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Abstract

Increasing evidence from sequence data from various environments, including the human gut, suggests the existence of a previously
unknown putative seventh order of methanogens. The first genomic data from members of this lineage, Methanomassiliicoccus
luminyensis and “ Candidatus Methanomethylophilus alvus,” provide insights into its evolutionary history and metabolic features.
Phylogenetic analysis of ribosomal proteins robustly indicates a monophyletic group independent of any previously known metha-
nogenic order, which shares ancestry with the Marine Benthic Group D, the Marine Group II, the DHVE2 group, and the
Thermoplasmatales. This phylogenetic position, along with the analysis of enzymes involved in core methanogenesis, strengthens
asingle ancient origin of methanogenesis in the Euryarchaeota and indicates further multiple independent losses of this metabolismin
nonmethanogenic lineages than previously suggested. Genomic analysis revealed an unprecedented loss of the genes coding for the
first six steps of methanogenesis from H,/CO, and the oxidative part of methylotrophic methanogenesis, consistent with the fact that
M. luminyensis and “Ca. M. alvus” are obligate H,-dependent methylotrophic methanogens. Genomic data also suggest that these
methanogens may use a large panel of methylated compounds. Phylogenetic analysis including homologs retrieved from environ-
mental samples indicates that methylotrophic methanogenesis (regardless of dependency on H,) is not restricted to gut represen-
tatives but may be an ancestral characteristic of the whole order, and possibly also of ancient origin in the Euryarchaeota. 16S rRNA
and McrA trees show that this new order of methanogens is very diverse and occupies environments highly relevant for methane
production, therefore representing a key lineage to fully understand the diversity and evolution of methanogenesis.

Key words: Archaea, evolution, genomics, methanogenesis, Methanoplasmatales, Methanomassiliicoccales.

The importance of biogenic methane has drawn scientific
attention to several archaeal lineages not only as powerful
new energy producers but also as major contributors to
the global warming process (Weiland 2010; Montzka et al.
2011). Methanogenesis is an ancient metabolism specific
of the Archaea that originated in the Euryarchaeota
(Brochier et al. 2004; Bapteste et al. 2005; Gribaldo
and Brochier-Armanet 2006). All methanogens belong to
SiX euryarchaeal orders (i.e., Methanococcales,
Methanopyrales, Methanobacteriales, Methanosarcinales,
Methanomicrobiales, and Methanocellales) unified by their

unique ability to gain energy from methane production.
Three main methanogenic pathways are classically defined:
methanogenesis from H,/CO,, acetoclastic methanogenesis,
and methylotrophic methanogenesis, involving a conserved
core of enzymes (FWD/FMD, FTR, MCH, MTD/HMD, MER,
MTR, and MCR) common to all six orders of methanogens
(fig. 1) (for a comprehensive review, see Hedderich and
Whitman 2006). The last step of all these pathways consists
of the conversion of methyl-coenzyme M (methyl-S-CoM) into
CH4 and is performed by the same enzymatic complex in all
methanogens, the methyl-coenzyme M reductase (MCR)
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Fic. 1.—Main methanogenic pathways and associated genes. The
blue box highlights the first six steps of methanogenesis from H,/CO,
(downward arrows) and the production of reducing equivalents during
methylotrophic methanogenesis without external H, source (upward

(fig. 1, red box). The electrons used for this reduction reaction
come either from H, or a reduced cofactor Fayg (FazoH>)
depending on the pathway.

In methanogenesis from H,/CO,, methyl-S-CoM is pro-
duced from CO, along six steps with formyl-, methenyl-, meth-
ylene-, and methyl-coenzymes as intermediates (fig. 1, blue
box, downward arrows), and the electrons required to reduce
methyl-S-CoM to methane derive from an external H, source
(fig. 1, red box). In acetoclastic methanogenesis, acetate is
cleaved and its methyl group is transferred to H4MPT (fig. 1,
blue box, dotted arrow) and then to HS-CoM. The electrons
required to reduce methyl-S-CoM to methane are derived
from the oxidation of the carboxyl group of the acetate. In
methylotrophic methanogenesis, methyl-S-CoM is produced
via transfer of a methyl group from methanol, methylamines
(mono-, di-, and trimethylamine), or dimethy! sulfide to HS-
CoM by enzymes specific for each substrate (van der Meijden
etal. 1983; Wassenaar et al. 1996; Ferguson et al. 2000; Bose
et al. 2008): MtaABC for methanol, MtmBC/MtbA for mono-
methylamine, MtbBC/MtbA for dimethylamine, MttBC/MtbA
for trimethylamine, and MtsA/MtsB for dimethyl sulfide (fig. 1,
green box). One methyl group associated with the coenzyme
M is oxidized to CO, along a reverse H,/CO, methanogenesis
pathway (fig. 1, blue box, upward arrows) to produce the
reducing equivalents (F40H, and Fd,eq) needed to reduce
three other methyl-S-CoM to methane. A particular form of
this metabolism is H,-dependent methylotrophic methano-
genesis, which may be referred to as a fourth pathway
(Welander and Metcalf 2005), where all the methyl-S-CoM
is reduced into methane, the electrons being obtained from
H, coming from an external source (fig. 1, red box).

