

Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus

Da-Kang Shen, Ali Dehghan Noodeh, Abdolhassan Kazemi, Renée Grillot,

Geoff Robson, Jean-François Brugère

▶ To cite this version:

Da-Kang Shen, Ali Dehghan Noodeh, Abdolhassan Kazemi, Renée Grillot, Geoff Robson, et al.. Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus. FEMS Microbiology Letters, 2004, 239 (1), pp.87 - 93. 10.1016/j.femsle.2004.08.019 . hal-01612756

HAL Id: hal-01612756 https://hal.science/hal-01612756

Submitted on 13 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Characterisation and expression of phospholipases B from the
2	opportunistic fungus Aspergillus fumigatus
3	
4	Da-Kang Shen ^a , Ali Dehghan Noodeh ^b , Abdolhassan Kazemi ^b , Renée Grillot ^{a, c} , Geoff
5	Robson ^b , Jean-François Brugère ^{a,*}
6	
7	^a Laboratoire Interactions Cellulaires Parasite-Hôte - ICPH, Faculté de Médecine et
8	Pharmacie, Université Joseph Fourier, F-38706 La Tronche, France
9	^b School of Biological Sciences, 1.800 Stopford Building, University of Manchester,
10	Manchester M13 9T, UK
11	^c Laboratoire de Parasitologie et Mycologie, CHU de Grenoble, 38700 La Tronche, France
12	
13	[*] Corresponding author. Tel.: +33 (0)4 76 63 74 73; Fax: +33 (0)4 76 63 74 73.
14	E-mail address: Jean-Francois.Brugere@ujf-grenoble.fr (JF. Brugère).
15	
16	Keywords: Aspergillosis, lysophospholipase, PLB, pathogenic fungus, virulence
17	factor
18	

Abstract 1

2	The phospholipase B family (PLB) are enzymes sharing phospholipase (PL),
3	lysophospholipase (LPL) and lysophospholipase-transacylase (LPTA) activities. They have
4	been shown to be important virulence factors in several human fungal pathogens including
5	Candida albicans and Cryptococcus neoformans. Aspergillus fumigatus, a human
6	opportunistic fungal pathogen leading to a high rate of mortality in immunosuppressed
7	patients is known to possess an extracellular phospholipase B activity. In this paper, we
8	report the molecular characterisation of 3 PLB genes from A. fumigatus (afplb) using
9	degenerate primers in PCR amplification and data from the A. fumigatus genome project.
10	They are expressed at 37°C, and two of them (af <i>plb1</i> and af <i>plb3</i>) are induced by lecithin.
11	They encode proteins of 633, 588 and 630 amino acids respectively, presenting together a T-
12	Coffee score of 81. They also possess the amino acid triad responsible for enzymatic activity
13	in the mammalian cytosolic PLA ₂ and other fungal PLBs. AfPLB1 and afPLB3 are secreted
14	with a cleaved signal peptide. The complete cDNA sequences were obtained by RACE-PCR
15	for the two secreted afPLBs and probably account for the extracellular phospholipase
16	activity previously reported in the culture media of A. fumigatus.
17	
10	

18

Page 3/21

1 1. Introduction

2 Aspergillus fumigatus is one of the most prevalent opportunistic human fungal 3 pathogens, the number of cases having increased together with the number of 4 immunocompromised individuals. The most serious form of Aspergillus infection, invasive 5 aspergillosis, has been found in 4% of all patients dying in a modern European teaching 6 hospital [1]. Pathogenesis factors are thought to include toxins, proteins facilitating 7 adhesion, and hydrolases acting on host cell components (reviewed in [2,3]). These include 8 proteases [4] and probably phospholipases. Phospholipases are a heterogeneous group of 9 enzymes that are able to hydrolyse one or more ester linkages in glycerophospholipids and 10 include phospholipase A (PLA), B (PLB), C (PLC) and D (PLD). Phospholipase activity can 11 destabilize host membranes, lyse cells and release lipid second messengers [5]. They are 12 considered to be important virulence factors for many microorganisms including 13 Clostridium perfringens, Pseudomonas aeruginosa, Rickettsia rickettsii, Toxoplasma gondii 14 and Entamoeba histolytica (review in [6]). Phospholipases and particularly PLBs are also 15 considered to be virulence factors for pathogenic fungi including *Candida albicans* [7] and 16 Cryptococcus neoformans [8]. In fungi, these PLBs possess 3 different enzymatic activities, 17 the hydrolase activity of phospholipase, lysophospholipase (LPL) and a lysophospholipase 18 transacylase (LPTA) activity [7,9]. Extracellular phospholipase activities have been detected 19 in *in-vitro* cultures of *A. fumigatus* [10,11], with a predominance of PLB activities [12] 20 supporting the presence of gene(s) coding for secreted PLB(s). We therefore decided to 21 identify gene(s) and cDNA(s) responsible of this activity in order to determine their 22 potential role in the pathogenesis of A. fumigatus.

