
HAL Id: hal-01612611
https://hal.science/hal-01612611v1

Preprint submitted on 7 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integral formulation and simulations of falling and
sheared thin films

Amélie Simon, Jean-Marc Hérard, Meryem Marcelet

To cite this version:
Amélie Simon, Jean-Marc Hérard, Meryem Marcelet. Integral formulation and simulations of falling
and sheared thin films. 2017. �hal-01612611�

https://hal.science/hal-01612611v1
https://hal.archives-ouvertes.fr


Integral formulation and simulations of falling and sheared thin films
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Abstract

In the electricity production, studying liquid films in steam turbines contributes to reduce damages and
losses due to wetness. Thin liquid films are created by the deposition of droplets and are highly sheared
by surrounding steam. Up to now, no comprehensive and validated model has arisen to describe this phe-
nomenon. Thus, a 2D model based on an integral formulation associated with closure laws is developed to
represent this film. Compared to classical Shallow-Water equation, the model takes into account additional
effects such as mass transfer, droplet impact, shearing at the free surface, surface tension, pressure gradi-
ent and rotation effects. The model properties (hyperbolicity, entropy inequality, linear stability, Galilean
and rotational invariance) are examined in order to evaluate the relevance of the model. A 2D code is
implemented in the EDF code Code Saturne which relies on finite volume method for unstructured meshes.
The model, which degenerates into classical Shallow-Water equations for the case of a falling liquid film on
a inclined plane, is validated using the experiment of [Liu and Gollub, 1994] and is compared to reference
models ([Ruyer-Quil and Manneville, 2000] and [Lavalle, 2014]). Sheared film under low-pressure steam tur-
bine conditions are simulated and also validated using the experiment of [Hammitt et al., 1981]. Unsteady
simulations show that the surface tension effects are of great importance; they also give the main features in
the behavior of liquid film under realistic low-pressure steam turbine conditions.

1 INTRODUCTION

Steam turbines produce over 80 % of the world’s electricity. The improvement of the efficiency of turbines would
lead to a considerable gain in natural resources. In the electricity production chain, the steam turbine converts
steam thermal energy into mechanical energy of rotation. Steam turbine is composed of a succession of stages,
each stage being composed of a row of fixed blades (stators) and a row of moving blades (rotors). The steam
flows through the turbine at high speed, between 80 and 400 m/s. During the fast expansion of originally dry
steam, wetness appears. A fog of small droplets with diameter from 0.1 to 2 µm is suddenly created mostly by
homogeneous nucleation. Unlike heterogeneous nucleation, this process does not involve nucleation sites. These
droplets grow either by condensation of the steam or by coalescence. A part of these droplets is deposited on
solid surfaces such as blades. The accumulation of this deposition produces a thin layer of water, also called
liquid film. Drops are then removed from this liquid film by atomization at the free surface or at the geometrical
edge. Back in the steam flow, these drops break up into smaller drops. These drops remains at least one order
of magnitude bigger than nucleated droplets. Then, a part of this atomized drops impacts the following rows
of blades. The cascade of wet phenomena in steam turbines results in five distinct stages, namely nucleation,
growth, deposition, liquid film and atomization.

Unfortunately, wetness has negative consequences in steam turbine. The impact of atomized drops with a
diameter superior to 50 µm leads to erosion ([Moore and Sieverding, 1976]). The liquid film running down the
turbine shaft can induce vibration crisis ([Stanciu et al., ]). And, all the phenomena related to wetness induce
losses which represents 25 % of total turbine losses. This efficiency issue motivated the study of liquid films. An
order of magnitude of these losses is given by the Baumann rule in 1912 which predicts 1 % of turbine power
loss for 1 % humidity ([Baumann, 1912]). More recently, classifications of the various wetness losses in steam

1



turbines has been specified by [Gyarmathy, 1962], [Laali, 1991], [White, 1992] or [Fendler, 2012]. For each wet
phenomenon is associated a particular wetness loss. Since the liquid film can contribute largely to the total
wet losses (directly and indirectly because of generated large drops that slow down the steam flow), this paper
concentrates on related losses. Direct losses come from the friction of the liquid film with the steam and the
presence of the film which adds resistance to shaft’s rotation. In order to estimate losses due to friction, the
thickness of the liquid film and the frequency of the waves at the free surface of the liquid film are needed,
and to calculate losses due to inertial resistance to rotation, the position of the film on the rotor and the flow
rate of the liquid film are required. Then, the general objective is to obtain numerically these data to estimate
precisely the loss induced by the liquid film.

Before presenting the state of the art of liquid film models in steam turbines, let’s return to the descrip-
tion of the real phenomenon. Figure 1 summarizes all the effect affecting the liquid film. Regarding the mass
balance, the liquid film is created by the deposition of the droplets coming from the nucleation as well as the
deposition of the atomized drops of the previous row of blades. Drops are also atomized from the liquid film at
the free surface and at the geometric edges. Heat transfer (condensation/evaporation) affects the mass balance
of the liquid film but to a lesser extent in pure operating conditions. The film is subjected to gravity, steam
pressure, steam shear at the free surface, friction on the wall, droplet impact, surface tension, and to rotation
for the rotor case.

Figure 1: Real phenomena around a liquid film on a steam turbine blade

The magnitude of the height of the liquid film according to [Moore and Sieverding, 1976] is 10 µm and
according to [Hammitt et al., 1981] is between 10 and 100 µm. The wavelength of the waves at the free surface
is estimated between 0.1 to 100 mm ([Hammitt et al., 1981]). An rough estimate of the Reynolds numbers of
the film suggests that the film is laminar. These characteristics will be useful for the choice of the model.

Liquid film in steam turbines is a complex phenomena which is seldomly discussed in the scientific community.
The objective of this study is to describe the unsteady liquid film in steam turbine with a validated model and
robust numerical simulations. Simulations in real configurations coupled with the steam phase is out of the scope
of this paper but preliminary tests can be found in chapter 8 of [Simon, 2017] using the steam data obtained by
[Blondel, 2014]. In the field of liquid films outside from turbines applications, new models are published, even
recently, to accurately represent a liquid film falling on an inclined wall ([Ruyer-Quil and Manneville, 2000],
[Lavalle, 2014], [Richard et al., 2016]). This simplified configuration with respect to the mechanisms present in
a steam turbine is still under study. In the literature for liquid film in steam turbine, few models exist but none
of them undertakes all the effects and are validated by experiments. In the case of stator models (without rota-
tion), [Hammitt et al., 1981] assume that the shear of the free surface steam predominates, and using empirical
correlations for the free surface friction, they constructed a stationary Couette model. [Gyarmathy, 1962] uses
the same theoretical approach by adding the impact of the drops. [Kirillov and Yablonik, 1970] did not take into
account the impact of the drops but added the pressure of the steam. [Malamatenios et al., 1994] significantly
improve these models by taking into account convection, free surface shear and gravity with integral formulation.
In the case of the rotor models (with rotation), a stationary approach is proposed by [Gyarmathy, 1962] taking
only the centrifugal effects into account. An unsteady model is presented by [Kirillov and Yablonik, 1970] with
convection, wall friction, centrifugal effects and Coriolis. [Williams and Young, 2007] improve it by adding shear
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to the free surface and the gas pressure gradient, and also by giving explicitly the coefficient of friction at the
wall. Using an integral formulation, [Schuster et al., 2014] add to the latter model the mass transfer and the
impact of the drops for the study of liquid film on a radial turbine. Finally, the work of [Fendler, 2012], carried
out within the EDF research center, is based on the [Foucart, 1999] integral formulation model, initiated for
liquid films on walls of internal combustion engines. This model takes into account convection, mass transfer,
wall friction and shear at the free surface. However, due to the simplifying assumptions adopted, and in par-
ticular due to the fact that surface tension is not taken into account, these models are not able to correctly
reproduce wave generation at the free surface of liquid films and consequently can not describe precisely either
the friction at the interface or the preparatory phases of the atomization. The model proposed in this paper is
an instantaneous and relatively complete model for liquid films on stators and rotors in steam turbines. It takes
into account more physical effects: for example, the additional surface tension effects and gravity with respect
to the [Schuster et al., 2014] model, or surface tension, gravity, gas pressure and the impact of the drops with
respect to the model of [Fendler, 2012]. On top of that, special attention is paid to analyze the properties of
the model and to validate it.

2 THE LIQUID FILM MODEL

The establishment of the model which represents a liquid film on steam turbines is rigorously presented by
specifying all the assumptions made. This model is an integrated formulation (Saint-Venant or Shallow-Water
equations type) and solves the thickness and the velocity of the film. The model comes from the incompressible
Navier–Stokes equations written in a rotating frame. These equations are simplified by neglecting the terms
with respect to a chosen order. The simplified equations are integrated through the thickness of the film. To
explicit the formulation, some terms need closure laws. Once chosen, the analysis of the properties of the model
is carried out.

2.1 The governing equations

2.1.1 Effects taken account in the model

The real phenomena of a liquid film in steam turbine are detailed on figure 1. With a view to simplification,
the proposed model does not take into account the curvature of the blade. However, it handles all the described
force: the inertial rotating forces, the gas pressure, the friction at the wall, the friction at the free surface,
the gravity, the surface tension and the droplet impact. Besides, a mass source term is integrated in order to
add mass transfer at the free surface due to droplets deposition (nucleated droplets or atomized drops from
the previous row of blades), the atomization (at the free surface or at a geometrical border) as well as the
condensation and the evaporation of the film. Figure 2 displays the effects handled by the model and is to be
compared with the real phenomena displayed on figure 1.

Figure 2: Effects handled by the model

A first hypothesis is adopted regarding droplets impact. When a droplet impacts the liquid film, on one
side, it induces a variation on the mass and the momentum of the film, which will be taken into account by the
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model. On the other side, it disturbs the free surface of the film. For this last consequence, we assume that the
film relaxation of this perturbation is instantaneous, thus the free surface remains unchanged.

2.1.2 Geometrical configuration

The absolute reference frame (−→x0,
−→y0,
−→z0) is tied to the turbine shaft. The rotational vector

−→
Ω is collinear to the

axis −→x0 and its value ω0 is constant. The system of equations is written in the local frame (−→x ,−→y ,−→z ) bound to
the blade which is sketched as a flat plate as illustrated on figure 3. In this paper we consider the case where
−→x0 depends on −→x only. In other words, this study is restricted to flat plates in the axis of the turbine shaft.
The radius of the turbine shaft is r.

