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Abstract

We used computer proof-checking methods to verify the correctness of
our proofs of the propositions in Euclid Book I. We used axioms as close
as possible to those of Euclid, in a language closely related to that used
in Tarski’s formal geometry. We used proofs as close as possible to those
given by Euclid, but filling Euclid’s gaps and correcting errors. Euclid
Book I has 48 propositions; we proved 213 theorems. The extras were
partly “Book Zero”, preliminaries of a very fundamental nature, partly
propositions that Euclid omitted but were used implicitly, partly advanced
theorems that we found necessary to fill Euclid’s gaps, and partly just vari-
ants of Euclid’s propositions. We wrote these proofs in a simple fragment
of first-order logic corresponding to Euclid’s logic, debugged them using
a custom software tool, and then checked them in the well-known and
trusted proof checkers HOL Light and Coq.

1 Introduction

Euclid was the “gold standard” of rigor for millenia. The Elements of
Euclid set the standard of proof used by Isaac Newton in his Principia
and even Abraham Lincoln claimed to have read all ten books of Euclid
and learned from it how to prove something in court. The Elements also
inspired the form of the American Declaration of Independence. In the
modern era, beginning already in the nineteenth century, the standards
of proof in mathematics became more demanding, and the imprecisions
and gaps in Euclid were more apparent than before. Even before that
time, some mathematicians focused on the perceived flaw that the Fifth
Postulate (the “parallel postulate”, or “Euclid 5”) was less intuitively
evident than the other four.1 Efforts to remove this “flaw” by proving
Euclid 5 led to the development of non-Euclidean geometry, showing that
in fact Euclid 5 was a necessary postulate, not a flaw.

1Proclus [33], writing in the fifth century, said that Euclid 5 needed a proof, and tried to
supply one; and he was not the first, since he also criticized a previous attempt by Ptolemy.
See [21], Ch. 5 for further history.
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Nevertheless there are flaws in Euclid, and we want to discuss their
nature by way of introduction to the subject.2 The first gap occurs in the
first proposition, I.1, in which Euclid proves the existence of an equilateral
triangle with a given side, by constructing the third vertex as the intersec-
tion point of two circles. But why do those two circles intersect? Euclid
cites neither an axiom nor a postulate nor a common notion. This gap is
filled by adding the “circle–circle” axiom, according to which if circle C

has a point inside circle K, and also a point outside circle K, then there
is a point lying on both C and K.

There is, however, a second gap in the proof of I.1. Namely, the
proposition claims the existence of a triangle, which by definition is (or
at least is determined by) three non-collinear points.3 Why are the three
points in question not all on a line? Intuitively, if they were, then one
would be between the other two, violating Euclid’s common notion that
the part is not equal to the whole, since all the sides are equal.

A formal proof of Prop. I.1 cannot follow Euclid in ignoring this issue.
The proposition that if B is between A and C then AB is not equal to AC

therefore must precede proposition I.1, unless one is to consider it as an
axiom formalizing one of Euclid’s common notions. In the next section,
we discuss the axioms and postulates of Euclid, and how we have chosen
to render them in modern first-order form.

The two gaps in I.1 illustrate two common failures. Many of the gaps
in Euclid fall into one of these categories:

(i) A failure to prove that a point clearly shown in the diagram actually
exists, e.g. that two lines really do intersect, or as in I.1 two circles.

(ii) A failure to prove that points shown in the diagram to be non-
collinear, are in fact non-collinear.

(iii) A failure to prove that a point shown in the diagram to be between
two other points, is in fact between those points.

Another example of an error of type (i) is in the second paragraph
of Prop. I.44, “let FG be drawn through to H”. Here H has not been
proved to exist, a strange omission in that a few lines later Euclid does
feel the need to use Postulate 5 to prove that K exists; but then two lines
later “let HA, GB be produced to the points L, M”. That is, the lines
shown as intersecting at L and M do in fact intersect–but Euclid offers
no justification for that line of the proof. There are dozens of such fillable
gaps in Euclid’s proofs, some more easily filled than others.

Not every error in Euclid falls into these categories, however. Consider
Prop. I.6, in which Euclid bisects an angle. The method is to lay off the
same length on both sides of the angle, and then construct an equilateral
triangle on the base thus formed. Connecting the vertex of the original
angle with the vertex of the equilateral triangle, we get the angle bisector.

2It is customary to refer to the propositions of Euclid with notation like I.44, which means
Proposition 44 of Book I.”

3Euclid never defines triangle, although he does define right triangle and equilateral tri-

angle. Instead he mentions trilateral figure, which is “contained by three straight lines.” We
read that to imply non-collinearity, for otherwise there would be only one line, and nothing
“contained.”
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Oops, but the two points might coincide! Well, in that case we ought to
have drawn the other equilateral triangle, on the other side of the base.
But Prop. I.1 did not provide for the construction of two triangles, and
we cannot easily construct “the other one.” We certainly need to expand
the list of ways in which Euclid’s proofs fall short by at least two more
items:

(iv) A failure to prove that points shown in the diagram to be distinct
are in fact distinct.

(v) A failure to show that points are on the same side (or opposite
sides) of a line, as the diagram shows them to be.

Even if we could solve these problems, the proof of I.6 still would
not be correct, since we would still need to show that the angle bisector
constructed does in fact lie in the interior of the angle. That difficulty
brings us to an important point. There is no “dimension axiom” in Euclid
to guarantee that we are doing plane geometry. Hence “circles” are really
“spheres”, and rather than just two equilateral triangles on a given base,
there are infinitely many. So even if the vertex of the equilateral triangle
is distinct from the vertex of the original angle, why does the line between
them lie in the interior of the angle? In fact that is a problem even in two
dimensions–an example of (iii) above.

Even if it were possible to fix that problem by adding a dimension
axiom, that would not be desirable. Euclid didn’t just forget to write
down a dimension axiom. In Book X and beyond, Euclid works in three-
space, and the culmination of the whole series of books is the study of the
Platonic solids. Hence it is clear that Euclid is not meant to be restricted
to plane geometry. In the absence of a dimension axiom, it is good advice
to the reader to visualize “circles” as spheres. Then the two circles used
in I.1 have not just two but many intersection points. The circle–circle
axiom only guarantees the existence of one intersection point.4 Therefore
we conclude that Euclid’s proof of I.6 is fatally flawed. We prove it another
way: by first showing how to bisect a line, and then using that to bisect an
angle. The simple and ingenious proof that a line can be bisected if it is
the base of an isosceles triangle was apparently not noticed until Gupta’s
thesis in 1965 [23], but could very well have been discovered by Euclid.

The fact that there is no dimension axiom is not always remembered
in Book I, and is the source of several difficulties. A good example is
Prop. I.7, which says that if ABC is a triangle and ABD is another
triangle congruent to ABC (that is, AC = AD and BC = BD), and C

and D are on the same side of AB, then C is equal toD. Look at the figure
for I.7; in two dimensions it appears contradictory, but as soon as you
think that it might be in three dimensions, the contradiction disappears.
The statement of Prop. 7 does correctly include the hypothesis that C and
D are on the same side of AB, but Euclid never uses that hypothesis in
the proof. That is not surprising, since he never defined “same side”, so he

4Since Euclid did not state the axiom, one could consider strengthening it to state the
existence of an intersection point on a given side of the line connecting the centers of the
circles. But Euclid also did not say in I.1 or I.6 anything about this problem; and we are able
to prove I.6 from the more fundamental form of circle–circle.
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had no possible way to use that hypothesis. It should have been used to
verify the claim that angle DCB is less than angle DCA, because there is
a point of intersection of AD and CB. This turns out to not be provable,
even after proving a number of more basic propositions in “Book Zero”;
we could not prove I.7 without using “dropped perpendiculars”, which are
only constructed much later in Euclid.

A well-known geometer told me “there are no errors in Euclid”, in the
sense that the statements of all the propositions are true in the plane.
If we supply Tarski’s definition of “same side”, an even stronger version
of that claim is true: the statements of all the propositions are true in
every finite-dimensional space R

n. However, the same cannot be said of
the proofs. Many of these have problems like those of I.6 and I.7; that
is, we could fix these problems only by proving some other propositions
first, and the propositions of the first half of Book I had to be proved in a
different order, namely 1,3,15,5,4,10,12,7,6,8,9,11, and in some cases the
proofs are much more difficult than Euclid thought. After proving those
early propositions, we could follow Euclid’s order better, and things went
well until Prop. 44. In Propositions 44 and 47 there are numerous points
of difficulty, which took extra propositions to resolve. As one example
we mention the proposition that every square is a parallelogram, which
Euclid uses implicitly in proving Prop. 47. (By definition a square has
equal sides and four right angles, and a parallelogram is a quadrilateral
with opposite sides parallel.) Euclid could and should have proved that.

The aims of this paper are as follows:

(i) Fix Euclid’s axioms (and common notions), using an axiom system
rather close to Euclid’s, but including axioms about betweenness that
Euclid omitted, and with other changes discussed below.

(ii) Give correct proofs of all the propositions in Book I from the new
axioms, following Euclid’s proofs as closely as possible.

(iii) Show that those proofs are indeed correct by checking the proofs
using the proof-checking programs HOL Light and Coq.

(iv) Show that the axioms are indeed correct by computer-checking
proofs that the axioms hold in the Cartesian plane R

2.5

Accordingly, in this paper we limit the discussion of geometry to the
description of the axioms, the description of a few specific flaws in Euclid’s
reasoning, and a discussion of Euclid’s notion of “equal figures” that is
necessary to verify the axioms we use about that notion. Our focus in this
paper is on proof checking. What we report on here would still have been
worth doing, even if there were no gaps or errors in Euclid. The details of
our proofs, and a discussion of the errors in the original proofs of Euclid,
will be published separately, with a focus on the geometry.

The formal proofs themselves, as well as the PHP and ML scripts with
which we manipulated and debugged these proofs, will be available on the
Web by Oct. 10, 2017. Look for links to them at

http://www.michaelbeeson.com/research/CheckEuclid/index.php

5The axioms hold in F
2, where F is any Euclidean field (an ordered field in which positive

elements have square roots), but we have not computer-checked a proof of that fact.
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A scholarly history of the previous attempts to axiomatize Euclid
would require a long paper in itself; we offer only a few highlights here.
The best known attempt is Hilbert’s 1899 book [25]. Hilbert had been
a vocal proponent of the axiomatic method, and his book was probably
meant partly to illustrate that method on the example of geometry. First-
order logic was in its infancy and Hilbert’s system was not first order. He
made use of Archimedes’s axiom, and his continuity “axiom” is a strange
mixture of logic and model theory. The fundamental idea to use between-
ness and congruence as primitive relations goes back to Pasch[30]. Further
contributions by Mollerup [28], Veronese [39], Pasch [30], and Peano[31]
are discussed below in connection with the axioms they helped to de-
velop. After Hilbert, the most important work is the axiom system of
Tarski. This is a first-order system, and not only is it first-order, it is
points-only, meaning that there are variables only for points. Lines are
given by two points, and angles by three points, and equality between
angles is a defined notion. This fits Euclid very well: Euclid almost al-
ways refers to lines by two points, and angles by three points. Tarski’s
system was developed in 1927, but publication was long delayed; for the
history see the introduction to (the Ishi press edition of) [35]. Although
a development of Euclid in Tarski’s system could have been done in the
1960s at Berkeley, it was not done. Instead efforts focused on reducing the
number of Tarski’s axioms by finding dependencies, and on proving funda-
mental results like the existence of perpendiculars and midpoints without
using the parallel postulate or any continuity axioms. The results of these
efforts finally appeared in [35], which contains the remarkable results of
[23].