- 23
- 24

1 2. Materials and methods

2 2.1. Strains, media and culture conditions

3 A. fumigatus CBS14489 and AF10 (ATCC 90240) were maintained at 4°C on Sabouraud chloramphenicol agar (bioMérieux, France) and subcultured at 25°C or 37°C up 4 5 to 48 hours with constant shaking (200 rpm) in modified Czapeck broth (Cz_2) with or 6 without 0.5% (w/v) 3-Sn-phosphatidylcholine from egg yolk (Fluka, Switzerland). Cz₂ 7 consists of 0.1% (w/v) yeast extract, 0.3% (w/v) saccharose, 0.3% (w/v) potassium nitrate, 8 0.1% (w/v) di-potassium hydrogen phosphate, 0.05% (w/v) potassium chloride, 0.05% (w/v) 9 magnesium sulphate and 0.001% (w/v) iron (II) sulphate. 10 11 2.2. DNA and RNA extraction 12 Genomic DNA was extracted as described on the Aspergillus website (**www.aspergillus.man.ac.uk**). Total RNA was extracted using a TRI REAGENTTM kit 13 14 (Euromedex, France) according to the manufacturer's instructions. Isolation of mRNA was accomplished by using "Dynabeads[®] mRNA DIRECTTM kit" (Dynal, Norway) on total 15 16 RNA according to the manufacturer's instructions. 17 18 2.3. Cloning and characterisation of afplb genes 19 Degenerate primers for phospholipase B [13] named degPLB Fw and Rv (table 1) 20 were used in PCR amplification. The final optimised conditions were 4 mM MgCl₂ and an 21 annealing temperature of 48°C for 3 min. Cloning of PCR products were performed either in pGEM[®]-T easy (Promega) or pT-Adv (Invitrogen) according to the manufacturer's 22 instructions. XhoI-restricted genomic DNA or SalI-restricted DNA was self-ligated with T4 23 24 DNA ligase and used for determination of adjacent sequences by Inverse PCR [14]

Page 5/21

respectively for af*plb1* and af*plb2*. The sequence of the primers used (invPLB1 and 2, Fw
 and Rv) is given in Table 1.

3

4

2.4. Expression of afplbs and full-length cDNA cloning and sequencing

5 Potential expression of PLB(s) was evaluated by RT-PCR on total RNAs 6 (ProSTAR[™] First-strand RT-PCR, Stratagene) using an annealing temperature of 58°C. 7 Primers used in PCR (RT-PLBx primers) are shown in Table 1. Amplification of a part of 8 the cDNA of the housekeeping genes actin and β -tubulin was used as a positive control and 9 to normalise the expression levels of the PLB genes between the cultures with and without 10 lecithin. Quantitative-PCR (Q-PCR) was performed on a BioRad i-Cycler IQ system using 11 the IQ SYBR Green supermix kit (BioRad) according to the manufacturer's instructions, 12 relatively to β -actin mRNAs. Primers used are indicated in Table 1. 13 5'- and 3' regions of each cDNA were amplified by RACE-PCR (Rapid Amplification of cDNA Ends) accordingly to the manufacturer's instructions (GeneRacer[™] 14 15 Kit Invitrogen) using a set of gene specific primers (5'- or 3'-RACE PLBx, Table 1), with 16 two rounds of PCR, one of 30 cycles with an annealing temperature of 65°C and another 30-17 cycles at 68°C. For each gene, the 5' and the 3' primers are complementary, therefore 18 permitting full-length cDNA sequences to be assembled after sequencing (GENOME express, Meylan, France). 19

- 20
- 21

2.5. Sequence analysis and sequence accession numbers

Preliminary genomic sequence data was obtained from The Institute for Genomic
Research (TIGR) website at <u>www.tigr.org</u>. Bioinformatics analyses were performed either
at the French bioinformatics server "Infobiogen" (<u>www.infobiogen.fr</u>) or at the ExPASy
Molecular Biology Server (<u>http://us.expasy.org</u>). For alignments and phylogenic analysis,

1	the following PLBs sequences were used: YMR008C (scPLB1), YMR006C (scPLB2),
2	YOL011W (scPLB3), AAF65220 (cnPLB1), CAC86376 (cnPLBa), AAF61964 (cnPLBb),
3	EAL17514 (cnPLBx), Q9UWF6 (caPLB1), O93795 (caPLB2), Q9UVX1 (caPLB3),
4	EAK98600 (caPLB5), Q8TG07 (cgPLB1), Q8TG06 (cgPLB2), P78854 (spPLB1), O13857
5	(spPLB2), Q08108 (spPLB3), Q9P327 (spPLB4), Q9Y7N6 (spPLB5), Q9UTH5 (spPLB6),
6	EAA64795 (anPLBx1), EAA61850 (anPLBx2), O42790 (ncPLB), EAA34954 (ncPLBx),
7	BAD08699 (mgPLBa), BAD08698 (mgPLBb), EAA56932 (mgPLBx), EAK81777
8	(umPLBx).
9	The nucleotide sequence data reported in this paper are listed in the GenBank
10	nucleotide sequence database under accession numbers <u>AF223004</u> / <u>AF223005</u> respectively
11	for partial genomic sequences of af <i>plb1</i> and af <i>plb2</i> , and <u>AY376592</u> / <u>AY376593</u> respectively
12	for the complete cDNA sequences of af <i>plb1</i> and af <i>plb3</i> .
13	