Most of the cultured Methanococcales, Methanopyrales,
Methanobacteriales, Methanomicrobiales, and
Methanocellales perform methanogenesis from H,/CO, (Liu
and Whitman 2008). The order Methanosarcinales comprises
the most versatile species, capable of performing all four

Fic. 1.—Continued

arrows), while the dotted line in the blue box indicates the entry of the
methyl group in the acetoclastic pathway. The green box highlights the
first steps of methylotrophic methanogenesis and H,-dependent methylo-
trophic methanogenesis. The red box highlights the final step of metha-
nogenesis in all three pathways. The genes absent in the Mx lineage
are indicated in gray. The mtaA and mtaB genes are marked with an
asterisk to signify that the homologs present in Mx cannot be presently
assigned to one or the other enzyme category (see text for details). Dotted
arrows designate the presence of steps not detailed on the figure. The
oxidation of the carbonyl group of the acetate in the acetoclastic metha-
nogenesis is not apparent on the figure. MFR, methanofuran; HsMPT,
tetrahydromethanopterin; HS-CoM, coenzyme M; HS-CoB, coenzyme B,
CoM-S-S-CoB, heterodisulfide of HS-CoM and HS-CoB; F4,0H,, reduced
coenzyme Fyp0; Fdeeg, reduced ferredoxin; Fdo, oxidized ferredoxin.
For simplicity, tetrahydrosarcinapterin (H4SPT, an analog of H4MPT) is
not displayed.
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described methanogenic pathways (some Methanosarcina
spp.), although some are uniquely dependent on acetoclastic
methanogenesis (Methanosaeta spp.) or Hy-dependent
methylotrophic  methanogenesis by using methanol,
mono-, di-, tri-methylamine, and dimethyl sulfide
(Methanomicrococcus blatticola [Sprenger et al. 2000]). The
ability to use methanol via H,-dependent methylotrophic
methanogenesis is also present in a few species belonging
to the Methanobacteriales. Among them, Methanosphaera
stadtmanae displays obligate H,-dependent methylotrophy
from methanol, and it has lost the capability to reduce CO,
to methane or oxidize methanol to CO,, although it has
kept most of the corresponding enzymes that might
be used in other metabolic pathways (Fricke et al. 2006). As
both Methanosphaera stadtmanae and Methanomicrococcus
blatticola were isolated from the gut, specialization for H,-
dependent methylotrophic methanogenesis could appear as
an adaptation to these environments.

Based on the phylogenetic placement of methanogens in
the archaeal tree and the analysis of the core enzymes, pre-
vious analyses have suggested that methanogenesis has a
unigue and early origin in the Euryarchaeota, likely after
the divergence of Thermococcales, and would have been
followed by subsequent multiple independent losses in
nonmethanogenic euryarchaeal lineages (Brochier et al.
2004; Bapteste et al. 2005; Gribaldo and Brochier-Armanet
2006). Indeed, remnants of a methanogenic past are found
in the genomes of Archaeoglobales, which still harbor the
enzymes for the first five steps of methanogenesis from H,/
CO,, now involved in the oxidation of lactate to CO, (Mdller-
Zinkhan et al. 1989; Klenk et al. 1997). The composite and
almost complete genome of an anaerobic methanotroph
affiliated to ANME-1 displays the genes coding for the
same conserved core of enzymes than the six orders of
methanogens, except mer (Meyerdierks et al. 2010). The
exact role of all these genes and the possible bypassing of
Mer for the methanotrophic pathway were thoroughly dis-
cussed but remain to be elucidated (Meyerdierks et al. 2010).

A putative new lineage of methanogens unrelated to any
of the six previously known orders was proposed by us a few
years ago on the basis of sequence data (16S rRNA genes and
a molecular marker of methanogenesis, mcrA) from human
stools (Mihajlovski et al. 2008). Closely related phylotypes
were reported by several other studies from animal gut,
including humans, and various other environments such as
soil, paddy fields, lakes, rivers, marine sediments, and subsur-
faces (Kemnitz et al. 2005; Janssen and Kirs 2008; Scanlan
et al. 2008; Evans et al. 2009; Mihajlovski et al. 2010; Biderre-
Petit et al. 2011; Horz et al. 2012). One strain has now
been isolated and one enriched from human feces,
Methanomassiliicoccus luminyensis (Dridi et al. 2012) and
"Candidatus Methanomethylophilus alvus” (Borrel et al.
2012), respectively. Moreover, two other strains have been
enriched from termite gut, MpT1 and MpM2 (Paul et al.