It is now 34 years since the publication of [35], and meantime, the
technology of proof checking by computer has advanced. Our predeces-
sors stopped at the threshold, so to speak, by working on neutral geometry
and minimal axioms systems, instead of formalizing Euclid. We serendip-
itously find ourselves in the situation where it is possible for us to take
up that task, and also to verify (using existing computer proof checkers)
that our proofs are flawlessly correct.

2 Language

Euclid did understand the fundamental point that not every fact can be
proved; the first fact accepted could not be proved because there would
be nothing to prove it from. But he did not understand that similarly,
not every concept can be defined. Thus he famously attempted to define
“point” and “line” and “rectilinear angle.” (The Greeks also considered
“angles” formed by curved sides.) These natural-language “definitions”
are not mathematical usable; so in practice Euclid treated points, angles,
circles, and lines all as primitive notions. In addition, Euclid treated “fig-
ures” as a primitive notion. A figure seems to be what we would now call
a simple closed polygon; in Book I, only triangle and quadrilaterals are
used. Euclid also accepted concepts of “equal” and “greater than” for each
of points, angles, circles, lines, and figures without definition. In the mid-
dle of the nineteenth century, it was recognized that “betweenness” and
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“equidistance” were good primitives for geometry, and later it was real-
ized that it is possible to work with angles represented by triples of points,
instead of taking them as primitive, so angle equality and inequality are
defined concepts. That is what we do in our formal work. Thus all our
axioms, except circle–circle, are formulated in a “points-only” language,
in which the fundamental relations are betweenness and equidistance.

Betweenness is a 3-ary relation B(A,B,C), which Euclid wrote as “B
lies on the finite straight line AC.” We interpret that as strict between-
ness, i.e. the endpoints do not lie on the line.6 On the occasions when
a betweenness statement had to be proved (e.g. in Prop. I.14), instead
of saying “B is between C and D”, Euclid said “CB is in a straight line
with BD.” So he did understand the concept.

Collinearity is the relation L(A,B,C) expressing that either two of the
points are equal or one lies between the other two. This is a statement
about points only. It seems that for Euclid, lines were primitive objects,
rather than sets, and the incidence relation (point lies on line) too funda-
mental even to notice, as it does not occur in the list where “point” and
“line” are “defined.” Whether close to Euclid or not, we use the first-order
formulations of betweenness (a primitive) and collinearity (defined).7

“Equidistance” is a 4-ary relation best though of as congruence of finite
lines, “AB is equal to CD”. Euclid, or at least his translator Heath, used
“equal” rather than “congruent”. Inequality of finite lines AB < CD is
defined as AB is equal to CE for some E between C and D. Then “the
whole is not equal to the part” (for lines) becomes AB < CD implies AB

is not equal to CD, which can be proved. Let us ask, which of Euclid’s
common notions must we retain as axioms, and which can we prove?
The answer: all we need to retain as common notions are the equality
axioms (for equality of points), the symmetry, reflexivity, and transitivity
of congruence, and the axiom that AB is equal to BA.

There is one exception to our “points-only” approach. In order to fol-
low Euclid more closely, we allow giving a name to a circle. Circles are
given by point and radius, so we can say “let J be the circle of center P

and radius AB.” (Here the “radius” is not a number but a finite line.)
Then “inside” and “outside” can be defined using inequality of finite lines,
and the circle–circle continuity axiom can be translated straightforwardly
from the informal English version given above. To fit our theory into
the framework of first-order predicate calculus, we use a two-sorted pred-
icate calculus, one sort for points and one for circles. with relations “on”
and “inside” and “outside” that take both a point argument and a circle
argument.

Euclid never gives circles a single-character name as we do. Nor does
he name circles by center and radius, or center and point-on-circle. Instead
he names circles by listing three points that lie on the circle. One of those

6Hilbert used strict betweenness; Tarski used non-strict betweenness, on purpose because
the degenerate cases could be used to reduce the number of axioms. We use strict betweenness,
on purpose to avoid degenerate cases that express unintended things and have to be separately
worried about.

7Most of the time Euclid’s lines are finite, which may confuse a modern reader at first,
since today finite lines are called “segments”, and “line” means “infinite line.” Hilbert made
(infinite) lines primitive objects, but treated finite lines (segments) as sets of points.
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points is a point that appears to exist in the diagram, and is conjured into
existence without proof by the act of naming it. This naming technique
papers over the lack of the circle–circle axiom in Euclid, and introduces a
gap into the proof every time it is used. We therefore must deviate from
Euclid’s naming convention for circles.

Betweenness and equidistance are sufficient as primitive relations for
geometry, but the latter part of Euclid Book I uses another primitive
relation, “equal figures”, which is discussed in §5. We mention it here only
to note that the complete definition of our language requires inclusion of
the primitive relations discussed in §5.

3 Definitions

Euclid gives a long list of definitions at the beginning of Book I. We do
the same. Euclid’s list has some important omissions, notably “same side”
and “opposite side”. These are defined in Fig. 1.8 Euclid defined “square”
but omitted “parallelogram” and “rectangle”. He defined “parallel lines”
to be lines that do not meet but lie in the same plane (thus illustrating
that his omission of a dimension axiom was no accident!) On the other
hand, he failed to define “lies in the same plane”. Once we have defined
“same side” as in Fig. 1, it is easy to define “lies in the same plane”, as
each line and point not on the line determine two half-planes, together
making up a plane. In the formal statement of “same side”, a line is
specified by two distinct points p, q, and the incidence of x on that line is
expressed by “p, q, x are collinear”. Formally we use the relation L(p, q, x)
defined above in terms of betweenness. This definition exemplifies how
one works with points only, avoiding the explicit mention of lines. The
price one has to pay for this simplification is that one then has to prove
that it doesn’t matter which particular points p, q we chose to represent
the line. That is, “same side” is invariant if p and q are changed to some
other pair of distinct points each of which is collinear with p and q.

Euclid’s failure to define “lies in the same plane” leaves us to complete
his definition of “parallel”. First, we discuss the “not meeting” part of
the definition. Lines in Euclid are finite, but “parallel” is about infinite
lines. So “AB does not meet CD” means that no matter how those two
finite lines are produced, the lengthened lines still do not have a point in
common. In other words, there is no point collinear with both AB and
CD. On the other hand, “AB crosses CD” means that there is a point
both between A and B, and between C and D.

We define “Tarski-parallel” by “AB and CD do not meet, and C and
D lie on the same side of AB.” This is clearly not what Euclid intended,
as to Euclid it seems obvious that if AB is parallel to CD then CD is
parallel to AB. So we define instead that AB is parallel to CD if there
is no point collinear with both AB and CD, and there are four points

8This definition is due to Tarski [35]. Hilbert had planes as a primitive concept, and
discussed “same side” and “opposite side” only in the context of a fixed plane, using a definition
that would not work without having planes as a primitive concept. Tarski’s definition of “same
side” is vital for making possible a points-only formalization that would work in more than
two dimensions.
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Figure 1: (Left) a and b are on the opposite side of pq. (Right)
a and b are on the same side of pq if there exist points x and y

collinear with pq, and a point c, such that B(a, x, c) and B(b, y, c).

a, b, c, d with a and b collinear with AB, and c, d collinear with CD, and
ad crosses bc. With this definition, there is a very short proof of the
symmetry property. On the other hand, the two definitions can be proved
equivalent. It follows that if AB and CD are parallel then A and B are
on the same side of CD, which is quite often actually necessary, but never
remarked by Euclid.

Euclid defines a square to be an quadrilateral with four right angles
in which all the sides are equal. He does not specify that all four vertices
lie in the same plane. This is not trivial to prove, but we did prove it, so
Euclid’s definition does not require modification. Euclid does not define
“rectangle”. One would like to define it as a quadrilateral with four right
angles. It is a theorem that such a figure must lie in a plane. However,
the proofs we found involve reasoning “in three dimensions”. Even though
Euclid Book I has no dimension axiom, and we must therefore be careful
not to assume one, nevertheless all the proofs in Book I deal with planar
configurations. We therefore define “rectangle” to be a quadrilateral with
four right angles, whose diagonals cross, that is, meet in a point. This
condition is one way of specifying that a rectangle lies in a plane. We can
then prove that a rectangle is a parallelogram.

The Appendix contains a complete machine-generated list of our def-
initions.

4 Angles

We take only points and circles as primitive objects. Angles are treated as
ordered triples of non-collinear points, ABC. The point B is the vertex of
the angle. Equality of angles is a 6-ary relation, which we write informally
as “angle ABC = abc”. The definition is that there exist four points
(one on each side of each angle) that form, with the vertices B and b,
two congruent triangles. (Two triangles are congruent, by definition, if
all three pairs of corresponding sides are equal.)9 This definition does

9This is not the same definition as used in [35], but it works, and seems simpler to us;
perhaps the one in [35] seems simpler in the presence of function symbols for line extension.
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not permit “straight angles”, “zero angles”, or angles “greater than 180
degrees.” Such “angles” are also not used in Euclid.10

A point F lies in the interior of angle ABC if it is between two points
lying on the two sides of the angle. Angle ordering is defined by abc <

ABC if angle abc is equal to angle ABF , for some F in the interior of
ABC. Note that these definitions make sense without any dimension
axiom; that is, they work fine in three-space.

We then have to prove as theorems those properties of angle equal-
ity and ordering that Euclid assumed as “common notions”: reflexivity,
symmetry, and transitivity of angle equality; the fact that angle ABC is
equal to angle CBA; transitivity of angle ordering. The fact that an angle
cannot be both equal to and less than the same angle is quite difficult to
prove, although taken for granted by Euclid in several proofs. That is, of
course, the key result needed to prove antisymmetry and trichotomy for
angle ordering.

