can be chosen arbitrarily small but, of course, independent of p. From (1.13) and denoting η = C 1 (T )ε we have: |u| 0 ≤ η. Choosing ε sufficiently small is thus equivalent to choosing η sufficiently small, so we will rather choose η in the following and this choice of η will always be independent of p. Besides, observe that there exists η 1 > 0 sufficiently small such that for all 

u 0 ∈ C 0 ([0, L], R n ) such that |u| 0 ≤ η 1 min x∈[0,L] min i∈[1,n] (|λ i (u, x)|) ≥ min x∈[0,L] min i∈[1,n] |Λ i (x)| 2 . ( 4 
dW 1,p dt ≤ -I 2 -µα 0 W 1,p -I 3 -W 1-2p 1,p L 0 n i=1 f p i u 2p-1 i   n j=1 (V ik (u, x).u)u kx   e -2pµsix + W 1-2p 1,p 2p L 0 n i=1 ∂λ i ∂u .u x + ∂ x λ i f i (x) p u 2p i e -2pµsix dx.
(4.26)

We now estimate the two last terms, starting by the last one. The λ i are C 2 and in particular C 1 in u therefore

W 1-2p 1,p 2p L 0 n i=1 ( ∂λ ∂u .u x + ∂ x λ i )f i (x) p u 2p i e -2pµsix dx ≤ C 1 2p W 1,p + C 2 2p W 1,p |u| 1 , (4.27) 
where C 1 and C 2 are constants that depend on η and the system but are independent from p and u provided that |u| 1 < η. Besides we have

W 1-2p 1,p L 0 n i=1 f p i u 2p-1 i ( n j=1 (V ik (u, x).u)u kx )e -2pµxsi dx ≤ C 3 W 1,p |u| 1 . (4.28)
where C 3 is a constant that does not depend on on p and u. Therefore (4.26) can be written as

dW 1,p dt ≤ -I 2 -I 3 -(µα 0 - C 1 2p )W 1,p + ( C 2 2p + C 3 )W 1,p |u| 1 . (4.29) 
As α 0 > 0, it is easy to see that there exists

p 1 ∈ N * such that ∀p ≥ p 1 dW 1,p dt ≤ -I 2 -I 3 - µα 0 2 W 1,p + C 4 W 1,p |u| 1 . (4.30)
Here p 1 depends only on α 0 and η, while C 4 does not depend on p and u. Before going any further, we see here that if we can manage to prove that I 2 > 0 and I 3 ≥ 0 we may be able to conclude to the existence of a Lyapunov function that looks like a L 2p norm where p can be as large as we want and therefore we start to see the forecoming basic C 1 Lyapunov function. We are now left with studying I 2 and I 3 which will correspond respectively to the boundary condition and the interior condition we mentioned in Section 2 and in Theorem 3.1.

Let us first deal with I 3 :

I 3 =W 1-2p 1,p L 0 n i=1 f p i u 2p-1 i n k=1 M ik u k - λ i f i 2 f p-1 i u 2p i e -2pµsix dx. (4.31) 
Let suppose that the system (3.1) admits a positive solution (g 1 , ...g n ) on [0, L], which is the interior condition.

Then we can write this as

-Λ i g i = 2   n k=1,k =i |M ik (0, x)| g 3/2 i √ g k -M ii (0, x)g i   + h i , (4.32) 
where h i are non-negative functions. By continuity (see for instance [START_REF] Hartman | Ordinary differential equations[END_REF], in particular Theorem 2.1 in Chapter 5) there exists σ 1 > 0 such that for all σ ∈ [0, σ 1 ] there exists a unique solution to

-Λ i f i =2   n k=1,k =i |M ik (0, x)| f 3/2 i √ f k -M ii (0, x)f i   + h i + σ, f i (0) =g i (0). (4.33) 
We denote (f 1,σ , ...f n,σ ) this solution, which is continuous with σ. Therefore there exists σ 2 ∈ (0, σ 1 ] such that for all i ∈ [1, n], and all σ ∈ (0, σ 2 ], f i,σ > 0, on [0, L] and

-Λ i f i,σ > 2   n k=1,k =i |M ik (0, x)| f 3/2 i,σ f k,σ -M ii (0, x)f i,σ   . ( 4 

.34)

We choose now f i := f i,σ where σ ∈ (0, σ 2 ]. As M and λ are continuous in u, there exists η 2 > 0 such that for |u| 0 < η 2

-λ i (u, x) f i f i > 2 n k=1,k =i |M ik (u, x)| f i f k -2M ii (u, x). (4.35)
Therefore from Lemma 4.1

n i=1   - λ i f i 2f i y 2p i + n j=1 M ik √ f i √ f k y k y 2p-1 i   > 0, ∀ y = (y i ) i∈[1,n] ∈ R n \ {0}, (4.36) applying this for (y i ) i∈[1,n] = ( √ f i u i ) i∈[1,n] , it implies that W 1-2p 1,p L 0 n i=1 - λ i f i 2 f p-1 i u 2p i + n k=1 M ik u k f p i u 2p-1 i dx ≥ 0. (4.37)
Therefore by continuity, there exists a µ 1 > 0 such that ∀µ ∈ [0, µ 1 ]

I 3 = W 1-2p 1,p L 0 n i=1 - λ i f i 2 f p-1 i u 2p i + f p i u 2p-1 i n k=1 M ik u k e -2pµsix dx > 0. (4.38)
Now let us deal with I 2 , which will lead to the boundary condition. Recall that

I 2 = W 1-2p 1,p 2p n i=1 λ i (u(t, L), L)f i (L) p u 2p i (t, L)e -2pµsiL - n i=1 λ i (u(t, 0), 0)f i (0) p u 2p i (t, 0) . (4.39)
Recall that m is the integer such that Λ i > 0, for all i ≤ m and Λ i < 0, for all i > m, we have

I 2 = W 1-2p 1,p 2p m i=1 |λ i (u(t, L), L)|f i (L) p u 2p i (t, L)e -2pµL - m i=1 |λ i (u(t, 0), 0)|f i (0) p u 2p i (t, 0) - n i=m+1 |λ i (u(t, L), L)|f i (L) p u 2p i (t, L)e 2pµL + n i=m+1 |λ i (u(t, 0), 0)|f i (0) p u 2p i (t, 0) , (4.40) 
We denote K := G (0) and we know that under assumption (3.2) there exists ∆ = (∆ 1 , ...,