O A

B

r

B

M

Figure 3: Absolute frame

O A

B

r

B

M

Figure 4: Local frame on the plate surface

The local frame associated to the free surface is
(−→
tx ,
−→
ty ,
−→n
)

and is drawn on figure 4. The height of the

film is h and the position of the free surface is η.

2.1.3 Boundary conditions

At the wall boundary, a classical no-slip boundary condition expression (1) is applied. We note, (u, v, w) the
velocities components in the frame of reference (−→x ,−→y ,−→z ).

u|zb = v|zb = w|zb = 0 (1)

Mass transfer (deposition, atomization, condensation and evaporation) is taken into account. To achieve this,
a mass balance on an infinitesimal volume at the free surface (see figure 5) is done:

dm

dt
= ρShdxdy (2)

with Sh the mass transfer of the gas to the film in m/s.

Figure 5: Infinitesimal volume at the free surface

If we assume a small curvature of the free surface, that is to say when η(x, y) ' η(x+ dx, y) ' η(x, y + dy) in
figure 5, we find that, for an incompressible flow, the position of the free surface depends on the mass transfer
as follows:

d (η − z)
dt

= Sh (3)
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The material derivative of (η − z) represents the motion of a particle following the free surface. The equation
(3) written in Euler variables is actually the kinematic boundary at the free surface:

w|η =
∂η

∂t
+ u|η

∂η

∂x
+ v|η

∂η

∂y
− Sh (4)

Unlike in classical Shallow-Water equations, there is an additional mass transfer term in the kinematic boundary
condition.

In paragraph 2.3 dealing with the closure laws, another boundary condition is needed. Therefore, the con-
tinuity of normal constraints at the free surface is assumed (see expression (16)).

2.1.4 Simplified Navier–Stokes equations

The incompressible Navier–Stokes equations (continuity and momentum) written in the local frame (−→x ,−→y ,−→z )
are read:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
= −1

ρ

∂p

∂x
+

1

ρ

∂τxx
∂x

+
1

ρ

∂τxy
∂y

+
1

ρ

∂τxz
∂z

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
= g sin θ − 1

ρ

∂p

∂y
+

1

ρ

∂τxy
∂x

+
1

ρ

∂τyy
∂y

+
1

ρ

∂τyz
∂z

+ ω2
0(r + y) + 2ω0w

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z
= −g cos θ − 1

ρ

∂p

∂z
+

1

ρ

∂τxz
∂x

+
1

ρ

∂τyz
∂y

+
1

ρ

∂τzz
∂z

+ ω2
0z − 2ω0v

(5)

with p the liquid pressure and τ the shear stress, both in kg/(ms2). As the rotational vector is in the x-
direction, the rotation induces contributions in the y-direction and z-direction. No mass term has been added
in the continuity equation (or droplets impact effect in the momentum equations) since within the liquid film
volume there is no mass transfer. To compare the order of magnitude of all terms, a dimensional analysis
is carried. In table 1, the stars ∗ indicate the adopted non-dimensional variables, with λ, the characteristic
wavelength of the free surface of the film, the subscript g referring to the gas and the subscript 0 as well as the
capital letters denoting the characteristic variables.

x = x∗λ y = y∗λ z = z∗h0
(r + y) = (r + y)∗λ η = η∗h0 t = t∗ (λ/u0)
u = u∗u0 v = v∗u0 w = w∗w0

p = p∗ρu20 g sin θ = g∗g0 g cos θ = g∗g0
ug = u∗gUg vg = v∗gUg wg = w∗

gUg

Table 1: Non-dimensional variables

By introducing the non-dimensional variables in equations (5), four non-dimensional numbers naturally ap-
pear: the scale number ε = h0/λ, the Reynolds number Re = h0u0/ν, the Froude number Fr = u0/

√
gh0 and

the Rossby number Ro = u0/ω0λ. To avoid a degenerated system, the three terms in the mass balance equation
must be of the same order of magnitude, which leads to the relation w0 = u0ε.

It is assumed that Re = O (1), Fr = O (1) and Ro = O (1), thus only ε remains in system (5) with non-
dimensional variables. The long wavelength assumption (λ → +∞) which is the most likely to occur in steam
turbine as mentioned in introduction, implies that ε→ 0 and consequently that the most important terms are
the ones with the smallest power of ε. We choose to keep the horizontal convection of the film and to neglect
the vertical convection of the film. This decision comes down to neglecting terms equal or of order higher than
O
(
ε2
)
. Besides, all the rotational terms are kept in order to obtain consistent properties of the model (see

paragraph 2.5). Afterwards, the momentum equation in the z-direction is used to obtain the pressure. The
latter pressure is then plugged into the momentum equation in the x-direction and y-direction. As the order
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of magnitude of the pressure gradient term in the first two momentum equations is O (ε), it is consistent, to
neglect terms of order O (ε) in the momentum equation in the z-direction. Hence, the Navier–Stokes equations
up to order O (ε) read:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
= −1

ρ

∂p

∂x
+

1

ρ

∂τxz−r
∂z

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
= g sin θ − 1

ρ

∂p

∂y
+

1

ρ

∂τyz−r
∂z

+ ω2
0(r + y) + 2ω0w

∂p

∂z
= −ρg cos θ + ρω2

0z − 2ρω0v

(6)

with the reduced shear stress terms at order O (ε): τxz−r = µ∂u/∂z and τyz−r = µ∂v/∂z.

The expressions of the boundary conditions remain the same (equation (1) and equation (4)). When compared
to classical Shallow-Water equations, the pressure field is not only hydrostatic but is also contains centrifugal
and Coriolis contributions.

2.2 Film equations

To solve the average height and velocity at any position and time in the liquid film, the simplified Navier–Stokes
equations (6) are integrated over the film thickness. Let us define the mean value of the height, h and of any
quantity X as: 

h =

∫ η

zb

dz

X =
1

h

∫ η

zb

Xdz

(7)

By applying the Leibniz rule and the boundary condition expressed equation (1), the continuity equation yields:

∂

∂x

∫ η

zb

udz − u|η
∂η

∂x
+

∂

∂y

∫ η

zb

vdz − v|η
∂η

∂y
+ w|η = 0 (8)

Thus, using the kinematic boundary condition (equation (4)) and the average definition (equation (7)) this
result in:

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= Sh (9)

Furthermore, by integrating the z-momentum equation across the film thickness, we obtain the pressure field
within the film which is:

p (x, y, z, t) = P|η + ρgz (z − (h (x, y, t) + zb (x, y))) +
ρω2

0

2

(
z2 − (h (x, y, t) + zb (x, y))

2
)

+ 2ρω0

∫ η

z

vdz (10)

where P|η = p (x, y, η−, t).

Proceeding the same way as for the continuity equation for the left hand side term and replacing the pres-
sure with the integrated z-momentum equation, the x-momentum equation can be expressed as:

∂hu

∂t
+

∂

∂x

∫ η

zb

u2dz +
∂

∂y

∫ η

zb

uvdz = −h
ρ

∂P|η
∂x

− hg cos θ
∂η

∂x
+
ω2

0

2
h
∂η2

∂x

− 2ω0

∫ η

zb

∂
∫ η
z
vdz

∂x
dz +

1

ρ

(
τxz−r |η − τxz−r |zb

)
+ u|ηSh

(11)

A remark is to be made concerning the droplet impact represented by the term u|ηSh. This one does not need
to be added to equation (6) since it appears naturally during the integration step as long as there is a mass
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transfer in the kinematic boundary condition at the free surface (4).

There is no additional difficulty to express the y-momentum equation. Eventually, the exact expression for
the film model is:

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= Sh

∂hu

∂t
+

∂

∂x

(∫ η

zb

u2dz +
g cos θh2

2

)
+

∂

∂y

∫ η

zb

uvdz − ω2
0

2
h
∂η2

∂x
+ 2ω0

∫ η

zb

∂
∫ η
z
vdz

∂x
dz =

− h

ρ

∂P|η
∂x

− hg cos θ
∂zb
∂x

+
1

ρ

(
τxz−r |η − τxz−r |zb

)
+ u|ηSh

∂hv

∂t
+

∂

∂x

∫ η

zb

uvdz +
∂

∂y

(∫ η

zb

v2dz +
g cos θh2

2

)
− ω2

0

2
h
∂η2

∂y
+ 2ω0

∫ η

zb

∂
∫ η
z
vdz

∂y
dz − 2ω0hw =

g sin θh− h

ρ

∂P|η
∂y

− hg cos θ
∂zb
∂y

+
1

ρ

(
τyz−r |η − τyz−r |zb

)
+ hω2

0(r + y) + v|ηSh

(12)

The unknown solved by this model is the height of the film h, and the mean velocity components u and v.

2.3 Closure laws

In order to close the model (12), the eight color terms need closure laws.

• To determine the pressure at the free surface of the film P|η, the surface tension is expressed using
Laplace law. Indeed, for a thin films (10µm to 100µm [Hammitt et al., 1981]), surface tension could play
an important role. It may be written as:

P|η− = Pg +
σ

R
(13)

where σ is the surface tension coefficient in kg/s2 and 1/R refers to the curvature of the free surface.
The full expression can be found in [Wehausen and Laitone, 1960]. In this expression the higher order
term of the surface tension appears at order O

(
ε2
)

in the global model. Thus, the surface tension should
be neglected, the simplified model (6) being at order O (ε). However, [Ruyer-Quil and Manneville, 1998]
conclude that for falling film, surface tension contributes to the evolution of the pressure at the free surface
and thus must be taken into account. Therefore, the expression of the curvature, which contains surface
tension at order O (ε) in the global model is kept: 1/R = − (∂xxη

− + ∂yyη
−). The value Pg, e.g. the

pressure of the gas in the turbine, is prescribed using external aero-thermodynamic calculations of the
expansion of the steam ([Fendler, 2012],[Blondel, 2014]).

• Turning to the wall stress−→τw = (τxz−r |zb , τyz−r |zb)
T , we refer to the experimental work of [Spedding and Hand, 1997]

for smooth and wavy free surface:

τw =
cf,wρ|u|u

2
(14)

with the friction coefficient at the wall cf,w = 24/Re and with u = 1/h
∫ h

0
u (z) dz .

