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Discrete transparent boundary conditions for the linearized

Green-Naghdi system of equations

M. Kazakova∗, P. Noble †

Abstract

In this paper, we introduce artificial boundary conditions for the linearized Green-Naghdi system of

equations. The derivation of such continuous (respectively discrete) boundary conditions include the inver-

sion of Laplace transform (respectively Z-transform) and these boundary conditions are in turn non local in

time. In the case of continuous boundary conditions, the inversion is done explicitly. We consider two spatial

discretisations of the initial system either on a staggered grid or on a collocated grids, both of interest from

the practical point of view. We use a Crank Nicolson time discretization. The proposed numerical scheme

with the staggered grid permits explicit Z-transform inversion whereas the collocated grid discretization do

not. A stable numerical procedure is proposed for this latter inversion. We test numerically the accuracy

of the described method with standard Gaussian initial data and wave packet initial data which are more

convenient to explore the dispersive properties of the initial set of equations. We used our transparent bound-

ary conditions to solve numerically the problem of injecting propagating (planar) waves in a computational

domain.

1 Introduction

The motion of incompressible and irrotational fluids under the effect of gravity is mathematically
described by the free surface Euler equations. The complexity of this system led to the derivation
of various asymptotic models for the water wave problem which are valid for some special physical
regimes (see [10] for more details). The well-known shallow water asymptotic is widely applied since
the situations where the horizontal length scale is much greater than the vertical length scale are
of particular interest to describe water waves in coastal areas. This regime leads, at first order, to
the so-called shallow water equations ([11]) and this simple system being hyperbolic describes lots
physical phenomena. Though in order to take into account the dispersive effects that are important
in coastal oceanography, one has to consider second order model like the Green-Naghdi model ([9]).

The dimensional Green Naghdi equations read asht + div(h~u) = 0,

(h~u)t + div(h~u⊗ ~u+ pI) = 0, p =
gh2

2
+

1

3
h2ḧ,

(1)

where h is a fluid depth, ~u is a depth-averaged horizontal velocity, indexes means the derivation with
respect to t, x ∈ R2, and dot is a material derivative ḣ = ht+~u·∇h. The consistency result with Euler
equations can be found in [10]. The model (1) describes bidirectional propagation of dispersive water
waves in the shallow water regime. It is physically more relevant for water wave problem than the
unidirectional models like the Korteweg-de Vries equation or the Benjamin-Bona-Mahony equation
which only describe small amplitude/unidirection water waves.

The original system (1) is derived and set on the whole space. Though, for practical applications,
the area of study is restricted to a bounded domain and one has to prescribe suitable boundary
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France, email: pascal.noble@math.univ-toulouse.fr

1



conditions. We focus here on artificial boundary conditions in order to let waves go out of the
computational domain without reflection or to prescribe an incoming wave on a part of the domain.
From a mathematical point of view, the problem is set, in both cases, as follows: given a initial data
compactly supported, one search for suitable boundary conditions so that the solution computed
with these boundary conditions coincide on the bounded domain with the restriction of the solution
set on the whole space. One possibility to solve this problem is to compute the solution on a
sufficiently large domain with, say, periodic boundary conditions. Though it is cumbersome from a
numerical point of view and requires the solution to remain compactly supported for all time. In
particular it is untrue for large classes of dispersive equations like the Korteweg-de Vries equation
or the Schrödinger equation. Moreover, the energy of the exact solution for the problem set on
the whole space is conserved whereas the energy of the restricted solution should decrease. For all
these reasons is important to find the suitable boundary conditions, which absorb the energy at the
boundaries and lead to a well-posed initial boundary value problem.

A review on different techniques for the construction such conditions for the linear and nonlin-
ear Schrödinger equations can be found in [2]. For linear equations, the construction of the exact
transparent boundary conditions is carried out by using Laplace transform in time and impose
boundary conditions so as to obtain finite energy solutions. The inversion of those conditions yields
boundary conditions that are in general non local in time. For nonlinear equations, pseudodifferen-
tial or paradifferential calculus is needed and provide transparent boundary conditions in the high
frequency/short time regime [2]. A numerical implementation of these boundary conditions is not
straightforward: see e.g. [12] for a discretization of transparent boundary conditions for the Airy
equation which requires an approximation of fractional derivatives. An alternative and fruitful ap-
proach consists in starting directly from a discretization of the equations set on the whole space and
mimic the approach in the continuous case: the Laplace transform is replaced by the Z-transform:
see e.g. [5] for an application of this strategy to the Airy equation. Though in the former paper,
the inverse Z-transform can not be carried out explicitly and the authors implement directly the
explicit formula of the inverse tranform. This procedure is not stable from a numerical point of view.
Recently the same idea provided the appropriate continuous and discrete boundary conditions for
others dispersive equations for unidirectional wave propagation such as Benjamin-Bona-Mahoney
(BBM) equation [6] and mixed KDV-BBM equation [7] where an alternative, stable method is
introduce to compute the inverse transform.

In this paper, we focus on a linearized version of (1) model about the steady state (h, u) :=
(H0, 0) + (η, w) with |(η, w)| � 1. In the one dimensional case, this linearized system is written as:{

ηt + wx = 0,

wt + ηx − εwtxx = 0,
x ∈ R, t > 0 (2)

where ε > 0 is a dispersion parameter. We are interested in derivation of discrete transparent
boundary conditions for (2): they should provide suitable absorbing boundary conditions for the full
system (1) for small amplitude waves. For that purpose, we focus on two spatial discretisations by
working either on a collocated grid (η, w are evaluated at the same points) or on a staggered grid.
We use a Crank Nicolson scheme for time discretisation. We then follow a similar strategy than
for the derivation of continuous transparent boundary conditions: we apply the Z−transform and
identify exponentially growing at ±∞. By restricting our attention to finite energy solutions, we
impose conditions at the boundary points and then apply either explicitly or numerically the inverse
Z−transform. These conditions are generically non local in time and can be cumbersome from a
numerical point of view. There are various strategies to implement efficiently those (DTBC). Let
us mention in particular “sum of exponentials” techniques: this approach is well documented. See
e.g. [3], [4], for quantum evolution equations and [5] for an application in the case of the linearized
(KdV) equation.

The paper is organised as follow. In section 2, we apply the technique found in [12] to construct
the exact boundary conditions for the linear system (2). Moreover one can notice that the system
(2) is equivalent to a linearized version of the Boussinesq equation:

(w − εwxx)tt − wxx = 0, ∀x ∈ R,∀t > 0,
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and we focus on the construction boundary conditions for this equation too. It is useful when we
construct the discrete conditions for Crank Nicolson time-discretization on a staggered grid: see
section 3. As it was already mentioned procedure of discrete boundary conditions construction
involve the inversion of non-local in time operator Z-transform, and the main reason to consider
the scheme on the staggered grid is that this inversion can be done explicitly. The inversion of
conditions for scheme on a collocated grid needs to be done numerically, and a more sophisticated
procedure of inversion is presented in section 4. Finally, in section 5, we present some numerical
simulations to illustrate the accuracy of the proposed boundary conditions. We performed three
types of simulation. The examples are inspired by works [7], [6]. We show the different dispersive
effects with a Gaussian and a wave packet initial data. We show also how to inject a travelling wave
solution of (2) in the computational domain.

2 Exact transparent boundary conditions

In this section, we show how to derive transparent boundary conditions in the continuous case and
prove the absorbing property of constructed conditions.