∆ n ) T ∈ (R * + ) n such that θ := sup ξ ∞≤1 (sup i (| n j=1 (∆ i K ij ∆ -1 j )ξ j |)) < inf i gi(di) ∆ 2 i sup i gi(L-di) ∆ 2 i . (4.41) 
where (g i ) i∈ [1,n] denote the positive solution of (3.1) introduced previously in (4.32). Note that we have in

fact θ = sup i ( n i=0
|K ij | ∆i ∆j ). Let:

ξ i = ∆ i u i (t, L) for i ∈ [1, m], (4.42) 
ξ i = ∆ i u i (t, 0) for i ∈ [m + 1, n]. (4.43)
From (1.10) and using the fact that G is C 1 , we have

u + (t, 0) u -(t, L) = K u + (t, L) u -(t, 0) + o u + (t, L) u -(t, 0) , (4.44) 
where o(x) refers to a function such that o(x)/|x| tends to 0 when |u| 0 tends to 0. Thus we get As the λ i are C 1 in u we have where O(x) refers to a function such that O(x)/|x| is bounded when |u| 0 tends to 0. Now let t ∈ [0, T ], there exists i 0 such that max i (ξ 2 i (t)) = ξ 2 i0 , to simplify the notations we introduce d i such that d i = L for i ≤ m and d i = 0 for i ≥ m + 1. Then there exists a constant C > 0 independant of u and p such that

I 2 = W 1-2p 1,p 2p m i=1 λ i (u(t, L), L) f i (L) p ∆ 2p i (u i (t, L)∆ i ) 2p e -2pµL + n i=m+1 |λ i (u(t, 0), 0)| f i (0) p ∆ 2p i (u i (t, 0)∆ i ) 2p - m i=1 λ i (u(t, 0), 0) f i (0) p ∆ 2p i ( n k=1 K ik ξ k (t) ∆ i ∆ k +o(ξ)) 2p - n i=m+1 |λ i (u(t, L), L)| f i (L) p ∆ 2p i ( n k=1 K ik ξ k (t) ∆ i ∆ k +o(ξ)) 2p e 2pµL
I 2 = W 1-2p 1,p 2p m i=1 (Λ i (L)+O(ξ)) f i (L) p ∆ 2p i (u i (t, L)∆ i ) 2p e -2pµL + n i=m+1 |(Λ i (0)+O(ξ))| f i (0) p ∆ 2p i (u i (t, 0)∆ i ) 2p - m i=1 (Λ i (0)+O(ξ)) f i (0) p ∆ 2p i ( n k=1 K ik ξ k (t) ∆ i ∆ k +o(ξ)) 2p - n i=m+1 |(Λ i (L)+O(ξ))| f i (L) p ∆ 2p i ( n k=1 K ik ξ k (t) ∆ i ∆ k +o(ξ)) 2p e 2pµL
I 2 ≥ W 1-2p 1,p 2p ((|Λ i0 (d i0 )|-C|ξ i0 |) f p i0 (d i0 ) ∆ 2p i0 ξ 2p i0 (t)e -2pµdi 0 - n i=1 (|Λ i (L -d i )|+C|ξ i0 |) f p i (L -d i ) ∆ 2p i (θ+l(ξ i0 )) 2p ξ 2p i0 e 2pµ(L-di) ) (4.47)
where l is a continuous and positive function which satisfies l(0) = 0. thus

I 2 ≥ W 1-2p 1,p 2p ((|Λ i0 (d i0 )|-C|ξ i0 |) f p i0 (d i0 ) ∆ 2p i0 ξ 2p i0 (t)e -2pµdi 0 -n sup i∈[1,n] (|Λ i (L -d i )|+C|ξ i0 |) f p i (L -d i ) ∆ 2p i e 2pµ(L-di) (θ+l(ξ i0 )) 2p ξ 2p i0 ) (4.48)
Now, from (3.2) we have

θ 2 < inf i gi(di) ∆ 2 i sup i gi(L-di) ∆ 2 i , (4.49) 
where (g i ) i∈ [1,n] still denote the positive solution of (3.1). Remark that we set earlier f i := f i,σ where σ ∈ (0, σ 2 ] and can be chosen arbitrary small, and recall that the functions f i,σ are continuous in σ on this neighbourhood of 0. Therefore there exists σ ∈ (0, σ 2 ] such that

θ 2 < inf i fi(di) ∆ 2 i sup i fi(L-di) ∆ 2 i . (4.50)
But as the inequality is strict, there exist by continuity η 3 ∈ (0, η 2 ), p 3 > 0 and µ 3 such that for all |u| 0 < η 3 and p > p 3 where E = E(u(t, x), x) is given by (2.8), and proceeding the same way and observing that, for C 2 solutions,

(θ+l(ξ i0 )) 2 < inf i |Λ i (d i )|-C|ξ i0 | n (sup i |Λ i (L -d i )|+C|ξ i0 |) 1/p inf i fi(di) ∆ 2 i sup i fi(L-di) ∆ 2 i e -4µL ,
u tt + A(u, x)u tx + ∂A ∂u (u, x).u t u x + ∂B ∂u (u, x)u t = 0, (4.54) 
where ∂A/∂u.u t refers to the matrix with coefficients In order to avoid overloading this article, the proof -which is very similar to the proof of (4.52)-is given in the Appendix (see A.1). Now let us define W p := W 1,p + W 2,p , there exists η 4 > 0 (independent of p), µ > 0, C (independent of p and u), and p 5 such that, with |u| 1 < η 4 ,

n k=1 ∂A ij /∂u k (u, x).∂ t u k (t,
dW p dt ≤ - µα 0 2 W p + CW p |u| 1 , ∀p ≥ p 5 . ( 4 

.56)

Here we see that this estimate does not depend on the C 2 norm of the solution u and of the C 2 norms of A and B and is therefore also true by density for solutions that are only of class C 1 and for A and B also only C 1 . To be fully rigourous, this statement assumes the well-posedness of the system (1.5), (1.10), (

u = u 0 ) in W 1,∞ when u 0 ∈ W 1,∞ ([0, L]
), but such well posedness is true (see [START_REF] Li | Boundary value problems for quasilinear hyperbolic systems[END_REF]). We choose such η, µ, p 5 , and we define our basic C 1 Lyapunov function candidate

V := | f 1 u 1 e -µx λ 1 |λ 1 | , ..., f n u n e -µx λn |λn| | 0 + | f 1 (Eu t ) 1 e -µx λ 1 |λ 1 | , ..., f n (Eu t ) n e -µx λn |λn| | 0 . (4.57)
Similarly to the method used in [START_REF] Coron | Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF] we can first choose η 5 < min(η 1 , η 2 , η 3 , η 4 ) such that for all η < η 5 

|u| 1 < µα 0 4C . ( 4 
W p (t) = V 2 (t), ∀t ∈ [0, T ], (4.62) Therefore V (t) ≤ V (t )e -µα 0 8 (t-t ) , ∀ 0 ≤ t ≤ t ≤ T. (4.63)
Therefore V is a basic C 1 Lyapunov function with the associated constants γ = µα0 8 and η = η 5 .

