N
N

N

HAL

open science

Remaining Useful Life prediction method using an

observer and statistical inference estimation methods
Toufik Aggab, Frédéric Kratz, Pascal Vrignat, Manuel Avila

» To cite this version:

Toufik Aggab, Frédéric Kratz, Pascal Vrignat, Manuel Avila. Remaining Useful Life prediction method
using an observer and statistical inference estimation methods. Annual conference of the prognos-

tics and health management society 2017, Oct 2017, St. Petersburg, Florida., United States.

01612806

HAL Id: hal-01612806
https://hal.science/hal-01612806
Submitted on 8 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01612806
https://hal.archives-ouvertes.fr

Remaining Useful Life prediction method using an observer and
statistical inference estimation methods

Toufik Aggald, Frédéric KratZz Pascal Vrignatand Manuel Avila

LANSA CVL, PRISME Laboratory (EA 4229), Bourges 208France

toufik.aggab@insa-cvl.fr
frederic.kratz@insa-cvl.fr

340rleans University, PRISME Laboratory (EA 4229)T1de I'Indre, Chateauroux, 36000, France

pascal.vrignat@univ-orleans.fr
manuel.avila@univ-orleans.fr

ABSTRACT

In this paper, we propose an approach for failuogposis.
The approach deals with a closed-loop control sysie
which the actuator stochastically degrades thrdimé. The
degradation of a system disturbs and affects #sattteristic
parameters. This is reflected by a change in onaare of
them. The latter may remain partially or totallgdien given
that the type of control. The aim of this work viagstimate

and processes, monitoring and anticipating degi@dagave
become very complex. In addition to the hybridity
(continuous and /or discrete) of deterministic psses, the
stochastic character imposed by component failwes
uncertainties in the knowledge of the system meastalxen
into account. In this setting, many studies onphedictive
assessment of systems operation have been condicted
recent years (Sikorska, Hodkiewicz and Ma, 2011isT

online the duration before the system performanc®redictive assessment is mainly based on prognosis

requirement is no longer met. This without addiegsers.

(Dragomir, Gouriveau, Dragomir, Minca and Zerhouni,

The proposed approach is based on the system behav2009). While diagnosis consists in detecting, isoaand
model. The models describing the dynamics of thddentifying failures and their causes, prognosimsaito

parameters have been assumed to be known a pridri,
degradation is assumed to be unmeasurable. ltevakicted
in two phases: the first used the data availablth@system
to estimate unmeasured states and relevant paraméteh
are able to characterize system performance. Ty oat this
phase, we used an observer. In the second phasstjriate
when the desired performance will no longer be awetr a
specified mission, the historical states and patarse
obtained in the first phase were exploited. Thasyrder to
identify the models describing the parameter dycami
statistical inference estimation methods such ase
maximum likelihood method and the Bayesian estiomati
were used. To illustrate the performances of the@axch, a
simulated tank level control system was used.

1. INTRODUCTION

Currently, due to the strong interactions betwegstesns
Toufik AGGAB et al. This is an opesecess article distributed under
terms of the Creative Commons AttributiBr0 United States Licen:
which permits unrestricted use, distribution, aegroduction in ar
medium, provided the original author and sourceceedited.

predict the future state before failures occurdides, Lin and
Banjevic, 2006), (Lee, Wu, Zhao, Ghaffari, Liao didgel,
2014). Its key element is estimation of the Renmgjriiseful
Life (RUL) (Si, Wang, Hu and Zhou, 2011). Various
approaches have been established in the literaitaddress
issues related to prognosis. These approaches lhese
subject to several classifications (Jardine et 2006),
(Byington and Roemer, 2002) and (Heng, Zhang, Trah a
Mathew, 2009), the most common classification being
whether the approach is based on: a physical modein

t experience-based model and or data-driven modegr@sis

can also be based on the fusion of more than opsagh
(Pecht and Jaai, 2010). Prognosis approaches differms
of data used, assumptions related to failure, dipgranodes
and modeling strategies.

The proposed approach exploits the system behavoolel.
It deals with a closed-loop control system subjést
degradations. The aim of this work was to estiratae the
duration before the system performance requirerigenb
longer met. The estimate must be achieved withdding
sensors.
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The paper is organized as follows. Section 2 dessrihe
closed-loop control system and presents the twegshaf the
proposed approach. Section 3 presents some ewaluati
metrics for prognosis approaches. Section 4 ibiss the
approach on a tank level control system and Sechion
concludes the paper.