2012), and very recently, an additional one from waste treat-
ment sludge, “Candidatus Methanogranum caenicola” (lino
et al. 2013). Methanomassiliicoccus luminyensis has been
shown to perform exclusively H,-dependent methanogenesis
from methanol (Dridi et al. 2012), similar to Methanosphaera
stadtmanae and Methanomicrococcus blatticola. Analyses on
the other not-yet isolated strains strongly suggest that they
have a similar specialization (Borrel et al. 2012; Paul et al.
2012; lino et al. 2013). Two recent studies indicated that
members of this lineage might also use methylamines based
on the presence of the genes for the corresponding enzymes
in the "Ca. M. alvus” genome (Borrel et al. 2012) and analysis
of their transcripts induced by the addition of trimethylamine
in rumen (Poulsen et al. 2013). Because of 16S rRNA phylo-
genetic proximity with the wall-less thermoacidophilic
Thermoplasmatales, the name “Methanoplasmatales” was
recently proposed for this order (Paul et al. 2012). However,
as highlighted by lino et al. (2013), the name
“Methanomassiliicoccales” should instead be used, in accor-
dance with the rules 9 and 15 of the International Code of
Nomenclature of Bacteria (Lapage et al. 1992). Waiting for an
agreement on its name, we will refer to this lineage as Mx in
the current communication.

The first two genomes of Mx representatives, M. luminyen-
sis and “Ca. M. alvus,” whose 16S rRNA gene sequences are
only 87% identical, have recently become available (Borrel
et al. 2012; Gorlas et al. 2012). Moreover, more than 40
genomes from all orders of methanogens are now available.
This provides an unprecedented opportunity to clarify their
evolutionary relationships with the other euryarchaeal lineages
by markers alternative to 16S rRNA and to gain genomic
insights into their metabolism, which we describe in the
following sections.

Phylogenetic Placement of the Mx
Order Supports Multiple Losses of
Methanogenesis in the Euryarchaeota

Analysis of a concatenation of ribosomal proteins from 84
euryarchaeal genomes and comprising 7,472 amino acid
positions robustly shows that M. luminyensis and "Ca.
M. alvus” represent a monophyletic lineage that is not phylo-
genetically associated with any of the previously known orders
of methanogens or the anaerobic methanotrophic ANME1
lineage (fig. 2a). Interestingly, the Mx order, albeit evolution-
arily close to Thermoplasmatales as previously noted, robustly
clusters with two lineages without cultured representatives:
the planktonic Marine Group Il (MG-Il) and the sediment dwell-
ing Marine Benthic Group D (MBG-D) for which the first
genomic sequences were recently obtained (lverson et al.
2012; Lloyd et al. 2013).

The phylogenetic position of M. luminyensis and “Ca.
M. alvus” in the tree of Euryarchaeota and their clustering
with nonmethanogenic lineages pose the question of the
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origin of their metabolic capabilities. A tree based on a con-
catenation of the five markers of methanogenesis (McrA-B-C-
D-G) that are shared by all methanogens and the ANME1
member (fig. 2b) is largely consistent with the ribosomal pro-
tein-based phylogeny, notably by recovering the monophyly
of all orders. This strongly indicates that the current distribu-
tion of these components is not due to horizontal gene trans-
fer but to vertical inheritance, and strengthens the scenario
whereby methanogenesis emerged once, likely after the
emergence of Thermococcales, and was subsequently lost
multiple times independently during the evolutionary history
of Euryarchaeota (red crosses in fig. 2a). Significantly, it also
implies that the MG-Il and MBG-D lineages descend from
a methanogenic ancestor shared with M. [uminyensis
and “Ca. M. alvus.” Although predominantly found in
anoxic sediments, it is unlikely that the MBG-D members are
methanogens. The mcrA gene could not be amplified using
genomic DNA extracted from the samples dominated by
MBG-D in a study on hypersaline lake sediments, and isotopic
measurements have indicated that methane production and
consumption is negligible in that environment (Jiang et al.
2008). This lineage probably generates energy from metabo-
lism of protein degradation (Lloyd et al. 2013). Accordingly,
no genes coding for core methanogenesis enzymes were
found in the MBG-D genomes, and the few homologs of
the genes involved in energy conservation in methanogenesis
from H,/CO, (mtrAH, hdrABC, and mvhAGD) that are present
in these genomes are also shared by nonmethanogenic mi-
croorganisms (Lloyd et al. 2013). According to their close re-
lationship with the Mx lineage, the presence of these
homologs in MBG-D members may be the vestige of a metha-
nogenic past. In contrast, MG-Il representatives live in fully
oxygenated waters and do not harbor any remnant of
enzymes involved in methanogenesis, which would therefore
have been completely lost during adaptation from a strict an-
aerobic methanogenic lifestyle to this very different new
environment.