Proof of Theorem 3.2

Proof. The sufficient way is simply proven by using Theorem 3.1 with G ≡ 0 for instance. We are left with proving the necessary way. Let us suppose that there exists a basic C 1 Lyapunov function V induced by coefficients (f 1 , ...f n ) and γ and η 1 the constants associated such that V is a Lyapunov function for all u smooth solution that satisfies the compatibility conditions and such that |u| 0 < η 1 . Suppose now by contradiction that the system (3.4) does not admit a solution (g 1 , ..., g n ) on [0, L] such that for all i ∈ [1, n], g i > 0. Then there exist x 0 ∈ [0, L] and i 0 ∈ [1, n] such that 

-Λ i0 (x 0 )f i0 (x 0 ) < 2 n k=1,k =i0 |M i0k (0, x 0 )| f 3/2 i0 (x 0 ) f k (x 0 ) -2M i0i0 (0, x 0 )f i0 (x 0 ), ( 4 
- n k=1,k =i0 |M i0k (0, x 0 )| f i0 (x 0 ) f k (x 0 ) - Λ i0 (x 0 )f i0 (x 0 ) 2f i0 (x 0 ) + M i0i0 (0, x 0 ) < 0. (4.65)
For simplicity we can assume without losing any generality that i 0 = 1. By continuity there exists ε > 0 such that (4.65) is true on [x 0 -ε, x 0 + ε] ∩ [0, L]. We actually can suppose without loss of generality that x 0 ∈ (0, L) and that [x 0 -ε, x 0 + ε] ⊂ (0, L).

Then we take u 0 1 ∈ (-η 2 , η 2 ) positive, where η 2 is a positive constant arbitrary so far, and define the vector u 0 by

u 0 i := -u 0 1 1 - 1 k sgn(M 1i (0, x 0 )), ∀i = 1, (4.66)
where k ∈ N * is arbitrary and sgn(0) = 0. As the system is strictly hyperbolic, min(|λ i (x 0 )|) is achieved at most for two i ∈ [1, n]. If so, we denote i 0 and i 1 the corresponding index, and if i 0 = 1 and i 1 = 1 we can redefine u 0 i1 by u 0 i0 := -u 0 1 1 -

1 k 2 sgn(M 1i0 (0, x 0 )), (4.67)
where k 2 ∈ N * with k 2 > k. The goal of this redefinition is that in both cases we can choose k large enough so that

(i = i 0 ) ⇒ u 0 i λ i (x 0 ) < u 0 i0 λ i0 (x 0 ) . ( 4 

.68)

We now define the initial condition by

u i (0, x) := u 0 i m χ(x) e -m(x-x0)-c λ i (x) f i (x) , (4.69) 
where χ : [0, L] → R is a C ∞ function with compact support in (0, L) to be determined, such that |χ| 0 is independent of m ∈ N * which will be set large enough and c is a constant independent from m, also to be determined. In order to simplify the notations we will suppose here that λ 1 > 0, otherwise one only needs to replace e -m(x-x0)-c by e -sgn(λ1)(m(x-x0)+c) to obtain the same result. Note here that the compatibility conditions are satisfied for this initial condition as the function and its derivatives vanish on the boundaries. From (4.66) and ( 4.69), we can choose η 2 small enough and independent of m such that |u(0, •)| 1 < η 1 . Wellposedness of the system guaranties the existence and uniqueness of a solution y to the system (1.5),(1.10) with such initial condition (see Theorem 1.1). For simplicity we will conduct the proof assuming that the system is linear, (i.e.

λ i (u, •) = Λ i , a ij (u, •) = δ ij Λ i (•), E(u, •) = Id, and M (u, •) = M (0, •))
although it is also not needed and is only to simplify the computations. A way to transform the proof for non-linear system is given in the Appendix (see A.3). Before going any further and selecting χ, we shall first give the idea and explain our strategy. We want to select

χ such that | √ f 1 ∂ t u 1 (0, •), ..., √ f n ∂ t u n (0,
•)| 0 is achieved for i = 1 and x = x 1 close to x 0 and only for such i and x 1 . We also want d/dt|

√ f 1 u 1 (0, •), ..., √ f n u n (0, •)| 0 (0) to exist and to be O d/dt f 1 (x 0 )∂ t u 1 (0, x 0 )/m
such that dV /dt(0) will exist and its sign will be given by the sign of

f 1 (x 0 )∂ 2 tt u 1 (0, x 0 )
. Then we will show that this sign is positive. Now let us select χ in order to achieve these goals. Rephrasing our first objective, we want that for all i = 1

f 1 (x 1 ) λ 1 (x 1 )∂ x u 1 (0, x 1 ) + n j=1 M 1j u j (0, x 1 ) > sup x∈[0,L]   f i (x) λ i (x)∂ x u i (0, x) + n j=1 M ij u j (0, x)   , (4.70) 
while the maximum of

√ f 1 |λ 1 ∂ x u 1 (0, •) + n j=1 M 1j u j (0, •)| is achieved only in x 1 , close to x 0 .
We search χ under the form

χ = φ(m(x -x 0 )), (4.71) 
where φ is a positive C ∞ function with compact support. And we search χ such that all the √ f i ∂ t u i (0, •) admit their maximum at a single point in a small neighbourhood of x 0 . In that case note that from (4.66) we would indeed get that for m large enough

| √ f 1 ∂ t u 1 (0, •), ..., √ f n ∂ t u n (0,
•)| 0 is attained for i = 1 only and at a single point close to x 0 . This will be shown rigorously later (see (4.79)). Now let us look at