When studying film without shear stress at the free surface (see section 4.1 on falling film), the wall
friction is expressed in another classical way: assuming a parabolic velocity profile. This leads to:

τw =
3µ

h
u (15)

• Now, in order to obtain the shear at the free surface τ int = (τxz−r |η, τyz−r |η)T , we use the continuity

relation at the free surface:
Σ.n|η− = Σ.ng|η+ (16)
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where the normal vector n points outside of the liquid domain. The projection on the local frame
(
tx, ty

)
(parallel to the free surface) assuming that (µgUg)/(µu0) = O (1) and neglecting terms at order O

(
ε2
)

is
made in order to ensure consistency. We assume that :

τ int =
cf,intρg|ug − u|(ug − u)

2
(17)

with cf,int, the friction coefficient at the free surface prescribed by [Ihnatowicz et al., 1979] for liquid film
in steam turbine:

cf,int =
(
0.0007 + 0.0625Re−0.32

g

)
(1 + 0.025Re) (18)

• Special attention is paid to the velocity u|η and v|η arising with the mass transfer. In order to better
understand these terms, a energy equation of a global system is derived, composed with droplets and gas
using a statistic two-fluid model (see appendix A). It is first assumed that the velocity of the free surface
depends on the velocity of the two phases and also that the mass transfer between the two phases is only
due to thermodynamic phenomena; by enforcing a decrease of the energy with respect to time, this yields:

u|η =
u+ ug

2

v|η =
v + vg

2

(19)

This closure law equation (19) differs fundamentally from previous work regarding droplet impact
([Stanton and Rutland, 1998], [Schuster et al., 2014] and [Delestre, 2010]) which do not consider a depen-
dency of the film itself.

• In a first attempt to explicit the term Sh, we assume that the liquid film is only fed by nucleated droplets,
and once deposited these droplets fully stick to the film ([Moore and Sculpher, 1969],
[Stanton and Rutland, 1998], [Schuster et al., 2014]). We then use the local concentration of droplets and
the local gas velocity within a wet steam flow around a steam turbine computed by [Blondel, 2014] and
traduce the deposition rate using the Zaichik correlation ([Zaichik et al., 1995] or [Zaichik et al., 2010]).
This formulation gives a deposition rate J+, in m/s, depending on the droplet volume concentration cv,
the wall friction velocity u∗ and the deposition coefficient j+, such as:

J+ = j+ × cv × u∗ (20)

where the deposition coefficient j+ is:

j+ =
0.115× Sc−0.75 + 2.5× 10−4 (τ+)

2.5

1 + 10−3 × (τ+)
2.5 (21)

and where the Schmidt number is based on the Brownian coefficient such as Sc = νg/cdif . This Brownian
coefficient reads :

cdif =
R× Tg

6πNνgρg
(22)

with the ideal gas constant and the Avogadro number respectively R = 8.31446 J/(molK) and N =
6, 022× 1023 mol−1.

• The non-linear terms
∫ η
zb
u2dz,

∫ η
zb
uvdz and

∫ η
zb
v2dz, can be exactly calculated by enforcing a velocity

profile to the film. We introduce the profile factor Γ, a constant value depending on the velocity profile
only, such that: 

∫ η

zb

u2dz = Γhu2

∫ η

zb

uvdz = Γhu v∫ η

zb

v2dz = Γhv2

(23)

with Γ = 1 for a vertical velocity profile, Γ = 4/3 a linear velocity profile and Γ = 6/5 a parabolic or
semi-parabolic velocity profile. Theses results are classical and we refer to [Lavalle, 2014] for instance.
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• The Coriolis effect introduces an integration over a portion of the thickness of the film
∫ η−
z

vdz, which
can not be solved exactly. To do so, we neglect the fluctuations terms, which leads to:∫ η−

z

vdz = v (η − z) (24)

• The Coriolis effect also leads to the unknown term w. Thanks to the continuity equation and, once again,
by neglecting the fluctuations terms, we get:

w = −h
2

(
∂u

∂x
+
∂v

∂y

)
(25)

2.4 Closed form of the film model

The general closed form of the film model proposed in this paper is the system of equations (26) associated
with the closure laws detailed paragraph 2.3 and the boundary conditions (equations (1), (4) and (16)) and is
written:

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= Sh

∂hu

∂t
+

∂

∂x

(
Γhu2 +

g cos θh2

2

)
+
∂Γhu v

∂y
+ 2ω0

(
vh
∂η

∂x
+
h2

2

∂v

∂x

)
− ω2

0

2
h
∂η2

∂x
=

− h

ρ

∂Pg

∂x
− σh

ρ

∂R−1

∂x
− hg cos θ

∂zb
∂x

+
1

ρ

(
τxz−r |η − τxz−r |zb

)
+

(
u+ ug

2

)
Sh

∂hv

∂t
+
∂Γhu v

∂x
+

∂

∂y

(
Γhv2 +

g cos θh2

2

)
+ 2ω0

(
vh
∂η

∂y
+
h2

2

∂v

∂y

)
− ω2

0

2
h
∂η2

∂y
+ ω0h

2

(
∂u

∂x
+
∂v

∂y

)
=

g sin θh− h

ρ

∂Pg

∂y
− σh

ρ

∂R−1

∂y
− hg cos θ

∂zb
∂y

+ hω2
0(r + y) + 2ω0h

(
u
∂zb
∂x

+ v
∂zb
∂y

)
+

1

ρ

(
τyz−r |η − τyz−r |zb

)
+

(
v + vg

2

)
Sh

(26)

From now on, the Stator model (respectively the Rotor model) will refer to ω0 = 0 (respectively to ω0 6= 0).

2.5 Model’s properties

Properties of model (26) are now examined. These properties have multiple consequence: they enable to choose
a suitable numerical scheme (conservativity and hyperbolicity), analytical solutions can be obtained to verify
the code (entropy criteria and jump relations); they also give us clues on the relevance of the models (entropy
criteria and invariances). These calculations can be found in chapter 3 of [Simon, 2017] and the results are
summed up here in table 2.
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Stator model Rotor model (with Γ = 1)

Conservative form yes no

Hyperbolicity if g cos θ > 0 if g cos θ + 2ω0v − ω2
0zb > 0

Entropy inequality if Γ = 1 yes

Convex entropy if g cos θ > 0 if g cos θ − ω2
0η > 0

Galilean invariance if Γ = 1 ×
Rotational invariance w.r.t (x, y) without condition ×

Table 2: Properties of the Stator model and the Rotor model

The model obviously losses its conservative structure when the rotation is accounted for. The Stator model
is hyperbolic only if the film is on the top of the wall. In this case, the gravity has a stabilizing effect on the film.
When the film is under the wall, the gravity has a destabilizing effect and tends to release the film from the
wall. This property is similar to the classical Shallow-Water equations. The addition of the rotation renders the
hyperbolicity condition more intricate. The latter criteria may be compared to the work of [Tort et al., 2014].
For a liquid film in steam turbines, the situation where the model is not hyperbolic because of the gravity
is likely to occur, however, it is unlikely that the rotation will be the cause of the loss of hyperbolicity. An
entropy - flux entropy couple can be found when Γ = 1; thus the model can be controlled for Γ = 1. The model
is Galilean invariant, that is to say that the equations in a none-moving frame of reference are similar to the
equations in a frame of reference in uniform translation, when Γ = 1 only. These last two results can also be
found in [Richard and Gavrilyuk, 2012]. The Stator model is invariant under rotation frame of a constant angle
without any condition.

3 NUMERICAL METHOD

The 2D Stator model with zb = 0 has been implemented in Code Saturne code using a finite volume method on
unstructured meshes. The different terms are solved with a fractional step method and the time step conditions
on the discrete system are investigated.

3.1 Finite volume method

The Stator model with zb = 0 can be written as follows:

∂W

∂t
+∇xy. (F (W )) = S + Sσ (27)

with:

W =


h

hu

hv

 ; Fx (W ) =


hu

Γhu2 +
gcosθh2

2

Γhu v

 ; Fy (W ) =


hv

Γhu v

Γhv2 +
gcosθh2

2

 (28)

and:

S =



Sh

−h
ρ

∂Pg
|h+

∂x
+

1

ρ

(
τxz−r |η − τxz−r |0

)
+

(
u+ ug

2

)
Sh

g sin θh− h

ρ

∂Pg
|h+

∂y
+

1

ρ

(
τyz−r |η − τyz−r |0

)
+

(
v + vg

2

)
Sh

 ; Sσ =


0

−σh
ρ

∂R−1

∂x

−σh
ρ

∂R−1

∂y

 (29)
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By integrating the continuous expression (27) on a volume cell Ωi and between two instants tn and tn+1, the
finite volume scheme reads, using an explicit formulation for convective fluxes:(

Wn+1
i −Wn

i

)
Ωi + ∆tn

∑
j∈V(i)

F∆x
n,ij (Wn)Sij = ∆tnΩiSn+1

i + ∆tn
∫
Ωi

SσdΩi (30)

where V(i) refers to the set of neighbors of cell i. We note ∆tn = tn+1 − tn. The notation ij refers to the
interface between cell i and cell j, Sij is the surface of the interface between cells i and j, and the normal vector

pointing outside is n = (nx, ny)
T

. We also note Fn (W ) = nxFx (W ) + nyFy (W ). The time integration is
achieved using a first order Euler scheme which can be extended to second order (Runge-Kutta).

3.2 Fractional step

The fractional step method consists in solving three distinct parts: convective effects, source terms and surface
tension contribution.

3.2.1 Convective effects

The first fractional step goes from tn to t∗ and accounts for the convection contributions:

ΩiW
∗
i = ΩiW

n
i −∆tn

∑
j∈V (i)

F∆x
n,ij (Wn)Sij (31)

A classical first order Rusanov scheme is used, together with the standard minmod limiter method (MUSCL
type) in order to get a second order convergence rate. We thus write:

F∆x
n,ij (Wn) =

1

2

(
Fn (Wn

i ) + Fn
(
Wn

j

)
− ρns,ij

(
Wn

j −W
n
i

))
(32)

with the spectral radius ρns,ij defined as follows:

ρns,ij = max
(
ρns,i, ρ

n
s,j

)
(33)

with in particular for the Stator model (where Γ ≥ 1):

ρns,i = ρs

(
∂F (Wn

i )

∂W

)
= Γ|Un|ni + cni

√
1 + Γ (Γ− 1) (Mn

i )
2

(34)

where M = Un/c denotes the Mach number, Un = nxu + nyv is the normal velocity and the celerity is
c =
√
gcosθh. Out of scope here, the eigenvalues for the Rotor model are given in section 3.2.2 of [Simon, 2017].