Comparison of 16S rRNA gene-based and mcrA protein-
based trees of sequences obtained from the same environ-
mental samples allows delineating more precisely the current
phylogenetic coverage of the Mx lineage (fig. 3). In both trees,
“Ca. M. alvus” and M. luminyensis fall into two distinct, well-
supported clades, consistent with a recent but less complete
analysis (Paul et al. 2012). “Ca. M. alvus” is phylogenetically
related to taxa obtained mainly from the gut of different
animals including the Rumen Cluster C (RCC) (Janssen and
Kirs 2008), whereas the M. Juminyensis clade comprises
clones reported from various nondigestive environments
including representatives of the Rice Cluster Il lineage
(Kemnitz et al. 2005). It is presently unclear whether these
differences in environmental distribution are real or due to a
sampling bias. Other clades can also be observed that include
phylotypes from diverse environments (fig. 3). Notably, a third
cluster distantly related to those of “Ca. M alvus” and

M. luminyensis is apparent, represented by multiple 16S and
mcrA sequences from the water column of the meromictic
Lake Pavin in France (Biderre-Petit et al. 2011). It was previ-
ously proposed that some of the McrA sequences closely
related to the Mx order might represent the MBG-D lineage
(Paul et al. 2012). However, our analysis and the fact that the
genomes of MBG-D members do not harbor mcrA support
the assignment of current McrA sequences exclusively to the
Mx lineage.

16S rRNA analysis also shows that a large number of
presently uncultured lineages from diverse environments
branch between the MxMGI/MBG-D clade and the
Thermoplasmatales/DVHE2 clade (fig. 3b). Although some of
these lineages are commonly found in anoxic environments,
such as sediments, that are compatible with methanogenesis,
others are mostly from aerobic and/or extremely acidic
environments that are unsuitable for this metabolism,
for example, the Marine Group-lll (MG-lll) and the
Thermoplasmatales-related Acidic Cluster (TAC) (fig. 3b).
The identification of the Mx lineage and its specific placement
in the archaeal phylogeny therefore suggest that multiple
independent losses of methanogenesis have occurred during
euryarchaeal evolution even more times than previously
proposed.

A Unprecedented Case of Reduction of
the Methanogenic Pathway and
Specialization on Methylated
Compounds: Recent Adaptation or
Ancestral Feature?

The wide distribution of Mx members in various environments
and the fact they are not evolutionarily affiliated to any other
previously known methanogenic order may suggest that they
harbor specific characteristics. In particular, information on the
metabolic capacities of “Ca. M. alvus” and M. luminyensis
is important for further investigations of the role of these
organisms in the human gut. Surprisingly, “Ca. M. alvus”
and M. luminyensis are the first methanogens that appear
to have totally lost all the genes involved in both the first six
steps of methanogenesis from H,/CO, and the oxidative part
of methylotrophic methanogenesis (fig. 1, blue box, in gray
font). These genes are otherwise present in all genomes from
methanogens sequenced to date, including those that do not
use the CO, reduction/methyl group oxidation pathway for
methanogenesis, such as Methanosphaera stadtmanae (Fricke
et al. 2006) and Methanosaeta spp. (Zhu et al. 2012) (fig. 2a).
Moreover, genes encoding the synthesis of the F4o coen-
zyme, an important electron carrier in methanogens, are
also absent. This is in agreement with Paul et al. (2012),
who observed a lack of F4,q autofluorescence in their enrich-
ments of MpT1 and MpM2. The absence of all these enzymes
explains the fact that M. luminyensis is unable to grow on Hy/
CO,, acetate, or on methanol without an H, external source

Genome Biol. Evol. 5(10):1769-1780.  doi:10.1093/gbe/evt128  Advance Access publication August 28, 2013 1773

£TO0Z ‘82 JOqUIBAON UO pUe.LIB- JUOWB D 8p 815J0AIuN, T T /BI0's euinolpio jxo'aghy/:dny woly papeojumoq


ue
ue
if
While
such as 
-
.
http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/

Borrel et al.

“Ca. M. alvus” Mx1201 (KC412010)
Pig feces (HM210849)

Cattle rumen (HQ616025)

“Ca. M. alvus” Mx1201 (AGE94063) (b)

Enrichment str. CRM1 from rumen (ADH95264)
Subgingival plaque (AFJ23866)

Cattle rumen (ABB04508)

Cattle rumen (ABN54988)

Cow rumen (AEP84485)
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Archaeon DCM1 Enriched from rumen (ADH95265)
Cow rumen (BAM13604)

Sheep rumen (AEM54013)

Cattle rumen (ABN54992)

Sheep rumen (AEI54300)

Bovine rumen (JF683103)

Sheep rumen (AY995279)
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Human feces (F1752572)
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Enrichment str. MpM2 from Anadenobolus sp (JX648297)
Cockroach gut (AB062311)