√ f i ∂ t u i (0, •) f i ∂ t u i (0, x) = -u 0 i e -m(x-x0)-c -χ(x) + χ (x) m + χ(x)λ i √ f i m 1 λ i √ f i + 1 m n j=1 M ij u 0 j u 0 i f i f j 1 λ j χ(x)   . (4.72) 
Using (4.71) and a change of variable y = m(x -x 0 ), (4.72) becomes

f i ∂ t u i (0, x) = -u 0 i e -y-c -φ(y) + φ (y) +   g i ( y m + x 0 ) m + n j=0 f ij ( y m + x 0 ) m   φ(y)   , (4.73) 
where g i and f ij are C 2 bounded functions on [0, L] independent of m. This comes from the fact that A and B are of class C 3 . This hypothesis, that does not appear in Theorem 3.1, is used to apply the implicit function theorem later on (see (4.77) and (4.82)). Theorem 3.2 might also be proven with lower hypothesis on the regularity A and B, however in most physical case A and B are C 3 even when the solutions of the system are much less regular. We can see that the coefficients of the equation (4.73) in φ and φ depend on m and are close to be constant for large m. One can show that there exists a function ψ 0 such that ψ 0 ∈ C 3 c ((-1, 1)), such that |(ψ 0 (y) -ψ 0 (y))e -y | has a unique maximum on [-1, 1] which is 1, and such that the second derivative of |(ψ 0 (y) -ψ 0 (y))e -y | does not vanish in this point, i.e. there exists a unique y 1 ∈ (-1, 1) such that

|ψ 0 (y) -ψ 0 (y)| e -y < 1 = |ψ 0 (y 1 ) -ψ 0 (y 1 )| e -y1 , ∀y ∈ [-1, 1] \ {y 1 }, (4.74) 
|ψ 0 -ψ 0 | e -Id (y 1 ) = 0. (4.75)
The existence of this function ψ 0 is shown in the Appendix (see A.2). We set φ : y → ψ 0 (y + y 1 ) and c = y 1 . Therefore e -y-c [-φ(y) + φ (y)] = (-ψ 0 (y + y 1 ) + ψ 0 (y + y 1 ))e -(y+y1) , (

which has a maximum absolute value for y = 0 with value equal to 1. Hence, there exists m 1 > 0 such that for all m > m 1 and all i ∈ [1, n]

∃!x i ∈ [x 0 -ε, x 0 + ε] : | f i (x i )∂ t u i (0, x i )| = sup [0,L] (| f i ∂ t u i (0, •)|), (4.77) 
-u 0 i - C i m |u 0 i | ≤ f i (x i )∂ t u i (0, x i ) ≤ -u 0 i + C i m |u 0 i |, (4.78) 
where C i are constants that do not depend on m. The unicity in (4.77) comes from the condition (4.75) which ensures that the maximum stays unique when the function is slightly perturbated. We can actually replace

C i by C = max i (C i ) > 0. Therefore, there exists m 2 > m 1 such that for all m > m 2 and i ∈ [2, n] sup [0,L] (| f i ∂ t u i (0, •)|) ≤ (1 - 1 k ) 1 + C m u 0 1 < u 0 1 1 - C m ≤ sup [0,L] (| f 1 ∂ t u 1 (0, •)|). (4.79) 
Hence, as we announced earlier,

| f 1 ∂ t u 1 (0, •), ..., f n ∂ t u n (0, •)| 0 = | f i ∂ t u i (0, x)| ⇐⇒ i = 1, x = x 1 . (4.80) 
Hence, as u 0 1 > 0 and from (4.77) and (4.78),

| f 1 ∂ t u 1 (0, •), ..., f n ∂ t u n (0, •)| 0 = -f 1 (x 1 )∂ t u 1 (0, x 1 ). (4.81) 
Therefore, as the maximum is unique and the inequality of (4.79) is strict, and from (4.75) and the implicit function theorem, provided that m is large enough there exist t 1 > 0 and

x a ∈ C 1 ([0, t 1 ]; [0, L]) such that | f 1 ∂ t u 1 (t, •), ..., f n ∂ t u n (t, •)| 0 = -f 1 (x a (t))∂ t u 1 (t, x a (t)), ∀t ∈ [0, t 1 ], x a (0) = x 1 . (4.82) 
We seek now to obtain a similar relation for

| √ f 1 u 1 (t, •), ..., √ f n u n (t, •)| 0 .
One can show that it is possible to find ψ 0 that satisfies the previous hypothesis (4.74) and (4.75) and such that in addition, there exists

y 2 ∈ [-1, 1] such that |ψ 0 (y)| e -y < |ψ 0 (y 2 )| e -y2 , ∀y ∈ [-1, 1] \ {y 2 }, (4.83) 
|ψ 0 (y 2 ) -ψ 0 (y 2 )| > 0, (4.84) 
and such that there exists m 3 > 0 such that for all m > m 3 , if sup y∈[-1,1] (ψ 0 (y + y 1 ) e -(y+y 1 )

λi( y m +x0) ) is achieved in y m ∈ [-1, 1], then |ψ 0 (y m + y 1 ) -ψ 0 (y m + y 1 )| > c 1 , (4.85) 
where c 1 is a positive constant that does not depend on m. The example of ψ 0 provided in the Appendix is suitable. Thus with h i (l, y) = u 0 i λi(yl+x0) φ(y)e -y-y1 one has:

∂ y h i (0, y 2 -y 1 ) = 0. (4.86)
Note that from (4.83), ψ 0 (y 2 ) = ψ 0 (y 2 ), thus from (4.84)

|∂ yy h i (0, y 2 -y 1 )| > 0. (4.87)
Therefore from the implicit function theorem, there exists m 4 > m 3 such that for all m > m 4 and each i ∈ [1, n] there exists a unique

y i ∈ [-1 -y 1 , 1 -y 1 ] such that ∂ y h i 1 m
, y i = 0, (4.88)

|y i -(y 2 -y 1 )| ≤ C a m , (4.89) 
where C a is a constant independent of m. From (4.68) there exists m 5 > m 4 such that for all m > m 5 ,

u 0 i λ i yi m + x 0 C b < u 0 i0 λ i0 yi 0 m + x 0 , ∀ i = i 0 , (4.90) 
where C b > 1 is a constant independent of m. From (4.89), we have for any

i ∈ [1, n] φ(y i0 )e -yi 0 φ(y i )e -yi ≥ 1 - C r m , (4.91) 
where C r is a constant independent of m. Therefore there exists m 6 > m 5 such that for all m > m 6

u 0 i λ i yi m + x 0 φ(y i )e -yi (1 + C b ) 2 < u 0 i0 λ i0 yi 0 m + x 0 φ(y i0 )e -yi 0 , ∀ i = i 0 . (4.92) 
This means that for all m > m 6 there exists a unique i 0 ∈ [1, n] and a unique x a0 ∈ [x 0 -ε, x 0 + ε] such that

| f i0 (x a0 )u i0 (0, x a0 )| = sup i∈[1,n],x∈[0,L] | f i u i (0, •)|. (4.93)
Now if we denote g(t, x) := ∂ x ( f i0 (x)u i0 (t, x) sgn(u i0 (0, x a0 ))), one has that g(0, x a0 ) = 0, (4.94)