Hilbert [25] took angles as primitive, and had an axiom about copying
angles that specified the uniqueness of the copied angle. The uniqueness
assumption builds in as an axiom the property that an angle cannot be
both less than and equal to itself. Since this can be proved, it might be
considered an imperfection to assume it as an axiom. While Hilbert took
angles and equality of angles as primitive, he did define angle ordering
just as we do. Because of the uniqueness part of his angle-copying axiom,
he had no difficulty proving trichotomy.

5 Axioms and Postulates

Euclid had three groups of what would now be called axioms: common
notions, axioms, and postulates. The common notions were intended to be
principles of reasoning that applied more generally than just to geometry.
For example, what we would now call equality axioms. The axioms and
postulates were about geometry. The distinction between an “axiom” and
a “postulate”, according to Proclus [33], p. 157, is that a postulate asserts
that some point can be constructed, while an axiom does not. In modern
terms an “axiom” is purely universal, while a postulate has an existential
quantifier.

Heath’s translation lists five common notions, five postulates, and zero
axioms. Simson’s translation [17] lists three postulates, twelve axioms,
and zero common notions. The extra axioms are discussed by Heath on
p. 223 of [18], where they are rejected.

Euclid’s first common notion is “things equal to the same thing are
equal to each other.” That is,

a = c ∧ b = c→a = b.

Modern mathematicians would prefer

a = c ∧ c = b→a = b.

10Except perhaps in Propositions 13 and 17, which speak about pairs of angles being equal
to other pairs of angles. We did not formalize those two propositions, as it would have required
defining angles greater than 180◦, and those propositions are never used in the rest of Book I.
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But then, they need symmetry as a separate axiom (a = b→b = a), while
that can be proved from Euclid’s axiom above. We follow Euclid in this
matter, although of course it is of no serious consequence. We do need
reflexivity, the formalization of the common notion that anything is equal
to itself: a = a.

Equality also enjoys the substitution property for each predicate in
our language:

B(a, b, c) ∧ a = A ∧ b = B ∧ c = C→B(A,B,C)

ab = cd ∧ a = A ∧ b = B ∧ c = B ∧ d = D→AB = CD

and similarly for the predicates for “equal figures.” In practice, the proofs
are checked assuming the second-order property:

a = b→∀P (P (a) ⇐⇒ P (b))

which allows to avoid introducing a separate axiom for each predicate.
That is, we do not actually use the substitution axioms for individual
predicates, but allow the substitution of A for B in any derived formula,
when A = B or B = A has been derived.

Of Euclid’s common notions as listed in the Heath translation, we keep
the first, reject the fourth, and prove the other three as theorems. (The
fourth is used to prove I.4, the SAS principle, by superposition, a proof
we also reject.)

We include as common notions the axioms that say that congruence
of finite lines is an equivalence relation, and the principle that AB is
congruent to BA. A complete machine-generated list of the common
notions is in the Appendix.

Betweenness Axioms

Euclid never made explicit mention of betweenness, ignored all places
where it should have been proved, and had no axioms for proving be-
tweenness statements. We will not discuss the historical origins of the
following axioms, nor the possibilities for reducing their number (this is
certainly not a minimal set, but the proofs required to eliminate some of
these axioms are long and difficult.) We give them the names they are
given in our formal development, which is why there are no spaces in those
names.

¬B(a, b, a) betweennessidentity

B(a, b, c)→B(c, b, a) betweennesssymmetry

B(a, b, d) ∧B(b, c, d)→B(a, b, c) innertransitivity

The following axiom is called connectivity and can be rendered in
English as “If B and C lie on the finite straight line AD, and neither is
between A and the other, then they are equal.”

Formally:

B(a, b, d) ∧B(a, c, d) ∧ ¬B(a, b, c) ∧ ¬B(a, c, b)→b = c

10



This principle was expressed in antiquity as “a straight line cannot
enclose an area.”11 It is closely related to the principle known in modern
times as “outer connectivity”, which says that if line AB has two exten-
sions C and D then either C is between B and D or D is between B

and C. We prove outer connectivity as a theorem from the connectivity
axiom.12

Null lines

A “null line” or “empty line” is one with equal endpoints, AA. There are
two axioms about null lines:

ab = cc→a = b nullsegment1, only a null line is equal to a null line.

aa = bb nullsegment2, all null lines are equal.

Euclid never considered null lines, but we cannot dispense with either of
these axioms.

Extension of lines

Euclid postulated that every line can be extended, but (at least in Heath’s
translation) did not say by how much.13 Instead we postulate that every
line AB can be extended by the amount CD; that is, there exists a point
E such that B(A,B,E) ∧ BE = CD. Since Euclid never deals with null
lines, we require both A 6= B and C 6= D as hypotheses.

Euclid’s Prop. I.2 asserts that given any point A and line CD there
is a point E with AE = CD. The extension postulate renders Prop. I.2
superfluous. That is a matter of some regret, since I.2 has a beautiful
proof. We did investigate weakening the extension postulate so that I.2
would require a proof, but then we need additional betweenness axioms.
In addition, after I.2 is proved we then need the line–circle axiom to prove
the extension postulate, which is “overkill.” We therefore decided to use
the extension postulate as described above, rather than attempt to weaken
it.14

11 It is discussed by Proclus [33], p. 126, who thinks it superfluous as it is included in the
meaning of Postulate 1. Apparently Simson was not convinced, as his translation [17] lists
it as an axiom. Heath rejects it as an axiom (p. 232 of [18]), not on mathematical grounds,
but because he came to the conclusion that it is an “interpolation”, i.e., is not in the original
Euclid, in spite of being included in three of the “best manuscripts.”

12Outer connectivity was discussed already by Proclus, who stated it as “two straight lines
cannot have a common segment” [33], p. 168-9, §216-17. Proclus says it is implicit in Euclid’s
line extension axiom. Neverthless, Proclus considers some possible proofs of it–but not the
ingenious proof offered by Potts in the commentary to Prop. I.11 in [32], p. 14, which shows
that outer connectivity follows from perpendiculars and the fact that an angle cannot be less
than itself. The latter, however, is a difficult theorem, if it (or a close equivalent) is not
assumed as an axiom.

13The Simson translation [17] renders the extension postulate as “That a terminated straight

line may be produced to any length in a straight line.” Perhaps Euclid’s extension postulate
said more than Heath’s translation indicates.

14This decision is inconsequential; if we weaken the extension postulate, add more between-
ness axioms, prove Prop. I.2 and use the line–circle axiom to prove the omitted extension
axiom, then from that point on the development is the same anyway. The only effect is to
save the beautiful proof of I.2.
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Five-line Axiom

Euclid attempted, in Proposition I.4, to prove the side-angle-side criterion
for angle congruence (SAS). But his “proof” appeals to the invariance of
triangles under rigid motions, about which there is nothing in his axioms,
so for centuries it has been recognized that in effect SAS is an axiom, not
a theorem.

Instead of SAS itself, we take an axiom known as the “five-line axiom.”
This axiom is illustrated in Fig. 2. Its conclusion is, in effect, the con-
gruence of triangles dbc and DBC in that figure. Its hypothesis expresses
the congruence (equality, in Euclid’s phrase) of angles dbc and DBC by
means of the congruence of the exterior triangles abd and ABD.

d

a b c

D

A B C

Figure 2: If the four solid lines on the left are equal to the cor-
responding solid lines on the right, then the dotted lines are also
equal.

Our version of the five-line axiom was introduced by Tarski, although
we have changed non-strict betweenness to strict betweenness.15

Pasch’s Axiom

Pasch [30] introduced the axiom that bears his name, in the form that says
that if a line enters a triangle through one side, it must exit through an-
other side (or vertex). That version, of course, is only true in a plane. Sev-
ens years later, Peano [31] introduced what are now called “inner Pasch”
and “outer Pasch”, which work without a dimension axiom.16 See Fig. 3.
In that figure, we use the convention that solid dots indicate points as-
sumed to exist, while an open circle indicates a point that is asserted to
exist.

Technically “Pasch’s axiom” should be “Pasch’s postulate”, since it
makes an existential assertion, but the terminology is too well-established

15The history of this axiom is as follows. The key idea (replacing reasoning about angles
by reasoning about congruence of segments) was introduced (in 1904) by J. Mollerup [28].
His system has an axiom closely related to the 5-line axiom, and easily proved equivalent.
Tarski’s version [38], however, is slightly simpler in formulation. Mollerup (without comment)
gives a reference to Veronese [39]. Veronese does have a theorem (on page 241) with the same
diagram as the 5-line axiom, and closely related, but he does not suggest an axiom related to
this diagram.

16Axiom XIII in [31] is outer Pasch, with B(a, b, c) written as b ∈ ac. Axiom XIV is inner
Pasch. Peano wrote everything in formal symbols only, and eventually bought his own printing
press to print his books himself.
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Figure 3: Inner Pasch (left) and outer Pasch (right). Line pb

meets triangle acq in one side ac, and meets an extension of side
cq. Then it also meets the third side aq. The open circles show
the points asserted to exist.

to change now.

Euclid’s Postulate 5

Euclid’s “parallel postulate”, or “Euclid 5”, is a postulate rather than an
axiom, because it asserts that two lines meet, i.e., there exists a point on
both lines. The hypothesis as Euclid stated the postulate involves angles.
We use instead a “points-only” version. Then Euclid’s version becomes a
theorem.

b
p

b

a

b

q
b

s

b
r

b

t

L

K

M

Figure 4: Euclid 5. Transversal pq of lines M and L makes corre-
sponding interior angles less than two right angles, as witnessed
by a. The shaded triangles are assumed congruent. Then M

meets L as indicated by the open circle.

Most modern geometry textbooks replace Euclid 5 by “Playfair’s ax-
iom” (introduced by Playfair in 1729), which asserts the uniqueness of
a line parallel to a given line AB, through a point P not collinear with
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AB. This also becomes a theorem in our development. Although it does
not occur as a proposition in Euclid, it is several times used implicitly in
Euclid’s proofs.

17

Euclid’s Postulate 4

Euclid 4 says “all right angles are equal.” The definition of a right angle is
this: ABC is a right angle if there is a point D such that B(A,B,D) and
AB = DB. It has been claimed since the time of Proclus that Euclid 4
is provable, but since the axioms and definitions were not so precise, we
are not certain that any of the alleged proofs could be counted as correct
until the proof in Tarski’s system presented in [35]. In our system this is
a difficult proof, depending on the fact that both reflection in a point and
reflection in a line are isometries (preserve congruence and betweenness).
The proof has to work without a dimension axiom. It is a very beauti-
ful proof and obviously much deeper than the “proofs” given by Proclus
and Hilbert. The beautiful part of the proof (after the observation that
reflections are isometries) is contained in Satz 10.15 of [35].

