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ABSTRACT 

In this paper, we propose an approach for failure prognosis. 
The approach deals with a closed-loop control system in 
which the actuator stochastically degrades through time. The 
degradation of a system disturbs and affects its characteristic 
parameters. This is reflected by a change in one or more of 
them. The latter may remain partially or totally hidden given 
that the type of control. The aim of this work was to estimate 
online the duration before the system performance 
requirement is no longer met. This without adding sensors. 
The proposed approach is based on the system behavior 
model. The models describing the dynamics of the 
parameters have been assumed to be known a priori, but 
degradation is assumed to be unmeasurable. It was conducted 
in two phases: the first used the data available on this system 
to estimate unmeasured states and relevant parameters which 
are able to characterize system performance. To carry out this 
phase, we used an observer. In the second phase, to estimate 
when the desired performance will no longer be met over a 
specified mission, the historical states and parameters 
obtained in the first phase were exploited. Thus, in order to 
identify the models describing the parameter dynamics, 
statistical inference estimation methods such as the 
maximum likelihood method and the Bayesian estimation 
were used. To illustrate the performances of the approach, a 
simulated tank level control system was used. 

1. INTRODUCTION 

Currently, due to the strong interactions between systems 

and processes, monitoring and anticipating degradation have 
become very complex. In addition to the hybridity 
(continuous and /or discrete) of deterministic processes, the 
stochastic character imposed by component failures or 
uncertainties in the knowledge of the system must be taken 
into account. In this setting, many studies on the predictive 
assessment of systems operation have been conducted in 
recent years (Sikorska, Hodkiewicz and Ma, 2011). This 
predictive assessment is mainly based on prognosis 
(Dragomir, Gouriveau, Dragomir, Minca and Zerhouni, 
2009). While diagnosis consists in detecting, isolating and 
identifying failures and their causes, prognosis aims to 
predict the future state before failures occur (Jardine, Lin and 
Banjevic, 2006), (Lee, Wu, Zhao, Ghaffari, Liao and Siegel, 
2014). Its key element is estimation of the Remaining Useful 
Life (RUL) (Si, Wang, Hu and Zhou, 2011). Various 
approaches have been established in the literature to address 
issues related to prognosis. These approaches have been 
subject to several classifications (Jardine et al, 2006), 
(Byington and Roemer, 2002) and (Heng, Zhang, Tan and 
Mathew, 2009), the most common classification being 
whether the approach is based on: a physical model, or an 
experience-based model and or data-driven model. Prognosis 
can also be based on the fusion of more than one approach 
(Pecht and Jaai, 2010). Prognosis approaches differ in terms 
of data used, assumptions related to failure, operating modes 
and modeling strategies.  
The proposed approach exploits the system behavior model. 
It deals with a closed-loop control system subject to 
degradations. The aim of this work was to estimate online the 
duration before the system performance requirement is no 
longer met. The estimate must be achieved without adding 
sensors. 

Toufik AGGAB et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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The paper is organized as follows. Section 2 describes the 
closed-loop control system and presents the two phases of the 
proposed approach. Section 3 presents some evaluation 
metrics for prognosis approaches. Section 4 illustrates the 
approach on a tank level control system and Section 5 
concludes the paper. 

2. GENERAL SYSTEM AND PROGNOSIS METHODOLOGY 

2.1.  Closed-loop Control System 

A control system is a set of interacting physical components. 
The aim is to adjust the system output so as to achieve the 
desired results from the control variables. In this work, we 
consider a closed-loop control system in which the actuator 
stochastically degrades through time (Figure 1). Thus, for this 
control structure, the effects of disturbances and / or 
degradation signals are compensated. 

The command applied on the actuator is calculated in such a 
way that the difference between the inputs-outputs verifies 
the following constraint: 
 

 
where �������  is the set point (desired input), y(t) the 
controlled output, d(t) the noise and f(t) the degradation 
signals. 
 