hence -λ i0 (x a0 ) mλ i0 (x a0 ) χ(x a0 ) + χ (x a0 ) m = χ(x a0 ). (4.95) Therefore ∂ x g(0, x a0 ) = -sgn(λ i0 ) |u 0 i0 | m e -m(xa 0 -x0)-y1 1 λ i0 (x a0 )χ(x a0 ) + χ (x a0 ) 1 λ i0 (x a0 ) +2χ (x a0 ) 1 λ i0 (x a0 ) -m χ λ i0 (x a0 ) -m 1 λ i0 (x a0 )χ(x a0 ) -m χ(x a0 ) λ i0 (x a0 ) + χ (x a0 ) 1 λ i0 (x a0 )
. Observe that, by definition, y i0 maximises ψ 0 (y + y 1 ) e -y-y 1 λi 0 ( y m +x0) , therefore we have from (4.85) and (4.95)

|∂ x g(0, x a0 )| =|c a0 |m e -yi 0 -y1 λ i0 yi 0 m + x 0 ψ 0 (y i0 + y 1 ) -ψ 0 (y i0 + y 1 ) + O 1 m , =|c i0 |m e -yi 0 -y1 λ i0 ( yi 0 m + x 0 ) c 1 + O 1 m . (4.98)
Hence, as the inequality (4.92) is strict and from the implicit function theorem, there exists m 7 > m 6 such that for all m > m 7 ,

x b ∈ C 1 ([0, t 2 ]; [0, L]) and i 0 ∈ [1, n] such that | f 1 u 1 (t, •), ..., f n u n (t, •)| 0 = f i0 (x b (t))u i0 (t, x b (t)) sgn(u i0 (0, x a0 )), ∀t ∈ [0, t 2 ], x b (0) = x a0 . (4.99)
Hence V is C 1 on [0, t 3 ) where t 5 = min(t 1 , t 2 ) > 0 and, denoting s a0 := sgn(u i0 (0, x a0 )), we have from the definition of V , (4.82) and (4.99) uniformally on [0, L] and therefore in particular for x a0 (even though x a0 might depend on m). We denote 

dV dt (0) = -f 1 (x 1 )∂ tt u 1 (0, x 1 ) - ∂ ∂x ( f 1 ∂ t u 1 (0, •))(x 1 ) dx a dt (0) + s a0 f i0 (x a0 )∂ t u i0 (t, x a0 ) + ∂ ∂x f i0 u i0 (0, •) (x a0 ) dx b dt (0) . 
V 2 := -f 1 (x a (t))∂ t u 1 (t,
√ f 1 ∂ t u 1 (0, •))(x 1 ) = 0, we have dV 2 dt (0) = -f 1 (x 1 )∂ 2 tt u 1 (0, x 1 ) = -f 1 (x 1 )∂ t (-λ 1 ∂ x u 1 (•, x 1 ) - n j=1 M 1j u j (•, x 1 ))(0) = -f 1 (x 1 )(-λ 1 ∂ x (∂ t u 1 (0, x 1 )) - n j=1 M 1j ∂ t u j (0, x 1 )) = -f 1 (x 1 )(λ 1 ( √ f 1 ) √ f 1 ∂ t u 1 (0, x 1 ) - n j=1 M 1j ∂ t u j (0, x 1 )) = -f 1 (x 1 )( λ 1 f 1 2f 1 ∂ t u 1 (0, x 1 ) - n j=1 M 1j ∂ t u j (0, x 1 )).
dV 2 dt (0) =u 0 1 λ 1 f 1 2f 1 1 + O 1 m - n j=1 M 1j (0, x 1 ) u 0 j u 0 1 f 1 (x 1 ) f j (x 1 ) 1 + O 1 m + f j (x j )∂ t u j (x j ) -f j (x 1 )∂ t u j (x 1 ) u 0 j   .
(4.107)

We know that if M 1j (0, x 0 ) = 0, then there exists m 8 ∈ N * such that for all m > m 8 , sgn(M 1j (0, x 0 )) = sgn(M 1j (0, x 1 )). We denote by N the subset of j ∈ {1, ..., n} such that M 1j (0, x 0 ) = 0. Therefore from (4.107) and (4.66)

dV 2 dt (0) =u 0 1     λ 1 f 1 2f 1 -M 11 (0, x 1 ) + n j=2,j∈N c |M 1j (0, x 1 )| 1 - 1 k √ f 1 f j   +O 1 m + n j=0 C j f j (x j )∂ t u j (x j ) -f j (x 1 )∂ t u j (x 1 ) u 0 j   , (4.108) 
where C j are constants that do not depend on m. Now, keeping in mind (4.102), we are going to add s a0 f i0 (x a0 )∂ t u i0 (0, x a0 ) to obtain dV /dt at t = 0. But first observe that using (4.101) and (4.103)

f i0 (x a0 )∂ t u i0 (0, x a0 ) = f i0 (x a0 )(-λ i ∂ x u i0 (0, x a0 ) - n j=1 M i0j u j (0, x a0 )) = f i0 (x a0 )   λ i ( f i0 ) (x a0 ) f i0 (x a0 ) u 0 i0 m χ(x a0 ) e -m(xa 0 -x0)-y1 λ i f i0 (x a0 ) - n j=1 M i0j u 0 j m χ(x a0 ) e -m(xa 0 -x0)-y1 λ i f i (x a0 )   = O 1 m . (4.109) Therefore dV dt (0) = dV 2 dt (0) + O 1 m = u 0 1     λ 1 f 1 2f 1 -M 11 (0, x 1 ) + n j=2,j∈N c |M 1j (0, x 1 )| 1 - 1 k √ f 1 f j   +O 1 m + n j=0 C j f j (x j )∂ t u j (x j ) -f j (x 1 )∂ t u j (x 1 ) u 0 j   + O 1 m . (4.110) 
And from (4.72) and the definition of

x j lim m→+∞ f j (x j )∂ t u j (x j ) -f j (x 1 )∂ t u j (x 1 ) u 0 j = 0. ( 4 

.111)

Note that x 1 and x j both depend on m and tend to x 0 when m goes to infinity. Also we know that for all m > m 2 , we have 

x 1 ∈ [x 0 -ε, x 0 + ε]. Thus from (4.65), lim m→+∞   λ 1 (x 1 )f 1 (x 1 ) 2f 1 (x 1 ) -M 11 (0, x 1 ) + n j=2,j∈N c |M 1j (0, x 1 )| 1 - 1 k f 1 (x 1 ) f j (x 1 )   > 0. ( 4 
V (t) -V (0) t ≤ V (0) e -γt -1 t (4.115)
which, letting t → 0, gives (4.114) and a contradiction. This ends the proof of Theorem 3.2.