2.1 Exact boundary conditions for linearised Green-Naghdi system

We derive first the continuous boundary conditions for the system (2) of equations. We consider the
initial value problem set on the whole space

ηt + wx = 0, ∀x ∈ R,∀t > 0
wt + ηx − εwtxx = 0, ∀x ∈ R,∀t > 0

η(0, x) = η0(x), w(0, x) = w0(x), ∀x ∈ R

lim
x→±∞

w(t, x) = lim
x→±∞

η(t, x) = 0,

where the initial data η0, w0 are compactly supported functions in a finite interval [x`, xr]. In order
to construct the transparent boundary conditions, we consider the solution of the problem set on
the complementary of [x`, xr] ⊂ R:

ηt + wx = 0, ∀x ∈ R \ [x`, xr],∀t > 0
wt + ηx − εwtxx = 0, ∀x ∈ R \ [x`, xr],∀t > 0
η(0, x) = 0, w(0, x) = 0, ∀x ∈ R \ [x`, xr]

lim
x→±∞

w(t, x) = lim
x→±∞

η(t, x) = 0,

(3)

This problem is homogeneous in time. We can apply the Laplace transform defined as

L(f)(s;x) =

∞∫
0

e−stf(t;x)dt

where s is a parameter such as <(s) > 0. (Hereafter < denotes the real part), we obtain:

sL(η) + ∂xL(w) = 0,
sL(w) + ∂xL(η)− ε∂xxL(w) = 0.

(4)

The solutions of the system (4) have the from(
L(w)(s, x)
L(η)(s, x)

)
= αr+V

+eλ
+x + αr−V

−eλ
−x, ∀x > xr,(

L(w)(s, x)
L(η)(s, x)

)
= α`+V

+eλ
+x + α`−V

−eλ
−x, ∀x < x`
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where αr,`+ , αr,`− are constant coefficients, λ+, λ− are given by

λ+ =
+

√
s2

1 + εs2
, λ− = − +

√
s2

1 + εs2
,

and V +, V − are the constant vectors:

V + = (1,−λ+/s)T , V − = (1, λ+/s)T .

The number +
√
z corresponds to the principal square root of the complex number z ∈ C. Note

that the function s 7→
√
s2/(1 + εs2) maps <(s) > 0 to C \ [0, 1/ε[, therefore λ+ has a strictly

positive real part whereas λ− has a negative one. As a result, x 7→ eλ+x increases exponentially
fast as x → ∞. In order to have a bounded solution L(w)(s, x),L(η)(s, x) for all x ≥ xr, one must
impose αr+ = 0. Similarly, one has α`− = 0. The constant coefficients αr+, α`− are written as:

αr+ =
1

+
√

1 + εs2
L(w)(s, xr)− L(η)(s, xr) = 0,

α`− =
1

+
√

1 + εs2
L(w)(s, x`) + L(η)(s, x`) = 0.

We then deduce a relation between L(η) and L(w) at the boundary points x`, xr:

L(w)(s, xr) =
1 + εs2

+
√

1 + εs2
L(η)(s, xr), L(w)(s, x`) = − 1 + εs2

+
√

1 + εs2
L(η)(s, x`).

The inversion of Laplace transform can be carried out explicitly and finally we get the following
transparent boundary conditions:

w(t, xr) = [1+ ∂2/∂t]
1√
ε

∫ t

0

J0(u/
√
ε)η(t− u, xr)du,

w(t, x`) = −[1+ ∂2/∂t]
1√
ε

∫ t

0

J0(u/
√
ε)η(t− u, x`)du,

(5)

where J0 is the Bessel function of the first kind:

J0(t) =
1

π

∫ π

0

eit cos θdθ.

Now we prove the following stability result.

Proposition 2.1. The problem

ηt + wx = 0, ∀x ∈]x`, xr[,∀t > 0
wt + ηx − εwtxx = 0, ∀x ∈]x`, xr[,∀t > 0

η(0, x) = η0(x), w(0, x) = w0(x), ∀x ∈]x`, xr[

w(t, xr) = L−1( +
√

1 + εs2) ∗ η(t, xr),

w(t, x`) = −L−1( +
√

1 + εs2) ∗ η(t, x`).

(6)

is L∞(R+, H1(R)× L2(R)) stable: for all t > 0 and for all smooth solution of (6), we have

∫ xr

x`

η2(t, x)

2
+
w2(t, x)

2
+

(∂xw(t, x))2

2
dx ≤

∫ xr

x`

η20(x)

2
+
w2

0(x)

2
+

(∂xw0(t, x))2

2
dx.

Proof. We determine directly from the equations a time-derivation of the generalised kinetic energy
as

d

dt

∫ xr

x`

η2(t, x)

2
+
w2(t, x)

2
+

(∂xw(t, x))2

2
dx = −[η(t, x)w(t, x)]xr

x`
+ ε[w(t, x)∂txw(t, x)]xr

x`
,
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where the brackets denote a jump of the function between x` and xr. By integrating with respect
to the time variable on the interval (0, t), one obtains:∫ xr

x`

η2(t, x)

2
+
w2(t, x)

2
+

(∂xw(t, x))2

2
dx−

∫ xr

x`

η20(x)

2
+
w2

0(x)

2
+

(∂xw0(t, x))2

2
dx

=

∫ t

0

(−ηw + εw∂txw)(·, xr)dt+

∫ t

0

(−ηw + εw∂txw)(·, x`)dt := Jr − J`

if Jr ≤ 0 and J` ≥ 0 then the inequality is satisfied. Let us first consider the right value Jr, we fix
the T > 0 and denote N = η(t, xr) · 1[0,T ], W = w(t, xr) · 1[0,T ]. Note that from the first equation of
(6), one deduces that ∂xtW = ∂ttN and obtains

Jr :=

∫ t

0

(−ηw + εw∂txw)(·, xr)dt =

∫ ∞
−∞

(−NW + εWN ′′)dt =

=

∫ ∞
−∞

(
−N

(
Op(

+
√

1 + εs2) ∗N
)

+ ε
(
Op(

+
√

1 + εs2) ∗N
)
N ′′
)
dt

=
1

2π
<
∫ ∞
−∞

(
−N̂ +

√
1− εξ2N̂ + ε +

√
1− εξ2N̂(−ξ2)N̂

)
dξ

= − 1

2π
<
∫ ∞
−∞

(1 + εξ2) +
√

1− εξ2|N̂ |2dξ ≤ 0.

Here N̂ denotes the Fourier transform of N . When ξ is smaller than ε−1/2, the real part of the
integral has the positive value, as the square root is real. On the other hand, if ξ > ε−1/2, then the
square root is pure imaginary and the real part is identically equal to zero. An estimate for J` can
be done similarly:

J` =
1

2π
<
∫ ∞
−∞

(1 + εξ2) +
√

1− εξ2|N̂ |2dξ ≥ 0.

This completes the proof of the proposition.

2.2 Exact boundary conditions for the linear Boussinesq equation

The system (2) is equivalent to the linearized Boussinesq equation:

(w − εwxx)tt − wxx = 0, ∀x ∈ R,∀t > 0. (7)

The continuous boundary conditions for equation (7) are required for the Crank Nicolson scheme
on a staggered grid. We consider the initial value problem set on the whole space

(w − εwxx)tt − wxx = 0, ∀x ∈ R,∀t > 0
w(0, x) = w0(x), wt(0, x) = v0(x), ∀x ∈ R

lim
x→∞

w(t, x) = lim
x→−∞

w(t, x) = 0,

where the initial data w0, v0 are compactly supported in [x`, xr]. The problem set on the comple-
mentary of [x`, xr] ⊂ R reads as:

(w − εwxx)tt − wxx = 0, ∀x ∈ R,∀t > 0

w(0, x) = 0, wt(0, x) = 0, ∀x ∈ R \ [x`, xr]

lim
x→∞

w(t, x) = lim
x→−∞

w(t, x) = 0.

By applying the Laplace transform, one finds:

s2 (L(w)(s, x)− ε∂xxL(w)(s, x))− ∂xxL(w)(s, x) = 0.

5



We are searching again for the solution decreasing at infinity, so that give us one condition on
the left boundary and one on the right one for the function L(w):

∂xL(w)(s, xr) = − s
+
√

1 + εs2
L(w)(s, xr), ∂xL(w)(s, x`) =

s
+
√

1 + εs2
L(w)(s, x`).

The inversion of Laplace transform can be found explicitly and finally we get

wx(t, xr) = −∂/∂t
∫ t

0

J0(u/
√
ε)w(t− u, xr)du,

wx(t, x`) = ∂/∂t

∫ t

0

J0(u/
√
ε)w(t− u, x`)du.