Even though this proof is difficult, it would clearly be a flaw to assume
Euclid 4 as an axiom, when it can in fact be proved. Therefore we prove
it, rather than assume it.18

Axioms involving circles

Euclid had no axioms about circles. There are three axioms in the litera-
ture:

circle–circle: if circle C has one point inside circle K and one point
outside, then there is a point on both circles.

line–circle: if line L has a point P inside circle K, then there are two
points A and B on both L and K, such that P is between A and B.

Segment-circle: if line L has a point A inside circle K and a point B

outside, then there is a point on K between A and B.

The reader should bear in mind that in the absence of any dimen-
sion axioms, a “circle” is “really a sphere”, or even some kind of “hyper-
sphere”.

circle–circle is used twice in Book I, once in Prop. I.1 and once again in
Prop. I.22, which shows how to construct a triangle with sides congruent
to given lines. (The third vertex is the intersection point of two circles

17 Explicitly: Playfair is used directly in propositions 44, 45, 47, and indirectly in 37, 38,
42, 46; and more indirectly in 39, 40, 41, 42, 48; so overall it is used in 39-48 except 43. Euclid
5 is used directly in 29, 39, 42, 44 and indirectly in 29-48 except 31, which is the existence of
the parallel line. Euclid should have proved 31 before 29, to emphasize that Euclid 5 is not
needed for it.

18One may well ask, if we find it necessary to prove Euclid 4 “just because we can”, why do
we not find it necessary to prove one of the two Pasch axioms, inner and outer Pasch, from
the other “just because we can”? The answer is that we still need one of them as an axiom,
and the same intuition that justifies one of them also justifies the other. Therefore there is
no conceptual economy in reducing the number of axioms by one. But proving Euclid 4 does
offer a conceptual simplification.
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with the specified radii.) Although Euclid does not explicitly mention the
axiom, both its applicability and necessity are clear, so we take circle–
circle as an axiom.

line–circle is used only once in Book I, in Prop. I.12, the construction
of a “dropped perpendicular.” We might also consider “one-point line–
circle”, in which the conclusion is weakened to assert only the existence of
a single point common to L and K. Since this axiom is inadequate for the
application to I.12, we do not consider further the idea of using it instead
of line–circle.

Segment-circle has been suggested as an axiom by many authors, in-
cluding Tarski (see [38]). But a detailed study shows that it is inadequate;
an irremovable circularity arises in formalizing Euclid without a dimen-
sion axiom. If we try to construct dropped perpendiculars (Euclid I.12)
using segment-circle continuity, to check the hypotheses we need the tri-
angle inequality (I.20). But I.19 is needed for I.20, and I.7 for I.19. In
Prop. I.7, the two triangles that are supposed to coincide might lie in
different planes, but for the hypothesis that they lie on the same side of
a line, a hypothesis that Euclid stated but never proved. Even so, I.7 is
more difficult to prove than Euclid thought, since he took for granted the
fact that an angle cannot be less than itself, but that principle is actu-
ally the essential content of I.7. Ever since Hilbert [25], angle inequality
has been regarded as a defined concept, and proving I.7 then requires
dropped perpendiculars (I.12) (or at least, we could not do without I.12).
But this is circular. The conclusion is that segment-circle continuity is
not a suitable axiom to use in formalizing Euclid’s proofs.19

The fact is that each of line–circle and circle–circle implies the other,
in the presence of the other axioms of Euclid. In the interest of following
Euclid fairly closely, we simply take both as axioms: circle–circle is used
in I.1 and I.7, while line–circle is used in I.12, and both those proofs are
far simpler than the proofs of line–circle and circle–circle from each other.

Even though we take both as axioms, it is worthwhile to discuss the
equivalences. The proofs can be found in [24]; see also the last section
of [2]. The proof of line–circle from circle–circle relies on dropped per-
pendiculars, which in Euclid is I.12, proved from line–circle. Therefore, a
proof of line–circle from circle–circle must rely instead on Gupta’s circle-
free perpendicular construction [23, 35], carrying us far beyond Euclid.
The only known synthetic proof of circle–circle from line–circle uses the
“radical axis” [37].

These proofs are long, and can be found, for example, in [24]. 20

19Line–circle continuity does not suffer from this problem, as the triangle inequality is not
required to drop perpendiculars. Of course, as Gupta showed [23], one can construct dropped
perpendiculars without mentioning circles at all, so there is no formal result that one circle
axiom is better for I.7 than another, as none at all is actually needed. We merely say that
Euclid’s proof can be repaired with line–circle, but not with segment-circle.

20The argument we gave for proving (rather than assuming) Euclid 4 was that it provides
a conceptual simplification to prove it. It does seem that reducing circle–circle to line–circle
provides a conceptual simplification, so we really cannot offer a philosophically convincing
argument for not computer-checking that reduction. But Euclid’s proofs clearly use both
axioms.
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Equal Figures in Euclid

Euclid used the word “figure” to mean what we now call a simple closed
polygon. A figure is “contained by” straight lines. In practice Book I
needs only triangles and quadrilaterals. Euclid used the word “equal” to
denote a relation between figures that he does not define. Nor did Euclid
give any explicit axioms about “equal figures”; he treated these as special
cases of the common notions, such as “the whole is equal to the sum of
the parts”, where the “parts” are figures and the “sum” is the union.
Occasionally he uses without explicit mention a few further axioms, such
as “halves of equals are equal.”

Book I culminates in the Pythagorean theorem, which Euclid states
using the notion of equal figures.21 Although we formalized only Book I
in the work reported here, all the propositions in Book II are about “equal
figures”, so a correct formulation of the notion is critical.

Exactly what notion Euclid had in mind is not perfectly clear. One
possible interpretation is that equal figures are figures with the same area.
That is not a first-order notion, because it involves measuring areas by
numbers. Alternately, after introducing “segment arithmetic” geometri-
cally, one can define area geometrically, but that is a very great deviation
from the path taken by Euclid.

Another possible interpretation of “equal figures” is the notion of
“equal content”, explained on p. 197 of [24], which involves cutting figures
into a finite number of pieces and reassembling them. That is also not a
first-order notion, because of the “finite number of pieces” part. Hence it
is irrelevant for our purposes, and we need not go into the details of the
definition.

Conclusion: the definitions of “equal figure” that we find in the liter-
ature all suffer from one of the following defects:

(i) Not being first order, because of requiring the concept of real num-
ber.

(ii) Not being first order, because of requiring the concept of natural
number (even just for equality of triangle and quadrilaterals).

(iii) First order, but requiring the geometrical definition of coordinates
and arithmetic (addition and multiplication of finite lines), which goes well
beyond Euclid.

The introduction of geometrical arithmetic has already been proof
checked in [11], from Tarski’s axioms; and we checked that Tarski’s axioms
are equivalent to those used in this paper, so approach (iii) has already
been proof checked.

We are, of course, not the first ones to face these difficulties. Hartshorne
lists (p. 196 of [24]) the properties of “equal figures” that Euclid’s proofs
use. Not all the properties in that list are first order. Our approach to the
treatment of “equal figures” is to treat “equal triangles” and “equal fig-
ures” (that is, equal quadrilaterals) as primitive relations, and give first-

21In fact, he says that the squares on the sides together equal the square on the hypotenuse.
But what he proves is that the square on the hypotenuse can be divided into two rectangles,
each of which is equal the square on one of the sides; so the further notion of two figures
together being equal to a third is not really needed.
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order axioms for them, sufficient to account for Euclid’s proofs. These
axioms are first order versions of Hartshorne’s.

Since we use variables only for points, not for figures, we must use
two relations: ET for “equal triangles” and EF for “equal quadrilaterals”
or “equal figures”; it is only for quadrilaterals, but EQ is already taken.
The axioms for these two relations say that ET and EF are equivalence re-
lations; that the order of vertices can be cyclically permuted or reversed,
preserving equality; that congruent triangles are equal; that if we cut
equal triangles off of equal quadrilaterals, producing triangles, the results
are equal; or if the cuts produce quadrilaterals, the results are also equal.
Then we have “paste” axioms that allow for pasting equal triangles onto
equal triangles; if the results are quadrilaterals they are equal, provided
also that the triangles do not overlap, which can be ensured by a hypoth-
esis about vertices lying on opposite sides of the paste-line. Similarly, if
pasting equal triangles onto equal quadrilaterals produces quadrilaterals,
they are equal.

Finally we need an axiom that enables us to prove that certain figures
are not equal; all the axioms mentioned so far hold if all figures are equal.
Such an axiom was introduced by de Zolt (see [24], p. 201). But de Zolt’s
formulation is not first order. Instead we take a special case: if ABC

is a triangle, and DE is a line that cuts the triangle (in the sense that
B(A,D,B) andB(B,E,C)), then neither of the two resulting pieces ADE

or CDE is equal to ABC). This turns out to be sufficient. A complete list
of our axioms, including all the equal-figures axioms, is in the Appendix.

The sudden introduction, halfway through Book I, of a large number
of additional axioms, might be considered a point of imperfection; and if
it could be improved by giving a first-order, synthetic definition of “equal
figures”, and proving the required properties of equal figures without in-
troducing new axioms, that would be desirable. We do have a candidate
for such a definition, based on Euclid I.44, but the verification that the
axioms hold for that definition seems to be as difficult as the definition
and correctness proofs for segment arithmetic. It therefore goes beyond
our aim in this paper, which is to give a formal account of Euclid’s defini-
tions, axioms, propositions, and proofs. Since Euclid’s proofs use axioms
about equal figures (even if they are listed as axioms), that is what we do
too.

Book Zero and filling in Book I

We proved more than 230 theorems, including the 48 propositions of Book
I. To list these theorems in the format used in the Appendix requires 14
pages, and since the files containing these theorems are accessible (as well
as the proofs), we elected not to list them all. Still we wish to give the
reader some idea of the additional theorems that we had to supply. We
use the phrase “Book Zero” informally to encompass those theorems that
seem to come before Book I, in the sense of being used in Book I and not
depending on Book I themselves. Book Zero begins with properties of con-
gruence and betweenness; several important and often-used lemmas are
about the order of four points on a line, when two betweenness relations
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are known between them. (There is one axiom about that, and the rest
of the relevant propositions can be proved.) There are variations on the
5-line axiom; there are theorems about collinearity and non-collinearity;
there is the definition of “less than” for finite lines, and the ordering prop-
erties of that relation and how it respects congruence (or equality) of finite
lines. Lying on ray AB (which emanates from A and passes through B) is
a defined relation; there are lemmas about how it relates to betweenness
and to collinearity. We can “lay off” a finite line along a ray, and the
result is unique. Euclid says we can “add equals to equals” as a com-
mon notion; but we prove it in a lemma called sumofparts. There is also
differenceofparts and subtractequals. Equality and order of angles
are defined concepts, and we have to prove their fundamental properties
in lemmas such as ABCequalsCBA, equalanglestransitive, and so on.
The “crossbar theorem” is also part of Book Zero. The notions of “same
side” and “opposite side” are defined, and their fundamental properties
proved, including the plane separation theorem, according to which if C
and D are on the same side of AB, and D and E are on opposite sides of
AB, then C and E are on opposite sides of AB; that is, there is a point
collinear with AB that is between C and E. This is where we pass out of
Book Zero, however, since the proof of that theorem requires constructing
a midpoint, which is Proposition 10.

