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Abstract

A toy model combining the Angular MagnetoElectric (AME) coupling Hamitonian [Mondal et

al, Phys. Rev. B 92, 100402(R) (2015)] with long-range magnetic dipolar interactions is used to

investigate spin-torque phenomena in a magnetic spin valve. It is found that such model (1) gives

rise to spin-torque expressions that are analogous in form to those of the common spin-transfer

torques; but also (2) predicts additional spin-torque terms, which are generated by an electrical

current oriented along unconventional, in-plane directions. The magnitude of the AME induced

terms is estimated and the conditions under which they may contribute significantly are explored.
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I. INTRODUCTION

We consider a toy model to investigate spin-torque effects in a simple and physically-

transparent fashion, as a tribute to the numerous phenomenological models that Dr. Ekhard

Salje developed throughout his career to extract the essence of complex physical phenomena,

e.g., the field of surface relaxation1,2 and phase transitions3.

Independently predicted in 1996 by Slonczewski4 and Berger5, spin-transfer torque (STT)

is a phenomenon in which a spin polarized current can exert a torque on magnetic moments

(the spin torque). Spin-torque has grown increasingly popular6–8 in recent years since it

holds the promise of applications in spintronics and beyond. For instance, maintaining the

gyrotropic motion of a magnetic vortex in heterojunction nanopillars via spin-torque is an

elegant solution for designing new nanoscale microwave emitters9,10. Similarly, spin-torque

allows one to move domain walls11–13, resulting in the control of the resistance state14 and

this may very well find applications in the so-called memristors8. Spin-torque is thus one of

the finest examples of magnetoelectric effect.

Spin-torque, as described in the STT model, is considered to be an interfacial effect

in which reflection and transmission of the incident wavefunction at the interface cause

spin filtering at the interface, leading to spin precession of the transmitted wave and spin

rotation of the reflected wavefunction7,15. No a priori spin-orbit coupling is necessary for

spin-torque to take place: spin filtering is generated by the mismatch of the Fermi surfaces

at the interface15, and spin precession, for instance, depends critically on the splitting of the

majority spin and minority spin bands. However, spin-orbit coupling can enhance or even

induce such splitting through, for instance, the Rashba16 and Dresselhaus17 effects. Indeed,

the so-called spin-orbit torques based on spin Hall and Rashba-like effects, are believed to

be of significant importance in heterostructures containing heavy metal layers (such as those

made of Pt)18–20.

Interestingly, a pioneering study21 predicted that novel spin-torques can directly originate

from spin-orbit couplings rather than being a consequence of spin current transfer. Techni-

cally, this study combined the effect of magnetic exchange interactions with the “traditional”

spin-orbit coupling Hamiltonian22 :

HSO = − eh̄

4m2c2
[E × p] · σ, (1)

where E is the electric field, p the momentum operator, σ the vector of Pauli matrices, h̄
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the reduced Planck constant, m the mass of the electron, and c the velocity of light.

The spin-orbit coupling Hamiltonian of Eq. (1) is not gauge invariant under the local U(1)

symmetry group, that is, the change of wavefunction ψ by a phase factor ψ′ = eiθψ does not

leaveHSO invariant for non-constant and non-uniform phase θ. This gauge invariance, which

is a fundamental symmetry of quantum mechanics, can be restored by adding an appropriate

spin-dependent Hamiltonian to HSO. This additional spin-coupling, which goes beyond the

traditional spin-orbit coupling represented by HSO, arises naturally when the nonrelativistic

limit of Dirac equation is considered in a gauge invariant manner. It has been reconsidered23

recently after appearing to have been mostly overlooked for nearly 60 years24,25. It has

already been shown to be relevant to the spin-current model26 in multiferroics; the anomalous

Hall27, anisotropic magneto-resistance and planar Hall28, and inverse Rashba-Edelstein29

effects in magnetic materials; and the inverse Faraday effect23. Furthermore, such coupling

seems to be at the origin of the difference in magnetization dynamics observed in pump-probe

experiments with different relative orientation of the polarization of the pump and probe

beams30,31. This spin-coupling Hamiltonian has been called the Angular MagnetoElectric

(AME) Hamiltonian23 and is given by:

HAME =
e2h̄

4m2c2
σ. [E ×A] , (2)

where A is the vector potential. An elegant recent work has suggested that the AME

Hamiltonian by itself is capable of producing a spin-torque32, which was called the optical

spin-torque. While the works of Refs.21,32 are remarkable and novel, they involve detailed and

complex derivations required to accurately treat the spin-orbit-driven spin-torques arising

from relativistic quantum mechanical effects. Here, we consider a simple toy model, involving

the AME coupling and dipole-dipole interactions, and explore the possibility of novel spin-

orbit-driven spin-torques arising within a physically-transparent framework.