Further details

The previous results were derived for the C 1 norm but actually they can be extended to the C p norm, for p ∈ N * , with the same conditions. Namely we can extend the definition of basic C p Lyapunov function for p ∈ N * by replacing V in Definition 2.3 by 

V (u(t, •)) = p k=0 f 1 (E∂ k t u(t, •)) 1 , ..., f n (E∂ k t u(t, •)) n 0 . ( 5 
Λ i f i ≤ -2   -M ii (0, x)f i + n k=1,k =i |M ik (0, x)| f 3/2 i √ f k   , (5.2 
)

admits a solution (f 1 , ..., f n ) on [0, L] such that for all i ∈ [1, n], f i > 0,
2. (Boundary condition) there exists a diagonal matrix ∆ with positive coefficients such that

∆G (0)∆ -1 ∞ < inf i fi(di) ∆ 2 i sup i fi(L-di) ∆ 2 i , (5.3) 
where

d i = L if Λ i > 0, and 
d i = 0 otherwise.
Then there exists a basic C p Lyapunov function for the system (1.5),(1.10).

Theorem 5.2. Let a quasilinear hyperbolic system be of the form (1.5) with A and B of class C p+2 , there exists a control of the form (1.10) such that there exists a basic C p Lyapunov function if and only if

Λ i f i ≤ -2   -M ii (0, x)f i + n k=1,k =i |M ik (0, x)| f 3/2 i √ f k   , (5.4 
)

admits a solution (f 1 , ..., f n ) on [0, L] such that for all i ∈ [1, n], f i > 0.
A proof of this is included in the Appendix (see A.4).

This article therefore fills the blank about the exponential stability for the C p norm for quasilinear hyperbolic systems with non-zero source term using a Lyapunov approach, for any p ∈ N * . We introduced the notion of basic C 1 Lyapunov function that can be seen as natural Lyapunov function for the C 1 norm. For general quasilinear hyperbolic systems we gave a sufficient interior condition on the system and a sufficient boundary condition such that there exists a basic C 1 Lyapunov function that ensure exponential stability of the system for the C 1 norm. We also showed that the interior condition is necessary for the existence of such basic C 1 Lyapunov function. Therefore in some cases, there cannot exist such basic C 1 Lyapunov function whatever the boundary conditions are.
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A Appendix

A.1 Bound on the derivative of W 2,p Derivative of W 2,p Recall that we have from (4.53)

W 2,p = L 0 n i=1 f i (x) p (Eu t ) 2p i e -2pµsix dx 1/2p
, where E = E(u(t, x), x) given by (2.8)-(2.9) and that u t satisfies the following equation

u tt + A(u, x)u tx + ∂A ∂u (u, x).u t u x + ∂B ∂u (u, x)u t = 0, (A.1)
where ∂A/∂u.u t is the matrix with coefficients n k=1

∂A ij /∂u k (u, x).∂ t u k (t, x). We can again differentiate W 2,p with respect to time along the trajectories which are of class C 2 (recall that we are proving the estimate (4.56) for C 2 solutions first). Using integration by parts as previously:

dW 2,p dt = - W 1-2p 2,p 2p n i=1 λ i f i (x) p (Eu t ) 2p i e -2pµsix L 0 -W 1-2p 2,p L 0 n i=1 f i (x) p (Eu t ) 2p-1 i E D a + ∂B ∂u (u, x) .u t i - ∂E ∂u .u t u t + λ ∂E ∂u .u x u t + λ(∂ x E)u t i e -2pµsix dx + W 1-2p 2,p 2 L 0 n i=1 λ i (u, x)f i (x) p-1 f i (x)(Eu t ) 2p i + d dx (λ i (u, x)) p f i (x) p (Eu t ) 2p i e -2pµsix dx -µW 1-2p 2,p L 0 n i=1 |λ i |f p i (x)(Eu t ) 2p i e -2pµsix dx, (A.2)
where D a is the matrix with coefficient n k=1 (∂A ik /∂u j )(u x ) k , so that D a .u t = ∂A ∂u (u, x).u t u x . Observe that E is C 2 and invertible by definition (given by (2.8)-(2.9)), thus u t = E -1 (Eu t ). We can therefore denote, similarly as previously where R = (R ij ) (i,j)∈[1,n] 2 is defined as R := E D a + ∂B ∂u E -1 . As E is C 1 and its inverse is continuous, and from (2.9), there exists a constant C 0 independant of u (and p) such that max

(i,j)∈[1,n] 2 ∂E ∂u .u t E -1 + ∂E ∂u .u x E -1 + (∂ x E)E -1 ij ≤ C 0 |u| 1 . (A.5)
Note that we used (2.9) and the fact that ∂ x (E(0, x)) = 0. Thus, similarly as for (4.30), we have where C 5 and C 6 are constants that does not depend on p or u provided that |u| 1 < η for η small enough but independent of p. Recall that α 0 is defined in Section 4 right before (4.26). Just as previously, a sufficient condition such that there exist p 1 ∈ N * , η 1 > 0 and µ 1 such that I 31 > 0 for µ < µ 1 , p > p 1 and |u| 1 < η 1 is

-λ i f i f i > 2 n k=1,k =i |R ik (u, x)| f i f k -2R ii , (A.7)
But we have from the definition of D a , (2.9) and (2. and recall that in the proof (f 1 , ..., f n ) have been selected such that |λ i (u(t, 0), 0)|f i (0) p ((u t ) i (t, 0)+((u(t, 0).V)u t (t, 0)) i ) 2p .

-Λ i f i f i > 2 n k=1,k =i |M ik (0, x)| f i f k -2M ii (0,
(A.11)

Recall that K = G (0) and ∆ = (∆ 1 , ..., ∆ n ) T ∈ (R * + ) n are chosen such that

θ := sup ξ ∞ ≤1 (sup i (| n j=1 (∆ i K ij ∆ -1 j )ξ j |)) < inf i fi(di) ∆ 2 i sup i fi(L-di) ∆ 2 i . (A.12)
We denote again where V ij are C 2 functions as we assume that A is of class C 3 . Therefore

ξ i := ∆ i (u t ) i (t,
f i ∂ t u i (0, x) = -u 0 i e -m(x-x0)-y1   -χ(x) + χ (x) m   1 + n j=1 (V ij (u, x).u(0, x)) u 0 j u 0 i f i f j 1 λ j   +χ(x)   λ i √ f i m 1 λ i √ f i + n j=1 (V ij (u, x).u(0, x)) u 0 j u 0 i f i f j f j m 1 λ j f j   + 1 m n j=1 M ij (u, x) u 0 j u 0 i f i f j 1 λ j χ(x)   .
(A.43)

  (4.1) holds. Now let us prove Theorem 3.1.