14 **3. Results**

15 3.1. Determination of three plb genes in the A. fumigatus genome

16 Degenerate primers designed by Sugiyama et al. [13] for the cloning of a second 17 phospholipase B gene from *Candida albicans* were used in order to amplify a partial region 18 of *plb* gene(s) from genomic DNA of A. *fumigatus*. A band of ~550 bp was obtained, 19 corresponding after sequencing to two different sequences of 545 and 542 nt, sharing 65.9% 20 identity and having a strong homology to fungal PLBs. These two partial sequences were 21 therefore named afplb1 (Genbank accession number AF223004) and afplb2 (Genbank 22 accession number AF223005). An inverse-PCR [14] on genomic DNA digested respectively 23 by XhoI and SalI and self-ligated permitted to obtain new PCR products of ~1.8 kb and ~1.1 24 kb leading to sequences of 2197 bp and of 1529 bp respectively for af*plb1* and af*plb2* when

1 assembled (data not shown). However, a BLASTX analysis [15] revealed that while the 2 entire 3' ends of afplb1 and afplb2 were cloned, the 5' regions were missing. 3 At the same time, the "Aspergillus fumigatus genome project" was initiated and 4 preliminary data were available for the scientific community (http://www.tigr.org) from 5 The Institute for Genomic Research (TIGR, USA) and the Wellcome Trust Sanger Institute 6 (UK), the two main centres in this international collaboration [16]. We therefore decided to 7 perform a BLAST search of our sequences to attempt to obtain the 5' regions. For each 8 sequence, a nearly perfect match was obtained confirming these genes were present as a 9 single copy, which was also confirmed by Southern analysis (data not shown). In addition, a 10 third gene with high homology was identified indicating that the same number of *plb* genes 11 was present in A. fumigatus genome and in S. cerevisiae genome.

- 12
- 13

3.2. Expression and cDNA sequences of afplbs

The main site of infection of *A. fumigatus* before invasion is the lung, in which the surfactant is principally composed of dipalmitoyl phosphatidylcholine, also the preferred substrate of the cryptococcal PLB [17]. We therefore investigated the influence of lecithin on the expression of af*plb* genes by quantifying their mRNAs from *A. fumigatus* cultured at 37° C with or without lecithin. Real-time PCR indicates that the three af*plbs* are expressed and that af*plb1* and af*plb3* are up-regulated by lecithin (respectively 5-fold and 300-fold) whereas af*plb2* expression is not affected (Table 2).

A preliminary bioinformatics study on the predicted amino acid sequence of PLB1, PLB2 and PLB3 showed the presence of an N-terminal prepro sequence for PLB1 and PLB3 (but not PLB2) indicating that they were likely to be secreted and therefore potentially involved in the pathogenesis of *A. fumigatus*. We therefore cloned the full-length cDNAs of af*plb1* and af*plb3* by RACE-PCR using mRNA from *A. fumigatus* cultured at 37°C in the

1 presence of lecithin. Assembling of the 5' and 3' part of each sequence revealed an mRNA 2 of 2,125 nt for af*plb1* and of 2,027 nt for af*plb3*, excluding the poly(A) tail, deposited in 3 Genbank respectively under the accession numbers AY376592 and AY376593. These 4 sequences were aligned and compared with genomic data. The ORF for afplb2 was deduced 5 from genomic data using bioinformatics tools (GeneFinder, TblastX) and sequence 6 alignment against other fungal *plbs*. The features of these mRNAs are summarized in Table 7 3. Afplb1 and afplb2 are composed of 3 exons, against one for afplb3 and the introns are 8 relatively small (varying from 58 to 132 nt) and fit with the consensus sequence usually 9 observed (GT/YAG). Search of the putative translation initiation codon (AUG) beginning 10 the longest ORF sharing homology with other fungal PLBs for af*plb1* and af*plb3* reveals 11 that the 5' UTR is 63-nt and 34-nt long respectively for af*plb1* and af*plb3*. The stop codon 12 used is OCH for afplb1 and AMB for afplb2 and afplb3. The 3' UTR is 160-nt and 101-nt 13 long respectively for afplb1 and afplb3, so resulting of an ORF size of respectively 1899 nt, 14 1764 nt and 1890 nt for af*plb1*, af*plb2* and af*plb3*.