3.2.2 Source term

The second fractional step, described between the time t∗ and t∗∗, handles the source terms S in a implicit way.
The general form of this step is:

W ∗∗i = W ∗i + ∆tnS (W ∗∗i ) (35)

As the mass transfer is an external data, the explicitation of the continuity equation is straight:

h∗∗i = h∗i + ∆tnSh (W ∗∗i ) (36)

The implicit momentum equation in the x-direction results in:

(hu)
∗∗
i =

(hu)
∗
i + ∆tn

(
−h
∗∗
i

ρ

(
∂Pg

∂x

)∗∗
i

+ F ∗∗x,i,slu
∗∗
g,i +

u∗∗g,i
2
S∗∗h,i

)
1 + ∆tn

(
F ∗∗x,i,sl
h∗∗i

+
c∗f,w

2

(h |u|)∗i
h∗i h

∗∗
i

−
S∗∗h,i
2h∗∗i

) (37)
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with:

F ∗∗x,i,sl =
ρ∗∗g,i
ρ

cf,int
2

∣∣∣∣u∗∗g,i − (huh
)∗
i

∣∣∣∣ (38)

if S∗∗h,i < 0. A similar expression is used for the component v of the velocity.

When S∗∗h,i is positive a different scheme for the expression (37) can ensure an unconditional definition of

(hu)
∗∗
i which is written as follows:

(hu)
∗∗
i =

Sg(S∗∗h,i) (h∗∗i u
∗
i ) +

(
1− Sg(S∗∗h,i)

)
(hu)

∗
i + ∆tn

(
−h
∗∗
i

ρ

(
∂Pg

|h+

∂x

)∗∗
i

+ F ∗∗x,i,slu
∗∗
g,i +

u∗∗g,i
2
S∗∗h,i

)

1 + ∆tn
(
F ∗∗x,i,sl
h∗∗i

+
c∗f,paroi

2

(h |u|)∗i
h∗i h

∗∗
i

+
|S∗∗h,i|
2h∗∗i

)
(39)

with the function Sg(X) defined such as:

Sg(X) =

{
1 if X > 0
0 if X ≤ 0

(40)

3.2.3 Surface tension

The third fractional step goes from t∗∗ to tn+1 and deals with the surface tension. The surface tension is
numerically delicate to handle as it involves a third order derivative. In a first approach, the surface tension is
implemented in one dimension with a classical centered scheme:

ΩiW
n+1
i = ΩiW

∗∗
i + ∆tn

∫
Ωi

SσdΩ (41)

with Sσ =

(
0, 0,

σh

ρ

∂3h

∂y3

)T
By stating that the space step ∆y is constant, we choose to implicit the surface tension as follows:

(hv)
n+1
i = (hv)

∗∗
i +

∆tn

2∆y3

σ

ρ
hn+1
i

(
hn+1
i+2 − 2hn+1

i+1 + 2hn+1
i−1 − h

n+1
i−2

)
(42)

Three classical boundary conditions are used: wall boundary conditions (using the mirror state technique),
homogeneous Neumann or periodic boundary conditions for inlet/outlet.

3.3 Time step restriction

Constraints on time step are enforced to guarantee the positivity of the film height and to ensure the stability
of the scheme.

3.3.1 Positivity of the film height

In the first step, dealing with the convection effects, the discrete mass balance equation can be reorganized as
follows :

h∗iΩi = hni

Ωi −
∆tn

2

∑
j∈V (i)

(
uni .nij + ρns,ij

)
Sij

+
∆tn

2

∑
j∈V (i)

hnj
(
ρns,ij − unj .nij

)
Sij (43)

Thus assuming that h∗i are being positive, a necessary and sufficient condition is that h∗i should be a convex
combination of the hnj , such that: 

ρns,ij − unj .nij > 0

Ωi −
∆tn

2

∑
j∈V (i)

(
uni .nij + ρns,ij

)
Sij > 0 (44)
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The first condition is always fulfilled by Rusanov scheme. The second condition restricts the time step and is
classically called the CFL condition:

∆tn =
2ΩiCFL∑

j∈V (i)

(
uni .nij + ρns,ij

)
Sij

=
2ΩiCFL∑

j∈V (i)

ρns,ijSij
(45)

since ∑
j∈V (i)

uni .nijSij = 0 (46)

where 0 < CFL < 1.

The second fractional step links the film height to the mass source term such that:

(h∗∗i − h∗i )Ωi = ∆tnΩiSh (47)

We recall that Sh > 0 corresponds to droplet deposition and Sh < 0 represents evaporation. In order to ensure
the positivity of the film height we must have ∆tn > −h∗i /Sh. This relation is always true for Sh independent
from h and positive which corresponds to the droplet deposition.

3.3.2 Stability of numerical scheme

By performing a von Neumann stability analysis of the numerical scheme, we can obtain a stability condition
depending on the surface tension as well as a condition on the convection similar to the condition to ensure the
positivity of the film height (expression (45)). Appendix B details the calculation with the first order Rusanov
scheme which are mandatory to get this condition. This results in:

max

∆t

∆x
ρs
(
C
)
,

∆t

∆x
ρs
(
C
) |u0|+

√
c20 +

4σh0

ρ(∆x)2

ρs
(
C
)


2 ≤ 1 (48)

with c0 =
√
g cos θh0 for the classical Shallow-Water equation and the Stator model and ρs

(
C
)

the spectral
radius of the Jacobian matrix of the flux.

The second-order Rusanov scheme at order 2 MUSCL type discretization and a second order Runge-Kutta
scheme leads to the following restriction on the time step:

∆tn ≤ 77/6
√

3

24

(
ρ
√
v0 + c0
σh0

)2/3

∆y7/3 (49)

Compared to the study of [Noble and Vila, 2014], the restrictions at order 1 and at order 2 are performed in
dimensional variables.

Remark:
In [Simon et al., 2016] and in chapter 5 of [Simon, 2017], several verifications of the numerical schemes are made
to ensure that convergence is reached w.r.t. the mesh size. Analytical solutions for the test cases of the dam
break (particular Riemann problem), a lake at rest and the deposition on a plane are obtained and compared
to numerical simulations.

4 NUMERICAL RESULTS

4.1 Falling film

In this section, the model equation (26) is validated for a falling film. These falling films are compared to
the experiments of [Liu and Gollub, 1994]. In these particular situations, the model developed in this paper
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(expression (26)) degenerates into the Shallow-Water equations with surface tension. Indeed, for a film flowing
down a plane, there is no rotation, no mass transfer, no free surface shear and the gas pressure as well as the
position of the wall zb are constants. It is indeed a one dimensional case and we set Γ = 1. The resulting model
used in the section includes the convection, the gravity, the friction at the wall (expression (15)) and the surface
tension. It may be rewritten as:

∂h

∂t
+
∂hv

∂y
= 0

∂hv

∂t
+

∂

∂y

(
hv2 +

g cos θh2

2

)
= g sin θh− 3νv

h
+
σ

ρ
h
∂3h

∂y3

(50)

More generally, these simulations also enable to judge the precision of a relative simple model which is also
the Shallow-Water equations with surface tension (equation (50)) for a falling film test case. These simulations
will be compared to those resulting from the application of more sophisticated models such as the model of
[Ruyer-Quil and Manneville, 2000] and the model of [Lavalle, 2014].

4.1.1 Falling film in linear regime

Under certain circumstances, a falling film on inclined plane displays waves at the free surface. These waves
come from an amplification of a small perturbation. The evolution of the perturbation depends on the Reynolds
number of the liquid film (or the Froude number). A infinitesimal perturbation is amplified (respectively
damped) if the Reynolds number of the liquid film is greater than (respectively smaller than) a critical Reynolds
number. A linear stability analysis of the Navier–Stokes equations provides an estimation of this critical
Reynolds number. This one is based on the inclination angle θ of the plane (θ = 0 corresponds to a horizontal
plane, see figure 4):

Recr−NS =
5

6
cotan θ (51)

This critical Reynolds number has been validated by the experimental result of [Liu and Gollub, 1994]. The
models of [Ruyer-Quil and Manneville, 2000], [Lavalle, 2014] or [Richard et al., 2016] are built in order to com-
ply with this critical Reynolds number.

A stability analysis is performed on the Stator model equation (50) which corresponds to the Shallow-Water
equations with surface tension. This analysis can be found in appendix C and shows the same results for two
different linearizations. It leads to a different bifurcation threshold than the expression (51), which reads:

Recr−Stator =
3

4
cotan θ (52)

In order to verify the numerical approach, we introduce some perturbations in the linear regime. Thus, we
simulate a film on a plane inclined with a initial perturbation in the form:h(y, t = 0) = h0(1 + ε sin(2π

y

λ
))

v(y, t = 0) = v0(1 + ε sin(2π
y

λ
))

(53)

where ε = 10−6 enables to remain in the linear regime, and h0/λ << 1 in order to remain in the long-wave
domain (condition to obtain the analytical threshold expression (52)). The fluid is chosen in agreement with the
experiment of [Liu and Gollub, 1994]: a glycerin solution is considered with density ρ = 1070 kg/m3, kinematic
viscosity ν = 6.28 × 10−6 m2/s and surface tension coefficient σ = 0.067 N/m. Unlike in the experiment of
[Liu and Gollub, 1994], the Reynolds number of the film is not defined with the velocity at the free surface
but with the average flow velocity. The height is in both cases the height of the mean or undisturbed flow:
Re = h0v0/ν. The Weber number is defined as We = ρh0v

2
0/σ and the Froude number is defined such that

Fr = v0/
√
gh0.