(8)

For these boundary conditions, the absorbing property is fulfilled as well:

Proposition 2.2. Any smooth solution of the problem

(w − εwtxx)tt − wxx = 0, ∀x ∈ [xl, xr],∀t > 0
w(0, x) = w0(x), wt(0, x) = v0(x), ∀x ∈]x`, xr[

wx(t, xr) = −∂t
∫ t

0

J0(s/
√
ε)w(t− s, xr)ds,

wx(t, x`) = ∂t

∫ t

0

J0(s/
√
ε)w(t− s, x`)ds.

(9)

satisfies for all t > 0 the following estimate:∫ xr

x`

(
(∂tw)2

2
+ (∂xw)2 + ε (∂txw)2

)
(t, x)dx ≤

∫ xr

x`

(
(∂tw0)2

2
+ (∂xw0)2 + ε (∂txw0)2

)
dx.

The discretization of the conditions (5) or the conditions (8) is not trivial task. In the next
section, we show how to obtain a consistent discretization of the boundary conditions which is
compatible with the discrete numerical scheme used to carry out simulation of the model (2). The
proofs of consistency with the continuous conditionsare carried out in the sections 3, 4.

3 Discrete transparent boundary conditions: Staggered grid

In this section we derive discrete artificial boundary conditions for the linearized Green-Naghdi
system (2). In order to build up these conditions, we follow the strategy found in [5] and [6] and
consider directly the problem on the fully discretized equations. In this section, we focus on spatial
discretization on a staggered grid and Crank Nicolson time discretization. The numerical scheme is
written as:

ηn+1
j+1/2 − η

n
j+1/2

δt
+

1

2

(
wn+1
j+1 − w

n+1
j

δx
+
wnj+1 − wnj

δx

)
= 0,

wn+1
j − wnj
δt

− ε

δt

(
wn+1
j+1 − 2wn+1

j + wn+1
j−1

δx2
−
wnj+1 − 2wnj + wnj−1

δx2

)

+
1

2

(
ηn+1
j+1/2 − η

n+1
j−1/2

δx
+
ηnj+1/2 − η

n
j−1/2

δx

)
= 0,

1 ≤ j ≤ J, n ∈ N

(10)

where δt > 0, δx > 0 are time and space step, respectively, and number of space cells J ∈ N is
calculated as

J =
xr − x`
δx

.
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A staggered grid is a setting for the spatial discretization, in which the unknown are not evaluated
at the same space position. That is to say wnj ≈ w(nδt, x` + jδx), ηnj+1/2 ≈ η(nδt, x` + (j+ 1/2)δx).

The procedure mimic what was done for the continuous case in the previous section. We first
apply a discrete analogue of the Laplace transform which is referred to as Z−transform. The
definition reads as follows:

û(z) = Z{(u)n}(z) =
∑
n≥0

unz
−n, |z| > R > 0,

z is the complex variable and R is the radius of convergence of Laurent series. Hereafter the hat will
denote the result of Z−transform of the discrete sequences ηnj+1/2, wnj with respect to time index n.

The discrete system (10) reduces to the linear recurrence relations:

η̂j+1/2 = − 1

s(z)δx
(ŵj+1 − ŵj),

−εs(z)
δx2

ŵj−1 + s(z)

(
1 +

2ε

δx2

)
ŵj −

εs(z)

δx2
ŵj+1 +

η̂j+1/2 − η̂j−1/2
δx

= 0,

, (11)

where,

s(z) =
2

δt

z − 1

z + 1
. (12)

As the function z 7→ s(z) has a singularity at z = −1, we assume |z| > 1, which in turn yields
< (s(z)) > 0. Note that the initial values w0

j , η
0
j are supposed to be zero for all j ≤ 0, j ≥ J + 1.

We can eliminate η̂j+1/2 from the system (11) so as to obtain a scalar recurrence relation:

(1 + εs2(z))ŵj−1 − 2

(
1 + s(z)

(
ε+

δx2

2

))
ŵj + (1 + εs2(z))ŵj+1 = 0, 1 ≤ j ≤ J, n ∈ N (13)

This linear recurrence has a general solution written in the form:

ŵj = α+r+(z)j + α−r−(z)j , j ∈ Z

where r± are the roots of characteristic polynomial P associated with the recurrence:

P (r) = (1 + εs2(z))r2 − 2

(
1 + s2(z)

(
ε+

δx2

2

))
r + (1 + εs2(z)). (14)

The explicit formulae for the roots reads

r±(z) = 1 +
s2(z)δx2

2(1 + εs2(z))
±
s(z)δx

√
δx2 + 4(1 + εs2(z))

2(1 + εs2(z))
. (15)

We show now an important property of the roots (15):

Proposition 3.1. The roots of characteristic polynomial (14) associated with linear recurrence
relation have the following separation property: for all z ∈ C such that |z| > 1, one has

|r+(z)| > 1, |r−(z)| < 1.

Proof. First let us show that there is no root on the unit circle. We assume that there is a root
r = eiφ such that P (r) = 0. This equation reads

(1 + εs2(z))e2iφ − 2

(
1 + s2(z)

(
ε+

δx2

2

))
eiφ + (1 + εs2(z)) = 0

and one deduces that

s2(z) = − 4 sin2 φ

2ε(1− cos(φ)) + δx2
∈ R−,

7



and therefore <(s) = 0, which is in contradiction with the assumption |z| > 1. Therefore, there is
no root of P on the unit circle.

The product of the roots is equal to one due to relation between the coefficients of P and there
are no roots with modulus one. Therefore there is necessarily one root with a modulus larger than
one and the other one with modulus smaller than one. In the limit |s(z)| → ∞ one has |r+(z)| > 1
and |r−(z)| < 1. By continuity of z 7→ |r±(z)| on the domain {z ∈ C, |z| > 1}, this remains true for
all |z| > 1. This completes the proof of the proposition.

The construction of the boundary conditions is then carried out just as in the continuous case.
First note that the solution to (13) reads

ŵj = αr+r+(z)j + αr−r−(z)j , ∀j ≥ J,

ŵj = α`+r+(z)j + α`−r−(z)j , ∀j ≤ 1.

We search for bounded solutions, which means that α`− = 0, and αr+ = 0. These conditions are
equivalent to the boundary conditions:

ŵ1 = r+(z)ŵ0, ŵJ+1 = r−(z)ŵJ . (16)

Here we have the conditions for the images in the Z−domain. In order to apply the Z−inverse
transform, we present the conditions (16) in the following form (we have used the explicit formula
for s(z)):

ŵ1 =

(
1 +

2δx2(z − 1)2

Λz2 − 2µz + Λ
+

2δx(z − 1)
√

Γz2 − 2νz + Γ

Λz2 − 2µz + Λ

)
ŵ0,

ŵJ+1 =

(
1 +

2δx2(z − 1)2

Λz2 − 2µz + Λ
− 2δx(z − 1)

√
Γz2 − 2νz + Γ

Λz2 − 2µz + Λ

)
ŵJ ,

(17)

where Λ = 4ε+ δt2, µ = 4ε− δt2, Γ = Λ + δx2, ν = µ+ δx2. The inversion of constructed conditions
can be done explicitly and it is a key aspect in using the scheme on a staggered grid. In the next
section we will show that such inversion is not possible for scheme with collocated grid, and an other
strategy for inversion should be used.

We focus on the inversion of the left boundary condition, the treatment of the right one being
similar. Let us first to mention a useful result for the inversion of (17), namely

Lemma 3.1.

Z−1
(

z√
z2 − 2νz + 1

)
=

∞∑
n=0

Pn(ν)z−n,

for all |z| > max(z1, z2), where z1, z2 are the roots of z2 − 2νz + 1 and Pn(ν) is the n−th Legendre
polynomial.

In order to use this result, we write√
Γz2 − 2νz + Γ =

√
Γ(z − 2v + z−1)

z√
z2 − 2vz + 1

, v =
ν

Γ
.