- 15
- 16 3.3. Analysis of the predicted proteins sequences

17 The ORFs determined above lead to proteins of 633 amino acids for afPLB1, 588 18 amino acids for afPLB2 and of 630 amino acids for afPLB3. Their theoretic mass and pI are 19 indicated in Table 3. An hydropathy analysis performed according to Kyte and Doolittle 20 [18] revealed two stretches of hydrophobic amino acids at both the N- and C-terminus 21 having a score superior of 2 (Table 3) only for afPLB1 and afPLB3, but not for afPLB2 22 which is predicted to be localized in the nucleus as indicated by a PSORT II analysis (60.9 23 %, k=23, [19]). In addition to the hydrophobic N-tails of afPLB1 and afPLB3, a secretion 24 signal peptide is detected with a cleavage site between position 20 and 21 (VSG-AP) for 25 afPLB1 and position 16 and 17 (ATA-TP) for afPLB3, using SignalP V2.0 with predictions

1 trained on eukaryotes using neural networks [20]. Moreover, a PSORT II analysis reveals 2 that these two proteins could be either extracellular (including the cell wall) or GPI 3 anchored, with the same probability (Table 3). This last hypothesis is due to the presence of 4 (1) a hydrophobic tail, (2) a N-terminal peptide for secretion, (3) a S/T rich region, and (4) a 5 potential ω site (GPI attachment site) with a G [21], elements absent in caPLBs. These 6 signal peptides are indicated in the Figure 1, together with the important number of N-7 glycosylation sites present in these two secreted proteins (18 for afPLB1 and 14 for 8 afPLB3).

9 An alignment of the sequence of these 3 proteins indicates a high degree of identities 10 (from 59 % to 63 %), confirmed with a score of 81 using T-Coffee software [22]. Moreover, 11 some residues of the cytosolic mammalian PLA₂ (a triad comprising R₂₀₀, S₂₂₈ and D₅₄₉ 12 described as essential for the catalytic activity [23]) are also conserved in these three afPLBs 13 (amino acids boxed in Fig. 1), at position 121/105/112 for R, 160/144/151 for S and 14 412/395/405 for D, respectively for afPLB1, afPLB2 and afPLB3. This is also the case for 15 other PLBs from pathogenic fungi C. albicans (caPLB1 and caPLB2) and of C. neoformans 16 (cnPLB1) (data not shown).

17 In order to identify orthologues in other fungi, a phylogenic analysis was performed 18 using PLBs from yeasts and filamentous fungi. The tree is presented in figure 2 and shows that afPLBs are more closely related together than with PLBs from other genus: orthologous 19 20 genes are only found in the Aspergillus nidulans genome (afplb1 and anplb1, afplb3 and 21 anplb2), but not at the present time in other fungal genomes. A duplication of a common 22 ancestor gene gave two genes, one which evolved into afPLB2, the other which duplicated 23 into two other genes (afPLB1 and afPLB3): these events seems to be quite recent as they are 24 restricted to the Aspergilli.

Page 10/21

1 **4. Discussion**

2 In this present study, we identified and cloned three genes coding for PLB from A. 3 *fumigatus*, as it is in the genome of *S. cerevisiae*. However, the genomic distribution seems 4 to be different between these two organisms. In S. cerevisiae, 2 of the 3 plb genes (scplb1 5 and scplb2) are linked on the chromosome XIII around the position 280,000. This is not the 6 case for af*plb* genes as deduced from the partial assembly of genomic sequence data. 7 Moreover, the phylogenic analysis indicates that the afplbs genes are probably the result of 8 gene duplications that are independent of those observed in other fungi, with the exception 9 of A. nidulans. 10 Our cDNA sequences for af*plb1* and af*plb3* fit well with those from the genome 11 project, with some minor changes: for af*plb1*, a transition (33 T \rightarrow C), a transversion (1982) 12 $A \rightarrow T$) and a single-base deletion (2048 ΔT) are observed, and are all localized in 13 untranslated regions. Five single-base modifications are detected for afplb3, including 4 14 transitions (A \rightarrow G in positions 391, 1658, 1974 and 1886) and one transversion (242 C \rightarrow G). This should lead to 3 amino-acids differences ($E_{70} \rightarrow Q$; $D_{542} \rightarrow N$; $S_{618} \rightarrow G$), the two other 15 16 modifications being in an untranslated region (position 1974) or silent (position 391: G₁₃₉). 17 It remains to be determined if these differences are sequencing errors, or more likely, genetic 18 differences between the two different strains used in the genome project and in this study. 19 Moreover, no canonical sequences of polyadenylation (AATAAA) were present in the 3' 20 part of the cDNAs and no consensus sequence for either a "TATA box" nor "CAAT box" 21 could be identified in the 5' upstream regions. 22 These genes encode PLBs which share 58 to 63 % identity at the protein level and 23 have similar properties to other fungal PLBs determined so far, as well for their size 24 (varying from 605 aa for caPLB1 [7] to 637 aa for cnPLB1 [8]), and for their acidic pI or

25 their high number of N-glycosylation sites. Interestingly, de-glycosylation of the PLB from