Xylophagous cockroach (AB062309)
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Svalbard reindeer rumen (EU413580)

Bovine rumen (AB034187)

Sludge from manur pit (EU662692)

Soil (JQ268006)

Sheep rumen (F1919272)

Yak rumen (JF807305)
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Bovine rumen (AB034186)

Human feces (F1752573)

Pig feces (HM998288)
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Pig feces (ABU90110)
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Fic. 3.—Diversity of the Mx order and its evolutionary relationships with other uncultured lineages. (a) Maximum likelihood McrA phylogeny of the
candidate Mx order. (b) Maximum likelihood 16S rRNA phylogeny showing the uncultured lineages branching between the Mx lineage and the
Thermoplasmatales/DVHE2, MG-Il, and MBG-D lineages. Both trees were rooted by using six representatives of Methanobacteriales and
Methanococcales that are not shown for clarity. Trees were calculated from a data set of 138 unambiguously aligned amino acid positions (McrA) and
1,113 unambiguously aligned nucleic acid positions (16S rRNA). Values at nodes represent bootstrap support calculated on 100 resamplings of the original
data set and Bayesian posterior probabilities calculated by Bayesian analysis. For clarity, only the values corresponding to the monophyly of lineages and their
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1774  Genome Biol. Evol. 5(10):1769-1780. doi:10.1093/gbe/evt128 Advance Access publication August 28, 2013

£TO0Z ‘82 JOqUIBAON UO pUe.LIB- JUOWB D 8p 815J0AIuN, T T /BI0's euinolpio jxo'aghy/:dny woly papeojumoq


http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/

Z
=
=
B
=
@)
>
m
a)
Z
<
=
@)
(@)
-
<
M
m
>
o
Z
m
)

Seventh Order of Methylotrophic Methanogens

GBE

(Dridi et al. 2012). Such metabolic profile was also observed
for the strains belonging to the Mx lineage enriched from a
microbial consortium (Paul et al. 2012; lino et al. 2013), in-
cluding “Ca. M. alvus” (Borrel et al. 2012), even if this has to
be confirmed in pure cultures. Consistently, “Ca. M. alvus”
and M. luminyensis harbor homologs of the enzymes that
are involved in H,-dependent methylotrophic methanogenesis
from methanol in Methanosarcinales and Methanobacteriales
(MtaABC, fig. 1). Homologs of enzymes that may be poten-
tially used to reduce other methylated compounds such
as monomethylamine (MtmBC), dimethylamine (MtbBC),
and trimethylamine (MttBC) (fig. 1) are also present in the
two genomes (Borrel et al. 2012; Poulsen et al. 2013).
Additionally, we identified genes for enzymes involved in
methanogenesis from dimethyl sulfide (MtsAB) in both the
"Ca. M. alvus” and M. luminyensis genomes (fig. 1). Such a
potentially large range of substrates is unusual in methano-
gens and was so far restricted to the Methanosarcinales
(Thauer et al. 2008). “Ca. M. alvus” has one copy each of
mtaB and mtaC that are located close to each other in the
genome as observed in other methanol-using methanogens,
whereas M. Juminyensis has three mtaBC clusters (fig. 4).
The close association of mtaB and mtaC in these genomes
suggests that they form a transcription unit as in other metha-
nogens (Sauer et al. 1997; Fricke et al. 2006). Similar to mtaB
and mtaC, the genes coding for the enzymes involved in the
use of methylamines (mtmBC, mtbBC, and mttBC) are in close
association with both genomes (data not shown). “Ca.
M. alvus” and M. luminyensis have two and four copies of
the mtmBC cluster, respectively, and both genomes have one
copy each of the mtbBC and mittBC clusters (data not shown).
“Ca. M. alvus” has three homologs of mtaA/mtbA and
M. luminyensis has two, and all five genes are located apart
in the respective genomes (fig. 4).

[t has been proposed that methanol utilization by
Methanosphaera stadtmanae occurred through acquisition
of its mtaABC gene cluster via horizontal gene transfer from
Methanosarcinales followed by specific gene duplications that
multiplied the number of mtaABC copies in this species (Fricke
et al. 2006). The large evolutionary distance between “Ca.