  .25)Recall that Λ = λ(0, •) and is defined in(1.4). As [0, L] is a closed segment, and the |Λ i | are strictly positive continuous functions we can define the positive constant α 0 := min x∈[0,L] min i∈[1,n] (|Λ i (x)|/2) > 0. We suppose from now on that η < η 1 . Therefore from (4.22), (4.23), (4.24) and(4.25) 

( 4 . 2

 42 96)Defining c i0 := -sgn(λ i0 )|u 0 i0 | which is a non-zero constant, we have from (4.71) and the definition of φ ∂ x g(0, x a0 ) = c i0 m e -yi 0 -y1 λ i0 yi 0 m + x 0 ψ 0 (y i0 + y 1 ) -2ψ 0 (y i0 + y 1 ) + ψ 0 (y i0 + y 1 ) + O 1 m

( 4 .f 1 ∂

 41 100)But now observe that for a fixed m, x a0 is an interior maximum thusd dx ( f i0 u i0 (0, •))(x a0 ) t u 1 (0, •))(x 1 ) = 0, we have dV dt (0) = -f 1 (x 1 )∂ 2 tt u 1 (0, x 1 ) + s a0 f i0 (x a )∂ t u i0 (t, x a0 ). (4.102)Besides as φ has compact support in [-1 -y 1 , 1 -y 1 ], we havee m(x-x0)+y1 χ(x) ≤ e 1 χ ∞ ,(4.103)and the right-hand side does not depend on m,

I 21 λ

 21 i f i (x) p (Eu t ) 2p i e x) p (Eu t ) 2p-1 i n k=1 R ik (u, x)(Eu t ) k e -2pµsix dx u, x)f i (x) p-1 f i (x)(Eu t ) 2pi e -2pµsix dx.(A.4)

dW 2,p dt ≤ -I 21 -

 21 I 31 -(µα 0 -C 6 2p )W 2,p + C 5 W 2,p |u| 1 , (A.6)

  x) + O(|u| 1 ) = M (0, x) + O(|u| 1 ), (A.8)

2 +Therefore there exists m 3 > 3 / 2 i0

 2332 to show is that for m large enough we have(4.85). Let us compute ψ 0 (y m + y 1 )ψ 0 (y m + y 1 ) = d -1 f (y m + y 1 ) = f (y m + y 1 )(-2n 1 + 4n 2 1 (y m + y 1 ) 2 ) = f (y m + y 1 )(-2n 1 + 1 + λ i ( ym m + x 0 ) mλ i ( ym m + x 0 ) λ i ( ym m + x 0 ) mλ i ( ym m + x 0 ) 0 such that for all m > m 3 , |ψ 0 (y m + y 1 ) -ψ 0 (y m + y 1 )| > e -1 n 1 (2n 1 -3), (A.39)and as we chose n 1 large enough, C := e -1 n 1 (2n 1 -3) > 0. This ends the proof of the existence of ψ 0 .A.3 Adapting proof of Theorem 3.2 in the nonlinear caseFor all u(0, •) ∈ B η1 , we can still defineu i (0, x) = u 0 i m χ(x) e -m(x-x0)-y1 Λ i (x) f i (x) , (A.40)which is the analogous of (4.69) in the proof of Theorem 3.2. If there are two index i 0 and i 1 such that min i (|Λ i (x 0 )|) is achieved we can still redefine u 0 i1 as in (4.67). Observe then that if (4.64) is satisfied, then there existsη 3 > 0 such that if |u| 0 < η 3 then -λ i0 (u, x 0 )f i0 (x 0 ) < 2 n k=1,k =i0 |M i0k (u, x 0 )| f (x 0 ) f k (x 0 ) -2M i0i0 (u, x 0 )f i0 (x 0 ). (A.41)From (A.40), (4.72) becomes f i ∂ t u i (0, x) = -u 0 i e -m(x-x0)-y1 -χ(x) +

  ∀µ ∈ [0, µ 3 ], ∀p ≥ p 3 .We now have our first estimate and we have seen appear both an interior condition and a boundary condition that explains the conditions that appear in Theorem 3.1. Yet there remains a potentially non-negative term in |u| 1 and the function we considered in (4.[START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF] does not have the form of a basic C 1 Lyapunov function. The last step is now to convert W 1,p in a basic C 1 Lyapunov function. Defining

						(4.51)
	Therefore from (4.51) and (4.48) I 2 > 0. We can conclude that there exist p 4 and µ > 0
	dW 1,p dt	≤ -	µα 0 2	W 1,p + C 4 W 1,p |u| 1 , ∀p ≥ p 4 .		(4.52)
		L	n	1/2p	
	W 2,p =		f i (x) p (Eu t ) 2p i e -2pµsix dx	,	(4.53)
		0	i=1		

  .58) Remark 4.1. Recall that |u| 1 ≤ η and that for convenience we are choosing η the bound on |u| 1 instead of choosing ε, the bound on |u 0 | 1 , but from (1.13) it is equivalent. Hence the previous only means choosing ε 2 > 0 small enough, and such that for all ε < ε 2

	|u(0, •)| 1 <	µα 0 4C 1 (T )C	,	(4.59)
	where C 1 (T ) is the constant defined in (1.13).			
	Therefore from (4.56) and (4.58)				
	dW p dt	≤ -	µα 0 4	W p (t), ∀p ≥ p 5 .	(4.60)
	Thus, using Gronwall Lemma, one has, for any p ≥ p 5 and any 0 ≤ t ≤ t ≤ T ,
	W p (t) ≤ W p (t )e -µα 0 4 (t-t ) .	(4.61)
	Then, by definitions of W p and V				
	lim p→+∞				

  .112) Therefore there exists m 9 > 0 such that for all m > m 9

		dV dt	(0) > 0.	(4.113)
	But we know from (2.14) that		
	dV dt	(0) ≤ -γV (0) < 0.	(4.114)