Book Zero comprises about seventy theorems; Euclid’s Book I has 48;
we proved an additional hundred of so theorems that are needed to prove
Euclid’s 48, or are variants of those propositions, but whose proofs use
some of Euclid’s propositions as well. Let us give a typical example: the
lemma we call collinearbetween is used 19 times in our development,
including in Propositions 27,30,32,35,44, and 47. That lemma says that if
two lines AB and CD are parallel, and there is a point E between A and
D that is also collinear with BC, then that point E is actually between
B and C. That is not trivial to prove, and Euclid simply assumes that
it is so, because it appears so in the diagram. The names of some other
lemmas will be illustrative:
droppedperpendicularunique, angleordertransitive,
angleorderrespectscongruence, angletrichotomy.
Prop. I.12 (dropped perpendicular) has to precede Prop. I.9 (angle bisec-
tion), because Euclid’s proof of angle bisection via I.1 cannot be corrected.
Once perpendiculars are available, we prove pointreflectionisometry

and linereflectionisometry, and use them to carry out Szmielew’s
proof of Euclid’s Postulate 4 (all right angles are equal). Euclid fails
to state legsmallerhypotenuse, which is needed to prove another fact
about right triangles that Euclid uses without proof: the foot of the per-
pendicular from the right angle to the hypotenuse actually lies between
the two endpoints of the hypotenuse. Towards the end of Book I, the
steps of the proofs are more cavalier, and the omitted lemmas are more
difficult; for example Euclid omitted to state and prove that a square is a
parallelogram.22

22A square has four right angles and equal sides. A parallelogram has both pairs of opposite
sides parallel.
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6 Formal representation of Euclid

We wanted to write down our axioms, definitions, postulates, lemmas, and
propositions in a form that would be easy to manipulate by computer.
We chose to use strings to represent all these things. Euclid used only
one-character variable names, and we did the same. In that case there
seemed no need for commas and parentheses; in other words we used
Polish notation. There were, however, more than 26 relations to consider,
so we used in all cases 2-character names for the relations. For example,
we write B(a, b, c) in the form BEabc. AB = CD is written EEABCD. We
used EQAB to represent A = B, so we could not use EQ a second time, and
chose EE instead. “Parallel” becomes PR, as in PRABCD. There are quite
a few of these abbreviated two-character names, but that is enough to
convey the idea. The point is that every formula is a string. Conjunctions
and disjunctions begin with AN or OR and the subformulas are separated
by + or |, respectively. Negations are formed with NO.

Then we define classes Axiom, Definition, and Theorem, each of which
has fields called label, hypothesis, conclusion, and existential. The
label field is used for the name. The hypothesis and conclusion fields
each contain an array of formulas, or a single formula. The existential

field contains an empty string by default, and if it isn’t empty, that means
that it contains a list of variables that are supposed to be existentially
quantified in the conclusion.

We have thus defined a subset of first-order predicate logic. Specifi-
cally, our formulas have no function symbols, and only existential quanti-
fiers; universal quantification over the free variables is left implicit. Nested
quantifiers do not occur. Polish notation, one-character variables, and
two-character predicate names make it easy to manipulate these formulas
as strings and arrays of strings, and substitutions can be coded as ar-
rays, making unification possible by regular-expression matching. Every
modern programming language has useful libraries for this sort of thing.

7 Formal proofs

Each proof is a list of lines. Each line contains a formula and optionally a
justification. The proof is kept in a .prf file whose name gives the label of
the theorem it is intended to prove. The proof begins with a sequence of
unjustified lines that must repeat the hypotheses of the theorem. It ends
with a line that is the conjunction of the conclusions of the theorem, or
the sole conclusion if there is only one. The first line after the hypotheses
must have a justification. Any unjustified lines in the rest of the proof
must either be repetitions of earlier lines or must follow by logic alone
from some earlier lines. Justifications follow the pattern kind:label,
where kind is either defn, axiom, postulate,proposition, or lemma, and
label is the label of an item of the specified kind. An axiom, postulate,
or definition can be used anywhere, but a lemma or proposition cannot
be used anywhere, because circular arguments must be prevented.

We avoid circularity by having a “master list” of lemmas and propo-
sitions, which are to be proved in the specified order. A valid proof (of a
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certain item in the master list) is only allowed to reference previous items
in its justified steps.

Euclid’s proofs, and ours, make use of arguments by contradiction
and cases. We will now explain the syntax we used. An argument by
contradiction is introduced by a line with the justification assumption.
After some steps of proof, this line must be matched by a line with the
justification reductio. This line must contradict the assumption line. By
saying that A and B contradict each other, we mean that one of them is
the negation of the other. We found it helpful to indent the lines between
the assumption and the reductio labels, especially when nested arguments
by cases or reductio occur.

The syntax for cases is as illustrated in Fig. 5. Some of the cases
also illustrate proof by contradiction. The proof fragment begins with
an unjustified COEFH, which means E, F and H are collinear. This is
repeated from earlier in the proof. The second line is a disjunction, giving
the definition of collinear. The argument by cases begins on the third
line. The cases are exhaustive, by the second line. Each case begins with
a case number and closes with the keyword qedcase. Indentation is for
human use only.

In the proof, the only symbol that has not yet been explained is NE.
This means “not equal”, and has the same meaning as NOEQ. Similarly, NC
for “noncollinear” has the same meaning as NOCO.

We wrote more than two hundred formal proofs in this syntax. For
convenience, we introduce a name for this subset of first-order logic: Euc,
the first three letters of Euclid.
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COEFH

OREQEF|EQEH|EQFH|BEFEH|BEEFH|BEEHF defn:collinear

cases BEEHF:EQEF|EQEH|EQFH|BEFEH|BEEFH|BEEHF

case 1:EQEF

NOBEEHF assumption

NEEF

BEEHF reductio

qedcase

case 2:EQEH

NOBEEHF assumption

NEEH lemma:inequalitysymmetric

BEEHF reductio

qedcase

case 3:EQFH

NOBEEHF assumption

NEFH lemma:inequalitysymmetric

BEEHF reductio

qedcase

case 4:BEFEH

NOBEEHF assumption

NOBEFEH

BEEHF reductio

qedcase

case 5:BEEFH

NOBEEHF assumption

NOBEEFH

BEEHF reductio

qedcase

case 6:BEEHF

qedcase

BEEHF cases

Figure 5: An illustrative proof fragment, showing the syntax of
formulas and proofs.
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8 Checking the proofs by computer

The proofs described in this paper only need a rather weak logic. There
are no function symbols, and all the statements have a very restricted
form. That made it easy to write a custom-built proof checker, or “proof
debugger”, that we used while developing the formalization. That tool
also checks that we stay within the bounds of that logic.

HOL and Coq use an architecture that guarantees a much higher reli-
ability.

This is called the LCF architecture, after the LCF system from the
seventies that pioneered the approach. This architecture divides the sys-
tem in a small kernel (or logical core) and the rest of the code. By the use
of abstract datatypes, the correctness of the mathematics is then guaran-
teed by the correctness of the kernel. Whatever errors the rest of the code
of the system may contain, the statements claimed to have been proved
will indeed have been proved. In the case of the HOL Light system (one
of the incarnations of HOL), the correctness of this kernel has even been
formally proved (using the HOL4 system, another incarnation of HOL),
which gives an extremely high guarantee that the system will not have
any logical errors.

Our procedure for proof-checking Euclid was thus as follows:

• Write formal proofs in the Euc language, simultaneously checking
and debugging them with our custom proof debugger.

• Translate these proofs into HOL Light or Coq syntax by means of
simple scripts.

• Check the resulting proofs in HOL Light and Coq

The devil might ask whether we have lost something by using higher
order logic to check first order proofs. While it may appear so at first
glance, actually higher order logic itself ensures that we have not. Con-
sider: in higher order logic (both in Coq and HOL Light) we proved that
for any type of points, and couple of Betweenness and Congruence pred-
icates verifying Tarski’s axioms we can define the predicates of Euc and
prove the axioms. In these statements there is a second-order quantifi-
cation over the predicates used to interpret betweenness and congruence.
In essence we have proved that the axioms hold in any model. Then by
Gödel’s completeness theorem, the theorems are actually first order the-
orems. However, it is a general feature of higher order theorem provers
that they do not directly check first-order proofs. Moreover, we used the
Leibniz definition of equality, so indeed our translated proofs are not first
order. However, we did check the first order proofs directly in our custom
proof checker before translating them to higher order logic.

Our debugger also counted the number of inferences. Proofs of more
than 200 inferences were not uncommon, but the majority were under 100
inferences.

We also wrote code that analyzed the dependencies between lines of a
given proof. This enabled us to identify and eliminate lines that were never
subsequently used. We follow Euclid in sometimes repeating previously
deduced lines just before applying a proposition, to make it apparent
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that the required instances of the hypotheses have indeed been derived.
These lines, of course, are technically eliminable; but mainly we wanted to
eliminate “red herring” lines that were actually irrelevant. The automatic
detection of such lines was useful.

9 Checking the proofs in HOL Light

To ensure the correctness of the Euclid formalization from the language
Euc to HOL Light, we built a very small custom checker on top of HOL
Light, and used that to check our work for correctness in HOL as well.
The source of this proof checker, proofs.ml, has about a hundred lines,
which then is used to check a translation of the formalization into syntax
that HOL Light can process of almost twenty thousand lines, michael.ml.
This last file is created from the original proof files described above by
two small ad hoc scripts, a PHP script called FreekFiles.php and a Perl
script called FreekFiles.pl.

In the HOL system, all input (even the proofs) always consists of
executable ML source code. The proofs of each lemma in our case is
checked by calling a function run_proof (implemented in proofs.ml) on
the statement of the lemma and a list items of a custom datatype called
proofstep. The ML definition of this datatype is shown in Fig. 6. The
output of this function is a HOL thm, a proved statement. In other words,
the ML type of the function that is used here is:

run_proof : term -> proofstep list -> thm.

The list of proofsteps corresponding to the proof fragment from Fig. 5
is shown in Fig. 7.