M. alvus” and M. luminyensis poses the question of whether
these two strains developed the capacity to use methyl
compounds independently, as a specific adaptation to the
gut environment and possibly via horizontal gene transfer
from another methylotrophic methanogen, or if it is a more
ancient feature of the whole Mx lineage. We retrieved partial
homologs of genes involved in the use of methanol, methyl-
amines, and dimethyl sulfide, related to M. luminyensis, from
the metagenome of a wood degrading bioreactor, hosting a
microbial community naturally associated with the wood at
the beginning of the experiment (van der Lelie et al. 2012).
Moreover, we successfully amplified and sequenced a geno-
mic fragment containing a nearly complete mtaB gene and a
partial mtaC gene affiliated with the Mx lineage from a Lake
Pavin sample containing Mx members (underlined in fig. 3a)
(see supplementary methods and table S1, Supplementary
Material online, for details on these analyses). This indicates
that the ability to use methylated compound may be
widespread in the Mx lineage and not only restricted to gut
representatives. Moreover, phylogenetic analysis of MtaB,
MtaC, and MtaA/MtbA shows that the sequences of the
Mx lineage are not intermixed with members of
Methanosarcinales or Methanobacteriales but form robustly
supported monophyletic groups (fig. 5). The fact that “Ca.
M. alvus” and M. luminyensis belong to two distantly related
clusters (fig. 3) and the branching of nongut environmental
sequences in the MtaA/MtbA and MtaB trees (fig. 5) argues
against an acquisition of methylotrophy (regardless of depen-
dency on H,) via recent horizontal gene transfer to “Ca.
M. alvus” and M. luminyensis would rather suggest their
presence in the ancestor of the whole Mx order.
Interestingly, the same may be said for Methanobacteriales,
weakening the previous hypothesis of a specific horizontal
gene transfer from Methanosarcinales to Methanosphaera
stadtmanae.

The tree of MtaA/MtbA does not allow assignment of the
Mx homologs to one or the other enzyme category (fig. 5a),
which will have to wait for a full functional characterization
of these proteins. The low sequence similarity between these
predicted enzymes in “Ca. M. alvus” (max. 48%) and in

Fic. 3.—Continued

evolutionary relationships are shown. “../” symbols indicate that the corresponding node was not recovered in the Bayesian phylogeny. The scale bar
represents the average number of substitutions per site. For details on data set construction and tree calculation, see Materials and Methods. The dotted box
delineates the candidate Mx order. Sequences from the complete genomes of “Candidatus Methanomethylophilus alvus” and Methanomassiliicoccus
luminyensis are indicated in red; other colored sequences indicate McrA and 16S rRNA sequences retrieved from the same sample in previous studies.
Sequences corresponding to the Lake Pavin sample from which we retrieved Mt coding gene sequences are underlined. Other than the already discussed
losses of methanogenesis in the Thermoplasmatales/DVHE2, MG-Il lineages, and MBG-D, additional putative losses can be inferred (red crosses with a
question mark) in two uncultured lineages based on the environment from which the corresponding sequences were retrieved: oxygenated water column
for MG-lll; oxygenated and extremely acidic environments (pH <3) for TAC. Lineages 20c4, VC-21Arc6, CCA-47 (divided in two subgroup -1 and -2),
ANTO06-05, ASC21, F2apm1A36, and MKCST-A3 were derived from the July 2012 version (v.111) of the Silva Database (http:/Avww .arb-silva.de/) and are
named according to the clone definition. TMEG, Terrestrial Miscellaneous Euryarchaeotal Group; MBG-D, Marine Benthic Group D; MG-lll, Marine Group IIl;
MG-Il, Marine Group II; TAC, Thermoplasmatales-related Acidic Cluster.

Genome Biol. Evol. 5(10):1769-1780.  doi:10.1093/gbe/evt128  Advance Access publication August 28, 2013 1775

£TO0Z ‘82 JOqUIBAON UO pUe.LIB- JUOWB D 8p 815J0AIuN, T T /BI0's euinolpio jxo'aghy/:dny woly papeojumoq


; Paul etal. 2012
u
e
ue
,
; Sauer etal. 1997
ly
ue
.
-
ue
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt128/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt128/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt128/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt128/-/DC1
-
.
ue
http://www.arb-silva.de/
http://gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/

Z
=
=
B
=]
@)
>
m
a)
Z
<
=
@)
(@)
—
<
M
m
>
o
Z
m
)

Borrel et al.

GBE

“Ca. Methanomethylophilus alvus” Mx1201

mtaAl

/mtbA1 mcrB mcrD mcrG  mcrA mcrC

mtaA3 mtaA2
/mtbA3 MAP

mtaC mtaB /mtbA2

—G—EDYDED O —— G- DED—H-

8.6 Kb 107.2Kb

449 Kb 1.7Kb 13.7Kb

Methanomassiliicoccus luminyensis B10

mtaAl mtaA2
mtaCl mtaB1 MAP /mtbA1 mcrB mcrD mcrG  mcrA mcrC /mtaC2 mtaB2 /mtbA2 mtaC3 mtaB3
6 Kb 6 Kb 18.3Kb
Contig 4 Contig 12 Contig 13 Contig 17