The plane inclination angle θ is 6.4 degrees in accordance with the experiment. The resulting analytical critical
Reynolds number of the Stator model is 6.69 using expression (52), whereas the one predicted by equation (51)
is 7.43. Computational results for different meshes are given in table 3. If the initial perturbation is amplified,
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Cells number \ Reynolds of the film 7.82 7.91 8.00 8.08 8.17 8.26 8.52 8.95

100 ST ST ST ST ST ST ST UN

500 ST ST ST ST ST UN UN UN

1000 ST ST ST UN UN UN UN UN

2000 ST UN UN UN UN UN UN UN

Table 3: Stability of the film compared to the Reynolds of the film for different meshes for the Stator model
where Recr−Stator = 6.69

the film is considered as unstable (“UN”), whereas if the initial perturbation is damped, the film is considered
as stable (“ST”). The color underlines an approximation of the limit between the stable case and the unstable
case for the Stator model (50). In his thesis, [Lavalle, 2014] proceeds to the same numerical test with meshes
up to 160 cells. Considering table 3, we see that the numerical threshold is less than 7.91 for the Stator model,
since the code gets closer to the analytical solution for finer meshes. The model together with the numerical
scheme has the expected threshold behavior.

4.1.2 Falling film in non-linear regime

[Liu and Gollub, 1994] observed nonlinear instabilities at the free surface of a thin film flowing on an inclined
plane by periodically forcing the film at the inlet. They conclude that the nonlinear development of these waves
depends on the frequency of forcing. After the study of the mesh convergence and a sensitivity study of the forc-
ing amplitude, we will compare the shape of these waves with the Stator model (50) and the two reference mod-
els: [Ruyer-Quil and Manneville, 2000] model and the [Lavalle, 2014] model. [Ruyer-Quil and Manneville, 2000]
first order model is recalled here:

∂h

∂t
+
∂q

∂y
= 0

∂q

∂t
+

17

7

q

h

∂q

∂y
+

(
5

6
g cos θh− 9

7

q2

h2

)
∂h

∂y
=

5

6
gh sin θ − 5

2

q

h2
+

5

6

σ

ρ
h
∂3h

∂y3

(54)

as well as [Lavalle, 2014] model:
∂h

∂t
+
∂q

∂y
= 0

∂q

∂t
+

∂

∂y

(
q2

h
+

1

2
g cos θh2 +

2

225

(
g sin θ

ν

)2

h5

)
= gh sin θ − 3q

h2
+
σ

ρ
h
∂3h

∂y3

(55)

with q = hv.

In order to agree with the conditions of the [Liu and Gollub, 1994] experiment, and owing to our definitions
of the Reynolds number and the Weber number, these numbers must be equal to 19.33 and 0.184 respectively.
Constant values of height and velocity such that h0 = 1.2791 × 10−3 m and v0 = 9.49 × 10−2 are enforced at
the beginning of the computation. The inlet boundary condition represents the periodic perturbation and is
defined as: {

h(y, t = 0) = h0(1 + ε sin(2πtfreq))

v(y, t = 0) = v0(1 + ε sin(2πtfreq))
(56)

where freq denotes the forcing frequency (1.5 Hz or 4.5 Hz given by the experiment) and ε = 10−3 (a sensitive
analysis of ε is carried on further). The outlet boundary condition is a homogeneous Neumann condition.

Figure 6 displays the effects of mesh refinement for the Stator model (50). A further mesh dependence analysis of
the film height and the wavelength for the Stator model as well as for the model of [Ruyer-Quil and Manneville, 2000]
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and [Lavalle, 2014] is presented in section 6.2.1 of [Simon, 2017]. We note that capillary waves are not captured
with a mesh of 1000 cells. Thereafter for this test case, all the simulations are carried with 8000 cells.
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Figure 6: Relative height (h/h0) for different meshes with a forcing frequency of 1.5 Hz for the Stator model
at time t = 12 sec

In [Liu and Gollub, 1994] experiment, the forcing amplitude is not determined. This amplitude, denoted
here by εh0, intervenes in the boundary conditions described in equation (56). For a mesh of 8000 cells and
a forcing frequency of 1.5 Hz, we can change the forcing amplitude (ε = 10−4, 10−3, 10−2) and observe the
variations of the results figure 7. The results are given under established conditions.
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Figure 7: Relative height (h/h0) as a function of y for different forcing amplitudes, with a frequency 1.5 Hz.
Stator model with 8000 cells at time t = 12 sec
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Figure 7 shows that the wavelength and the wave amplitude do not depend on the amplitude of forcing and
can therefore be compared with the results of the experiment. Therefore, the forcing amplitude significantly
influences the spatial point of development of the instabilities. The smaller the forcing amplitude, the greater
the spatial point at which the established regime begins. However, the establishment distance can not be vali-
dated due to lack of experimental data. For the remaining simulations, we choose a forcing amplitude such that
ε = 10−2.

Now, we compare the Stator model for two forcing frequencies (1.5 Hz and 4.5Hz) with the experience of
[Liu and Gollub, 1994] and reference models for liquid films of [Ruyer-Quil and Manneville, 2000] and [Lavalle, 2014].
Figure 8 shows the experimental height with a forcing frequency of 1.5 Hz, for the three models. The simula-
tions are performed with a forcing amplitude such that ε = 10−2 and a mesh size of 8000 cells. Figure 9 shows
the results under the same conditions for a forcing frequency of 4.5 Hz. As mentioned in the previous section,
since the starting point can not be reproduced due to lack of experimental data, we compare the dimensionless
height on the same plate length (50 cm) without taking into account the value of the distance at the origin.
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model and with [Ruyer-Quil and Manneville, 2000] model with 8000 cells
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[Ruyer-Quil and Manneville, 2000] model reproduces quantitatively the experiment for forcing frequencies
1.5 Hz and 4.5 Hz. Indeed, the maximum amplitudes of waves and the wavelengths are very close to the
experiment. For the [Lavalle, 2014] model, the results for the 1.5 Hz forcing are quantitatively in agreement
with the experiment but this is no longer true when the frequency is 4.5 Hz, since amplitude and wavelength
of the waves are slightly underestimated. The wavelengths obtained with the Stator model, for the two forcing
frequencies are also close to the experiment. However, the Stator model overestimates the wave amplitude of
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about 30% for the forcing frequency 1.5 Hz and about 5% for the forcing frequency 4.5 Hz. The Stator model,
or Shallow-Water model with the surface tension, therefore correctly reproduces the expected behavior of the
free surface of a liquid film on a inclined plane and periodically forced.

4.2 Sheared film

In order to get closer to the real configuration of the liquid film in the steam turbines, simulations are performed
with steam shear under steam turbine low-pressure conditions which means that the properties of the film and
steam as well as steam velocity are realistic data for low-pressure turbine. In theses situations, the model
degenerates as follows: 

∂h

∂t
+
∂hv

∂y
= Sh

∂hv

∂t
+

∂

∂y

(
hv2 +

gh2

2

)
=

1

ρ

(
τyz−r |h − τyz−r |0

)
+
σ

ρ
h
∂3h

∂y3

(57)

The shear at the free surface τyz−r |h is modeled with the expression of [Spedding and Hand, 1997] (see expression

(14)) and τyz−r|0 is modeled with the expression of [Ihnatowicz et al., 1979] (see equation (18)). First, a
comparison of the model with the [Hammitt et al., 1981] experiment validates the stationary results. The
unsteady features of the sheared film are then studied: on the one hand by imposing a frequency of the waves
at the free surface of the film and on the other hand by forcing the film with a noise in order to capture the
natural frequency of the film.

4.2.1 Steady sheared film

In the [Hammitt et al., 1981] experiment, liquid water is pumped vertically through a slot on a horizontal plate.
The liquid film thus created is sheared by a steam flow at saturation and at high speed (60 m/s to 390 m/s)
for both phases, the pressure and the temperature are 0.2 bar and 52.2 ℃ respectively.

Figure 10: University of Michigan experimental setup (left) and typical observation with vg = 130 m/s (right).
Figures from [Hammitt et al., 1981]

A diagram of the experimental plate is presented as well as a typical observation of the liquid film with a
steam velocity of 130 m/s. The wet dimensions of the plate are 133.3 mm in length (1) and 80 mm in width
(L). The experimental results provide film heights as a function of the steam velocity for different liquid water
flow rates under low pressure conditions. The heights of the film are given at four positions of the plate, as
indicated in the figure by the sensors, and they are obtained using a temporal average.

Concerning the numerical procedure, the film height and velocity are initialized to zero. The mass transfer
Sh transcribes the injection of liquid water through the slot of the flat plate. The value of the water flow used
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is ṁ = 5.10−7m3/s. The flow rate of the experiment is converted into an additional water height at each time
step such that:

hn+1 − hn

∆t
=

ṁ

lL(linj/100)
(58)

with linj the slot length through which the flow is injected as a percentage of the length of the plate. The
injection starts at 0.02 m and we have linj = 5%. Since the code is using a fractional step method, convection
does not appear in the expression (58). The properties of the liquid film and the vapor are calculated using the
thermodynamic tables IAPWS-IF97 ([Iapws, ]) and are summarized as follows: density of film, ρ = 983 kg/m3,
gas density ρg = 9.5× 10−2 kg/m3, kinematic viscosity of the film, ν = 5.34× 10−7 m2/s, kinematic viscosity
of the gas, νg = 1.11 × 10−3 m2/s and surface tension coefficient, σ = 0.067 kg/s2. As in the experiment, the
heights are obtained by performing a temporal average.

A mesh convergence study is performed and can be found in section 7.3.1 of [Simon, 2017]: these stationary
simulations are mesh independent with 100 cells.
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In figure 11, the results shows that the height decreases when the speed of the steam increases. The
four experimental values on the plate remain within the black bars. As the numerical values are all within
experimental range, the code presents fair results compared to the experiment.

4.2.2 Unsteady sheared film : mono-frequency forcing

We now study the Stator model, considering an unsteady test case that stages a liquid film on a horizontal
plane which is forced at a given frequency at the entrance. First, it enables to emphasize the importance of
surface tension in the description of waves at the interface of the film. It also makes it possible to investigate
the behavior of the liquid film when sheared under unsteady conditions.