2. GENERAL SYSTEM AND PROGNOSISMETHODOLOGY

2.1. Closed-loop Control System

A control system is a set of interacting physicahponents.
The aim is to adjust the system output so as téeaetthe
desired results from the control variables. In thiwk, we
consider a closed-loop control system in whichahtiator
stochastically degrades through time (Figure 1usT For this
control structure, the effects of disturbances dndr
degradation signals are compensated.

/1
Degradation process (f) &

Controller }—»{ Actuator | h—| Process }7—’

Measured output (y)

Setpoint ()-'“f)
—|

Sensor |-

T

Measurement noise (d)

Figure 1. A closed-loop control system.

The command applied on the actuator is calculatexich a
way that the difference between the inputs-outpetsfies
the following constraint:

lim (/) = y(®) 0 Vd@®,f@®) (@)
where y™¢/(t) is the set point (desired inputy(t) the
controlled output,d(t) the noise and(t) the degradation
signals.

The difficulty in applying prognosis to a closedocontrol
system is due to the fact that a small differenetvben the
controlled output and the setpoint may be analyagdo
degradation whereas it is due to effective control
Furthermore, the system input is correlated with glistem
output by the feedback. This leads to "exciting® #ystem
with a signal already affected by the disturbanod Aor
degradation signal.

2.2. Prognosis methodology

The proposed approach is based on the Model-based

prognosis architecture for purposes of practical (isgure

2) presented in (Sankararaman, Daigle and Goeb#d)2nd
(Daigle and Goebel, 2011). The model must be able t
represent the behavior of the system.

The approach consists of two phases:

Estimation Prognosis t>tp

RUL
—

>

u(t)

Control of
performance

=

X(1),

o

Figure 2. Model-based prognosis architecture
(Sankararaman et al, 2014), (Daigle et al, 2011).

System Estimation Prediction

- The first phase involves simultaneous estimatbstates
and parameters. This phase consists in exploitiagarious
measures collected on the system to estimate ummeehs
states and relevant parameters which are ablestacterize
system performance. Degradation of a system distaril
affects its characteristic parameters. This iseméld by a
change in one or more of them. In these conditions,
monitoring the parameters enables any deviatioosn fr
nominal behavior of the system to be detected. aroycout
this phase we used an observer increased by tlaenpter
vector.

- The second phase consists of determining wheddhieed
performance will no longer be met over a specifiddsion
time. Predicting the performance of the system regiith
the identification of models describing the paraenet
dynamics. Then, the estimation of the RUL is oledify
comparing the performance estimated by simulatiith the
desired performance.

The following subsections describe in more detad two
phases and the tools used.

2.2.1. Estimation phase

This phase exploits the different data collectedhensystem
to estimate the states and unmeasured parametarsath
characterize system performance.

In this phase, we consider an estimation modeblésas:

{)*( =H®E& ut) )
=6 ut)
with X is the estimate of augmented state \Aept;ﬁ]T,

whered is the estimated parameter vectaris the system

input andy the estimated outpuH and G are functions
supposed known. It can be noted that the qualitythef
estimate, will depend on the system considered thed
observer used. Hence, for this phase, it is impot@select
the most suitable methodology for observer synshesi

2.2.2. Prognosis phase

A realistic estimate of the RUL of a system at raetity)
requires considering values of the states/parametiethis
time X (t,) , future operating conditions w; , t > t,)
(assumed known) and future values of the parameters
6,,t > tp) (Figure 3). For the estimation of the latter, we
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>t
P A . ..
Parameters (§)  Operating conditions (u) Desired performance

i * R * Per l
; t=H(%,0,ut) !

i Estimated model

i Noise f

Figure 3. The variables considered in the prognisse.

propose to exploit the history of their
(0,,0,,05,..,6,,) by the using statistical inference
estimation methods. Methods used will be describeithe
following subsection.If different modes of operation
corresponding to different setpoint speeds areepteturing
the degradation, for example, if there are two nsodermal
mode and stressed mode, it is possible to integtedss into
the modelling by a coefficient.