1 C. neoformans using PNGase F leads to an almost total loss of enzyme activity [9]. They 2 also possess the three amino acids responsible for their enzymatic activity. Two of them 3 (afPLB1 and afPLB3) are non-cytoplasmic and possess an N-terminal signal peptide that 4 should target the protein either to the plasma membrane or to the extracellular compartment 5 (including an attachment to the cell wall). One or both proteins may therefore account for 6 the extracellular PLB activity determined by Birch et al. [10,11] and would degrade the 7 phospholipids present in high concentrations in lung surfactant. Interestingly, the expression 8 of both afPLB1 and afPLB3 was induced by lecithin, a constituent of human lung surfactant. 9 Extracellular PLB activity has previously been correlated with virulence in both C. albicans 10 and C. neoformans [24,25] and PLB knockout strains have been shown to significantly 11 reduce virulence by impeding penetration of host cells [7,8]. Moreover, it was shown 12 recently that extracellular PLB activity is different in environmental isolates of A. *fumigatus* 13 compared to clinical isolates [11], but surprisingly is higher. Thus, although PLB appears to 14 be important in the pathogenicity of C. albicans and C. neoformans, it is less clear what role 15 extracellular PLB may play in the pathogenicity of A. fumigatus. This may reflect the fact 16 that while PLB appears to be the only secreted phospholipase in C. albicans and C. 17 neoformans, A. fumigatus is also reported to secrete PLC [10,11]. However, we can not 18 exclude a participation in virulence due to different substrate specificities. 19

In conclusion, we have demonstrated that *A. fumigatus* encodes three PLB genes that are predicted to encode two secreted PLB proteins and to be upregulated in the presence of lecithin. Gene knockout studies will be required to fully understand the potential role of PLB in the pathogenicity of *A. fumigatus*.

24

25 Acknowledgements

1	Seque	encing of Aspergillus fumigatus was funded by the National Institute of Allergy and	
2	Infectious Disease U01 AI 48830 to David Denning and William Nierman, the Wellcome		
3	Trust, and Fondo de Investicagiones Sanitarias. DKS was supported by a grant from		
4	"Régi	on Rhône Alpes" and from the Shanghai 2 nd Medical University. HK and AN were	
5	suppo	rted by the Iranian Ministry of Health.	
6	JFB tl	nanks Marie-France Cesbron-Delauw and Hervé Pelloux for assistance in sequencing,	
7	and E	ric Peyretaillade for assistance in phylogenic analysis.	
8			
9	Ref	erences	
10	[1]	Vogeser, M., Haas, A., Aust, D. and Ruckdeschel, G. (1997). Postmortem analysis of	
11		invasive aspergillosis in a tertiary care hospital. Eur. J. Clin. Microbiol. Infect. Dis.	
12		16, 1 6.	
13	[2]	Latge, J. P. (1999). Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12,	
14		310 350.	
15	[3]	Tomee, J. F. and Kauffman, H. F. (2000). Putative virulence factors of Aspergillus	
16		fumigatus. Clin. Exp. Allergy 30, 476 484.	
17	[4]	Monod, M., Capoccia, S., Lechenne, B., Zaugg, C., Holdom, M. and Jousson, O.	
18		(2002). Secreted proteases from pathogenic fungi. Int. J. Med. Microbiol. 292, 405	
19		419.	
20	[5]	Salyers, A. and Witt, D. (1994). Virulence factors that damage the host, p. 47 62. In	
21		A. Salyers and D. Witt (ed.), Bacterial pathogenesis: a molecular approach. ASM	
22		Press, Washington, D. C.	
23	[6]	Ghannoum, M. A. (2000). Potential role of phospholipases in virulence and fungal	
24		pathogenesis. Clin. Microbiol. Rev. 13, 122 143.	

1	[7]	Leidich, S. D., Ibrahim, A. S., Fu, Y., Koul, A., Jessup, C., Vitullo, J., Fonzi, W.,
2		Mirbod, F., Nakashima, S., Nozawa, Y. and Ghannoum, M. A. (1998). Cloning and
3		disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of
4		Candida albicans. J. Biol. Chem. 273, 26078 26086.
5	[8]	Cox, G. M., McDade, H. C., Chen, S. C, Tucker, S. C., Gottfredsson, M., Wright, L.
6		C., Sorrell, T. C., Leidich, S. D., Casadevall, A., Ghannoum, M. A. and Perfect, J. R.
7		(2001). Extracellular phospholipase activity is a virulence factor for Cryptococcus
8		neoformans. Mol. Microbiol. 39, 166 175.
9	[9]	Chen, S. C., Wright, L. C., Golding, J. C. and Sorrell, T. C. (2000). Purification and
10		characterisation of secretory phospholipase B, lysophospholipase and
11		lysophospholipase/transacylase from a virulent strain of the pathogenic fungus
12		Cryptococcus neoformans. Biochem. J. 347, 431 439.
13	[10]	Birch, M., Robson, G., Law, D. L. and Denning, D. W. (1996). Evidence of multiple
14		extracellular phospholipase activities of Aspergillus fumigatus. Infect. Immun. 64,
15		751 755.
16	[11]	Birch, M., Denning, D. W. and Robson, G. D. (2004). Comparison of extracellular
17		phospholipase activities in clinical and environmental Aspergillus fumigatus isolates.
18		Med. Mycol. 42, 81 86.
19	[12]	Koul, A., Jessup, C. J., Deluca, D. J., Elnicky, C. J., Nunez, M., Washburn, R. G. and
20		Ghannoum, M. A. (1998). Gen. Meet. Am. Soc. Microbiol. abstr. F 78.
21	[13]	Sugiyama, Y., Nakashima, S., Mirbod, F., Kanoh, H., Kitajima, Y., Ghannoum, M.
22		A. and Nozawa, Y. (1999). Molecular cloning of a second phospholipase B gene,
23		caPLB2 from Candida albicans. Med. Mycol. 37, 61 67.
24	[14]	Ochman, H., Gerber, A. S. and Hartl, D. L. (1988). Genetic applications of an inverse
25		polymerase chain reaction. Genetics 120, 621 623.