The model that is used is described by expression (57) and the properties of the fluids are derived from the
Michigan experiment for liquid films in the low-pressure steam turbine conditions (see paragraph 4.2.1). We
initialize the film at a constant height h0 and the velocity v0 is set to zero in a large domain (compared to
the height of the film). The right boundary condition is a homogeneous Neumann condition and at the left
boundary, the film evolves in time, simulating sinusoidal waves such as:

h(y = 0, t) = h0(1 + ε sin(2πft)) (59)

εh0 stands for the amplitude of the wave and f is the frequency of the wave. The flow parameters are typical
values of this experiment: h0 = 100 µm, ε = 0.25, f = 10 Hz and vg = 100 m/s .
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A mesh sensitivity analysis is performed. A t = 0, the film velocity is zero. The film is set in motion with the
steam drive. We compare the height and velocity of the film over the entire domain when the flow is established
(t = 1.8 s). We assume that the simulation results are almost converged on a mesh with 2000 cells, we will keep
this mesh for all simulations.

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 0  0.02  0.04  0.06  0.08  0.1

H
ei

g
h
t 

[µ
m

]

y [m]

100 cells
500 cells

1000 cells
2000 cells

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  0.02  0.04  0.06  0.08  0.1

V
el

o
ci

ty
 [

m
/s

]
y [m]

100 cells
500 cells

1000 cells
2000 cells

Figure 12: Mesh convergence of the height (left) and the velocity (right) of a film subjected to periodic input
to low-pressure turbine conditions with vg = 100 m/s at t = 1.8 s

The height of the film with surface tension and without surface tension for a frequency imposed at the input
of 10 Hz are displayed on figure 13, using an initial height of 100 µm and a steam speed of 100 m/s.
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Figure 13: Study of the influence of surface tension: film height (left) and zoom (right) for 2000 cells f = 10
Hz, vg = 100 m/s and h0 = 100 µm

Figure 13 exhibits the striking importance of surface tension effects for sheared films under turbine condi-
tions. The surface tension smooths the peaks, which is expected since its expression depends on the curvature
of the free surface. Therefore, the surface tension needs to be taken into account. Nonetheless, its discretization
is CPU time consuming as the time step has to be strongly restricted for fine mesh (see appendix B). That
explains why a distinct numerical approximation based on a change of variable $ = h−1/2∂h/∂y and a extension
of the state variable (h, hv)→ (h, hv, h$) is sometimes used (see [Noble and Vila, 2014]). It has the advantage
to decrease the derivative order of the system. Preliminary comparisons between the two approaches can be
found in [Simon, 2017] (section 4.1.3 and 6.1.2) and shows similar results for a test case involving a falling film
on a inclined plane.
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We now vary the velocity of the steam in a typical turbine range and observe the height of the liquid film.
The results are presented at t = 1.8 s in figure 14.
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Figure 14: Height of the film with a frequency of forcing of 10 Hz for different steam velocities at t = 1.8 s

For steam velocity from 90 m/s to 110 m/s, the flow is stable since the initial perturbation is attenuated.
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It is noted that the speed of the film increases with the speed of the vapor. This tendency is explained simply
because the steam drives the film with it. On the other hand, the increase of the gas velocity generates an
increase in the wavelength of the waves at the interface of the liquid film and a decrease in the amplitude of
these waves. The same feature was found by [Wurz, 1978] when he studied experimentally a film-gas co-current
flow. For steam velocity below 110 m/s, the disturbance remains sinusoidal throughout the domain. Conversely,
for a steam velocity of 110 m/s, the film changes its structure and adopts a non-sinusoidal profile.We also find
that starting from vg = 115 m/s, the height of the peaks damps at the beginning and then seems to stabilize
at a constant value, here at 111 µm. Until now the waves did not interact with one another. This begins to
occur at a gas velocity of 120 m/s. At the end of the domain, the intermediate wave is absorbed by the main
wave (greatest amplitude). As for the simulation with the steam velocity of 125 m/s, the waves interact with
each other. As the highest wave is flowing faster than the intermediate wave, it collapses to form a wave. This
absorption takes place earlier than in the case at vg = 120 m/s. By further increasing the vapor velocity up
to 130 m/s, absorption of the intermediate wave by the highest wave is made even earlier than in the case
of vg = 125 m/s. This new wave will then accelerate and grow up to 190 µm. The local Reynolds number
is then about 70, which remains approximately in the range of validity of the model. The same pattern is
accentuated for a steam velocity of 135 m/s. Indeed, the absorbing wave has a height of 450 µm. The local
Reynolds number is then about 1000, which largely exceeds the model’s validity range. It should be noted that
this simulation is highly unsteady. When the velocity of the vapor is too high, the film has a solitary wave with
a strong curvature gradient and a high amplitude. It is implausible to observe this behavior in reality. Indeed,
one possible explanation would be that these waves are unstable with respect to 3D perturbations or that drops
are torn off at the free surface or that the film takes off from the wall. These three possibilities are actually not
taken into account in the simulations of this test case.

4.2.3 Unsteady sheared film with noise forcing

In the [Hammitt et al., 1981] experiment, waves at the free surface of the liquid film on a plate under low-pressure
turbine conditions were observed (see paragraph 4.2.1). The experimental estimate of the characteristics of these
waves can be summarized as follows: the amplitude of the waves is about 20 % of the average height of the film,
the frequency f is in the range [10 - 100] Hz, with a preponderance of 10 Hz and the wave propagation speed c
is in the range of 0.01 to 1 m/s. The present validation case aims at comparing these unsteady characteristics
with the Stator model expression (57).

In order to recover the natural characteristics of the sheared film, a noise is enforced at the inlet. This noise is
constructed with a wide frequency range, each signal having the same amplitude so as not to favor any frequency.
The frequency range is chosen between 1 Hz and the analytical cutoff frequency fc. This corresponds to the
frequency beyond which the film remains flat/stable. In other words, frequencies above the cut-off frequency
produce disturbances that will be attenuated. This method which was introduced by [Chang et al., 1996], has
been used in particular by [Kalliadasis et al., 2011] and [Dietze and Ruyer-Quil, 2013].

By imposing this signal (or noise) (60), the system will then choose the natural frequency of the configura-
tion.

ψ(t) = ε

fc∑
f=1

cos(2πft− φf ) (60)

with the phase φf generated randomly for each frequency, which lies between 0 and 2π: ε is the constant
amplitude of the signal taken at 10−2. The boundary condition at the entrance is thus:

h(y = 0, t) = h0(1 + ψ(t))

v(y = 0, t) = v0(1 + ψ(t))
(61)

where h0 and v0 are the height and velocity obtained in the steady case, respectively h0 = 130.2 µm and
v0 = 0.0576 m/s (see paragraph 4.2.1) for a given steam velocity. The cutoff frequency fc, which is the transi-
tion value between the stable and unstable perturbations, is obtained with the dispersion relation of the Stator
model, resulting from the stability analysis presented in appendix C. For our case, fc = 205 Hz.

Figure 15 shows the film thickness at time t = 4 s for a steam velocity of 100 m/s using different meshes.

24



 60

 80

 100

 120

 140

 160

 0  0.05  0.1  0.15  0.2

H
ei

g
h

t 
[µ

m
]

y [m]

500 cells

1000 cells

2000 cells

3000 cells

Figure 15: Effect of mesh refinement for a sheared film in low-pressure turbine condition with noise at the inlet
boundary. Height in µm for vg = 100 m/s at t = 4 s.

A preliminary simulation is performed without any forcing, using a mesh including 3000 cells. In that case,
the film remains flat. Figure 16 shows the film height and velocity approximations obtained with 3000 cells.
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Figure 16: Height (left) and velocity (right) of the film with noise at the entrance and a steam velocity of 100
m/s at t = 4 s with 3000 cells

The numerical frequencies of the waves at the free surface on figure 16 are extracted with a classical FFT
method. These natural frequencies range from 1 Hz to 50 Hz. The frequencies 7 Hz, 10 Hz and 15 Hz are the
predominant frequencies. The maximum amplitude of the film, obtained as shown in figure 16, is approximately
20 % of the base height and the wavelength of about 13 mm. To conclude on the validity of the Stator model,
more precise experimental data are required. However, the results are encouraging since the results of the Stator
model correctly match the estimates of the [Hammitt et al., 1981] experiment detailed in the introduction of
this test case.
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The impact of the profile factor Γ, introduced in paragraph 2.3 is studied in the case of an unsteady film
sheared by steam in a low-pressure turbine condition and with noise at the inlet boundary.
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Γ = 6/5) a steam velocity of 100 m/s for 3000 cells at t = 4 s

Figure 17 shows that the profile factor has little influence on the film frequency and the average height value.
However, it can be seen that the model with Γ = 4/3 (linear velocity profile) produces waves with peaks of
smaller amplitudes than the model with Γ = 6/5 (semi- parabolic) and that the model with Γ = 1 (vertical
velocity profile). This conclusion enriches the interpretation of the falling film in non linear-regime test case
(see paragraph 4.1.2). In this case, the Stator model with a vertical velocity profile overestimates the peak
amplitude compared to the references models of [Ruyer-Quil and Manneville, 2000] and [Lavalle, 2014], which
assume a semi-parabolic velocity profile. Ultimately, the type of velocity profile assumed is a preponderant
parameter on the amplitude of the waves.

5 Conclusions and discussions

In order to study liquid film in steam turbine, a 2D unsteady model is developed. The model is relatively
simple (Shallow-Water type) but stages various physical phenomenon such as the mass transfer, the droplet
impact, the rotation and the surface tension. The development of this model is done rigorously by specifying
the simplifying assumptions used. It is shown in particular that the momentum due to the droplet impact does
not need to be added as an external force. The integration step makes this term appear naturally as long as
there is a mass transfer term in the kinematic boundary at the free surface. To fully explain the model, closure
laws are proposed in this paper, including an innovative consideration of the velocity involved in the term for
the droplets impact.

The model properties analysis underlines that for the closure law Γ = 1, the model displays a Euler struc-
ture for which a wide range of numerical schemes has been proposed in the literature. Besides, the Stator
model, as the Shallow-Water equation, is not hyperbolic when the film is located under the wall. This situ-
ation corresponds to the case when the gravity has a destabilizing effect and tends to detach the film from
the wall. The hyperbolic condition for the Rotor model is found and extends the work of [Tort et al., 2014] to
non-constant topography.

Concerning the numerical scheme, the difficulty resides in the surface tension term. This term in integrated
formulation models is a third derivative term. Moreover, a von Neumann stability analysis of the numerical
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scheme highlights the strong restriction on the time step for fine meshes due to surface tension. This induces a
high CPU time.