The system is considered to have failed whennbisonger
able to meet the desired performance. The perfacemaha
control system can be evaluated using its timearesgs. The
main criteria are speed and amortization in thasitenal
regime, stability and accuracy in the steady sflterefore,

RUL
—

Xt
Control

estimatesfunction f(8|@) where

Regression (SVR) and the Adaptive Neuro Fuzzy érfee
System (ANFIS) were used. It was applied to a model
Li-ion battery. In this paper, the models descmpithe
dynamics of the parameters have been assumedkiuoben

a priori. These models can be obtained by collgctiata,
provided by manufacturers or established by expedfs
course, these models can be tainted with uncedairind
errors. Therefore, we use statistical inferencemation
methods. The problem to solve is to determine asitien
the parameter vectop =

@4, ..., 0, is unknown. Once the parametric model is
constructed, the aim is to perform an inference ta
unknown parameter®,,..®, . In the literature, several
methods have been described (Greenland, 2011). We
examined the known methods: the maximum likelihood
method (i.e. the history of the estimates obtainetthe first
phasé¢d, 6,,0;, ..., 8,,) is the sole source of knowledge),

and the Bayesian estimation (i.e. in addition tineges of
the history, knowledge of the model parametersided).

1. Estimation by Maximum Likelihood

performance Rer) can be expressed through a set ofin this method, only historical dad;,d,,8,...,0,,) are

constraintsC; on (%,8,u,t), with C;(%,0, u,t)=1 if the
constraint is satisfied and 0 otherwise. These doeab
constraints can be expressed as follows:

Vi, C;(%,0,u,t) =1

Perf(t) = {1' ‘ 3)
Accordingly the RUL at time,, is defined by:
Ruly, = inf(t; € R t; 2 t, APerf(t;) =0) —t, (4)

2.2.3. ldentification of models describing the parameter
dynamics

For identification of models describing the parasnet
dynamics, several approaches were used in thatlirer. For
example, in (Chelidze and Chatterjee, 2002), tlstesy was
considered as a hierarchical dynamical system stingiof
a “fast time” directly observable, subsystem ctagpto a
“slow time” subsystem. The tracking procedure weesed
on phase space reconstruction. In (Gucik-Derignytb{d

used to estimate the unknown model parameiets
@4, ...,0,. A likelihood function is used. It is written as
follows:

1(9]6) = £ (819) )
where [(§|@) characterizes the likelihood of the data

knowing the parametefs
The estimator that maximizes this function is gitgn

By = arg max| 1(®]0)] (6)
2. Bayesian estimation

The Bayesian estimation is based on Bayes' thedognwo
random events A and B. This theorem is writtenodlews:

HB|A)AA)

FAIB) = =

)

where” (A) represents the a priori probability aRdA|B) is
the posterior probability.
In contrast to the parametric estimation based arimum

and Ouladsine, 2016), the problem of determining th likelihood, Bayesian estimation assumes that thiarpaters

damage state and the parameters of its dynamics w

expressed as a problem of unknown input recongructn
(Daigle et al, 2011), the methodology adopted wased on
a particulate filter. 1t was applied to a modebopneumatic
valve with different damage mechanisms. In (Agdétatz,
Vrignat and Avila, 2017), assuming unknown the niede
describing the parameter dynamics, the approacloiteg
history of the estimate{8,,8,,0s,..,6,,) by using
learning-based methods. In particular, the Supp@tor

aF interest@,, ..., ®,, are considered as random variables
characterized by probability densitie§p). These densities
are called a priori densities.

To estimate the parameters a posteriori, the Bayewla is
used. It gives the following result:

f(019)r(®)
f;f(@l@)n(@)d@

7(0|6) = “
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The estimator that maximizes this function, called 4.1. Description of the system

maximum a posteriori (MAP) is given by. The double-tank level control system is shown igué 4.

Buap = arg max[ 1(8]9) n()] 9) The water is injected into the first tank with esectional
areaS; by a pump motor drive. Then, the outflow through
valve 1 feeds the second tank with cross-sectiared$.
The water level of the second tank is the systempuiu
The proposed approach was assessed by implementiggontrolled measure). It is measured by a levelsumeanent

certain metrics proposed in the literature (Vaolses, sensor and controlled by adjusting the pump motmitrol
Lewis, Roemer, Hess and Wu, 2006), (Kurfess, Bjttam  input which is calculated by a PID controller.

and Liang, 2006) and (Medjaher, Tobon-Mejia anchdani, seont
2012). The metrics associated with the calculatidrihe > Pocmiale H priver }W