In that example some of the choices on how to translate the statements
from the proof to the HOL logic can be seen. For instance, we had to
decide whether to translate EQ to the standard HOL equality, or to have
it be a custom relation. We chose to make use of the features of standard
first order logic with equality, but nothing beyond that. That means that
we translated equality to the built-in equality of the logic, and translated

type proofstep =

| Known of term

| Step of term * thm

| Equalitysub of term

| Assumption of term

| Reductio of term

| Cases of term * term

| Case of int * term

| Cases_ of term

| Qedcase;;

Figure 6: The ML datatype used when checking the proofs with
HOL.
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Known ‘CO E F_ H‘;

Step (‘E:point = F_ \/ E:point = H \/ F_:point = H \/ BE F_ E H \/ BE E F_ H \/ BE E H F_‘, defn_collinear);

Cases (‘BE E H F_‘, ‘E:point = F_ \/ E:point = H \/ F_:point = H \/ BE F_ E H \/ BE E F_ H \/ BE E H F_‘);

Case (1, ‘E:point = F_‘);

Assumption ‘~(BE E H F_)‘;

Known ‘~(E:point = F_)‘;

Reductio ‘BE E H F_‘;

Qedcase;

Case (2, ‘E:point = H‘);

Assumption ‘~(BE E H F_)‘;

Step (‘~(E:point = H)‘, lemma_inequalitysymmetric);

Reductio ‘BE E H F_‘;

Qedcase;

Case (3, ‘F_:point = H‘);

Assumption ‘~(BE E H F_)‘;

Step (‘~(F_:point = H)‘, lemma_inequalitysymmetric);

Reductio ‘BE E H F_‘;

Qedcase;

Case (4, ‘BE F_ E H‘);

Assumption ‘~(BE E H F_)‘;

Known ‘~(BE F_ E H)‘;

Reductio ‘BE E H F_‘;

Qedcase;

Case (5, ‘BE E F_ H‘);

Assumption ‘~(BE E H F_)‘;

Known ‘~(BE E F_ H)‘;

Reductio ‘BE E H F_‘;

Qedcase;

Case (6, ‘BE E H F_‘);

Qedcase;

Cases_ ‘BE E H F_‘;

Figure 7: The HOL counterpart of the proof fragment in Fig. 5.
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NE identical to NOEQ and NC identical to NOCO. Therefore the translation
does not have predicates EQ, NE and NC. As a small optimization, NONC was
translated without a double negation.

Within HOL we used an axiomatic approach. That is, we added our
axioms to the HOL axioms. That way, we will be verifying that the
theorems of Euclid follow from those axioms, rather than (for example)
that they are true in R

2 or R
n. This raised the number of HOL axioms

by 40, from the original 3 to 43. Before stating these 40 axioms we also
added two new primitive types. point and circle, and five new primitive
predicates, BE, EE, CI, ET and EF.

There are some differences between what was taken to be axioms in
the original version of the formalization, and what are axioms in the HOL
version. The definitions of the predicates were originally axioms, but
in the HOL version are actual HOL definitions, with the ‘axioms’ being
the equivalences that these definitions produce. Two exceptions for this
approach are defn:unequal and defn:circle of which the first is omitted
(it is not used anywhere) and the second is an axiom (as it does not
have the shape of a HOL definition). Also, defn:inside, defn:outside
and defn:on are still axioms, because these also state that the defining
property does not depend on the points that give the circle, which one
does not get from just a definition.

Of the common notions, cn:equalitytransitive,
cn:equalityreflexive, cn:stability and cn:equalitysub are not ax-
ioms, but proved statements, because they only involve equality and are
part of the logic.

The LCF architecture of HOL Light only guarantees that the proofs are
valid in the higher order logic of HOL Light. However, the implementation
in proofs.ml only uses first order tactics (most notably MESON, which is
the main tool used for checking the steps), which shows that the proofs
are actually first order. Whether the proofs are correct with respect to
the ‘natural’ interpretation of the proof steps (whatever that is) is not
checked in the HOL version.

The full check of the twenty thousand lines is uneventful, but not very
fast, mostly because of the use of the rather heavy MESON. It takes several
minutes. At some points MESON has to work very hard (it loses the fact
that the conclusion of the lemma exactly matches the step being proved,
and is trying many possible ways to unify the parts). For these cases
proofs.ml contains two custom lower level tactics, SUBGOAL_UNFOLD_TAC
and SUBGOAL_MATCH_TAC, which do not use MESON. Potentially the use of
MESON could be avoided altogether, but then the code in proofs.ml would
be much more involved, with backtracking to find the relevant previous
proof steps. Still this might be useful, as then it would establish which
of the previous proof steps are actually used when checking a step. This
would make a practical translation to a Mizar version of this formalization
possible.

25



Lemma proposition_41 :

forall A B C D E, PG A B C D -> Col A D E -> ET A B C E B C.

Proof.

intros.

assert (ET A B C E B C).

by cases on (eq A E \/ neq A E).

{

assert (ET A B C A B C) by (conclude axiom_ETreflexive).

assert (ET A B C E B C) by (conclude cn_equalitysub).

close.

}

{

assert (Par A B C D) by (conclude_def PG ).

assert (Par A D B C) by (conclude_def PG ).

assert (Col D A E) by (forward_using lemma_collinearorder).

assert (Par B C A D) by (conclude lemma_parallelsymmetric).

assert (Par B C D A) by (forward_using lemma_parallelflip).

assert (neq E A) by (conclude lemma_inequalitysymmetric).

assert (Par B C E A) by (conclude lemma_collinearparallel).

assert (Par B C A E) by (forward_using lemma_parallelflip).

assert (Par A E B C) by (conclude lemma_parallelsymmetric).

assert (ET A B C E B C) by (conclude proposition_37).

close.

}

close.

Qed.

Figure 8: Example proof in Coq
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10 Checking the proofs in Coq

10.1 Formalizing the Axioms

The axioms in our axiomatization of Euclid are of two kinds: axioms
related to definitions and others. Axioms that serve as definition as those
of the form: ∀x,P (x) ⇐⇒ Q(x). We translate them to a proper Coq
definition to reduce the number of axioms. Technically, in Coq, we did not
use the Axiom keyword. Because axioms are similar to global variables
in a programming language, they reduce the re-usability of the code. We
sorted the axioms into several groups, and defined them in Coq using type
classes. Then, the axioms are given as so-called section variables of Coq,
a mechanism which allows to have the axioms as an implicit assumption
for each lemma. For propositions I.1 to I.28 and I.30 we do not use the
fifth postulate of Euclid. For propositions I.1 to I.34, we do not need the
equal-figure axioms. Avoiding the Axiom keyword allows us to reuse the
proofs in a different setting by proving the axioms in Coq as a second-
order property either from another axiom system or by constructing a
model (see Sec.11.1).

Equality We model the equality using Coq’s built-in equality: Leib-
niz’s equality. We could also have assumed an equivalence relation and
substitution properties for each of the predicates of the language.

10.2 Verifying the proofs

Proof assistants differ in their mathematical foundations (e.g. type the-
ory, higher order logic (HOL), or set theory) and their proof language.
In procedural style proof assistants (e.g. Coq and HOL Light), proofs
are described as a sequences of commands that modify the proof state,
whereas in proof assistants that use a declarative language (e.g Mizar and
Isabelle), the proofs are structured and contain the intermediate assertions
that were given by the user and justified by the system.

We wrote a script to translate the proofs to Coq’s language. The
translation is relatively easy as the proofs steps used by the proof debugger
are small.

Our translation generate a proof in the traditional language of Coq,
not in the declarative language introduced by Corbineau [16] because this
language is not maintained. But, the formal proofs we generate are in
the declarative style: for case distinctions we give explicitly the statement
which is used instead of the name of the hypothesis, the proofs are purely
in the forward chaining style, based on sequences of applications of the
standard Coq tactic assert. We do not introduce hypothesis numbers.
The existential statements and conjunctions are eliminated as soon as
they appear by introducing the witness and decomposing the conjunction.
The assertions are justified using some ad-hoc tactics which use some
automation and congruence closure. We had to circumvent some weakness
of Coq’s automation. Coq is not able to use efficiently lemmas of the form
∀xyz,Pxyz → Pyzx∧ Pyxz, because the apply tactic will always choose
to unify the goal with the first term of the conjunction. The standard
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way to state such a lemma in Coq is to split the lemmas in two parts.
But, we did not want to modify the original formalization of the lemmas.
Hence, to circumvent this limitation, we verified these proof steps using
a tactic based on forward-chaining. The case distinction tactic, allows to
distinguish cases on previously proved disjunctions or disjunctions which
are classical tautologies. The tactic can deal with n-ary disjunctions. The
proof script is structured using curly brackets and indentation. Each proof
step of the original proof corresponds to one proof step in Coq, except that
steps for which there is no justification in the original proofs. Those steps
corresponds the natural deduction rule for introduction of implication and
are implemented using the standard Coq tactic intro. Figure 8 provides
an example of a proof in Coq’s language enriched by the tactics to ease
the verification. Some of the predicates have been renamed into longer
names to enhance readability and to match the names used in the GeoCoq
library. The proofs are verified using classical logic. The proofs takes
approximately 45 minutes to compile on a laptop.

10.3 Verifying the statements

When evaluating a formalization, even if we trust the proof checker, we
need to check that statements are formalized faithfully. Usually the only
method we can use for this process is to check the statements by human
inspection and trust the reviewer to also check the statements. For this
formalization, we were lucky, as many statements had been formalized
independently by the first author and the GeoCoq team. To improve the
confidence in the formalization, we compared the two formalizations of the
statements to detect potential defects. We detected only minor differences
in some of the statements.

11 The axioms hold in R
2

The axioms fall into two groups: those that are variants of Tarski’s axioms
A1–A10, and the equal-figure axioms. In order to make sure that there
is no mistake in the axiomatization, we wished to check formally that the
axioms hold in the Cartesian plane R

2. For reasons of convenience, we
checked that for the first group of axioms in Coq, and for the equal-figure
axioms in HOL Light. We will discuss these two verifications separately.

It has already been checked [7] that Tarski’s axioms hold in R
2. In

Tarski’s A1–A10, without dimension axioms, one can (formally) verify our
axioms, which are mainly different from Tarksi’s by using strict between-
ness and hence avoiding degenerate cases. This has also been verified in
Coq.

11.1 Verifying the Tarski-style axioms in Coq

Since there is no dimension axiom, the “intended model” is R
n, for any

integer n > 1. More generally, we wish to prove that if F is a Euclidean
field, then F

n satisfies our axioms. We break this claim into four parts.
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(i) our axioms for neutral geometry can be derived from the corre-
sponding Tarski’s axioms.

(ii) circle-circle, circle-line, and Euclid 5 can be derived from the cor-
responding axioms from Tarski.

(iii) Tarski’s axioms hold in F
n.

(iv) the equal-figure axioms hold in F
n.