By multiplying the left boundary condition by Λz2−2µz+Λ and by using the inverse shift property
of Z−transform, one finds

Λwn+1
1 − (Λ + 2δx2 + 2δx

√
Γ)wn+1

0 = 2(µwn1 − (µ+ 2δx2 + δx
√

Γ(v + 1))wn0 )−

− (Λwn−11 − (Λ + 2δx2 + 2δx
√

Γ)wn−10 ) + 2δx
√

Γ

(
(P2 − 2v2 + v)wn−10 +

n∑
k=2

skw
n−k
0

)
. (18)
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A similar calculation gives the boundary condition on the right:

Λwn+1
J+1 − (Λ + 2δx2 − 2δx

√
Γ)wn+1

J = 2(µwnJ+1 − (µ+ 2δx2 − δx
√

Γ(v + 1))wnJ )−

− (Λwn−1J+1 − (Λ + 2δx2 − 2δx
√

Γ)wn−1J )− 2δx
√

Γ

(
(P2 − 2v2 + v)wn−1J +

n∑
k=2

sk(v)wn−kJ

)
(19)

where
∀k ∈ N sk(v) = Pk+1(v)− (2v + 1)Pk(v) + (2v + 1)Pk−1(v)− Pk−2(v),

and P−1 = 0, P−2 = 0. As a conclusion, the full scheme consists in boundary conditions (18) and
(19) together with the interior scheme written as

− a+wn+1
j+1 + (1 + 2a+)wn+1

j − a+wn+1
j−1 = 2(−a−wnj+1 + (1 + 2a−)wnj − a−wnj−1)

− (−a+wn−1j+1 + (1 + 2a+)wn−1j − a+wn−1j−1 ), 1 ≤ j ≤ J, n ∈ N, (20)

where

a− =
ε− δt/4
δx2

, a+ =
ε+ δt/4

δx2
.

The interior scheme (20) is second order accurate in time and in space. In what follows, we check
the consistency of the boundary conditions (18) and (19).

3.1 Consistency theorem

In order to provide a good approximation of the continuous solution of (7) by numerical solution of
(20) with (18), (19), one should prove a consistency result. In what follows, we show that (18) and
(19) are second order accurate in time and space.

Theorem 3.1. Let w be a smooth solution (7) which satisfies the transparent boundary conditions
(8). We define the Z−transform of w(·, x) for all x ∈ [x`, xr] by

∀z 6= 0, ŵ(z, x) =

∞∑
n=0

w(nδt, x)

zn
.

Then for all compact K ∈ C+ = {z ∈ C, <(z) > 0}, for all s ∈ K, we have

ŵ(esδt, x` + δx)− r+(esδt)ŵ(esδt, x`) = O(δt2 + δx2),

ŵ(esδt, xr)− r−(esδt)ŵ(esδt, xr − δx) = O(δt2 + δx2),

where r±(z) defined by (15).

Proof. First of all, let us note that the Z−transform, defined above, is an approximation of the
Laplace transform. More precisely, for all smooth functions f(0) = f ′(0) = · · · = f (k)(0) = 0
(k ∈ N), and all s ∈ C+, we have:

L(f)(s) = δtf̂(esδt) +O(δtk+2), (21)

where s is a parameter of Laplace transform. See [6] for a proof of this result. Recalling definition
of the roots (15), we have

ŵ(z, x` + δx)− r+(z)ŵ(z, x`) =

ŵ(z, x` + δx)−

(
1 +

s2(z)δx2

2(1 + εs2(z))
+
s(z)δx

√
δx2 + 4(1 + εs2(z))

2(1 + εs2(z))

)
ŵ(z, x`) =

ŵ(z, x` + δx)− ŵ(z, x`)−
s2(z)δx2

2(1 + εs2(z))
ŵ(z, x`)−

s(z)δx√
1 + εs2(z)

√
1 +

s2(z)δx2

4(1 + εs2(z))
ŵ(z, x`).

9
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Figure 1: Coefficients of the discrete boundary conditions (18), (19) (a) and (29), (30) (b) with
δx = 2−10, δt = 10−2, ε = 10−3

Note that the function s(z) defined in (12) with z = esδt is approximated as

s(z) = s+O(δt2).

We then find

ŵ(z, x` + δx)− r+(z)ŵ(z, x`) =

δx

(
∂xŵ(esδt, x`) +

δx

2
∂xxŵ(esδt, x`)−

s2δx

2(1 + εs2)
ŵ(esδt, x`)−

s√
1 + εs2(z)

ŵ(esδt, x`)

)
+O(δx2)

=
δx

δt

(
δt

(
∂xŵ(esδt, x`)−

s√
1 + εs2(z)

ŵ(esδt, x`)

)
+ δt

δx

2

(
∂xxŵ(esδt, x`)−

s2

1 + εs2
ŵ(esδt, x`)

))
+O(δx2)

By applying relation (21) to the last line, we find that the first expression between the parentheses
is the Laplace transform of the continuous boundary condition on the left and the second one is the
Laplace transform of (7):

ŵ(z, x` + δx)− r+(z)ŵ(z, x`) =

δx

(
∂xL(w)− s√

1 + εs2
L(w)

)
+
δx2

2

(
∂xxL(w)− s2

1 + εs2
L(w)

)
+O(δx2 + δt2) = O(δx2 + δt2).

This completes the proof of consistency for the boundary on the left, the proof being similar for the
boundary on the right.

In addition to consistency results, we show that the coefficients sk of boundary conditions show
a stable behavior. It can be demonstrated numerically (see figure, 1, a). Moreover the coefficients
decrease as n−3/2 just as for BBM equation [6], mixed BBM-KDV equation [7] or Schrödinger
equation [8]. The boundary conditions are then non sensitive to round off errors on the numerical
solution.

4 Discrete transparent boundary conditions: Collocated grid

In this section, we consider transparent boundary conditions associated to a spatial discretization of
(2) on collocated grids (functions η, w are evaluated at the same points) . We keep a Crank Nicolson
time discretization. The numerical scheme reads as follow:
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ηn+1
j − ηnj
δt

+
1

2

(
wn+1
j+1 − w

n+1
j−1

2δx
+
wnj+1 − wnj−1

2δx

)
= 0,

wn+1
j − wnj
δt

− ε

(
wn+1
j+1 − 2wn+1

j + wn+1
j−1

δx2
−
wnj+1 − 2wnj + wnj−1

δx2

)
(22)

+
1

2

(
ηn+1
j+1 − η

n+1
j−1

2δx
+
ηnj+1 − ηnj−1

2δx

)
= 0,

for all 1 ≤ j ≤ J and n ∈ N. By applying Z−transform, the system (22) reduces to the second
order linear recurrence system (|z| > 1):

ŵj+1 = ŵj−1 − s(z)η̂j ,

η̂j+1 = η̂j−1 +
ε s(z)

δx2
ŵj+1 − s(z)(1 +

2ε

δx2
)ŵj +

ε s(z)

δx2
ŵj−1,

, s(z) =
2

δt

z − 1

z + 1
; (23)

We search for a basis of solutions of this recurrence system. We first write (23) as a first order
recurrence system

ŵj+1

η̂j+1

t̂j+1

r̂j+1

 =


0 −2δxs(z) 1 0

−2δxs(z)(1 + 2ε/δx2) −4εs2(z) 4εs(z)/δx 1
1 0 0 0
0 1 0 0




ŵj
η̂j
t̂j
v̂j

 := A(z)


ŵj
η̂j
t̂j
v̂j

 ,

where we have set t̂j = ŵj−1, v̂j = η̂j−1. The solutions of this recurrence system have the form

(
ŵj , η̂j , t̂j , v̂j

)T
=

4∑
k=1

αrkr
j
kVk, ∀j ≥ J + 1,

(
ŵj , η̂j , t̂j , v̂j

)T
=

4∑
k=1

α`kr
j
kVk, ∀j ≤ 0

where rk, k = 1, 2, 3, 4 are the roots of characteristic polynomial P associated to the matrix A(z)

P (r) = r4 + 4εs2(z)r3 −
(
2 + 4s2(z)(δx2 + 2ε)

)
r2 + 4εs2(z)r + 1, (24)

whereas Vk are the corresponding eigenvectors, and αr,`k are constant coefficients. The expression
for the roots of P (r) are explicit but useless when we will have to carry out the inversion of the
Z−transform. Though, we can prove the following property.