The simulation aims at judging of the performance of this relative simple model on reference test cases (falling
film) and case closer to the final configuration (sheared film). For the falling film in linear regime test case, a
linear analysis on the Stator model is performed and shows a different but close theoretical stability threshold
compared to the Navier-Stokes equations or reference models for liquid film ([Ruyer-Quil and Manneville, 2000],
[Lavalle, 2014] and [Richard et al., 2016]). However, the Stator model represents correctly the threshold feature
concerning the presence of waves at the free surface. In a non-linear regime for falling film, the relative simple
model with Γ = 1 displays good results in a view of the complex configuration. It shows the correct free
surface form as well as the qualitatively correct wavelength. However it tends to overestimate the amplitude
of the waves. As seen in the last test case (noise forcing test case), the non-linear closure law (Γ) impacts in a
significant way the amplitude of the waves. Therefore, the use of a Γ other than 1 could lead to more precise
results but to the detriment of the structure simplicity that Γ = 1 offers. Then, if the precision for the falling
film case needs to be increased, it might be preferable to switch to more complex models, such as the new
model of [Richard et al., 2016] which takes into account the non vertical nature of the velocity profile and has
a simple structure (Euler structure). However, to study the full situation of liquid film in steam turbine, the
model proposed in this paper in more suitable as it contains more physics.

The most representative experiment which we know of regarding liquid films in steam turbine is the
([Hammitt et al., 1981]) experiment. It measures liquid film heights on a horizontal plate highly sheared by
low-pressure steam. The Stator model in comparison of this experiment shows excellent steady results. The
unsteady results of the experiment are only estimation of the wave frequency and celerity of the waves but
the model stays in the range of these estimations (noise forcing test case). Moreover, the numerical results
display the same tendency than the experiment of [Wurz, 1978]: the wavelength increases and the amplitude
wave decreases with the increase of the co-current gas velocity. More precise unsteady measurements are needed
to fully validate the model. Finally, the mono-forcing test case underlines the hight unsteady and non-linear
features which occurs for high shear. It also demonstrates the striking importance to take the surface tension
into account and of interpreting results only for local Reynolds number in the validity domain in which has
been developed to model.
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A Appendix A: Closure law for the free surface velocity

To obtain information on the velocity at the free surface of the film associated with the mass transfer, a statistical
formulation is adopted. Only in the appendix, the water liquid film surrounded by the steam is represented
by a statistic two phase model ([Hérard and Hurisse, 2012]). The closure law will verify the physical property
of dissipation (or physical entropy increase) for a close domain without external force. We assume that the
velocity at the free surface depends on the velocity of both phases. By using the entropy equation of the model,
theses restrictions lead to admissible solutions of the free surface velocity.

A.1 The two-phase flow model

The expression of the statistical two-phase flow model is:

∂αk
∂t

+ VI
∂αk
∂x

= Φk

∂mk

∂t
+
∂mkUk
∂x

= γk

∂mkUk
∂t

+
∂

∂x

(
mkU

2
k + αkPk

)
− PI

∂αk
∂x

= Dk + γkυi

(62)
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The model (62) conveys the fact that the statistical presence rate αk moves at the velocity VI and depends of a
interface transfer term Φk, each phase being written k. The mass balance equation with unknown mk = αkρk
where ρk is the density, has a source term γk associated with mass transfer. The momentum, mU with U
the statistic average velocity is function of the drag Dk, and the “dynamical” mass transfer γkυi with υi, the
velocity at the free surface. The interface velocity VI can be estimated using the following strategy. We assume
that VI is a convex combination of phase velocities:

VI = aU1 + (1− a)U2 with a = f(W ) ∈ [0, 1] and W the vector such that: W = (αk,mk,mkUk)T , (63)

and also that the interface pressure PI takes the form:

PI = (a− 1)P1 + aP2 (64)

We recall that:
α1 + α2 = 1 with αk ∈ [0, 1] (65)

We also assume that:
υi = bU1 + (1− b)U2 with b ∈ [0, 1] (66)

and we know that the interface transfer terms verify:
D1 +D2 = 0,

Φ1 + Φ2 = 0,

γ1 + γ2 = 0

(67)

A.2 Governing equation for the total energy

We assume the solutions to be regular. Classical calculations yield:

∂

∂t

(
mkU

2
k

2

)
+

∂

∂x

(
mkU

3
k

2
+ αkPkUk

)
− αkPk

∂Uk
∂x
− UkPI

∂αk
∂x

= Ukγkυi + UkDk −
U2
k

2
γk (68)

With help of first equation in model (62), we obtain:

∂ρk
∂t

+ ρk
∂Uk
∂x

+
ρk
αk

(Uk − VI)
∂αk
∂x

+ Uk
∂ρk
∂x
− γk
αk

= − ρk
αk

Φk (69)

Since each pressure phase only depends on the density, we perform the change of variable ψ′k(ρk) = Pk(ρk)/ρ2
k,

we obtain:

∂ψkmk

∂t
+
∂ψkmkUk

∂x
+ mkψ
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kρk
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+ ρ2
kψ
′
k (Uk − VI)

∂αk
∂x

= ψkγk + ρkγkψ
′
k − ρ2

kψ
′
kΦk (70)

Adding up equations (68) and (70), and summing over the phases k = 1, 2, we get:
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∂t
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(71)

defining: 
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or:
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∂ϕ

∂x
=

2∑
k=1

(
UkDk − Pkφk + γk

(
Uk

(
υi −

Uk
2

)
+

(
ψk +

Pk
ρk

)))
(73)

since:
2∑
k=1

(
ρ2
kψ
′
k (Uk − VI)− UkPI

) ∂αk
∂x

= 0 (74)

due to the specific choice of VI and PI (see equations (63) and (64))

28



A.3 Admissible forms of source terms

Since the energy ξ of the two-phase model (62) must decrease in a close domain without any external forces the
source term of the equation (71) must be negative. Three distinct phenomena (mass transfer, drag and pressure
relaxation) are functions of independent arguments αi, U1, U1 − U2, P1, P1 − P2. Therefore, the model (62)
is dissipative if and only if the transfer terms, γk and φk dissipate, as well as the term Dk. So that we must
enforce: 

D1(U1 − U2) ≤ 0,

Φ1(P2 − P1) ≤ 0,

γ1

((
ψ1 +

P1

ρ1

)
−
(
ψ2 +

P2

ρ2

)
+

(
b− 1

2

)
(U1 − U2)

2

)
≤ 0

(75)

Standard forms for the drag D1 and the pressure relaxation term, Φ1, which are classically used in the literature:{
D1 = K2

D(U2 − U1),

Φ1 = K2
Φ(P1 − P2)

(76)

with K2
D and K2

Φ positive constants, comply with constraints (75).

If we turn to the mass transfer term, two closure laws are admissible. The classical approach consists in
assuming that the dissipation due to the mass transfer only involves thermodynamic quantities. This implies:

υi =
1

2
(U1 + U2) ,

γ1

((
ψ1 +

P1

ρ1

)
−
(
ψ2 +

P2

ρ2

))
≤ 0

(77)

In a second alternative approach, one might consider that the dissipation due to mass transfer comes from both
the thermodynamic and the relative velocity between the two phases; in that case, admissible closure laws would
be: 

υi = bU1 + (1− b)U2

γ1

((
ψ1 +

P1

ρ1

)
−
(
ψ2 +

P2

ρ2

)
+

(
b− 1

2

)
(U1 − U2)

2

)
≤ 0

(78)

In this paper, we will restrict to the first closure (77). The velocities at the free surface have the expressions:
u|η =

(U1 + U2)

2

v|η =
(V1 + V2)

2

(79)

It should be noted that the result is still valid in a non-barotropic framework [Coquel et al., 2002], focusing on
two-phase flows also in the “multi-field” context [Hérard, 2016]. Note that the function (ψk + Pk/ρk) (ρk) is
the specific enthalpy of the phase k, traditionally noted hk and ψk is the internal energy of the phase k.

B Numerical stability analysis including the surface tension

In this appendix, we will check that, the convection and the surface tension impose a restriction on the time step
for the model without rotation. For that purpose, we perform a von Neumann stability analysis. The analysis
is achieved for the Stator model 1D with Γ = 1 using a forward Euler temporal scheme, Rusanov flux scheme
for convective fluxes and a centered scheme for the surface tension. First, a linearization of the continuous
equations around a equilibrium solution is performed. Then, perturbations are introduced in a Fourier series
form. Eventually, we seek conditions so that the error amplification would be smaller than 1.

We start with the Stator 1D model with Γ = 1:
∂h

∂t
+
∂q

∂y
= 0

∂q

∂t
+

∂

∂y

(
q2

h
+
g cos θh2

2

)
=
σ

ρ
h
∂3h

∂y3

(80)
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still setting q = hv; σ and ρ are none zero positive constants.

By linearizing around an equilibrium state (h0, q0) such that:{
h = h0 + h′

q = q0 + q′
(81)

we find the following perturbed system:

∂W ′

∂t
+ C ∂W

′

∂y
−Dσ

∂3W ′

∂y3
= 0 (82)

with:

W =

h′
q′

 ; C =

 0 1

g cos θh0 − v2
0 2v0

 and Dσ =


0 0

σ

ρ
h0 0

 (83)

We apply now to the perturbed equations the forward Euler scheme, the explicit Rusanov flux scheme and the
centered scheme for the surface tension:

W
′n+1
j −W

′n
j

∆t
+

1

2∆y

(
C
(
W
′n
j+1 −W

′n
j−1

)
− ρs

(
C
)
Id
(
W
′n
j+1 − 2W

′n
j +W

′n
j−1

))
=

Dσ
2∆y

(
W
′n
j+2 − 2W

′n
j+1 + 2W

′n
j−1 −W

′n
j−2

) (84)

Multiplying the expression (84) by eijω, with i, the imaginary unit and summing over cells j ∈ N, and noting

W̊ ′ the following Fourier transform, we have:

W̊ ′ =
∑
k∈Z

eikωW ′k (85)

the discrete form of equation (84) becomes :

dW̊ ′

dt
+

W̊ ′

2∆y

(
C
(
e−iω − eiω

)
− ρs

(
C
)
Id
(
e−iω − 2 + eiω

))
=
Dσ
2∆y

(
e−2iω − 2e−iω + 2eiω − e2iω

)
W̊ ′ (86)

We reorganize the expression (86) and note :

ψ =
2

∆y
sin
(ω

2

)
(87)