3. PROGNOSISPERFORMANCE METRICS

RUL were chosen. They are described below:
Accuracy: a value close to zero means that thenusig is g .
poor while a value close to 1 corresponds to a gwognosis. ; AN
h, S )
1 T |RULyeqi(t)—RUL(Y)| Tkt A Yo
Accuracy = ?Z e RULreqi(t) (10) hzi s Ly
t=1 4‘ Level measurement sensor }47 Tank 2 o
Precision: this measure quantifies the dispersibrthe Figure 4. A double-tank level control system.

prognosis error around its mean. In order to consider the real response of the pomojor, the

T _ relation between the inlet flow ratg, and the pump motor
i=1(e(t) —€)? i i ;
Precision = = : (11) control input u is represented as a first ordetesys
T dq; 1 K,
1 g+ -2
where: (t) = RUL,.q;(t) — RUL(t) and € = FZ e(t) dt T, Qin + T, u (15)

t=1
wherer, is the time constant of the pump motigg(t) is the

Mean Absolute Percentage ErrMAPER): this measure servo amplifier gain with the initial gaif,(0) = K,_init.

guantifies the mean percentage error. ] _
The pump saturates at a maximum inputmax Therefore,

regardless of the timeconsidered u(t) € [0; u_max].

100. £(t)
MAPER = Tz ‘ (12)

RUL‘real (t)

The water flows out at the bottom of each tankulgtovalves
at flow rates according to Torricelli's law

Prognos_tlcs HorlzorF(H).: it es_tlmgtes the tu’ng at wh|ch the Gjout = Ky, 2gh; j=1,2 (16)
prognosis approach gives its first prediction withthe

confidence interval defined lay. € [0;1]. wherehjis the level of tank, g is the acceleration of gravity,

andK,; is the specified parameter of the vajve
PH=T-t (13) Using the mass balance equation, the process can be
VRUL(t) € RULyeq(t).[(1 —a,), (1 +a,)] described by the following equations

Relative Accuracy measurBA): it assesses the accuracy of dhy(t) 1
the estimate at different times. S, < qin () —
|[RULyeqi(£) — RUL(2)| dhy(t) _ K 17)
RA=1- 14 2 V1 — VZ
RUL i () o a5, V2O 529k O

4. APPLICATION AND SSIMULATION RESULTS . . S
The aim of control is to maintain the water leveihe second

In order to illustrate the proposed approach, wesicter a  tank (only measured) at the desired setpaiiit The
double-tank level control system with a stochasticmeasurement of the water level in the second khgiven
degradation process for the pump motor. This ca&se by a level measurement sensor is affected by meamsunt
presented in (Nguyen, Dieulle and Grall, 2014). noised.



ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2017

h3' () = hy(t) + d(¢) (18)

compared to what seems realistic.

Indeed, the pump

degradation time scale is in years.

4.1.1. System Perfor mance

To evaluate system performance, we consider it® tim
response. The system is considered failed if onthefwo
constraints below is no longer satisfied.

* Cy constraint related to the transitional regimee th
system is no longer able during a set-point change
satisfy the time necessary to reach the area + 5% ¢
change in less tham; (in our example equal to 1.5
response time obtained under nominal conditions).

» Cy constraint in steady state: the system is nodoagle
to satisfy the condition to find the area + 5% itirae
less thanT. (in our example equal to half the time
response).

It must be noted that other constraints can betszle

4.1.2. Degradation

Control systems may be viewed as subject to detditm via
actuators (Nguyen et al, 2014). Indeed, the logzadiial or
total capacity of an actuator may cause a systefanpgance
loss (in that it changes its behavior from the debi
behavior). For the degradation process, it is assutimat the
pump (actuator) capacity decreases from its nonaciaacity
according to a non-stationary Gamma Prock&3n(t), )
with m(t) of the formpt?. It should be noted that other
models can be used for describing the degradatiooceps.
Hence, the capacity at time before its failure can be
expressed as:

Kq (t) = K, (0) — Z(2) (19)

whereK,(0) is the initial capacity of the pump, addt)
describes the accumulated degradation of the panime.

For allt>0 andAt>0, the law of growth 4t + At) - Z (t) is a
gamma distribution Ga(m(t + At) —m(t),5) with a
density:

B—(‘m(t+At)—m(t))

r(m(t + 4t) — m(t))

z
z(MmE+aD-m®)-1,"F 7 > 0

f@) =
(20)

with r gamma function.