II. AME-INDUCED MAGNETIC FIELD AND RESULTING SPIN TORQUE

Let us first emphasize that Eq. (2) implies that the AME coupling is responsible for the

emergence of an effective magnetic field BAME given by:

BAME =
e2h̄

4m2c2gµB
[E ×A] , (3)
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where g is the Landé factor of the electron and µB the Bohr magneton. This effective

magnetic field has already been shown to lead to a relativistic correction to the so-called

Inverse Faraday Effect, in which a circularly polarized light wave can generate a helicity

dependent magnetic field, which can be used to control magnetization23,33.

Note that, in Eqs. (1)-(3), the electric field E(r) is a priori the total electric field, and

can thus be decomposed into a microscopic part, Eloc(r), and an applied external electric

field, Eext, as:

E(r) = Eloc(r) +Eext. (4)

In the case of a non-vanishing external electric field, there is a response of the solid, which in

the limit of small fields can be approximated to be linear. As a result, Eloc(r) = E0
loc(r) +

γ(r).Eext, where E0
loc(r) is the microscopic field in the absence of external electric field,

and γ(r) (which is in general a tensor) characterizes the response of the microscopic electric

field to the applied field. Since the microscopic field E0
loc(r) averages to zero in the unit

cell, for vector potential A varying slowly enough, the contribution of the microscopic part

of the AME-induced effective magnetic field is negligible, and is left out of the following

discussion. In addition, in order to simplify the discussion, we will consider γ to be a position-

independent scalar and uniform, that is, a cubic, homogeneous and isotropic material is

considered. We will thus take the following form of BAME,

BAME = (1 + γ)
e2h̄

4m2c2gµB
[Eext ×A] = a [Eext ×A] , (5)

with a = (1 + γ) e2h̄
4m2c2gµB

characterizing the strength of the AME coupling.

From the form of the effective AME magnetic field, it is clear that such a field will exist

for non-vanishing external electric field and potential vector, and thereby exert a torque on

any magnetic moment µ in the material, as stated in Ref.32. Indeed, such an effective field

can be included in the Landau-Lifshitz-Gilbert (LLG) equation14,34,35 governing the time

evolution of µ,

dµ

dt
= −γ0

µ0

µ× (Bother +BAME) +
α

µ0

µ̂× [µ× (Bother +BAME)] , (6)

where γ0 = gµ0µB
h̄

is the electronic gyromagnetic factor, µ0 is the vacuum permeabil-

ity, α is the damping constant, and µ̂ is the unit vector along the magnetic moment µ.

Bother represents the magnetic field arising from sources other than the AME Hamiltonian.
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For instance, Bother can arise from anisotropy, exchange, or even possibly Dzyaloshinskii-

Moriya36,37 and dipolar interactions. The total effective magnetic field is thereforeBtot,eff =

Bother + BAME. The first term of Eq. (6) is the usual torque acting on a magnetic mo-

ment, causing it to precess around the axis of the total effective magnetic field, while the

second term is the usual damping term favoring the magnetic moment µ to be aligned

along Btot,eff . We will now exploit Eq. (6) to derive spin-orbit-driven torques and related

effects associated with magnetic dipolar interactions. For simplicity (i.e., to make the sub-

sequent derivations rather straightforward), these latter interactions will correspond to the

long-range dipolar ones.

III. DIPOLE-DIPOLE INTERACTIONS AND AME INDUCED SPIN-TORQUE

A. Geometry of the system and dipolar vector potential

Let us consider a typical spin-valve geometry depicted in Fig. 1. Two magnetic layers

are separated along the z-axis by a non-magnetic layer, denoted as NM . The first magnetic

fixed layer, M1, exhibits a uniform magnetization M oriented along a fixed direction (say,

the y axis), while the second free magnetic layer, M2, possesses magnetic dipoles, µ, that

are free to rotate. The whole system is taken to have infinite dimensions in the x and y

directions, and is subjected to external electric field, Eext, that we will assume to be uniform

without further assumptions about its direction.

Consider now the dipolar vector potential created by an elemental magnetic moment

MδV of M1 located at rm at the location r of a magnetic moment µ of layer M2 :

dAdip =
µ0

4π

MδV × (r − rm)

|r − rm|3
. (7)

The magnetization of the bottom layer is assumed to be fixed, and therefore the dipolar

potential is not time dependent. Summing over all dipoles of the magnetic layer M1 of

thickness d then yields

Adip =
1

2
µ0d (M ŷ × ẑ) . (8)

where y is the unit vector along M and z is the unit vector normal to the interface.