Methanosarcina acetivorans C2A
mtaB1 mtaCl mtaA2 mtaB3 mtaC3 mtaAl mtaC2 mtaB2

1.4 Mb

3.5Mb 15.7 kb

Methanosphaera stadtmanae DSM 3091

mtaA2 mtaA4

100.7 Kb

mtaB3 mtaC3 mtaB2 mtaC2 mtaBl1 mtaCl MAP

mtaAl mtaA3 mtaC4 mtaB4

637 Kb 26.2 Kb 48.2 Kb

Fic. 4.—Physical maps of mtaA/mtbA, mtaB, and mtaC. Physical maps of mtaA/mtbA, mtaB, and mtaC genes in " Candidatus Methanomethylophilus
alvus” Mx1201, Methanomassilicoccus luminyensis B10, in comparison with Methanosarcina acetivorans CA2 as a representative of Methanosarcinales, and
with Methanosphaera stadtmanae DSM 3091 as a representative of Methanobacteriales. The contigs of M. luminyensis (the assembled genome is not yet

available) are separated by slashes. MAP, Methyltransferase Activation Protein.

M. luminyensis (max. 44%) might reflect a substrate speciali-
zation of each copy on either methylamines or methanol.
Unfortunately, none of the multiple copies of homologs of
mtaA/mtbAin “Ca. M. alvus” and M. luminyensis are adjacent
to the mtaBC or their homologs involved in methylamines
utilization (not shown), as found in the genomes of
Methanobacteriales and Methanosarcinales (fig. 4). This pre-
vents speculation on the putative specialization of any
of these enzymes on either methanol or methylamines.
Alternatively, each of these enzymes might be implied in both
methanol and methylamine utilization, similar to the MtaA of
Methanosarcina barkeri, which is predominantly active on
methanol but also in the transfer of the methyl group originat-
ing from trimethylamine, albeit less efficiently (Ferguson et al.
1996).

Finally, the phylogenies of the enzymes involved in metha-
nogenesis from methylamines and dimethyl sulfide display a
pattern consistent with the Mta trees (supplementary fig. S1,
Supplementary Material online). The presence of partial ho-
mologs affiliated with the Mx lineage in the metagenome of
the wood degrading bioreactor (van der Lelie et al. 2012)
suggests that versatility to use a large panel of methylated
compounds may be a characteristic of the whole order and

possibly already present in the Mx ancestor, although the
limited taxonomic distribution of homologs prevents a
definitive answer.

It appears therefore that the use of methylated com-
pounds, or at least methanol, is not a specific adaptation to
the gut environment but is rather an ancestral feature in the
Mx lineage. All representatives studied so far, despite their
evolutionary distance, seem to display H,-dependent methy-
lotrophic methanogenesis as their sole methanogenic
pathway, including “ Candlidatus Methanogranum caenicola”
recently enriched from wastewater sludge (lino et al. 2013).
Obligatory H,-dependent methylotrophic methanogenesis
is also reminiscent of that of two gut methanogens
(Methanosphaera stadtmanae and Methanomicrococcus blat-
ticola), suggesting that the gut environment might have
selected organisms with this metabolism or more versatile
methylotrophic methanogens that then evolved to become
dependent on an external H, source as an adaptation to gut
conditions. If such adaptation occurred for the two sequenced
Mx members, it would have occurred recently in the case of
M. luminyensis because this species is closely related to se-
guences retrieved in a number of environments other than
the digestive tracts of animals (fig. 3). However, because the
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complete loss of the genes involved in the first six steps of
methanogenesis from H,/CO, and the oxidative part of
methylotrophic methanogenesis observed in the two Mx ge-
nomes likely have required a number of metabolic adjust-
ments, it is possible that it occurred once and not recently. It
is therefore tempting to speculate that this loss occurred in the
ancestor of the Mx lineage and that all of its members are now
obligate  H,-dependent  methylotrophic ~ methanogens.
Genomic data and characterization of additional Mx mem-
bers, in particular from nongut environments such as those
from the “Lake Pavin cluster,” will be important to know if the
dependency on H, for methylotrophic methanogenesis is a
recent evolutionary event (i.e., an adaptation to gut environ-
ment) or an ancestral feature of the whole lineage.

Materials and Methods

Exhaustive homology searches of the complete set of archaeal
ribosomal proteins were performed by BlastP, TBlastN, and
different seeds on a local database of 85 complete euryarch-
aeal genomes obtained from the NCBI, including “Ca.
M. alvus” and Methanomassilicoccus luminyensis (accession
numbers CP004049.1 and CAJEO1000000.1, respectively).
Each protein data set was aligned by using Muscle (Edgar
2004) with default parameters, and unambiguously aligned
positions were automatically selected by using the BMGE soft-
ware for multiple-alignment trimming (Criscuolo and Gribaldo
2010) with a BLOSUM30 substitution matrix. Trimmed align-
ments were then concatenated by allowing a maximum of
12 missing proteins per data set, giving a final data set of
57 ribosomal proteins and 7,472 amino acid positions for
phylogenetic analysis. A Bayesian tree was calculated by
PhyloBayes (Lartillot et al. 2009), with the CAT model and
four categories of evolutionary rates. Two MCMC chains
were run in parallel until convergence, and the consensus
tree was calculated by removing the first 25% of trees as
burnin. A maximum likelihood tree was also calculated by
PhyML (Guindon et al. 2010) and the LG amino acid substitu-
tion model (Le and Gascuel 2008) with four rate categories as
suggested by the Akaike information criterion (AIC) imple-
mented in Treefinder (Jobb et al. 2004).