Note that (4.114) is true as V is C 1 in [0, t 1 ) and from (2.14), for any t ∈ [0, t 1 ),

  x). (A.9) Thus from (A.8) and (A.9) there exist η 2 > 0, p 1 ∈ N * and µ 1 such that if µ < µ 1 , p > p 1 and |u| 1 < η 2 , then I 31 > 0. It remains to deal with I 21 . As E is C 1 , and from (2.9),(Eu t ) = u t + (u.V)u t (A.10)whereV = V(u(t, x), x) is continuous on B η0 × [0, L].Using (A.10) together with (A.3) and proceeding exactly as previously for I 2 , we get

	I 21 =	W 1-2p 2,p 2p	m i=1	λ

i (u(t, L), L)f i (L) p ((u t ) i (t, L)+((u(t, L).V)u t (t, L)) i ) 2p e -2pµL -m i=1 λ i (u(t, 0), 0)f i (0) p ((u t ) i (t, 0)+((u(t, 0).V)u t (t, 0)) i ) 2p -n i=m+1 |λ i (u(t, L), L)|f i (L) p ((u t ) i (t, L)+((u(t, L).V)u t (t, L)) i ) 2p e 2pµL + n i=m+1

  L) for i ∈ [1, m], (A.13) ξ i := ∆ i (u t ) i (t, 0) for i ∈ [m + 1, n]. (A.14)From the fact that G and u are C 1 , we can differentiate (1.10) with respect to time, and we have (y m + y 1 ) + 1 + λ i ( ym m + x 0 ) mλ i ( ym m + x 0 )

	Hence	1 (ym+y1)-ym-y1 2n 1 e -n 2 dλ i ( ym m + x 0 )	= 0,	(A.36)
	thus	(y m + y 1 ) = -	1 2n 1	-	λ i ( ym m + x 0 ) (2n 1 )mλ i
		(u t ) + (t, 0) (u t ) -(t, L)	= K	(u t ) + (t, L) (u t ) -(t, 0)	+ o	(u t ) + (t, L) (u t ) -(t, 0)	,	(A.15)

where o(x) refers to a function such that o(x)/|x| tends to 0 when |u| 1 tends to 0. Thus

(A. [START_REF] Hartman | Ordinary differential equations[END_REF])

We end by proceeding exactly as for I 2 . Therefore under assumption (3.2), there exist p 3 , µ 3 and η 3 > 0 such that for µ < µ 3 and |u| 1 < η 3 , I 21 < 0. Therefore, as stated in the main text, there exist η 4 , p 5 and µ such that for all p > p 5 and |u| A.2 Existence of ψ 0

We want to find a function ψ 0 that is C 1 with compact support in [-1, 1] such that there exists a unique

and let us define f : y → e -n1y 2 where n 1 ∈ N * will be chosen later on. We have

Now let us consider ψ 1 = χf , one has Let us show now that |f (y)-f (y)|e -y admits a unique maximum on -1 2 , 1 2 . We know that |f (y)-f (y)|e -y attains a maximum d ≥ 1 on -1 2 , 1 2 and when it attains this maximum ((f (y) -f (y))e -y ) vanishes, therefore e -n1y 2 -y (2n

This equation has only two solutions:

Therefore |f (y) -f (y)|e -y admits its maximum on -1 2 , 1 2 at most one time. But we also know that it does admit a maximum on -1 2 , 1 2 , hence and from (A.24) 

This implies (4.84) and we are left with proving (4.85). Let again

and m large enough, from (A.22)

which means that sup

ψ 0 (y + y 1 ) e -y-y 1 λi( y m +x0) can only be achieved on (-1/2 -y 1 , 1/2 -y 1 ). But we also know that on [-1/2, 1/2], ψ 0 = d -1 f . Therefore let be a y m maximizing sup [-1,1] ψ 0 (y + y 1 ) e -y-y 1 λi( y m +x0) , we know that y m exists as [-1,1] is a compact, that y m is an interior maximum and we have

Now, after the change of variable (4.71), one has

where h i and g i are bounded functions in the C 2 norm and are independent of m. Thus

-u 0 i e -y-y1 -φ(y)

where

, with V given by (A.10). In addition one also has

Thus, the function y → u(0, y/m+x 0 ) is O(1/m) in the C 2 norm, which means that g i (u(0, y/m+x 0 ), y/m+ x 0 ) and g i (u(0, y/m + x 0 ), y/m + x 0 ) are O(1) in the C 2 norm when m tends to +∞. Similarly, Z is a C 2 function as E is a C 3 function (recall that A is C 3 for Theorem 3.2), and there exists a constant C independant of u and m such that max (i,j)∈[1,n] 2 |Z ij (u(0, y/m + x 0 ), (0, y/m + x 0 ))| ≤ C|u(0, y/m + x 0 )|. This, with (A.46), implies that the terms which involves Z in (A.45) are all O (1/m) in the C 2 norm. Therefore we can process similarly as previously for the existence of (x i ) i∈[1,n] , t 1 and x a ∈ C 1 ([0, t 1 )) such that

The only thing that remains to be checked is whether we still have the existence of x b ∈ C 1 ([0, t 2 )) for some t 2 positive and independent of m. Existence of a unique i 0 and

is granted by the same argument as previously. As u(0, x) is defined exactly as in the linear case, we still have for our choice of χ ∂ x g(0, x a0 ) = 0. (A.49)

This implies the existence of

)) for some t 2 positive and independent of m.

If we look now at the computation of dV 2 /dt(0) and dV 1 /dt(0), one has, proceeding as in Section 4 and using (2.8)

Therefore from the definition of u(0, x) given by (A.40), one has

where l and v are bounded functions on B η3 × [0, L] with a bound independent of m from (4.103). Hence, using this together with (2.9) and noting that R(0, x) = M (0, x),

where the O does not depends on u 0 1 but only on an upper bound of u 0 1 (we can choose η 0 for instance). Observe that, from (A.40), (A.45), and the fact that Z = O(1/m) for the C 2 norm, we can proceed as previously and we obtain (4.108) with an additional O(|u| 2 1 ). Similarly as previously we can obtain 

A.4 Extension of the proof to the C q norm

To be able to extend the proof for the C q norm one should first define the corresponding compatibility conditions of order q -1 that are given for instance in [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] at (4.136) and see also (4.137)-(4.142). Then one only needs to realize that if we now consider the state y = (u, ∂ t u, ..., ∂ q-1 t u), y is still the solution of a quasilinear hyperbolic system of the form

where

0 , and where the principal matrix A 1 verifies

and is therefore block diagonal with blocks that are all A as previously. Similarly M 1 (0, x) is also block diagonal with blocks that are all M (0, x). Therefore if we consider the following functions