It is interesting to note that the associated magnetic field ∇×Adip = 0 vanishes outside

the infinitely extended layer M1 with in-plane uniform magnetization38 but Adip of Eq. (8)
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FIG. 1. Schematics of spin torque geometry. The uniformly magnetized material M2 of thickness d

and magnetization M along the y-axis is separated from the magnetic layer M2 by a non-magnetic

layer NM along the z-axis.

does not. This vector potential, when combined with Eq. (5), thus leads to a spin-orbit-

driven AME effective magnetic field given by

BAME,dip =
aµ0d

2gµB
(Eext · ẑ)M ŷ − aµ0d

2gµB
(Eext ·M ŷ) ẑ. (9)

This effective magnetic field will generate a torque on a spin magnetic moment, which we

now calculate.
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B. Induced Spin Torques

Choosing the anisotropy field Bother along M as in Refs.4,39, and using the expression

for BAME from Eq. (9) in Eq. (6) we obtain:

dµ

dt
=

field-like torque︷ ︸︸ ︷
−γ0

µ0

{aµ0d (Eext.ẑ)

2gµB
+
Bother

M

}
µ×M ŷ (10)

+

damping-like torque︷ ︸︸ ︷
α

µ0

{aµ0d (Eext.ẑ)

2gµB
+
Bother

M

}
µ̂× (µ×M ŷ)

+
γ0ad (Eext.M ŷ)

2gµB
µ× ẑ︸ ︷︷ ︸

new field-like torque

− αad (Eext.M ŷ)

2gµB
µ̂× (µ× ẑ)︸ ︷︷ ︸

new damping-like torque

.

Interestingly, the first two terms of this equation have precisely the same analytical form as

the known field and damping torques15 since they depend on µ×M ŷ and µ̂× (µ×M ŷ),

respectively, which demonstrates that our rather simple model can capture the analytical

forms of known, complex effects. These two first terms reach their full strength when the

current is flowing in direction ẑ (i.e., Eext is parallel to ẑ). This geometry is similar to

the typical spin-torque geometry for maximizing the field and damping-spin torques15. The

first two terms of Eq. (10) can be considered as spin-orbit-driven contributions to the field

and damping spin torques since Eq. (2) originates from the relativistic Dirac Hamiltonian23.

Interestingly, each of these two terms is directly proportional to the sum aµ0d(Eext.ẑ)
2gµB

+ Bother

M
,

which can be made to vanish for a critical value of the external field given by Eext · ẑ =

−2BothergµB
aµ0Md

, at which point the AME effective field exactly compensates the anisotropy field.

Beyond this critical field, both the field-like torque and damping-like torque in Eq. (10)

change sign, which results in reversing the magnetic moment µ. Such a critical field is

usually expressed in terms of critical current jcr,dip, which in our case can be written

jcr,dip = −2σzzBothergµB
aµ0Md

ẑ , (11)

where σzz is the longitudinal conductivity.

Let us now estimate the strength of this critical current density for, e.g., Cobalt material

(for simplicity, we assume M1 and M2 are both made of Co, as in Co/Cu/Co heterostruc-

tures40). We first consider Bother

µ0
≈ 105 A.m−1, as indicated in Refs.39,41, and take the

conductivity of Cobalt to be σzz = 1.54 × 107 S.m−1 as in Ref.42. We also take M , the
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magnitude of the magnetization of Co, to be equal to 1.42× 106 A.m−1, as in Refs.39,40. We

then estimate the a coefficient by recalling that the anomalous Hall effect (AHE) can be

described by the AME Hamiltonian27, which allows us to write the transverse conductivity

associated with AHE as σAHE = a
2gµB

M . Taking again M to be 1.42× 106 A.m−1 and σAHE

to be the measured value of 480 S.cm−1 provided in Ref.43, and assuming the AHE to be

fully derived from the AME coupling, gives a coefficient a equal to 1.3×10−24 S.m2. We fur-

ther assume, as realized in Co/Cu/Co nanopillars40, that the thickness d of the bottom M1

magnetic layer is equal to 10 nm. As a result, the critical current density given by Eq. (11)

can be estimated to be 1.3 × 1014 A.cm−2 for jcr,dip
44. This value is two to three orders of

magnitude larger than the critical current density of ' 2.9− 6.0× 1011 A.m−2 measured for

moderate magnetic fields (0.6 kOe) in Ref.40, implying that the first two terms of Eq. (10)

should be considered as perturbative corrections to the known “traditional” spin-torques.