Search for homologs of the McrA-B-C-D-G proteins and
assembly of a concatenated data set followed the same strat-
egy detailed above, giving a final data set of 1,159 amino acid
positions. Maximum likelihood trees were calculated by
PhyML and Treefinder and the LG amino acid substitution
model with four rate categories, as suggested by the AIC
implemented in Treefinder. A Bayesian tree was calculated
by PhyloBayes as described above.

Both r-protein and MCR trees were rooted in the branch
leading to Thermococcales, as indicated by previously pub-
lished analyses of large concatenated protein data sets
(Brochier-Armanet et al. 2011). This allowed keeping more

amino acid positions for analysis and avoiding potential
artifacts caused by the introduction of a distant outgroup.
16S rRNA gene and McrA protein sequences closely related
to the Mx lineage were retrieved from NCBI and included in a
data set of 138 unambiguously aligned amino acid positions
(McrA) and 1,113 unambiguously aligned nucleic acid posi-
tions (16S rRNA) selected by BMGE. Bayesian trees were
calculated by MrBayes (Ronquist and Huelsenbeck 2003)
with the mixed model and four rate categories (McrA) and
the 4by4 model and four rate categories (16S rRNA), as sug-
gested by the AIC implemented in Treefinder. For Bayesian
analysis, two MCMC chains were run in parallel until conver-
gence, and the consensus tree was calculated by removing the
first 25% of trees as burnin. Maximum likelihood 16S rRNA
and McrA trees were calculated by PhyML with the GTR
model and LG model, respectively, and four rate categories,
as suggested by the AIC implemented in Treefinder.
Homologs of the enzymes involved in methylotrophic
methanogenesis were exhaustively searched against our local
database, and additional homologs from related protein fam-
ilies were gathered by BlastP and TBlastN at the NCBI.
Preliminary trees including all available homologs allowed
extracting monophyletic Mt clusters from methylotrophic
archaea that were used to build refined unrooted phylogenies
with a restricted taxonomic sampling and more unambigu-
ously aligned positions to the main aim of showing that mem-
bers of these three orders are not intermixed. Final maximum
likelihood trees were calculated by PhyML with the LG model
with four rate categories, and 100 bootstrap resamplings
of the original data set. Additional mtaA, mtaB, and mtaC se-
guences were also recovered from the WGS database at the
NCBI and in the metagenomes deposited in the public data-
base of MG-RAST (Meyer et al. 2008). Primers targeting the
mtaBC gene cluster designed on the sequences of “Ca. M.
alvus” and M. luminyensis were used to amplify environmental
sequences of mtaBC from genomic DNA previously extracted
from the Lake Pavin water column (Denonfoux et al. 2013)
(supplementary methods and table S1, Supplementary
Material online). The sequences of mtaB and mtaBC were
deposited in GenBank under accession numbers KF302411-
KF302419 and KF302420-KF302421, respectively.

Conclusions

The growing availability of genomic data from the Archaea
is appreciably increasing our knowledge of its diversity and
evolutionary history (Brochier-Armanet et al. 2011). The
number of lineages that currently lack any cultured or isolated
members indicates that much remains to be elucidated, even
from within our own gut microbiota. Our phylogenomic anal-
ysis justifies the proposal that the Mx lineage represents a
seventh order of methanogens because it robustly separates
from all previously known orders based on multiple markers
analysis and likely harbors specific metabolic abilities
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(H,-dependent methylotrophy by use of a large variety of
methylated compounds) combined with a unique genomic
signature (lack of the first six steps of methanogenesis from
H,/CO, and the oxidative part of methylotrophic methano-
genesis). Mx representatives were recovered from environ-
ments identified as main contributors to atmospheric
methane such as digestive systems of ruminants and termites,
rice fields, peat bog, and freshwater and marine sediments,
highlighting the importance of taking into account this
whole new lineage in future culture-independent studies.
The ancestral ability for methylotrophy, at least from metha-
nol, in Euryarchaeota seems to parallel that for methanogen-
esis from Hy/CO,. Our analysis therefore expands the range
of metabolic capacities of the methanogen that gave rise to
the majority of present-day euryarchaeal lineages.

Supplementary Material

Supplementary table ST and figure S1 are available at
Genome Biology and Evolution online (http://Awww.gbe.
oxfordjournals.org/).
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