Thus we get:

dW̊ ′

dt
= iψA(ψ,∆y)W̊ ′ (88)

noting:

A(ψ,∆y) =

√
1− (ψ∆y)2

4
(C + ψ2Dσ) + i

ρs
(
C
)
Id

2
∆yψ (89)

By applying the numerical temporal forward Euler scheme, we have:

W̊ ′
n+1

=
(
Id + iψ∆tA(ψ,∆y)

)
W̊ ′

n
(90)

Hence, the scheme is stable if:

|W̊ ′
n+1
| ≤ |W̊ ′

n
| (91)

If λ denotes any eigenvalue of matrix A, λ:

λ = R(ψ,∆y) + iI(ψ,∆y) (92)
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Then, by choosing an eigenvector basis, the condition (91) becomes:{
|1 + iψ∆t(R+ + iI+)|2 ≤ 1

|1 + iψ∆t(R− + iI−)|2 ≤ 1
(93)

equivalently: 
∆t ≤ 2ψI+

ψ2(I2
+ +R2

+)

∆t ≤ 2ψI−
ψ2(I2

− +R2
−)

(94)

The eigenvalues λ± of matrix A(ψ,∆y) defined in equation (89) are:

λ± = Z

(
v0 ±

√
c20 + ψ2σ

)
+

1

2
ρs
(
C
)

∆yiψ (95)

with: 
Z =

√
1− (ψ∆y)2

4

σ =
σh0

ρ

c20 = g cos θh0

(96)

If we introduce:

s =
δy2

4
ψ2 =

sin2 ω

2
(97)

the explicit stability condition (94) will be:(
s

∆t

∆y
ρs
(
C
)

+ (1− s) ∆t

∆y
ρs
(
C
)(

v0 ±
√
c20 +

4σ

∆y2
s

)2
)
≤ 1 (98)

Eventually, as s ∈ [0, 1], a sufficient condition to comply with inequality (98) is :

max

(
∆t

∆y
ρs
(
C
)
,

∆t

∆y
ρs
(
C
)(
|v0|+

√
c20 +

4σ

∆y2

)2
)
≤ 1 (99)

We then find the stability condition for the model (80), discretized in Forward Euler scheme with the Rusanov
flux and with a centered scheme for the dispersion term. For coarse meshes, the time step is ruled by convection,
whereas for fine meshes, the time step is driven by surface tension effects.

C Linear stability analysis

In this appendix, linear stability analyses on the Stator model for falling film on inclined planes are investigated.
It is showed that for two different linearizations, the same stability threshold is found. The analyses are
performed without doing an asymptotic expansion on the wave velocity c (or on the angular velocity ω) as
did [Ruyer-Quil and Manneville, 2000], [Luchini and Charru, 2010], [Lavalle, 2014] with their own model but
by doing a asymptotic expansion in respect to the wave-number k. The principle of the analysis is to construct
the perturbed linear equations around a stationary state called base-state, indexed by a 0. Then, by giving a
form of perturbation, we find a relation between the angular velocity (or the celerity of the waves) and the wave
number, called the dispersion relation. A change of variable for the dispersion relation leads to a bi-quadratic
function which can be exactly solved, then approximated under the long wavelengths assumption. This leads
to the bifurcation threshold in function of the Reynolds number of the base-state flow Re, or in a equivalent
manner in function of the Froude number of the base-state flow Fr. This study also establishes the neutral
stability effect of the surface tension for long wavelengths.
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C.1 Governing equations

In the model developed in this paper, the continuity equation and the y−momentum equation with Γ = 1, the
gravity source term, the surface tension and the friction at the wall (assuming a semi-parabolic velocity profile
and no shear-stress at the free surface) represents a falling film on a inclined plane, as is showed on figure 18.

B

Figure 18: Scheme of a falling film on a inclined plane

The expression of the model is recalled below:
∂h

∂t
+
∂hv

∂y
= 0

∂hv

∂t
+

∂

∂y

(
hv2 +

g cos θh2

2

)
= gh sin θ − 3νv

h
+
σ

ρ
h
∂3h

∂y3

(100)

We define the following non-dimensional numbers using the base-state (solution for an equilibrium flow) h0 and
v0 (with q0 = h0v0): 

Re =
h0v0

ν

Fr =
v0√
gh0

We =
ρh0v

2
0

σ

(101)

At the equilibrium, the gravity forces compensate the friction at the wall leading to a relation between the
base-state Reynolds number and the base-state Froude number:

sin θ

Fr2
=

3

Re
(102)

C.2 Resolution with the variables h and v

We consider infinitesimal perturbations h′, v′ around the equilibrium state h0, v0 :{
h = h0 + h′ with h′ � h0

v = v0 + v′ avec v′ � v0

(103)

By replacing the expressions (103) in the model (100), the new variables become the perturbed height, h′

and velocity, v′. To deal with the friction term, a Taylor-expansion is made for small perturbations such that
(1 + h′/h0)−1 ' 1 − h′/h0 + O(h′2). Then, the linearization consists in neglecting unknowns above power of
two which gives: 

∂h′

∂t
+ v0

∂h′

∂y
+ h0

∂v′

∂y
= 0

∂v′

∂t
+ v0

∂v′

∂y
+ g cos θ

∂h′

∂y
− g sin θ

h′

h0
+

3νv′

h0
2 −

3νv0h
′

h0
3 − σ

ρ

∂3h′

∂y3
= 0

(104)

The perturbations are sought in the form:
Φ = Φ̂ expik(y−ct) (105)
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with Φ = (h′, v′)T . By replacing the form of the perturbations expression (105) in the linearized model (104),
one can obtain the relation dispersion that links the celerity of the complex waves c to the real wave number k:

c2 − 2v0c+ v0
2 + (c− v0)

3ν

h2
0

i

k
− h0

(
g cos θ +

σ

ρ
k2

)
− i

k

(
g sin θ +

3νv0

h2
0

)
= 0 (106)

To solve this dispersion relation, this one is splitted into its real part and imaginary part. Moreover, the change
of variable ζ = (v0 − cr)/v0 has the advantage to transform the dispersion relation into a system of a linear
function and a bi-quadratic function. The system expressed in non-dimensional numbers defined in expression
(101) is: 

ci = − v0

2(h0k)

(
3

Re
+

(
3

Re
+

sin θ

Fr2

)
1

ζ

)
ζ4 − ζ2

(
cos θ

Fr2
+

(h0k)
2

We
− 9

4Re2(h0k)2

)
− 1

4Fr4

(
sin θ +

3Fr2

Re

)2(
1

h0k

)2

= 0

(107)

The liquid film becomes unstable when the perturbations are amplified that is to say when the imaginary part
of the celerity wave, ci is positive, so when:

3

Re
+

(
3

Re
+

sin θ

Fr2

)
1

ζ
< 0 (108)

To determine the instability threshold as a function of the variables of the base-state flow, ζ has to be explicited.
The bi-quadratic equation, defined in the system (107), is reduced to a polynomial of order two by the change

of variable ζ2 = ζ̂. The discriminant of this new function, ζ̂, is positive and then admits two distinct real roots,
ζ̂+ and ζ̂−. The product of these roots is negative, therefore the two roots are of opposite signs. As ζ̂ is the
square of ζ, only the positive root of ζ̂, denoted ζ̂+ is admissible:

ζ2 = ζ̂+ =
−b+

√
∆

2
(109)

with:

b =
9

4Re2(h0k)2
− cos θ

Fr2
− (h0k)

2

We
(110)

and:

∆ = b2 +
1

Fr4

(
sin θ +

3Fr2

Re

)2(
1

h0k

)2

(111)

Moreover, the relation (108) implies that for ζ positive, the liquid film is always stable. We are interested in
the negative root of ζ, denoted by ζ−:

ζ− = −ζ+ = −
√
ζ̂+ (112)

The stability condition (108), squared to simplify the calculations, becomes:

9

Re2
ζ̂+ −

(
3

Re
+

sin θ

Fr2

)2

< 0 (113)

We put X = h0k and we express the stability condition defined in equation (113) as a function of X:

9

2Re2

(
cos θX2

Fr2
+
X4

We
− 9

4Re2
+
√
X4∆

)
−X2

(
3

Re
+

sin θ

Fr2

)2

< 0 (114)

Under the approximation of long wavelengths (λ →∞ or X →0+) and using an expansion to the order 2 with
respect to X, the relation (114) determines that the film is unstable for Re > Recr. This condition can also be
expressed as a function of the Froude number using the equilibrium relation (102):

Recr =
3 cot θ

4
,

F rcr =

√
cos θ

2

(115)

Moreover, since the stability criterion does not depend on the effect of the surface tension, it has a neutral effect
for long wavelengths.
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C.3 Resolution with the variables h and q

The advantage of considering the set of variables h and q is that the continuity equation on the linearized
perturbations remains unchanged with respect to the model (100). Let’s consider an infinitesimal perturbation
on height and flow such that h = h0 + h′ and q = q0 + q′.

∂h′

∂t
+
∂q′

∂y
= 0

∂q′

∂t
+ 2v0

∂q′

∂y
− v0

2 ∂h
′

∂y
+ g cos θh0

∂h′

∂y
− g sin θh′ +

3νq′

h0
2 −

6νq0h
′

h0
3 − σh0

ρ

∂3h′

∂y3
= 0

(116)

The perturbations are sought in the form:
Φ = Φ̂ expik(y−ct) (117)

with Φ = (h′, q′)T . By replacing the expression (117) in the linearized model (116), the non-trivial solution is
obtained by solving the following dispersion relation:

c2 − 2v0c+ v0
2 − h0

(
g cos θ +

σ

ρ
k2

)
+
i

k

(
3ν

h2
0

(c− 2v0)− g sin θ

)
= 0 (118)

The change of variable ζ = (v0−cr)/v0 is used to solve the dispersion relation more easily. By doing an expansion
on the small number of waves, we obtain the unstable domain in terms of Reynolds number (Re > Recr) or
Froude number (Fr > Frcr) using the equilibrium relation (102):

Recr =
3 cot θ

4
,

F rcr =

√
cos θ

2

(119)

We notice then that the instability threshold is the same as for the linearization on the variable h and v. As
for the linearization with h and v, the surface tension does not appear in the expression on the system stability
threshold (119). Then it has a neutral effect for long wavelengths.
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