Proposition 4.1. The roots of the characteristic polynomial P given by (24) have the following
separation property: for all z ∈ C such that |z| > 1, one has

|r1(z)| > 1, |r2(z)| > 1, |r3(z)| < 1, |r4(z)| < 1.

Here the roots are ordered as |r1(z)| ≥ |r2(z)| ≥ |r3(z)| ≥ |r4(z)|.

Proof. First let us show that there is no root on the unit circle. Suppose that there is a root r = eiφ

of P , then the equation P (r) = 0 reads

−e
2iφ

δx2
(
(2ε+ δx2 − 2ε cosφ)s2(z) + 4δx2 sin2 φ

)
= 0

which in turn implies that

s2(z) = − 4δx2 sin2 φ

2ε+ δx2 − 2ε cosφ
∈ R−,

and thus <(s(z)) = 0 which is in contradiction with |z| > 1.
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There remains to locate the four roots with respect to unit circle. We order the roots as follows
|ri(z)| ≥ |ri+1(z)| with i = 1, 2, 3. First, note that the constant term of P is equal to 1 which means
that |r1(z)r2(z)r3(z)r4(z)| = 1. Necessarily, one has |r1(z)| and |r4(z)| < 1. Let s(z)→∞: one has
r1(z) ∼ −4εs2(z). The remaining roots r2, r3, r4 are bounded and as s(z) → +∞ converge to the
roots of polynomial which is defined as

4εr3 −
(
4δx2 + 8ε

)
r2 + r = 0,

So r4(z) → 0 and one can calculate directly r4(z) ∼ − 1

4εs2(z)
as s(z) → +∞. The roots r2(z),

r3(z) converge to the solution of

r2 −
(

2 +
δx2

ε

)
r + 1 = 0.

Since the discriminant ∆ =

(
1 +

δx2

2ε

)2

− 1 > 0, the roots are distinct and one finds |r2(z)| > 1 >

|r3(z)| . This concludes the proof of the separation property.

Remark 4.1. The characteristic equation P (r) = 0 can be written in the following form

(r − 1)2
(
(r + 1)2 + 4s2(z)εr

)
= 4s2(z)r2δx2,

which can be rewritten as

(r − 1)2 =
4s2(z)r2δx2

(r + 1)2 + 4s2(z)εr
,

and so by applying the implicit function theorem, we can compute an expansion of the roots r2,3
bifurcating form 1 at δx = 0:

r2(z) = 1 +
s(z)δx√

1 + εs2(z)
+O(δx2), r3(z) = 1− s(z)δx√

1 + εs2(z)
+O(δx2).

A similar argument yields also an asymptotic expansion of r1,4:

r1 = −
(
1 + 2εs2(z)

)
− 2
√
εs2(z)(1 + εs2(z)) +O(δx2),

r4 = −
(
1 + 2εs2(z)

)
+ 2
√
εs2(z)(1 + εs2(z)) +O(δx2).

Thanks to roots separation, we have a decomposition of solutions space into a stable subspace
Es(z) = span(V3;V4) of solutions decreasing to 0 as j → ∞ and an unstable subspace Eu(z) =
span(V1, V2) of solutions decreasing to 0 as j → −∞. According to remark 4.1, we should pay close
attention to the choice of the spatial step δx in order to separate the roots Es(z) and Eu(z). In
order to obtain bounded solution, one must impose(

ŵJ+1, η̂J+1, t̂J+1, v̂J+1

)T ∈ Es(z), (
ŵ1, η̂1, t̂1, v̂1

)T ∈ Eu(z).

which is equivalent to

(ŵJ+1, η̂J+1, ŵJ , η̂J)
T ∈ Es(z), (ŵ1, η̂1, ŵ0, η̂0)

T ∈ Eu(z).

Let us start with the left boundary condition: the vector (ŵ0, η̂0, ŵ1, η̂1)
T

is given by
ŵ0

η̂0
ŵ1

η̂1

 =


1 1 1 1

1−r21
2δxr1s(z)

1−r22
2δxr2s(z)

1−r23
2δxr3s(z)

1−r24
2δxr4s(z)

r1 r2 r3 r4
1−r21

2δxs(z)
1−r22

2δxs(z)
1−r23

2δxs(z)
1−r24

2δxs(z)




α`1
α`2
α`3
α`4

 . (25)
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with α`3 = α`4 = 0. Then from (25) we have:

η̂0 =
1− r21

2δxr1s(z)
α`1 +

1− r22
2δxr2s(z)

α`2, η̂1 =
1− r21

2δxs(z)
α`1 +

1− r22
2δxs(z)

α`2.

In order to determine α`1, α`2, we use the remaining two equations of (25). We set r1 + r2 = Su and
r1r2 = Pu: the left boundary conditions are given by

(1 + Pu)ŵ1 = Suŵ0 − 2δxPus(z)η̂0,

2δx s(z)η̂1 + Suŵ1 = (1 + Pu)ŵ0.
(26)

The derivation of right boundary conditions are carried out with the same method. We set
r3 + r4 = Ss and r3r4 = P s. The right boundary conditions are given by:

(1 + P s)ŵJ+1 = SsŵJ − 2δxP ss(z)η̂J ,

2δx s(z)η̂J+1 + SsŵJ+1 = (1 + P s)ŵJ .
(27)

The coefficients of the boundary conditions (26),(27) contain a singularity at z = −1, which in
turn implies that the expansion coefficients for Ss, P s, Su, Pu decrease slowly. In order to remove
this singularity, we multiply the boundary conditions (26),(27) by (1 + z−1)q, where the power q
depends on the order of a pole z = −1 of the coefficients. For example, as we have seen the unstable
root r1 has the following asymptotic behaviour r1 ∼ s2(z) (see Proposition 4.1). For stabilization,
the coefficient −2δxPus(z) needs to be multiplied by (1 + z−1)3. The roots r3, r4 stay bounded as
well as P s and Ss and, therefore, we need to deal only with the singularity of s(z), and q = 1. We
set z−1 = x and obtain the following boundary conditions with coefficients decreasing faster which
ensures stability with respect to round off errors:

((1 + x)3 + (1 + x)P̃u)ŵ1 = (1 + x)S̃uŵ0 −
4δx

δt
(1− x)P̃uη̂0,

4δx

δt
(1− x2)η̂1 + S̃uŵ1 = ((1 + x)2 + P̃u)ŵ0.

((1 + x) + (1 + x)P s)ŵJ+1 = (1 + x)SsŵJ −
4δx

δt
(1− x)P sη̂J ,

4δx

δt
(1− x)η̂J+1 + (1 + x)SsŵJ+1 = ((1 + x) + (1 + x)P s)ŵJ .

In order to invert Z−transform, it is required to find the coefficients in the expansions of Ss, P s,
S̃u, P̃u which are defined as

Ss(x) =
∑
n>0

ssnx
n, P s(x) = (1 + x)

∑
n>0

psnx
n,

S̃u(x) = (1 + x)2Su(x) = (1 + x)2
∑
n>0

sunx
n =

∑
n>0

s̃unx
n,

P̃u(x) = (1 + x)2Pu(x) = (1 + x)2
∑
n>0

punx
n =

∑
n>0

p̃unx
n.

We follow the procedure proposed in [7] and use the relation between the roots and coefficients of
P . More precisely we have

Ss + Su = −4εs2(x),

Pu + SuSs + P s = −(2 + 4s2(x)(δx2 + 2ε)),

PuSs + P sSu = −4εs2(x),

PuP s = 1.
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Then, the system satisfied by Ss, P s, S̃u, P̃u is given by

(1 + x)2Ss + S̃u = −16ε(1− x)2/δt2,

P̃u + S̃uSs + (1 + x)2P s = −(2(1 + x)2 + 16(1− x)2(δx2 + 2ε)/δt2),

P̃uSs + P sS̃u = −16ε(1− x)2/δt2,

P̃uP s = (1 + x)2.