The reason for passing through Tarski’s axioms is that it has already
been shown that Tarski’s axioms for neutral geometry hold in F

2, when
F is a Pythagorean ordered field. 23 Specifically, Boutry and Cohen
have formalized the proof that the Cartesian plane over a Pythagorean
ordered field is a model of our formalization of Tarski’s axioms A1–A10
using ssreflect [5]. The model has been extended to verify the circle-
circle intersection axiom, by assuming that the field is Euclidean. Boutry
and Cohen have since extended their work to prove that Tarski’s axioms,
except dimension, hold in F

n.
Ad (ii). We chose to assume the circle-circle intersection property and

use the formal proof obtained by Gries and the second author that the
circle-line intersection property can be derived from circle-circle intersec-
tion, even without assuming a parallel postulate [22]. Gries also formalized
the proof that circle-circle intersection can be derived from the continuity
axiom of Tarski (Dedekind cuts restricted to first-order definable sets).
As Euc axiom system assumes that we have a sort for circles, we need
to define the type of circles from Tarski’s axioms (and Coq’s Calculus of
Inductive Constructions CIC). The type of circles is defined as the triple
of points (* is interpreted in this context as the Cartesian product).

Definition Tcircle : Type := Tpoint*Tpoint*Tpoint %type.

Then the predicate CI can be defined by:

Definition CI (J:Tcircle) A C D := J=(A,C,D).

Then the relation expressing that a point is on a circle can be defined by
destructing the triple:

Definition OnCirc P (C:Tcircle) :=

match C with

(X,A,B) => tarski_axioms.Cong X P A B

end.

For Euclid 5, we rely on the proofs of equivalence between different ver-
sions of the parallel postulates studied previously by the first author [3]
and formalized in Coq, by Boutry, Gries, Schreck and the second au-
thor [8].

11.2 Verifying the equal-figure axioms

We here outline the verification that the the equal-figure axioms hole in
R

2. We did not verify them in F
n or even R

n, because we wanted to use
the (scalar) cross product in R

2 and the existing tools for real algebra in
HOL Light.

23Recall that a Pythagorean field, is a field where some of squares are squares.
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We interpret points as members of the Cartesian product RtimesR.
We write that here as R2, although in HOL Light the notation R2 does
not mean the Cartesian product. Then we define the dot product and the
two-dimensional cross product as usual:

(a, b) · (c, d) = ac+ bd

(a, b)× (c, d) = ad− bc

Twice the signed area of a triangle abc is defined by

tarea(a, b, c) = (c− a)× (b− a)

Collinearity L(a, b, c) and betweenness B(a, b, c) are defined thus:

L(a, b, c) ↔ tarea(a, b, c) = 0

B(a, b, c) ↔ L(a, b, c) ∧ (b− a) · (c− a) > 0 ∧ (b− c) · (a− c) > 0

Twice the signed area of a quadrilateral abcd is given by the cross product
of its diagonals:

sarea4(a, b, c, d) = (c− a)× (b− d)

Now we can define ET (equal triangles) by saying that two triangles are
equal if the squares of their signed areas are equal, and similarly we de-
fine EF (equal quadrilaterals) by saying two quadrilaterals are equal if
the squares of their signed areas are equal. The area of a triangle or
quadrilateral is defined to be the absolute value of the signed area.

These are all the definitions needed to interpret the equal-figures ax-
ioms in R2. We executed this translation by hand, producing a list of
seventeen goals to prove in HOL Light. Eight of these were extremely
easy to prove; the others were halvesofequals, the two De Zolt axioms,
and the cut-and-paste axioms. The remaining axioms are consequences of
the additivity of area, so we proved them by first proving the additivity
of area, and then deriving the axioms from the additivity of area.24

12 Previous work on computer checking

geometry

Work on computerizing Euclidean geometry began in 1959, in the first
decade of the computer age, with the pioneering work of Gelernter [19, 20].
(The reference has a later date because it is a reprinting in a collection.)
The axiom system used by Gelernter was not given explicitly, but from
the example proofs given, it can be seen that it was, at least in effect, a
points-only system. It was a strong axiom system, including for example

24Full disclosure: as of October 1, 2017, we have not yet completed these proofs. We plan
to complete them and remove this footnote before publication.
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all the triangle congruence theorems, Euclid 4, some strong but unspeci-
fied betweenness axioms. Tarski is not referenced; that is not surprising
as Tarski’s first publication of his axiom systems was also in 1959. Gelern-
ter’s system was claimed to be as good as “all but the best” high school
geometry students. Considering the primitive hardware and software of
1959, it was an amazing program. However, its authors stated that they
viewed geometry as just one area in which to study heuristic reasoning,
and neither the program nor its underlying formal theory ever raised its
head above water again.

As far as we know, nineteen years passed before the next work in com-
puterizing geometry; it was 1978 when Wen-Tsün Wu [40] began a series
of papers on the subject, culminating in his 1984 book, published only
in Chinese, and not available in English until 1994 [41]. He was soon as-
sisted by S. C. Chou [12, 13]. Using coordinates, one reduces a geometry
theorem to an implication between polynomial equations. One can then
demonstrate the truth of a geometry theorem by algebraic methods. Such
algebraic methods, while they may succeed in establishing the validity of
a theorem, do not provide a proof from geometric axioms. One might
check the correctness of Euclid’s results this way, but not his proofs. One
problem with this approach is that it works only for problems that in-
volve equality, not for problems that involve betweenness or inequality. A
second problem is that Wu’s method requires polynomials with hundreds
of variables, and hence does not produce human-comprehensible proofs.
Nevertheless, Wu and Wang, Gao, Chou, Ko, and Hussain proved many
theorems. Within a few years three different groups began to use Gröbner
bases to do the algebraic work, instead of the Wu-Ritt algorithm. See [26],
[27], [15].

Sometime after 1984, Chou invented the area method, which still uses
polynomial computations, but based on certain geometric invariants. The
area method, as an algorithm for solving geometry problems, can be used
by humans and has even been used to train students for Olympiad-style
competitions. [14], p. xi. For the state of the art in area-method imple-
mentation as of 1994, see [14], where more than four hundred computer-
produced and human-readable proofs are given. However, the steps of
these proofs are equations, whose truth is verified by symbolic computa-
tion, not by logic. Also, as with Wu’s method, inequalities and between-
ness cannot be treated.

In the 1980s, Larry Wos experimented with proving geometry the-
orems in Tarski’s theory using the theorem-prover OTTER. Then Art
Quaife took up that same project, publishing a paper in 1989 [34], and
devoting a chapter of his 1992 book to it. Wos and Quaife left a num-
ber of “challenge problems” unsolved by OTTER. In this same decade,
the book [35] was published, containing the results from Gupta’s thesis
[23] and Szmielew’s Berkeley course, together constituting a systematic
development of “absolute geometry” (no circle or continuity axioms) from
Tarski’s axioms. This book was quite rigorous, but not (yet) computer-
checked. It also did not reach even to the beginning of Euclid. Twenty
years later, the first author and Wos returned to this project, and used
OTTER to find proofs of all the challenge problems of Quaife, and the
first ten chapters of [35] (Part I). But since [35] spends a lot of effort de-
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veloping “elementary” results from minimal axioms (no circle axioms and
postponing the parallel postulate as long as possible), the propositions
of Euclid are not reached. In this project, the more difficult proofs were
not found automatically, but instead the theorem prover was used almost
like a proof checker, by means of supplying “hints.” Therefore, when we
wanted to proceed to proof check Euclid, it seemed appropriate to switch
from a theorem prover to a proof checker, which is what we did for this
work.

In 2009, Avigad, Dean, and Mumma [1] reported on a formal system
for Euclid’s Elements. This system is six-sorted (points, lines, circles, seg-
ments, angles, and “areas” (figures), and therefore has also a large number
of primitive relations, including “same side” and “opposite side”. The ax-
iom system of E differs from ours, because it contains more axioms. They
assume 20 constructions axioms, 34 axioms about the two-side, inside and
betweenness relations which they call “diagrammatic inferences.” Their
system is intended for two-dimensional geometry only, a restriction delib-
erately avoided in our system. They also assume that distances and areas
can be measured using a linearly ordered abelian group. We follow Euclid
in not assigning measures to distance or area; one may compare distances
or areas (figures), but not measure them.

Our aim in this section is to discuss past work on computerization
of Euclid, rather than logical formal systems, so our focus is on imple-
mentation of the formal system. The intention of the authors was to
build an interactive proof checker (with application to education). That
proof checker should check “diagrammatic inferences”, allowing the user
to make in one step an inference that might require many formal steps in
first-order logic. In §6 of the paper, Avigad, Dean, and Mumma say “our
analysis should make it possible to design a computational proof checker”
based on their system, and “preliminary studies suggest that general pur-
pose tools in automated reasoning are sufficient for the task.” Moreover,
a couple of examples of checked proofs are given. In 2011, Ben Northrop
implemented an “E proof checker” in Java, which can be found on the
web. But there is no archive of checked proofs, or any claim that Book I
or any specific body of geometry has been checked. The aims of Avigad,
Dean, and Mumma were not along those lines: they wanted to analyze the
nature of Euclid’s proofs and account for the role of the diagram in those
proofs; computer-checking the correctness was not their primary aim.

Starting in 2007, and still continuing as this is written in 2017, the
second author of this paper and Gabriel Braun have been busy computer-
checking geometrical theorems in the proof assistant Coq. They veri-
fied Pappus’s theorem [11] (which is important for the geometrical def-
inition of arithmetic). They verified that Hilbert’s axioms follow from
Tarski’s [10]. With Pierre Boutry, they verified that Tarski’s axioms fol-
low from Hilbert’s [9], and completed [6] the verification of the theorems
in Szmielew’s part of [35], which the second author began (with other co-
authors) in [36]. Work is currently being done toward checking Euclid’s
propositions from Hilbert/Tarski axioms within Coq. This work differs
from the work presented in this paper, because the goal is not to verify
Euclid’s proofs but Euclid’s statements using an axiom system as minimal
as possible.
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For further information, please see the forthcoming survey article [29].

13 Conclusion

Our aim was to remove every flaw from Euclid’s axioms, definitions, postu-
lates, and common notions, and give formal proofs of all the propositions
in Book I. Did we achieve that aim?

The statements of the postulates and the definitions needed little if
any change; it is the axioms and proofs that needed corrections. We
replaced Euclid’s axioms and postulates by similar ones in a language
similar to Tarski’s, but using strict betweenness. We added line-circle
and circle-circle axioms, and both inner and outer Pasch; we added the
five-line axiom to enable a correct proof of the SAS congruence criterion
(Prop. I.2). We dropped Postulate 4 (all right angles are equal) because
it can be proved, and formulated Postulate 5 (the parallel postulate) in
our points-only language. Inequality of lines and angles, and equality
of angles, become defined concepts and the common notions concerning
those concepts become theorems. We used Tarski’s definition of “same
side”, an essential concept which Euclid mentioned but neither defined
nor considered as a common notion. We think that this choice of axioms
is very close to Euclid’s.