4.1.3. System Operation

In this subsection, an example (Figure 5) of theteay
behavior until failure with 2 set-points whose euan is
described by a Markov chain is presented. The peappcity
decreases according to a non-stationary Gamma $&.otke
numerical values summed up in (Table 1) are aswatigith
the behavior of the system (Nguyen et al, 2014) th@tests

Table 1. Double-tank model

Parameters
S=25 113 KV1:8 T, =1
S$=20 n? Ky,,=6 0=9.82 m¢
u_max=100| d=N (0, 2.5 10
Initial condition
hy(0)=0 | hy(0)=0 |  K,(0)=5

Setpoint e

4000

Real water level oftank 2 (n,)

Pump capacity (K,)

1500 2000

Time(s)

(€)
Figure. 5. A trajectory of the water tank levehtol
system until pump failure: (a) setpoint, (b) wdearel of
tank 2 (c) pump capacity (not measured).

2500

From Figure 5, it's clear that when the pump capaci
decreases, the system compensates for the degradatil

it cannot follow the evolution of the desired seétpddoes
not meet the desired performance). It should bechtitat the
pump capacity (Figure 5. c) is not measurable.

4.2. Application and prognosis performance metrics

Now that the water tank level control system hagsnbe
described, we start the implementation of the tivases of

performed, we accelerated the speed of degradatid€ Proposed approach.
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4.2.1. Estimation phase 4.2.2. Prognosis phase

To carry out this phase, we used an observer eatetuithe At an instantt, , assessing the system performance and
parameterK,. The observer is designed to exploit thecomparing it with admissible performance requires
available data provided by the sensors (the wated bf tank  knowledge of the future operating conditions (assdm

2 and control input applied on the pump (u)). Thsesver  known over abou#000 3 and the future value of pump
designed is the full order high-gain observer (Ay#thjji,  capacity. The latters are obtained through the aposs

Smaoui, Chaari, and Farza, 2016). model. The estimation of the model parametersrisezhout
following smoothing by the Loess method (Clevelamdt
The observer has the form. Devlin, 1988). The interest is to obtain a seriedata which
dgin () 1 R,(®) follows a trend, because we used a Gamma procéss. T
Framke ——qin(t) + u RUL(t) being a distribution. In the results below, thelRU
N a presented are those obtained by using the meaasrafu,
dhi(t) 1 G =0 om0 + LT estimated at the instants t,,). The results obtained by the
— = < qin gn 112 . . .
dt S 21) implementation of the prognosis phase are presdraieay.

dhz(t) Kvl ,2 ghy(t) — 222 ,Zghz(t) +1,7, Maximum likelihood estimation

Results for the estimation of RUL are shown in Fég8. The

dKa(t) - L. estimated RUL is shown in red (*), the evolutiontioé real
a7 RUL in blue, and the evolutions characterizing the
where:h, = k" — f, is the estimation error on the water confidence interval bg.=0.3 in green. This value enables a

level of the second tank;, L, andLsthe observer gains. deviation of 30% from the real RUL to be toleratddhe

_ i results obtained from the implementation of thegpasis
The performance of the synthesized observer isuated  performance metrics are given in Table 2.

through the error between the measured and estiroatput.
It is found that the error is very low and the abse

4000 - === g m o eiiiieiioiiooooo-

Rl‘"‘reiﬂl
converges quite well for the observer gains chdséys. 6 3800y |+ RULumae
and 7) 2000 bt e . System failure
2500 |- Mt e - - g b
Trajectory of controlled variable (level of tank 2) w
o : : - : - 2. 2000 S e R b
E 1500 B il SETEEEE TS
g 10 H------e- :‘ """""" :‘"”'"""':"""”"'%" H‘AEESUI’E ‘E L o e il it Rl S
s ectmae] ool NG
0 50 100 150 200 250 300
Time(s)
Error between the measured and estimated h, % 500 1000 159I2|me (i]mm 2500 3000 3500
Ao e Figure 8. RUL estimation for the example.
] Lt s e A e Table 2. Performance measures
A P Performance Value
0 50 100 150 200 250 300 ACCuraCy 0 85
e PH (,=0.3) 2930
. . a.=Vv.
Figure 6. The water level of tank 2 and errorraation. £
9 RA [T/4 T/2 3T/4] [0.90 0.99 0.99]
§ Eetmate In this example, we observe that the performanceicseof
g SRR the approach are overall satisfactory: the accus@y5 the
e i | ‘ j : value of the HP measure2930 sand RA assessed for three
g ., i i i i i i times corresponding to tH& /4, T /2, 3T /4]are good. The
0 50 100 150 200 250 300

Time(s) precision and MAPER were not calculated due tatisence

Error between the real and estimated pump capacity

of certain values of the RUL (hypothesis on knowlkedf the
duration of future operating conditions).