Note, however, that jcr,dip is inversely proportional to the thickness of the M1 layer. For

instance, it becomes equal to 1.3 × 1013 A.cm−2 for d=100 nm and therefore should have

a more pronounced effect for a thicker fixed layer (this dependence of jcr,dip on 1/d arises

from the assumption of M1 having infinitely large in-plane dimensions in the derivation of

Eq. (8), and would obviously break down for very thick layers.).

We now shift our attention to the third and fourth terms in Eq. (10), which differ qual-

itatively from the conventional spin-transfer torque model. For instance, these two terms

are maximal when the external electric field is applied along the (in-plane) direction of the

uniform magnetization M of M1 – rather than along the normal to the interface ẑ as in

typical STT experiments15. In that case, the third term favors a precession of µ around

ẑ while the fourth term favors a rotation of µ towards or away from ẑ depending on the

sign of the dot product between the applied electric field and M . These third and fourth

terms, therefore, characterize unconventional spin-orbit-driven field- and damping-torques15,

respectively, for which experimental confirmation would require applying an electric field

having a non-vanishing component along the magnetization of the M1 bottom layer, accord-

ing to Eq. (10). Interestingly, Ref.21 also predicted that an applied electric field having a

non-vanishing projection along the direction of M can indeed generate a torque, via the

combined effect of exchange interaction and a Rashba (spin-orbit-driven) coupling16. How-

ever, this latter torque was found to be parallel to µ×M ŷ rather than to µ× ẑ as in our

case.
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Moreover, and, as already noted, the vector potential of Eq. (8) gives rise to a magnetic

field ∇ × Adip = 0 outside the magnetic layer M1. As a result, the existence the AME

induced spin-torques of Eq. (10) depends on nonzero vector potential (even though the

magnetic field itself is zero) and can have observable effects. This situation is akin to the

Aharonov-Bohm effect45 and reminds us that the electromagnetic potentials are fundamental

in quantum mechanics rather than the fields.

C. Gauge invariance

Let us now add the gradient of a scalar function to Adip, which does not affect this

vanishing magnetic field. In particular, one can choose the gradient of this function to be

precisely the opposite of the right-hand side of Eq. (8). This would then result in a new Adip

that will now fully vanish – which will also completely annihilate the effective AME magnetic

field of Eq. (9)! However, this change of Adip corresponds, in fact, to a change of gauge, and,

as a result, the traditional spin-orbit Hamiltonian of Eq. (1) will acquire a new quantity that

has to be added to the momentum, with this quantity being precisely the right-hand side

of Eq. (8). With this change of gauge, the spin-orbit spin torques of Eq. (10) will therefore

still exist but will now arise from the traditional spin-orbit Hamiltonian rather than the

AME one. These considerations indicate the importance of the AME Hamiltonian both

from the fundamental as well as practical points of views and that it is not always possible

to identify a physical effect as arising from the AME or the traditional SOC Hamiltonian.

This is because the sum of the traditional spin-orbit coupling and AME Hamiltonians is

gauge invariant rather than each individual Hamiltonian 32,46.

IV. SUMMARY

In summary, we employed a simple toy model combining the AME coupling with the

long-range dipolar vector potential, which leads to the prediction of (i) spin-orbit-driven

spin-torques having the same analytical form as the classical STT but also of (ii) uncommon

spin torques. It is important to emphasize that the spin torques discussed here are funda-

mentally different from the spin-orbit effects reported in Refs.20,47 for which spin-orbit was

used to create a spin-polarized current (via the spin Hall effect) that induced spin-transfer
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torque. Here the spin-orbit effects directly drive the spin torques, while they are merely

STT enhancers in Refs. 20,47 with the spin-torque originating from the usual transfer of the

spin-current. We hope that this simple toy model will stimulate further (and perhaps jus-

tify more elaborate) theoretical developments in the field of spin-orbit-driven spin-torques.

For instance, one may also be interested to consider the combination of the AME coupling

with magnetic exchange interactions to determine if it can also lead to spin-orbit-driven spin

torques having the same analytical forms as those indicated in Eq. (10) (but with smaller

critical currents since magnetic exchanges are stronger in magnitude than long-range dipolar

interactions). Of course, an ultimate check of our predictions has to be done by perform-

ing experiments, such as confirming the existence of the uncommon spin torques (i.e., for

which the electrical current is applied along in-plane directions) via measurements in systems

possessing strong-spin-orbit couplings.
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