The difficulty in applying prognosis to a closed-loop control 
system is due to the fact that a small difference between the 
controlled output and the setpoint may be analyzed as no 
degradation whereas it is due to effective control. 
Furthermore, the system input is correlated with the system 
output by the feedback. This leads to "exciting" the system 
with a signal already affected by the disturbance and / or 
degradation signal. 

2.2. Prognosis methodology 

The proposed approach is based on the Model-based 
prognosis architecture for purposes of practical use (Figure 
2) presented in (Sankararaman, Daigle and Goebel, 2014) and 
(Daigle and Goebel, 2011). The model must be able to 
represent the behavior of the system.  
The approach consists of two phases: 

- The first phase involves simultaneous estimation of states 
and parameters. This phase consists in exploiting the various 
measures collected on the system to estimate unmeasured 
states and relevant parameters which are able to characterize 
system performance. Degradation of a system disturbs and 
affects its characteristic parameters. This is reflected by a 
change in one or more of them. In these conditions, 
monitoring the parameters enables any deviations from 
nominal behavior of the system to be detected. To carry out 
this phase we used an observer increased by the parameter 
vector. 
- The second phase consists of determining when the desired 
performance will no longer be met over a specified mission 
time. Predicting the performance of the system begins with 
the identification of models describing the parameter 
dynamics. Then, the estimation of the RUL is obtained by 
comparing the performance estimated by simulation with the 
desired performance. 
The following subsections describe in more detail the two 
phases and the tools used. 

2.2.1. Estimation phase 

This phase exploits the different data collected on the system 
to estimate the states and unmeasured parameters that can 
characterize system performance. 

In this phase, we consider an estimation model as follows: 
 

 

with �	  is the estimate of augmented state vector 
��, �	�� , 

where �	 is the estimated parameter vector; 	� is the system  
input and	��  the estimated output. H	 and �  are functions 
supposed known. It can be noted that the quality of the 
estimate, will depend on the system considered and the 
observer used. Hence, for this phase, it is important to select 
the most suitable methodology for observer synthesis. 

2.2.2. Prognosis phase 

A realistic estimate of the RUL of a system at a time (tp) 
requires considering values of the states/parameters at this 
time 	�� 	���� , future operating conditions (�� , 	� > ��� 
(assumed known) and future values of the parameters 
(��� ,	� > ��� (Figure 3). For the estimation of the latter, we 

	 ����→�  ������� − ����" ≈ 0		∀	&���, '���	 		�1�	

	 )�	* = ,��	, �, ���� = ���	, �, �� 																																							�2�	

 
Figure 1.  A closed-loop control system. 

 

 
 

Figure 2. Model-based prognosis architecture 
(Sankararaman et al, 2014), (Daigle et al, 2011). 
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propose to exploit the history of their estimates ��	., �	/, �	0, … , �	�2	�  by the using statistical inference 
estimation methods. Methods used will be described in the 
following subsection. If different modes of operation 
corresponding to different setpoint speeds are present during 
the degradation, for example, if there are two modes: normal 
mode and stressed mode, it is possible to integrate stress into 
the modelling by a coefficient. 
The system is considered to have failed when it is no longer 
able to meet the desired performance. The performance of a 
control system can be evaluated using its time responses. The 
main criteria are speed and amortization in the transitional 
regime, stability and accuracy in the steady state. Therefore, 
performance (Perf) can be expressed through a set of 
constraints 34 	on (��, �	, �, �� , with 34���	, �,� 	�, ��=1 if the 
constraint is satisfied and 0 otherwise. These combined 
constraints can be expressed as follows: 

 
Accordingly the RUL at time ��	is defined by: 
 