By substituting the expansion of Ss, P s, S̃u, P̃u in this system, one finds

ssn + s̃un = −(2ssn−1 + ssn−2)− 16εσn/δt2,

p̃un + ss0s̃
u
n + s̃u0s

s
n + psn = −(2psn−1 + psn−2)−

n−1∑
k=1

ssks̃
u
n−k − κn,

ss0p̃
u
n + p̃u0s

s
n + ps0s̃

u
n + s̃u0p

n
s = −

n−1∑
k=1

sskp̃
u
n−k −

n−1∑
k=1

psks̃
u
n−k − 16εσn/δt2,

ps0p̃
u
n + p̃u0p

s
n = −

n−1∑
k=1

pskp̃
u
n−k + ζn.

(28)

where the sequence σn, κn are given by formulas

σn = δ0 − 2δ1 + δ2,
ζn = δ0 + 2δ1 + δ2,

κn = (2 + 16(δx2 + 2ε)/δt2)δ0 − (4− 32(δx2 + 2ε)/δt2)δ1 − (2 + 16(δx2 + 2ε)/δt2)δ2,

and δ0 = (1, 0, . . . 0, . . . ), δ1 = (0, 1, 0, . . . 0, . . . ), δ2 = (0, 0, 1, 0 . . . 0, . . . ). The quantities s̃s0, s̃u0 , p̃s0,
p̃u0 are found directly as the roots of P for z−1 = x = 0, and the resolution of (28) is implemented
numerically. Now there just remains to invert the boundary conditions (4), one finds on the left

(1 + p̃u0 )wn+1
1 − s̃u0wn+1

0 +
4δx

δt
p̃u0η

n+1
0 = −(3 + p̃u1 + p̃u0 )wn1 + (s̃u1 + s̃u0 )wn0 −−

4δx

δt
(p̃u1 − p̃u0 )ηn0−

3wn−11 − wn−21 −
n∑
k=1

(p̃uk+1 + p̃uk)wn−k1 +

n∑
k=1

(s̃uk+1 + s̃uk)wn−k0 − 4δx

δt

n∑
k=1

(p̃uk+1 − p̃uk)ηn−k0 ,

4δx

δt
ηn+1
1 + s̃u0w

n+1
1 − (1 + p̃u0 )wn+1

0 =

−s̃u1wn1 + (2 + p̃u1 )wn0 +
4δx

δt
ηn−11 + wn−10 −

n∑
k=1

s̃uk+1w
n−k
1 +

n∑
k=1

p̃uk+1w
n−k
0 ,

(29)
and on the right:

(1 + ps0)wn+1
J+1 − s

s
0w

n+1
J +

4δx

δt
ps0η

n+1
J = −wnJ+1 + (ss1 + ss0)wnJ − (ps1 + ps0)wnJ+1 −

4δx

δt
(ps1 − ps0)ηnJ

−
n∑
k=1

(psk+1 + psk)wn−kJ+1 +

n∑
k=1

(ssk+1 + ssk)wn−kJ − 4δx

δt

n∑
k=1

(psk+1 − psk)ηn−kJ ,

4δx

δt
ηn+1
J+1 + ss0w

n+1
J+1 − (1 + ps0)wn+1

J =
4δx

δt
ηnJ+1 − (ss0 + ss1)wnJ+1 + (1 + ps1 + ps0)wnJ

+

n∑
k=1

(psk+1 + psk)wn−kJ −
n∑
k=1

(ssk+1 + ssk)wn−kJ+1 .

(30)
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4.1 Consistency theorem

We show that the discrete boundary conditions (29), (30) are consistent of order O(δt2 + δx2).

Theorem 4.1. Let η, w be a smooth solution (2) and (5). We define the Z−transform of f(·, x)
for all x ∈ [x`, xr] by

∀z 6= 0, f̂(z, x) =

∞∑
n=0

f(nδt, x)

zn
.

For all compact K ⊂ C+ and for all s ∈ K:

(1 + r1r2)ŵ(esδt, x` + δx)− (r1 + r2)ŵ(esδt, x`) + 2δxr1r2s(e
sδt)η̂(esδt, x`) = O(δt2 + δx2),

2δxs(esδt)η̂(esδt, x` + δx) + (r1 + r2)ŵ(esδt, x` + δx)− (1 + r1r2)ŵ(esδt, x`) = O(δt2 + δx2),

(1 + r3r4)ŵ(esδt, xr)− (r3 + r4)ŵ(esδt, xr − δx) + 2δxr3r4s(e
sδt)η̂(esδt, xr − δx) = O(δt2 + δx2),

2δxs(esδt)η̂(esδt, xr) + (r3 + r4)ŵ(esδt, xr)− (1 + r3r4)ŵ(esδt, xr − δx) = O(δt2 + δx2).

where ri, i = 1..4 are the roots of polynomial (24) such that |r1| ≥ |r2| > 1 > |r3| ≥ |r4|.
Proof. The proof of this theorem is similar to the proof of theorem (3.1). Though the explicit
expressions for the roots ri are exceedingly lengthy and useless. Instead, we consider asymptotic
expansions of the roots as δx, δt→ 0. Recall that (ri)i=1,...,4 expand as

r2 = 1 +
s(z)δx

+
√

1 + εs2(z)
+O(δx2), r3 = 1− s(z)δx

+
√

1 + εs2(z)
+O(δx2),

r1 = −1− 2εs(z)2 − 2 +
√
εs2(z)(1 + εs2(z)) +O(δx2),

r4 = −1− 2εs(z)2 + 2 +
√
εs2(z)(1 + εs2(z)) +O(δx2).

Let us denote e1(δt, δx) the consistency error associated to the first boundary condition:

e1(δt, δx) = (1 + r1r2)ŵ(esδt, x` + δx)− (r1 + r2)ŵ(esδt, x`) + 2δxr1r2s(e
sδt)η̂(esδt, x`)

and introduce R1, R2 such that

r1 = R1 +O(δx2), r2 = 1 +R2 δx+O(δx2).

The consistency error e1 reads:

e1 = (1 +R1 +R1R2δx)ŵ(esδt, x` + δx)− (1 +R1 +R2δx)ŵ(esδt, x`)

+2δxs(esδt)R1η̂(esδt, x`) +O(δx2)

= δx
(
(1 +R1)∂xŵ(esδt, x`) +R2(R1 − 1)ŵ(esδt, x`) + 2s(esδt)η̂(esδt, x`)

)
+O(δx2)

= δx(R1 + 1)
(
∂xŵ + s(esδt)η̂

)
(esδt, x`) + δx(R1 − 1)

(
R2ŵ + s(esδt)η̂

)
(esδt, x`) +O(δx2).

Recall that the function s(z) with z = esδt is approximated by s(esδt) = s + O(δt2). By applying
the relation (21) between Z−transform and Laplace transform, we find that

e1 =
δx

δt
(R1 + 1) (∂xL(w) + sL(η)) (s, x`) +

δx

δt
(R1 − 1) (R2L(w) + sL(η)) (s, x`) +O(δx2 + δt2).

Since the smooth solution η, w is a solution of (2), one has ∂xL(w) + sL(η) = 0. Moreover η, w
satisfies (5) so that (R2L(w) + sL(η)) (s, x`) = 0. As a result, one has e1 = O(δt2+δx2). We proceed
the same way for the other consistency errors. This conludes the proof of the proposition.

We observed numerically that the coefficients involved in (30) and (29) decrease as n−3/2. The
coefficients are plotted on the figure 1, b. One finds similar decay properties for the linear Korteweg-
de Vries equation [7], Benjamin-Bona-Mahony equation [6] or the Schrödinger equation [8]. The
discrete boundary conditions (30) and (29) are thus stable with respect to round off errors.

In the next section we will discuss the results of numerical simulations for equation (20) with the
boundary conditions (18), (19) and for the system (10) with the boundary conditions (29), (30).
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5 Numerical results

In this section we present a numerical validation of the discretized transparent boundary conditions
through various tests. First we validate the boundary conditions for a Gaussian initial data. Different
dispersion properties are analysed for a wave packet as initial datum. This analysis is based on the
dispersion relation corresponding to the linearised Green-Naghdi equation. All test are carried out
for both types of boundary conditions on a staggered and on a collocated grid. Finally, we show how
to inject a (planar) wave into the computational domain. To validate the efficiency of the artificial
boundary conditions we perform a numerical analysis of the approximation error. The tests show
second order of approximation with respect to time and space. Let us introduce first the numerical
implementation of the numerical methods considered in this paper.