With this choice of axioms, we were able to prove Euclid’s propositions
I.1 to 1.48, except three, which we omitted for good reasons.25 These
proofs follow Euclid as closely as possible, and have been checked in two
well-known and respected proof checkers. We have therefore shown be-
yond a shadow of a doubt that these proofs are correct. Then we checked,
again using those same proof checkers, that the axioms we used hold in
every plane over a Euclidean field; indeed, since Euclid has no dimen-
sion axiom, over every finite-dimensional space over a Euclidean field. In
particular all of Euclid’s propositions in Book I and corrected proofs of
those propositions, close to Euclid’s ideas, are valid, without a shadow of
a doubt, in Euclidean two-space and three-space. While many paper-and-
pencil formalizations of Euclid have been put forward in the past, we are
the first to be able to make this claim. That this was not a superfluous ex-
ercise is shown by the many difficulties we encountered, and the fact that
we had to prove the propositions in quite a different order than Euclid,
and in some cases by different proofs. In this paper we have focused on
the axioms and the proof checking. A subsequent publication will present
the geometrical difficulties and the repaired proofs.

To play the devil’s advocate, what argument could be made that we
did not achieve the aim stated above? One might complain that we proved
the propositions in a different order than Euclid did. We had to do that,
because we could not prove them in the original order using our axioms.
The devil might argue that we should have strengthened the circle-circle
axiom to provide for an intersection point of the two circles on a given
side of the line joining the centers. With this stronger axiom we could
have fixed Euclid’s proof of I.6 (angle bisection) and used it as Euclid did

25That would be I.2, which is subsumed by our extension axiom, and I.13 and 1.17, which
require formalizing a theory of angles more than 180◦, and are never used.
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to bisect a line. But this would amount to assuming, rather than proving,
the existence of erected perpendiculars, midpoints, and angle bisectors.
Besides, it would not have fixed the other problems we had with the
ordering of theorems, and the proof we gave, using midpoints to bisect
angles rather than bisection of angles to construct midpoints, is beautiful,
even if it was discovered by Gupta more than two thousand years after
Euclid.

We think that the devil would be wrong to say we should have strength-
ened circle-circle, and we therefore claim that we did indeed remove every
flaw from Euclid’s axioms, definitions, postulates, and common notions,
and give correct proofs of the propositions in Book I.

Appendix

Common Notions

equalitytransitive

hypotheses: EQAC EQBC

conclusion: EQAB

congruencetransitive

hypotheses: EEPQBC EEPQDE

conclusion: EEBCDE

equalityreflexive

hypotheses: none

conclusion: EQAA

congruencereflexive

hypotheses: none

conclusion: EEABAB

equalityreverse

hypotheses: none

conclusion: EEABBA

stability

hypotheses: NONEAB

conclusion: EQAB

equalitysub

hypotheses: EQDA BEABC

conclusion: BEDBC

Definitions

unequal A and B are distinct points

The definition of NEAB

is: NOEQAB

collinear A, B, and C are collinear

The definition of COABC

is: OREQAB|EQAC|EQBC|BEBAC|BEABC|BEACB

noncollinear A, B, and C are not collinear

The definition of NCABC

is: NEAB NEAC NEBC NOBEABC NOBEACB NOBEBAC
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circle X is the circle with center C and radius AB

The definition of NEAB

is: For some X, CIXCAB

inside P is inside the circle J of center C and radius AB

The definition of CIJCAB ICPJ

is: For some XY, CIJCAB BEXCY EECYAB EECXAB BEXPY

outside P is outside the circle J of center C and radius AB

The definition of CIJCAB OCPJ

is: For some X, CIJCAB BECXP EECXAB

on P is on the circle J of center C and radius AB

The definition of CIJACD ONBJ

is: CIJACD EEABCD

equilateral ABC is equilateral

The definition of ELABC

is: EEABBC EEBCCA

triangle ABC is a triangle

The definition of TRABC

is: NCABC

ray C lies on ray AB

The definition of RAABC

is: For some X, BEXAC BEXAB

lessthan AB is less than CD

The definition of LTABCD

is: For some X, BECXD EECXAB

midpoint B is the midpoint of AC

The definition of MIABC

is: BEABC EEABBC

equalangles Angle ABC is equal to angle abc

The definition of EAABCabc

is: For some UVuv, RABAU RABCV RAbau RAbcv EEBUbu EEBVbv EEUVuv NCABC

supplement DBF is a supplement of ABC

The definition of SUABCDF

is: RABCD BEABF

rightangle ABC is a right angle

The definition of RRABC

is: For some X, BEABX EEABXB EEACXC NEBC

perpat PQ is perpendicular to AB at C and NCABP

The definition of PAPQABC

is: For some X, COPQC COABC COABX RRXCP

perpendicular PQ is perpendicular to AB

The definition of PEPQAB

is: For some X, PAPQABX

interior P is in the interior of angle ABC

The definition of IAABCP

is: For some XY, RABAX RABCY BEXPY

oppositeside P and Q are on opposite sides of AB

The definition of OSPABQ

is: For some X, BEPXQ COABX NCABP

sameside P and Q are on the same side of AB

The definition of SSPQAB
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is: For some XUV, COABU COABV BEPUX BEQVX NCABP NCABQ

isosceles ABC is isosceles with base BC

The definition of ISABC

is: TRABC EEABAC

cut AB cuts CD in E

The definition of CUABCDE

is: BEAEB BECED NCABC NCABD

trianglecongruence Triangle ABC is congruent to abc

The definition of TCABCabc

is: EEABab EEBCbc EEACac TRABC

anglelessthan Angle ABC is less than angle DEF

The definition of AOABCDEF

is: For some UXV, BEUXV RAEDU RAEFV EAABCDEX

togethergreater AB and CD are together greater than EF

The definition of TGABCDEF

is: For some X, BEABX EEBXCD LTEFAX

togetherfour AB,CD are together greater than EF,GH

The definition of TTABCDEFGH

is: For some X, BEEFX EEFXGH TGABCDEX

tworightangles ABC and DEF make together two right angles

The definition of RTABCDEF

is: For some XYZUV, SUXYUVZ EAABCXYU EADEFVYZ

meet AB meets CD

The definition of MEABCD

is: For some X, NEAB NECD COABX COCDX

cross AB crosses CD

The definition of CRABCD

is: For some X, BEAXB BECXD

tarski parallel AB and CD are Tarski parallel

The definition of TPABCD

is: NEAB NECD NOMEABCD SSCDAB

parallel AB and CD are parallel

The definition of PRABCD

is: For some UVuvX, NEAB NECD COABU COABV NEUV COCDu COCDv NEuv

NOMEABCD BEUXv BEuXV

anglesum ABC and DEF are together equal to PQR

The definition of ASABCDEFPQR

is: For some X, EAABCPQX EADEFXQR BEPXR

parallelogram ABCD is a parallelogram

The definition of PGABCD

is: PRABCD PRADBC

square ABCD is a square

The definition of SQABCD

is: EEABCD EEABBC EEABDA RRDAB RRABC RRBCD RRCDA

rectangle ABCD is a rectangle

The definition of REABCD

is: RRDAB RRABC RRBCD RRCDA CRACBD
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Axioms of betweenness and congruence

betweennessidentity

hypotheses: none

conclusion: NOBEABA

betweennesssymmetry

hypotheses: BEABC

conclusion: BECBA

innertransitivity

hypotheses: BEABD BEBCD

conclusion: BEABC

connectivity

hypotheses: BEABD BEACD NOBEABC NOBEACB

conclusion: EQBC

nullsegment1

hypotheses: EEABCC

conclusion: EQAB

nullsegment2

hypotheses: none

conclusion: EEAABB

5-line

hypotheses: EEBCbc EEADad EEBDbd BEABC BEabc EEABab

conclusion: EEDCdc

Postulates

extension

hypotheses: NEAB NECD

conclusion: For some X, BEABX EEBXCD

Pasch-inner

hypotheses: BEAPC BEBQC NCACB

conclusion: For some X, BEAXQ BEBXP

Pasch-outer

hypotheses: BEAPC BEBCQ NCBQA

conclusion: For some X, BEAXQ BEBPX

line-circle

hypotheses: CIKCPQ ICBK NEAB

conclusion: For some XY, COABX COABY ONXK ONYK

BEXBY

circle-circle

hypotheses: CIJCRS ICPJ OCQJ CIKDFG ONPK ONQK

conclusion: For some X, ONXJ ONXK

Euclid5

hypotheses: BErts BEptq BEraq EEptqt EEtrts NCpqs

conclusion: For some X, BEpaX BEsqX

Axioms for Equal Figures

EFreflexive

hypotheses: none
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conclusion: EFABCDABCD

congruentequal

hypotheses: TCABCabc

conclusion: ETABCabc

ETpermutation

hypotheses: ETABCabc

conclusion: ETABCbca ETABCacb ETABCbac ETABCcba

ETABCcab

ETsymmetric

hypotheses: ETABCabc

conclusion: ETabcABC

EFpermutation

hypotheses: EFABCDabcd

conclusion: EFABCDbcda EFABCDdcba EFABCDcdab EFABCDbadc

EFABCDdabc EFABCDcbad EFABCDadcb

halvesofequals

hypotheses: ETABCBCD OSABCD ETabcbcd OSabcd EFABDCabdc

conclusion: ETABCabc

EFsymmetric

hypotheses: EFABCDabcd

conclusion: EFabcdABCD

EFtransitive

hypotheses: EFABCDabcd EFabcdPQRS

conclusion: EFABCDPQRS

ETtransitive

hypotheses: ETABCabc ETabcPQR

conclusion: ETABCPQR

cutoff1

hypotheses: BEABC BEabc BEEDC BEedc ETBCDbcd ETACEace

conclusion: EFABDEabde

cutoff2

hypotheses: BEBCD BEbcd ETCDEcde EFABDEabde

conclusion: EFABCEabce

paste1

hypotheses: BEABC BEabc BEEDC BEedc ETBCDbcd EFABDEabde

conclusion: ETACEace

deZolt1

hypotheses: BEBED

conclusion: NOETDBCEBC

deZolt2

hypotheses: TRABC BEBEA BEBFC

conclusion: NOETABCEBF

paste2

hypotheses: BEBCD BEbcd ETCDEcde EFABCEabce

conclusion: EFABDEabde

paste3

hypotheses: ETABCabc ETABDabd OSCABD OScabd

conclusion: EFACBDacbd

paste4

hypotheses: EFABmDFKHG EFDBeCGHML OSABDC BEKHM BEFGL BEBmD BEBeC
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conclusion: EFABCDFKML
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