2.2. 3.   Identification of models describing the parameter 
dynamics 

For identification of models describing the parameter 
dynamics, several approaches were used in the literature. For 
example, in (Chelidze and Chatterjee, 2002), the system was 
considered as a hierarchical dynamical system consisting of 
a ‘‘fast time’’ directly observable, subsystem coupled to a 
‘‘slow time’’ subsystem. The tracking procedure was based 
on phase space reconstruction. In (Gucik-Derigny, Outbib 
and Ouladsine, 2016), the problem of determining the 
damage state and the parameters of its dynamics was 
expressed as a problem of unknown input reconstruction. In 
(Daigle et al, 2011), the methodology adopted was based on 
a particulate filter. It was applied to a model of a pneumatic 
valve with different damage mechanisms. In (Aggab, Kratz, 
Vrignat and Avila, 2017), assuming unknown the models 
describing the parameter dynamics, the approach exploited 
history of the estimates	��	., �	/, �	0, … , �	�2 	�  by using 
learning-based methods. In particular, the Support Vector 

Regression (SVR) and the Adaptive Neuro Fuzzy Inference 
System (ANFIS) were used. It was applied to a model of a 
Li-ion battery. In this paper, the models describing the 
dynamics of the parameters have been assumed to be known 
a priori. These models can be obtained by collecting data, 
provided by manufacturers or established by experts. Of 
course, these models can be tainted with uncertainties and 
errors. Therefore, we use statistical inference estimation 
methods. The problem to solve is to determine a density 
function '��	|∅�  where the parameter vector ∅ =∅., … , ∅7	 is unknown. Once the parametric model is 
constructed, the aim is to perform an inference on the 
unknown parameters	∅., …∅7 . In the literature, several 
methods have been described (Greenland, 2011). We 
examined the known methods: the maximum likelihood 
method (i.e. the history of the estimates obtained in the first 
phase��	., �	/, �	0,… , �	�8	� is the sole source of   knowledge), 

and the Bayesian estimation (i.e. in addition to estimates of 
the history, knowledge of the model parameters is added). 

1. Estimation by Maximum Likelihood  

In this method, only historical data	��	., �	/, �	0, … , �	�2	� are 
used to estimate the unknown model parameters∅ =∅., … , ∅7 . A likelihood function is used. It is written as 
follows: 

 
where ���	|∅�	  characterizes the likelihood of the data 
knowing the parameters ∅. 
The estimator that maximizes this function is given by: 
 

 
2. Bayesian estimation  

The Bayesian estimation is based on Bayes' theorem, for two 
random events A and B. This theorem is written as follows: 
 

 
where P (9) represents the a priori probability and P	�A|B� is 
the posterior probability.  
In contrast to the parametric estimation based on maximum 
likelihood, Bayesian estimation assumes that the parameters 
of interest ∅., … , ∅<  are considered as random variables 
characterized by probability densities =(∅). These densities 
are called a priori densities.  
To estimate the parameters a posteriori, the Bayes formula is 
used. It gives the following result: 

>?@'��� 	= A1, ∀�, 34���	, �	, �, �� = 1	0 	 		�3�	

C���8 = �D'��4 ∈ F:	�4 H �� ∧ >?@'��4� = 0� − ��	 		�4�	

	 =�∅K�	� = '��	|∅�=�∅�L '��	|∅�=�∅�&∅�∅ 													
																			 �8�	

	 ��∅K�	� = '��	|∅�			 �5�	

	 ∅�OP = Q@R	�Q�	S	��∅K�	�T																				 �6�	

	 P�9|V� = P�V|9�P�9�
P�V� 	 �7�	

 
Figure 3. The variables considered in the prognosis phase. 
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The estimator that maximizes this function, called a 
maximum a posteriori (MAP) is given by: 

3. PROGNOSIS PERFORMANCE METRICS 

The proposed approach was assessed by implementing 
certain metrics proposed in the literature (Vachtsevanos, 
Lewis, Roemer, Hess and Wu, 2006), (Kurfess, Billington 
and Liang, 2006) and (Medjaher, Tobon-Mejia and Zerhouni, 
2012). The metrics associated with the calculation of the 
RUL were chosen. They are described below: 

Accuracy: a value close to zero means that the prognosis is 
poor while a value close to 1 corresponds to a good prognosis. 

 
Precision: this measure quantifies the dispersion of the 
prognosis error around its mean. 

where: \��� = C]^��_`��� − C]^���		and		\ ̅ = 1ef\�
�g.