Error

Bayesian estimation

For this estimate, prior distributions for unknoparameters

’ . P et 0 0 p, g andp play a key role. They may be obtained by using
past experiences, insights and experience of therexThe
Figure 7. The pump capacity and error estimation. knowledge is uncertain, so it is natural to motebtigh laws
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n(@). In practice,n(@) can be a normal distribution, Beta,
Gamma, etc. The evolution of the estimated capadithe
pump until failure for50 tests was used to formalize priori
knowledge. The parameters p, q ghaf each test were
calculated by the maximum likelihood method and eted
with a normal distribution. For the priori knowlezigthe
same weight was first attributed to the possille®s of the
parameters (uninformative a priori law). In a setetep, the
a priori probabilities of the unknown parametersevaken
into account.

In the approach, strategies without or with updétbe mean
of unknown parameters were tested. Either the aripri
parameters obtained do not change from one moroghet
next or the a posteriori parameters obtained aesl ue
simulate the likelihood of the subsequent moment.

For the uninformative a priori law, results for thgtimation
of RUL are shown in Figure 9. The estimated RULhwit
update is shown in red (*), while the estimated RWwith
update is shown in blue (*). The results of thegmasis
performance metrics are given in Table 3.

4000

T
RUL,
3500 f-oo-TResdeooooooood -

+  RUL.sumate
LTI i A SR _ RUL _ imareWith update ||
System failure

2500 -*-*ﬁ**-': ---------------------------- e beooemees —

2000 Moo TR SR

real

RUL(s)

1500 feeenmcmmon
0005 oGRS o

L ————_—,—," ——"—":

(o}

i H
0 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 9. RUL estimation for the example.

Table 3. Performance measures
Performance Without update With update

Accuracy 0.86 0.92
Precision 263.61 356.14
MAPER 17.46 8.38
PH (a.=0.3) 2960 2920

RA [T/4 T/2 3T/4]] [0.92 0.88 0.85] 0[95 0.92 0.99]

4000

T T
RUL
3500 - -Fenede e -

+  RUL.stimate

I
3000 ;:%% R RUL __jimateWith update ||

System failure

2500

2000

RUL (s)

1500 jf--------- - P —

1000 f---o-- =i TR | -

i H
] 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 10. RUL estimation for the exami.

Table 4. Performance measures

Performance Without update With update

Accuracy 0.72 0.92
Precision 143.68 206.65

MAPER 37.45 8.77

PH (a.=0.3) 3010 3010

RA [T/4 T/2 3T/4]| [0.830.83 0.42] 0[96 0.87 0.99]

For the different strategies presented, the bestlteewere
obtained when taking into account the probabitityhie prior
knowledge with updates of the mean of unknown patars
(Table 4). The results obtained with update of wvkm
parameters are better, which reflects that the ftsodpdate
strategy increases the influence of likelihood arakes the
a priori distribution less informative.

5. CONCLUSION

We have presented, in this paper, an approachaibured
prognosis by online estimation of RUL on a closedpl
control system. The approach is based on the befzdvi
model. Its implementation requires knowledge ofufat
operating conditions and of the dynamics of thetesys
parameters (degradation causing a deviation ofsyistem
parameters). Initially, an observer was used tones¢ the
states and the unmeasured parameters capable of
characterizing the system performance. The hisibtiiese
estimates was then used to determine the parameter
dynamics. Two strategies were presented, parameter

We observe that when the a priori knowledge of theestimation by the maximum likelihood method and the

degradation is updated, we obtained better re$oitshe
accuracy and MAPER and a slight decrease in poecesnd
the PH measure.

The results for the case where probabilities akertanto
account are shown in Figure 10 and performance uness
are presented in Table 4. We observe that resbitsned
when the a priori knowledge is updated are beli@n those
obtained without update. The accuracy and MAPEReal
improve substantially with the update.

From the various results presented (Table 2-4.;onelude
that the addition of knowledge on model paramdiess of
pump capacity) affects the results of a prognogE@ach.

Bayesian estimation. The approach for failure posggwas
applied to a tank level control system subject tomp
degradation (stochastic degradation process)ed#silbility
and also its performance were illustrated. A hightgresting
perspective of the present study is to consideemamties in
the knowledge of future operating conditions andisth
provide robust decisions.
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