1	[15]	Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1999). Basic
2		local alignment search tool. J. Mol. Biol. 215, 403 410.
3	[16]	Denning, D. W., Anderson, M. J., Turner, G., Latge, J. P. and Bennett, J. W. (2002).
4		Sequencing the Aspergillus fumigatus genome. Lancet Infect. Dis. 2, 251 253.
5	[17]	Santangelo, R. T., Nouri-Sorkhabi, M. H., Sorrell, T. C., Cagney, M., Chen, S. C.,
6		Kuchel, P. W. and Wright, L. C. (1999). Biochemical and functional characterisation
7		of secreted phospholipase activities from Cryptococcus neoformans in their naturally
8		occurring state. J. Med. Microbiol. 48, 731 740.
9	[18]	Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydropathic
10		character of a protein. J. Mol. Biol. 157, 105 132.
11	[19]	Horton, P. and Nakai, K. (1997). Better prediction of protein cellular localization
12		sites with the k nearest neighbors classifier. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5,
13		147 152.
14	[20]	Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997). A neural network
15		method for identification of prokaryotic and eukaryotic signal peptides and
16		prediction of their cleavage sites. Int. J. Neural. Syst. 8, 581 599.
17	[21]	Hamada, K., Terashima, H., Arisawa, M., Yabuki, N. and Kitada, K. (1999). Amino
18		acid residues in the omega-minus region participate in cellular localization of yeast
19		glycosylphosphatidylinositol-attached proteins. J. Bacteriol. 181, 3886 3889.
20	[22]	Notredame, C., Higgins, D. and Heringa, J. (2000). T-Coffee: A novel method for
21		multiple sequence alignments. J. Mol. Biol. 302, 205 217.
22	[23]	Pickard, R. T., Chiou X. G., Strifler, B A., DeFelippis, M. R., Hyslop, P. A., Tebbe,
23		A. L., Yee, Y. K, Reynolds, L. J., Dennis, E. A., Kramer, R. M. and Sharp, J. D.
24		(1996). Identification of essential residues for the catalytic function of 85-kDa

1		cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and
2		arginine. J. Biol. Chem. 271, 19225 19231.
3	[24]	Ibrahim, A. S., Mirbod, F., Filler, S. G., Banno, Y., Cole, G. T., Kitajima, Y.,
4		Edwards, J. E. Jr, Nozawa, Y. and Ghannoum, M. A. (1995). Evidence implicating
5		phospholipase as a virulence factor of Candida albicans. Infect. Immun. 63, 1993
6		1998.
7	[25]	Vidotto, V., Leone, R., Sinicco, A., Ito-Kuwa, S. and Criseo, G. (1998). Comparison
8		of phospholipase production in Cryptococcus neoformans isolates from AIDS
9		patients and bird droppings. Mycopathologia 142, 71 76.
10		

1 Table 1

2 Names and sequences of primers used in this work

Name	Sequence (5'- 3')
degPLB Fw	GAYGGIGGIGARAAYCARAA [13]
degPLB Rv	AYIGTICCRTTCCARCARTA [13]
invPLB1 Fw	CGCACACAGCTCTCATTACTTGGG
invPLB1 Rv	GGGAATACATCACGTGCTTATGAGGC
invPLB2 Fw	CTGGTAGTCGTGTCCGCTGACGAGTCGAC
invPLB2 Rv	TGAGAATGGGTACGATGTGGCAACACTGGG
RT-PLB1 Fw	ATACCACTGCACCCGTTGA
RT-PLB1 Rv	GGGAATTGCAGGAAAGGAA
RT-PLB2 Fw	CTCGATCCCCTTCTTCAGC
RT-PLB2 Rv	GCCAGTCGCGTTTGAACTA
RT-PLB3 Fw	TGCCAGACGTGAACACCTT
RT-PLB3 Rv	CCGCGTCACCACGTTATAC
RT-βACT Fw	TGATTGGTATGGGCCAGAA
RT-βACT Rv	CGTAGAGGGAGAGAACGGC
Q-PCR PLB1 Fw	TGTTGGCTTTGTCATGGGTA
Q-PCR PLB1 Rv	GATGTCGGTGAAGACGGATT
Q-PCR PLB2 Fw	CAGGCATTTCTGCAGATGAA
Q-PCR PLB2 Rv	GGCTCGCATAGCGATAGAAC
Q-PCR PLB3 Fw	CCAATGGAGCTGGAGCTATC
Q-PCR PLB3 Rv	TGCAGTAGACCACCGAGATG
Q-PCR ACT Fw	TGCTCCTCCTGAGCGTAAAT
Q-PCR ACT Rv	ACATCTGCTGGAAGGTGGAC
Q-PCR β-TUB Fw	ACTTCCGCAATGGACGTTAC
Q-PCR β-TUB Rv	GGATGTTGTTGGGAATCCAC
5'-RACE PLB1	GTTCCTAGATACTCGAGGGGGCGCA
3'-RACE PLB1	TGCGCCCCTCGAGTATCTAGGAAC
5'-RACE PLB3	GGTGGAGTTGCGGTACCCGTAGAA
3'-RACE PLB3	TTCTACGGGTACCGCAACTCCACC