��� 
 
Mean Absolute Percentage Error (MAPER): this measure 
quantifies the mean percentage error. 
 

 
Prognostics Horizon (PH): it estimates the time at which the 
prognosis approach gives its first prediction within the 
confidence interval defined by	Qh ∈ S0	; 1T. 
 >, = e − �				 ∀C]^��� 	∈ C]^��_`���. S�1 − Qh�, �1 + Qh�T								 �13�	
 
Relative Accuracy measure (RA): it assesses the accuracy of 
the estimate at different times. 

4. APPLICATION AND SIMULATION RESULTS  

In order to illustrate the proposed approach, we consider a 
double-tank level control system with a stochastic 
degradation process for the pump motor. This case is 
presented in (Nguyen, Dieulle and Grall, 2014). 

4.1. Description of the system 

The double-tank level control system is shown in Figure 4. 
The water is injected into the first tank with cross-sectional 
area S1 by a pump motor drive. Then, the outflow through 
valve 1 feeds the second tank with cross-sectional area S2. 
The water level of the second tank is the system output 
(controlled measure). It is measured by a level measurement 
sensor and controlled by adjusting the pump motor control 
input which is calculated by a PID controller.  

In order to consider the real response of the pump motor, the 
relation between the inlet flow rate qin and the pump motor 
control input u is represented as a first order system. 

 
where l_ is the time constant of the pump motor, m_��� is the 
servo amplifier gain with the initial gain		m_�0� = m__�D��.  
The pump saturates at a maximum input u_max. Therefore, 

regardless of the time t considered   u(t) ∈ [0; u_max]. 

The water flows out at the bottom of each tank through valves 
at flow rates according to Torricelli's law: 

 
where hj is the level of tank j, g is the acceleration of gravity, 
and Kvj is the specified parameter of the valve j. 
Using the mass balance equation, the process can be 
described by the following equations 

 
The aim of control is to maintain the water level of the second 
tank (only measured) at the desired setpoint yref. The 
measurement of the water level in the second tank ℎ/p 	given 
by a level measurement sensor is affected by measurement 
noise	&. 

	 	∅�Oqr = Q@R	�Q�	S	��∅K�	�	=�∅�T																			�9�	

9tt�@Qt� = 1ef?u|vwxyz{|���uvwx���|vwxyz{|��� 		�
�g.

	 �10�	

	 >@?t�}�~D = �∑ �\��� − \	̅�/					��g. e 		 �11�	

	 �9>�C = 1ef� 100. \���C]^��_`����
�

�g.
	 �12�	

	 C9 = 1 − |C]^��_`��� − C]^���|C]^��_`��� 							 �14�	

	 &�4<&� = − 1l_ �4< + m_l_ �	 �15�	

	 ��,��� = mP��2Rℎ� 					j=1,	2																											�16�	

	 ��
�&ℎ.���&� = 1�. �4<��� − mP��. 																																	
&ℎ/���&� = mP��. �2Rℎ.��� − mP��/ �2Rℎ/���	  �17�	

 
Figure 4. A double-tank level control system. 
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	 ℎ/p��� = ℎ/��� + 	&���																							�18�	
4.1.1. System Performance 

To evaluate system performance, we consider its time 
response. The system is considered failed if one of the two 
constraints below is no longer satisfied. 

• C1: constraint related to the transitional regime: the 
system is no longer able during a set-point change to 
satisfy the time necessary to reach the area ± 5% of 
change in less than T1 (in our example equal to 1.5 
response time obtained under nominal conditions).  

• C2: constraint in steady state: the system is no longer able 
to satisfy the condition to find the area ± 5% in a time 
less than T2 (in our example equal to half the time 
response). 

It must be noted that other constraints can be selected. 

4.1.2. Degradation  

Control systems may be viewed as subject to deterioration via 
actuators (Nguyen et al, 2014). Indeed, the loss of partial or 
total capacity of an actuator may cause a system performance 
loss (in that it changes its behavior from the desired 
behavior). For the degradation process, it is assumed that the 
pump (actuator) capacity decreases from its nominal capacity 
according to a non-stationary Gamma Process �Q�����, �� 
with m(t) of the form	��� . It should be noted that other 
models can be used for describing the degradation process. 
Hence, the capacity at time t before its failure can be 
expressed as: 

 
where m_�0� is the initial capacity of the pump, and ���� 
describes the accumulated degradation of the pump at time t. 