5.1 Numerical implementation

5.1.1 Staggered grid

We present a numerical strategy to solve the problem on a staggered grid. The discretization (10) is
equivalent to scheme (20) and the conditions (18), (19) are written for the values of velocity wn0,J+1.

It remains to reconstruct the values for free surface elevations ηn+1
j+1/2, j ∈ (0, J). By taking into

account the boundary condition and setting

Λ− = Λ + 2δx2 − 2δx
√

Γ, Λ+ = Λ + 2δx2 + 2δx
√

Γ

µ− = µ+ 2δx2 − δx
√

Γ(v + 1), µ+ = µ+ 2δx2 + δx
√

Γ(v + 1),

the full numerical step written as a one time step method reads

Mn+1W
n+1 = 2MnW

n −Mn+1W
n−1 + V, n ∈ N,

where Wn+1 = [wn+1
0 , . . . , wn+1

J+1]> is the unknown vector, and the matrices Mn,Mn+1 are defined
as:

Mn+1 =


−Λ+ Λ
−a+ 1 + 2a+ −a+

. . .
. . .

. . .

−a+ 1 + 2a+ −a+
−Λ− Λ

 , Mn =


−µ+ µ
−a+ 1 + 2a+ −a+

. . .
. . .

. . .

−a+ 1 + 2a+ −a+
−µ− µ

 .
The vector Vn on the right hand side has only two non-zero components:

Vn =


2δx
√

Γ

(
(P2 − 2v2 + v)wn−10 +

n∑
k=2

sk(v)wn−k0

)
...

−2δx
√

Γ

(
(P2 − 2v2 + v)wn−1J +

n∑
k=2

sk(v)wn−kJ

)


.

The matrix Mn+1 is easily proved to be invertible (for δx small enough) and the solution vector at
time tn+1 is given by

Wn+1 = M−1n+1(2MnW
n + V )−Wn−1, n ∈ N,

so that the velocity components can be computed at each time step.

Once the velocity field is computed, there remains to reconstruct the values of free-surface ele-
vation η. This can be done by solving the first equation of (10). Since the velocity at iterations n−
and (n+ 1) is known, one finds

ηn+1
j+1/2 = ηnj+1/2 −

δt

2

(
wn+1
j+1 − w

n+1
j

δx
+
wnj+1 − wnj

δx

)
.
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Note that this equation has no influence on the velocity calculations and should be solved simply
for the correct description of the water wave problem.

We need to set the initial values for velocity W 0 at t = 0 and W 1 at t = δt. In order to take into
account the physics of the problem the initial conditions should be imposed for velocity W 0 and
elevation η0. To find a value for W 1 at t = δt we use the Taylor expansion in the vicinity of t = 0:

(w − εwxx) |t=δt= (w − εwxx)
∣∣
t=0

+ δt(w − εwxx)t
∣∣
t=0

+
δt2

2
(w − εwxx)tt

∣∣
t=0

+O(δt2),

using the continuous equations (2) one finds

(w − εwxx)
∣∣
t=δt

=

(
w −

(
ε− δt2

2

)
wxx

)∣∣
t=0

+ δt (ηx))
∣∣
t=0

. (31)

The discretization of (31) gives the linear system for the requested value. Note that the order of
approximation for values W (t = δt) is the same than the numerical scheme itself. Though we have
to take care of the choice of the time step with respect to values of ε especially if ε is small (10−4,
10−5).

5.1.2 Collocated grid

We rewrite in a matrix form the discrete equations (22) on a collocated grid coupled with the
boundary conditions derived in section 4. We have:[

An+1 Bn+1

Cn+1 Dn+1

](
η
w

)n+1

=

[
An Bn
Cn Dn

](
η
w

)n
+ ~Vn

where the matrices Mn+1, Mn size of 2 × (J + 2) × 2 × (J + 2) are block matrices. The blocks for
index (n+ 1) are defined as follows

An+1 =


p̃u0/c

0 1 0
. . .

. . .
. . .

0 1 0
0 1/c 0 0

 , Bn+1 =


−s̃u0 1 + p̃u0
−c 0 c

. . .
. . .

. . .

−c 0 c
−(1 + p̃u0 ) s̃u0 0

 ,

Cn+1 =


0 0 ps0/c 0
−c 0 c

. . .
. . .

. . .

−c 0 c
0 0 1/c

 , Dn+1 =


0 −ss0 1 + ps0
−a 1 + 2a −a

. . .
. . .

. . .

−a 1 + 2a −a
−(1 + ps0) ss0

 ,
and for n:

An =


−(p̃u1 − p̃u0 )/c

0 1 0
. . .

. . .
. . .

0 1 0
0 0 0 0

 , Bn =


s̃u0 + s̃u1 −(3 + p̃u0 + p̃u1 )

c 0 −c
. . .

. . .
. . .

c 0 −c
2 + p̃u1 −s̃u1 0

 ,

Cn =


0 0 −(ps1 − ps0)/c 0
c 0 −c

. . .
. . .

. . .

c 0 −c
0 0 1/c

 , Dn =


0 (ss0 + ss1) −(1 + ps0 + ps1)
−a 1 + 2a −a

. . .
. . .

. . .

−a 1 + 2a −a
1 + ps0 + ps1 −(ss0 + ss1)

 .
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a b

Figure 2: Numerical solution on a staggered(up) and Collocated (down) grids: Evolution of (a) the
surface elevation, (b) the fluid velocity for δx = 10−3, δt = 10−2, ε = 10−3

We have denoted c = 4δx/δt and a = ε/δx2. It follows from the form of the boundary conditions

that the vector ~Vn on the right hand side contains the previous time-iteration values of the functions
ηnj , wnj :

V (0) = −3wn−11 −wn−21 −
n∑
k=1

(p̃uk+1 + p̃uk))wn−k1 +

n∑
k=1

(s̃uk+1 + s̃uk))wn−k0 − 4δx

δt

n∑
k=1

(p̃uk+1 − p̃uk)ηn−k0 ,

V (J + 1) =
4δx

δt
ηn−11 −

n∑
k=1

s̃uk+1w
n−k
1 + wn−10 +

n∑
k=1

p̃uk+1w
n−k
0

V (J + 2) =
4δx

δt

n∑
k=1

(psk+1 − psk)ηn−kJ −
n∑
k=1

(psk+1 + psk)wn−kJ+1 +

n∑
k=1

(ssk+1 + ssk)wn−kJ ,

V (2(J + 2)) = −
n∑
k=1

(ssk+1 + ssk)wn−kJ+1 +

n∑
k=1

(psk+1 + psk)wn−kJ ,

V (j) = 0, j = 1 .. J, (J + 3) .. 2(J + 2).

5.2 Gaussian initial distribution

In this section, we show numerical results when we take a Gaussian initial distribution for the free
surface elevation and zero distribution for velocity

η0(x) = exp(−400× (x− 1/2)2), w0(x) = 0,
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Figure 3: Positive solution of dispersive relation ω(k) for ε = 10−3 (continued), ε = 10−3 (dashed)
(left) and phase (continued) and group (dashed) velocities for ε = 10−3 (right).

whereas the computational domain (t, x) ∈ [0, 1]× [0, 1] is meshed with N × (J + 2) nodes. We first
show that there is no reflection on the boundaries of the computational domain. We present results
both for staggered and collocated spatial grids. The velocity and free surface evolution are shown
on the (x, t)-plane on the Figure, 2. Following the numerical strategy described at the beginning of
this section we have reconstructed the value for w(t = δt) from initial datum for the method on a
staggered grid.

Let us comment the results found. Recall that the dispersion relation associated to the (2) is
written as

ω2(k) =
k2

1 + εk2
, (32)

there are two solutions for ω(k), that corresponds to the fact that Green-Naghdi system describes
bi-directional propagation of waves, just as we can see on the Figure, 2. On the left Figure, 3 the
positive solution of dispersive relation is plotted, there is more diversity for the values of ω(k) and
value for the same k is more important as ε > 0 increases. Other properties are related to the
difference between the group and phase velocities. From dispersive relation (32) we conclude,

vϕ(k) =
ω(k)

k
=

1√
1 + εk2

, vg(k) =
dω(k)

dk
=

1

(1 + εk2)3/2
.