1 Table 2

2 Influence of lecithin on gene expression of afPLBs^a

3

Gene	Expression level ^a		Fold induction
	- phospholipid	+ phospholipid	
af <i>plb1</i>	0.3 ± 0.1	1.4 ± 0.2	5
af <i>plb2</i>	1.0 ± 0.2	1.0 ± 0.2	0
af <i>plb3</i>	< 0.0001	0.04 ± 0.01	> 300

4

^aThe expression of af*plbs* mRNA was determined by Real Time PCR after extraction of
mRNAs from *A. fumigatus* cultured at 37°C for 48 hours in Cz2 medium supplemented with
(+) or without (-) 0.2 % (w/v) lecithin. Results (means of six replicates) were normalized to
β-actin and are given relative to its expression. The experiment was performed twice with
similar results.

1 Table 3

2 Main features of the sequences of the cDNA and of the deduced protein of afPLBs

		afPLB1	afPLB2	afPLB3
cDNA	cDNA size	4826	4951	4925
	exons	3	3	1
	size of exons	114 nt	ND	4925
		657 nt	566 nt	
		1354 nt	ND	
	introns	2	2	0
	size of introns	102 nt	132 nt	-
		58 nt	59 nt	
	(genomic)- +1 ^a	(t)-A	ND	(c)-A
	5' UTR length	63 nt	ND	34 nt
	3' UTR length	160 nt	ND	101 nt
	ORF size	1899 nt	1764 nt	1890 nt
	STOP codon	UAA	UAG	UAG
Protein	Predicted size ^b	633 aa	588 aa	630 aa
	Predicted mass ^b	68,143 Da	63,370 Da	67,448 Da
	Theoretical pI ^b	4.59	5.11	5.22
	Hydrophobicity ^c	N and C ter	none	N and C ter
	Secretion signal ^d	Yes	No	Yes
	Cleavage sequence ^d	$VSG_{20} / A_{21}P$	-	ATA ₁₆ /T ₁₇ P
	Resulting mass ^b	66,202 Da	-	65,893 Da
	Resulting pI ^b	4.55	-	5.14
	Localization ^e	EC / PM	Ν	EC / PM
	Probability ^e (%)	34.8 / 34.8	60.9	34.8 / 34.8
	N-glycosylation ^f	18	-	14

^aThe genomic nucleotide preceding the transcription initiation site (+1) is indicated in

4 bracket when determined.

1	^b Physical properties of deduced proteins (size, mass, pI) were determined using ProtParam
2	at the ExPASy web site.
3	^c Hydropathy analysis was performed accordingly to Kyte and Doolittle [18].
4	^d Secretion signal and cleavage sequence were determined using SignalP v2.0 [20].
5	^e Localization is deduced from a PSORT II analysis [19]. EC stands for a extracellular
6	position (including a cell wall localization), N for a nuclear position and PM for a plasma
7	membrane localisation.
8	^f N-glycosylation sites (N-{p}-[ST]) were determined using NetNGlyc 1.0 program.
9	
10	
11	LEGENDS of FIGURE:
12	
13	Fig. 1. Alignment of the three afPLBs. The secretion signal peptide of afPLB1 and afPLB3
14	is indicated in bold and italized. N-Glycosylation sites (N-{p}-[ST]) are indicated in bold.
15	Amino-acids of the catalytic triad identified in mammalian cytosolic PLA ₂ are boxed and
16	indicated by an arrow above them.
17	
18	Fig. 2. Phylogenic tree of various fungal PLBs. The tree (unrooted tree) was drawn with
19	TreeView, after a ClustalW alignment and a Phylip analysis using the Neighbor-joining
20	method (x, hypothetical protein; af, Aspergillus fumigatus; an, Aspergillus nidulans, ca,
21	Candida albicans; cg, Candida glablatra; cn, Cryptococcus neoformans; mg, Magnaporthe
22	grisea; nc, Neurospora crassa; um, Ustilago maydis). See Materials and Methods for
23	accession numbers.