For all t>0 and ∆t>0, the law of growth Z (t + ∆t) - Z (t) is a 
gamma distribution �Q���� + Δ�� − ����, ��		 with a 
density: 
 

'��� = �u�p������up����
����� + ��� − ����� ��p������up����u.?u��	, � H 0 

                                                                                      (20) 
 

with Γ gamma function. 

4.1.3. System Operation 

In this subsection, an example (Figure 5) of the system 
behavior until failure with 2 set-points whose evolution is 
described by a Markov chain is presented. The pump capacity 
decreases according to a non-stationary Gamma Process. The 
numerical values summed up in (Table 1) are associated with 
the behavior of the system (Nguyen et al, 2014). For the tests 
performed, we accelerated the speed of degradation 

compared to what seems realistic. Indeed, the pump 
degradation time scale is in years. 

From Figure 5, it’s clear that when the pump capacity 
decreases, the system compensates for the degradation until 
it cannot follow the evolution of the desired setpoint (does 
not meet the desired performance). It should be noted that the 
pump capacity (Figure 5. c) is not measurable.  

4.2. Application and prognosis performance metrics  

Now that the water tank level control system has been 
described, we start the implementation of the two phases of 
the proposed approach.   

	 m_ 	��� = m_�0� − ����																													 �19�	

 
(a) 

 
(b) 

 
(c) 

Figure.  5. A trajectory of the water tank level control 
system until pump failure: (a) setpoint, (b) water level of 
tank 2 (c) pump capacity (not measured). 

 

Table 1. Double-tank model 
Parameters 

S1=25 m2 mP�=8 							l_ =1 
S2=20 m2 mP�=6 g=9.82 ms-2 

u_max=100 d=N (0,  2.5 10-4)  

Initial condition 
h1(0)=0 h2(0)=0 	m_(0)=5 
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4.2.1. Estimation phase 

To carry out this phase, we used an observer extended to the 
parameter	m_ .  The observer is designed to exploit the 
available data provided by the sensors (the water level of tank 
2 and control input applied on the pump (u)). The observer 
designed is the full order high-gain observer (Ayadi, Hajji, 
Smaoui, Chaari, and Farza, 2016). 

The observer has the form. 

where: ℎ/� = ℎ/p − ℎ	/  is the estimation error on the water 
level of the second tank. L1, L2 and L3 the observer gains. 

The performance of the synthesized observer is evaluated 
through the error between the measured and estimated output. 
It is found that the error is very low and the observer 
converges quite well for the observer gains chosen (Figs. 6 
and 7). 

4.2.2. Prognosis phase 

At an instant	�� , assessing the system performance and 
comparing it with admissible performance requires 
knowledge of the future operating conditions (assumed 
known over about 4000 s) and the future value of pump 
capacity. The latters are obtained through the capacity loss 
model. The estimation of the model parameters is carried out 
following smoothing by the Loess method (Cleveland and 
Devlin, 1988). The interest is to obtain a series of data which 
follows a trend, because we used a Gamma process. The 
RUL(t) being a distribution. In the results below, the RULs 
presented are those obtained by using the mean values of 	m_ 
estimated at the instants (� > ��). The results obtained by the 
implementation of the prognosis phase are presented below.  

Maximum likelihood estimation  

Results for the estimation of RUL are shown in Figure 8. The 
estimated RUL is shown in red (*), the evolution of the real 
RUL in blue, and the evolutions characterizing the 
confidence interval by ac =0.3 in green. This value enables a 
deviation of 30% from the real RUL to be tolerated. The 
results obtained from the implementation of the prognosis 
performance metrics are given in Table 2.  