Group velocity is always less than phase velocity (see right Figure 3).

5.3 Wave packet

In order to observe more clearly the dispersive behavior of the Green-Naghdi system and demon-
strated the applicability of the constructed boundary conditions for other tests, we consider the
solution of (2) with the next initial datum

η0(x) = exp(−400× (x− 1/2)2) sin(20πx), w0(x) = 0. (33)

For the different value of ε, the dispersive properties are not the same. Results are presented on the
figure, 4. As dispersive effects are more important for ε = 10−3 we have more diversity for frequency
values, but for smaller value ε = 10−4 the behaviour of the solution is closer to the solutions of the
hyperbolic Saint-Venant system. Namely, there exist not a lot of harmonics with different velocities,
and then system reaches its equilibrium (in the case of Saint-Venant the solution is just two opposite
velocities, without dispersive effects). However we can see the difference of phase and group velocities
in the both cases.

In order to check numerically the order of approximation of the numerical schemes, we have
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ε = 10−3 ε = 10−4

Figure 4: Numerical solution on a Staggered(up) and Collocates(down) grids: Evolution velocity
profile for δx = 10−3, δt = 10−2 with (33) initial datum.

constructed the reference solution for velocity. The fundamental solution of (7) can be written as

wref (t, x) = F−1
(

cos(
ξt√

1 + ξ2ε
∗ F (w0(x))

)
,

here F , F−1 are Fourier and inverse Fourier transform, and w0(x) initial data. For numerical
test, the reference solution is calculated by using Fast Fourier transform and periodic boundary
conditions. The extent of the computational domain is chosen large enough to avoid any spurious
effects of the boundary conditions. The evolution of reference solution is shown on figure 5.

We define the error functions of approximation which corresponds to the discrete version of Lt∞L
x
2

and Lt2L
x
2 norms of the errors. Let us first denote

en = ‖w(tn, ·)− wref (tn, ·)‖L2
,

for all time step tn, then the discrete norms are defined as follows

L2err =

(
δt

N∑
n=1

(e2n)

)
, L∞err = max

0<n<N

(
en
)
.

The next estimations are satisfied due to second order for both numerical scheme on a staggered
and collocated grid

L2err = C2
t δt

2 + C2
xδx

2, L∞err = C∞t δt
2 + C∞x δx

2,

where C2
t,x, C∞t,x are universal constant. We start the analysis of the behavior of error functions with

respect to δx. For that purpose, we take N = 103 which leads to value for δt small enough to be
sure that the dominating error term is linked to Cx . The errors are plotted on figure 6. The second
order accuracy with respect to space step is satisfied.

In order to check the approximation order with respect to δt, we fix J = 215, to take δx small
enough and be sure that there is no influence of C2

x, C∞x . We find the second order of approximation
as well. The plots are presented on figure 7.

5.4 Incoming wave

In this subsection we will consider the numerical test with travelling wave coming into the compu-
tational domain, which is an important real physical case. We follow here the method presented in
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ε = 10−2 ε = 10−3

Figure 5: Evolution of the reference solution for ε = 10−2 (left) and ε = 10−3 (right).

[1] for the Schrödinger-Poisson system and successfully applied in [6] for Benjamin-Bona-Mahoney
equation.

Let us denote win(x, t) = β cos(kx − ω(k)t) a plane wave solution for the velocity of the linear
equation (7). Now we are searching for transparent boundary conditions for the linear equation
with an initial data w0 satisfying w0(x) = win(x), ∀x ≤ xl and w0(x) = 0, ∀x ≥ xr. For that
purpose, we decompose w as w(x, t) = χ(x)win(x, t)+v(x, t), where the cut-off function χ is defined
as χ = 1,∀x ≤ xl χ = 0,∀x ≥ xr, new unknown function v is compactly supported in [x`, xr]. For v
one finds the following equation with a source term:

(v − vxx)tt − vxx = Gε(x, t)
Gε(x, t) = ε(χ′′(x)wintt (t, x) + 2χ′winxtt(t, x)) + χ′′(x)win(t, x) + 2χ′′(x)winx (t, x)

The derivation of continuous boundary condition for v is exactly similar to the homogeneous case
(win = 0) discussed above, one finds

wx(t, xr) = −∂/∂t
∫ t

0

J0(s/
√
ε)w(t− s, xr)ds,

∂x(w − win)(t, xl) = ∂/∂t

∫ t

0

J0(s/
√
ε)(w − win)(t− s, xl)ds.

(34)

For the discrete boundary condition the construction procedure repeats the method proposed
above as well. The continuous plane wave solution is replaced by the discrete solution

winn,j = β cos(jkδx− nω̃(k)δt), ω̃(k) =
1

δt
arccos

(
2δx2 + (4ε− δt2) sin2(kδx/2)

2δx2 + (4ε+ δt2) sin2(kδx/2)

)
,

and condition on the left is written as

Λ(wn+1
1 − [win]n+1

1 )− (Λ + δx2 + 2δx
√

Γ)(wn+1
0 − [win]n+1

0 ) =

2(µ(wn1 − [win]n1 )− (µ+ 2δx2 + δx
√

Γ(v + 1))(wn0 − [win]n0 ))−

(Λ + (wn−11 − [win]n−11 )− (Λ + δx2 + 2δx
√

Γ)(wn−10 − [win]n−10 ))+

2δx
√

Γ

(
(P2 − 2v2 + v)(wn−10 − [win]n−10 ) +

n∑
k=2

sk(wn−k0 − [win]n−k0 )

)
, (35)
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Figure 6: Evolution of the error functions for numerical methods on a collocated (up) and staggered
(down) grid with respect to δx.

and on the right,

Λ(wn+1
J+1 − [win]n+1

J+1)− (Λ + δx2 − 2δx
√

Γ)(wn+1
J − [win]n+1

J ) =

2(µ(wnJ+1 − [win]nJ+1)− (µ+ 2δx2 − δx
√

Γ(v + 1))(wnJ − [win]nJ)−

− (Λ(wn−1J+1 − [win]n−1J+1)− (Λ + δx2 − 2δx
√

Γ)(wn−1J − [win]n−1J )−

− 2δx
√

Γ

(
(P2 − 2v2 + v)(wn−1J − [win]n−1J ) +

n∑
k=2

sk(v)(wn−kJ − [win]n−kJ )

)
. (36)

Conditions for the system (22) can be written in the same manner.
The numericals results are presented on the Figure, 8. We put wave number k = 2πp, p ∈ N .

And we presented the results for different wave number (p = 4, 8). In both case there exist a transient
regime, but after the wave solution propagates correctly. We observe again the difference between
phase and group velocities. Note that the characteristics in the (x, t) plane have all a slope close to
1 in the zone after transition, which corresponds to the velocity of the waves (a coefficient preceding
wx). But the part of energy is carried along the characteristic with the smaller slope on the border
of the transient regime. Which corresponds to the fact that group velocity is smaller.
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Figure 7: Evolution of the error functions for numerical methods on a collocated (left) and staggered
(right) grid with respect to δt.

p = 4, ε = 10−3 p = 8, ε = 10−3

Figure 8: Evolution of incoming wave solution for different wave number.

6 Conclusion

In this paper, we derived exact and discrete transparent boundary conditions for the linear Green-
Naghdi system for a Crank Nicolson discretization on a staggered and collocated grid. Both schemes
are proved to be stable, consistent and convergent. The technique is validated numerically as well
for outgoing wave with the different initial data. We show how to deal with the problem of wave
generation in water wave problems and prove accuracy of the proposed method on the numeric test.

In practice, we will have to deal with non-linear equations. It remains an open question what
are the transparent boundary conditions for this case? One can imagines to adapt our strategy to
linear equations with variable coefficients and then adopt a fixed point strategy, as it was done for
nonlinear Schrodinger equations in [2]. An other question of interest is to derive discrete transparent
boundary conditions in the case of the two-layer Green-Naghdi equations which are used to describe
an internal wave propagation.
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