FIGURE 1

afPLB1	MKTTTVACAVAGLLFSCVSGAPDPVHVEIQQRALPNAPDGYTPSTVGCPASRPTIRSAASLSPMETSWLETRRGKTTSAMKDFFNHVKIQDFDAAGYIDR
afPLB2	MINNRVELIIIAPUNRALPNAPDGIIPQGEICPSKRFSIRNAIALSSAEISWLKARRUNIKDALKAFLSRVDLGSFUGDIIAN MKALLSLLTAVAVATA TPLDLSLRALPNAPDGYTPAKVSCPATRPSIRGAGSLSP <mark>M</mark> ETSWLEIRRKNTVEPMTDLLGRLNL-GFDAAGYIDR
	↓ ↓
afPLB1	HSSNSSDLPNIGIAVSGGGYRALMNGAGAIKAFDSRTPNSTSAGQLGGLLQSATYLSGLGGGSWLVGSIYINNFTTISALQTHQKGTVWQFQNSIFEGPD
afPLB2	HSANASALPNIGIAVSGGGYRALMNGGGALQAFDNRTTNSTHSGQLGGILQSATYLSGLGGGSWLVGSIYMNNFSDVSSLQDNGSVWQFQDSIFSOPT
aIPLB3	VSSMASNLPNIAIAVSGGGYMALTNGAGAIKAFUSRTQGSTQSGHLGGLLQSATYVSGLDGGGWLVGSVYLNMFFTTADLQSGDHGNVWQFSTSILEGPK
afPLB1	$\texttt{GGSIQILDSATYYRDISNAVSGKSDAGYPTSITDYWGRALSYQMIN} \\texttt{ATNGGPSYTWSSIALTDAFQKAEMPMPLVVADGRYPGELLISSNATYYEFNP}$
afPLB2	$\label{eq:construction} QSTTWDIGTVEYYSQLLGAVDGKSNAGYEVSITDYWGRSLSYQLIN ASEGGVGYTWSSIALSKDFQAGTMPMPLVIADGRAPGEILVPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP ASEGGVGYTWSSIALSKDFQAGTMPANTTVFEFNP$
afPLB3	$\label{eq:lstadywkdllkavdgksdagf \underline{\textbf{M}} \texttt{TSLTDYWGRALSYQFINDRTGNGGLSYTWSSIALTDPFRRGEMPLPILVADGRNPGELLIGS \underline{\textbf{M}} \texttt{STVYEFNP} STVYEFNP$
afPLB1	$we fgtfdptvfgfapleylgtkfnggsvps {\tt n} escvrgfdnvgfvmgtsstlfnqfllqi{\tt n} stalpdwlksvftdilkdigendediaqyapnpfyhfs {\tt n} tablestalpdwlksvftdilkdigendediaqyapnpfyhfs {\tt n} tablestalpdwlksvftdilkdigen$
afPLB2	we fg swdks lsafvs lefl g snf skg t latge k cvrg fd nagf ing tssslfn qafl q mint dap svvk da i sail g k i g sennd i av y k p n p f y r y a square so that the sail g k i g s a start of the sail g k i g k
afPLB3	we fgsf dpsifg fapley lgsr fd ng lpr ge p c v rg fd nag f v mg tsssl f n Q f i l r l m k t d l p d lak d v f skilta i g r d g d l a v y g p n p f y g y r m s d h s h s h s h s h s h s h s h s h s
	\downarrow
afPLB1	TNPSAAELELDLVD GGEDLQNIPLHPLIQPERHVDVIFAVDSSADTTYSWP M GTALVATYERSL N SSGIA M GTSFPAIPDQNTFVNKGLNTRPTFFGC N SSGIA SSGIA N SSGIA SSGIA SSGIA SSGIA SSGIA N SSGIA
afPLB2	SKYTSSP-SLTLVDGGEDLQNIPLDPLLQPQRHVDVILAVDSSADTTTRWPNGTSLVATYERNVDSSQRNSSLPFPSVPDQNTFVNLGLNNRPTFFGCNS
afPLB3	TAAYSRSRELDVVD GGEDGQNIPLHPLIQPVRHVDVIFAVDSSADGPYSWP M GSALVATYERSL M SSGIG M GTVFPAVPDVNTFVNLGLNTRPTFFGCDP
afPLB1	SNTTGPSPLIVYLPNYPYTAYSNFSTFOPDYTEOERDSTILNGYDVVTMGNSTRDGNWSTCVGCAILSRSLERTNTNVPEICKOCFORYCWDGSLNSTTP
afPLB2	SNATG-APLVVYIPNAPYIYPSNVSTFDLQYNTSERNAIIENGYDVATLGNGTVDSNWPACLACAILSRSFERTNTTVPKTCSTCFKTYCWNGTINATTP
afPLB3	$\texttt{A} \textbf{M} \texttt{LSAPAPLVVy} \texttt{LPNAPYSTHS} \textbf{M} \texttt{TSTFQLAYSDSERDEIITNGYNVVTRGDATVDKSWPSCVGCAILQRSMYRT \textbf{M} \texttt{TSMPAVCNSCFKEYCW} \textbf{M} \texttt{GTVDSKTP} \texttt{LSAPAPLVVy} \texttt{LPNAPYSTHS} \textbf{M} \texttt{TSMPAVCNSCFKEYCW} \textbf{M} \texttt{GTVDSKTP} \texttt{LSAPAPLVVy} \texttt{LPNAPYSTHS} \textbf{M} \texttt{LSAPAPLVVy} \texttt{LPNAPVSTHS} \textbf{M} \texttt{LSAPAPVSTHS} \textbf{M} $
afPLB1	AGYEPVTILDSAASGIIPSISTVAMAVVFAAWTIF
afPLB2	GDYYPTLKLH

afPLB3 RTYEPTLLLGSTSTNAAYTQGVTWLVSILAVGVAMGMTA