In this example, we observe that the performance metrics of 
the approach are overall satisfactory: the accuracy is 0.85, the 
value of the HP measure is 2930 s and RA assessed for three 
times corresponding to the [T /4, T /2, 3T /4] are good. The 
precision and MAPER were not calculated due to the absence 
of certain values of the RUL (hypothesis on knowledge of the 
duration of future operating conditions). 

Bayesian estimation  

For this estimate, prior distributions for unknown parameters 
p, q and β play a key role. They may be obtained by using 
past experiences, insights and experience of the expert. The 
knowledge is uncertain, so it is natural to model through laws 

��
��
�
���
�&��4<���&� = − 1l_ ��4<��� + m�_���l_ �																															
&ℎ	.���&� = 1�. ��4<��� − mP��.  2Rℎ	.��� + ^.ℎ/�										
&ℎ	/���&� = mP��.  2Rℎ	.��� − mP��/  2Rℎ	/���	+^/ℎ/�
&m�_���&� = ^0ℎ/�																																																															

�21�	

 
Figure 6.  The water level of tank 2 and error estimation. 

 

Figure 7.  The pump capacity and error estimation. 

Table 2. Performance measures 
Performance Value 

Accuracy 0.85 
PH	�Qh=0.3) 2930 

RA [T/4 T/2 3T/4] [0.90 0.99 0.99] 
 

 
Figure 8.  RUL estimation for the example. 
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π(∅). In practice, π(∅) can be a normal distribution, Beta, 
Gamma, etc. The evolution of the estimated capacity of the 
pump until failure for 50 tests was used to formalize priori 
knowledge. The parameters p, q and β of each test were 
calculated by the maximum likelihood method and modeled 
with a normal distribution. For the priori knowledge, the 
same weight was  first attributed to the possible values of the 
parameters (uninformative a priori law). In a second step, the 
a priori probabilities of the unknown parameters were taken 
into account.  
In the approach, strategies without or with update of the mean 
of unknown parameters were tested. Either the a priori 
parameters obtained do not change from one moment to the 
next or the a posteriori parameters obtained are used to 
simulate the likelihood of the subsequent moment.  
For the uninformative a priori law, results for the estimation 
of RUL are shown in Figure 9. The estimated RUL without 
update is shown in red (*), while the estimated RUL with 
update is shown in blue (*). The results of the prognosis 
performance metrics are given in Table 3.  

We observe that when the a priori knowledge of the 
degradation is updated, we obtained better results for the 
accuracy and MAPER and a slight decrease in precision and 
the PH measure. 

The results for the case where probabilities are taken into 
account are shown in Figure 10 and performance measures 
are presented in Table 4. We observe that results obtained 
when the a priori knowledge is updated are better than those 
obtained without update. The accuracy and MAPER values 
improve substantially with the update.  

From the various results presented (Table 2-4.), we conclude 
that the addition of knowledge on model parameters (loss of 
pump capacity) affects the results of a prognosis approach. 

For the different strategies presented, the best results were 
obtained when taking into account the probability in the prior 
knowledge with updates of the mean of unknown parameters 
(Table 4). The results obtained with update of unknown 
parameters are better, which reflects that the model's update 
strategy increases the influence of likelihood and makes the 
a priori distribution less informative. 

5. CONCLUSION  

We have presented, in this paper, an approach for failure 
prognosis by online estimation of RUL on a closed-loop 
control system. The approach is based on the behavioral 
model. Its implementation requires knowledge of future 
operating conditions and of the dynamics of the system 
parameters (degradation causing a deviation of the system 
parameters). Initially, an observer was used to estimate the 
states and the unmeasured parameters capable of 
characterizing the system performance.  The history of these 
estimates was then used to determine the parameter 
dynamics. Two strategies were presented, parameter 
estimation by the maximum likelihood method and the 
Bayesian estimation. The approach for failure prognosis was 
applied to a tank level control system subject to pump 
degradation (stochastic degradation process); its feasibility 
and also its performance were illustrated. A highly interesting 
perspective of the present study is to consider uncertainties in 
the knowledge of future operating conditions and thus 
provide robust decisions. 
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