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We show that the essential ill-posedness of vibroimpact problems has strong consequence on the applicability of certain numerical methods; in particular, if one applies standard numerical schemes to vibroimpact approximated by a penalty method, the result is very poor; in the case of a non-smooth constraint set, the so-called multiconstraint situation, the solution of the penalized problem depneds strongly on the penalization parameter and the previous history of the motion. Therefore, the penalty method does not help to reduce the impredictibility of vibro-impact systems.

INTRODUCTION

We study in this article a numerical approximation of dynamics with impact with a finite number of degrees of freedom.

We work in generalized coordinates, with general forces.

Let f be a continuous function from [0, T ] × Ê d × Ê d to Ê d which is locally Lipschitz continuous with respect to its last two arguments, and let M(u) be the mass matrix:

u → M(u) is a mapping of class C 3 from Ê d to the set of symmetric positive definite matrices.

The free dynamics of the system are written as

M(u)ü = f (•, u, p), p = M(u) u. ( 1 
)
The set of constraints K is the intersection of a finite number of sets

K = 1≤j≤J {x ∈ Ê d : φ j (x) ≥ 0}, (2) 
assuming that the functions φ j are smooth and their gradient does not vanish in a neighborhood of the set {x : φ j (x) = 0}.

The system satisfied by the problem with impact is obtained by replacing [START_REF] Paoli | A numerical scheme for impact problems[END_REF] by

M(u)ü = μ + f (•, u, p), (3) 
Here μ describes the reaction of the constraints: it is an unknown of the system, since the instants of impact are not known. We expect the velocity to be discontinuous at impact, so that the acceleration is a vector-valued measure.

The mechanics and the geometry of the problem imply that μ satisfies the following conditions on the interval of existence [t 0 , t 0 + τ ] of the solution: supp(μ) ⊂ {t ∈ [t 0 , t 0 + τ ] : φ(u(t)) = 0}, (4a) μ = λ|μ|, (4b) λ belongs to the normal cone at u to K, |μ|-almost everywhere.

(4c)

Condition (4a) means that there is a reaction only when there is a contact; condition (4b) is a standard description of a vector-valued measure as the product of the scalar measure |μ| and of a vector-valued measure function λ; condition (4c) means that -λ takes its values in the normal cone at u(t) to K; if K is smooth at u(t), this condition coupled with [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a non-smooth set of constraints[END_REF] implies that the tangential component of the velocity is transmitted. It should be remarked here that the orthogonality is defined locally by the mass matrix: for the velocities, the quadratic form has matrix M(u), for the impulsions, it has matrix M(u) -1 .

Define the tangent cone at u to K by

T K (u) = ρ>0 λ>0 λ(K -u) ∩ B ρ (u);
then the normal cone appearing in (4c) is given by

N K (u) = {ξ ∈ Ê d : ∀w ∈ T k (u), ξ T M(u)w ≤ 0}.
These conditions are not sufficient to completely determine the behavior of the solution at impact, since they do not give any information on the transmission of the normal velocity.

In the case of one constraint, we have established in [START_REF] Paoli | A numerical scheme for impact problems[END_REF], announced as [START_REF] Paoli | Approximation et existence en vibro-impact[END_REF] the existence of a solution of the Cauchy problem for [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a non-smooth set of constraints[END_REF], provided that we complement conditions (4) by a Newton's law at impact, which can be stated as

u(t) ∈ ∂K =⇒ ṗT (t + 0) = ṗT (t -0); ṗN (t + 0) = -e ṗN (t -0). ( 5 
)
Here uN is the normal component relative to the metric of impulsions, and formally the first statement is already included in (4c).

In the general case, existence for this problem is known only if no energy is lost at impact, as is proved in [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a non-smooth set of constraints[END_REF].

The uniqueness of solutions has been proved in the case of one degree of freedom in [START_REF] Schatzman | Uniqueness and continuous dependence on data for one-dimensional impact problems[END_REF], and in the case of an arbitrary number of degrees of freedom in [START_REF] Ballard | Dynamique des systèmes mécaniques avec laiaisons unilatérales parfaites[END_REF], provided that all the data are analytic: the functions φ j , the right hand side f and the mass matrix.

In the multiconstraint case, ill-posedness can be observed in the simplest case: assume that K is an angular domain of the plane Ê 2 . Look indeed at figure 1; if we assume that energy is conserved at impact, that the space is Euclidean and that the right hand side vanishes, the trajectory of the point inside K is the trajectory of a light ray, with specular reflexion at the boundary. We can see that with initial data 1 or 2, the trajectory undergoes two reflexions, while with initial data 3, it undergoes only one; if we just change the initial position, while keeping the initial velocity constant, we can see that the motion is not continuous with respect to the initial data: this is the evidence for ill-posedness.

In this article, we will report on several aspects of the approximation of vibro-impact problems, namely the penalty method when constraints are smooth (section 2) and when they are not (section 3); then we review two different numerical methods used in our previous work: detection of impacts and a faster, but less precise, ad hoc scheme; finally, we show on an example that numerically, the penalty method gives a very poor result: in our case, after a transient, the solution is periodic, but the penalty method gives oscillations which are more than 25 times larger than the oscillations obtained by the detection scheme, which is correct to machine precision. Moreover, the behavior of the oscillations is strongly dependent on the penalty parameter. 

THE PENALTY METHOD

The idea of the penalty method

The physical idea of the penalty method is extremely simple: we replace rigid constraints by very stiff recall forces: they are switched on only when the constraints are saturated.

When the rigidity of these recall forces tends to infinity, it is intuitive the motion of the system tends to the motion of the system with rigid constraints. If we want to model a loss of energy at impact, we have to add a viscosity term which is switched on only when the constraints are saturated.

This intuition can be substantiated by looking at the one dimensional situation: the free motion of a material point of unit mass with one degree of freedom in Euclidean space, subject to the constraint u ≥ 0 can be penalized as follows:

ük + 2α √ ku k + k min(u k , 0) = 0. ( 6 
)
The stiffness k is very large; the scaling √ k in the viscosity term is motivated by a dimensional analysis, and it is the scaling which will ensure a restitution coefficient independent of the initial velocity.

For the Cauchy problem relative to [START_REF] Schatzman | Le système différentiel (d 2 u/dt 2 ) + ∂ϕ(u) f avec conditions initiales[END_REF], choose initial conditions

u k (0) = u 0 , uk (0) = v 0 ,
which are independent from k. The solution is explicit: assume u 0 to be non negative; if v 0 is non negative, then u k (t) = u 0 + t v0 ; if v 0 is strictly negative, and α < 1, we let

1 -α 2 = β, t = -u 0 /v 0 , t = t + π/ kβ; then u k (t) = ⎧ ⎪ ⎨ ⎪ ⎩ u 0 + tv 0 , if 0 ≤ t ≤ t, k -1/2 v 0 exp(-α(t -t) √ k) sin (t -t) √ kβ , if t ≤ t ≤ t ; -v 0 (t -t ) exp -πα/ √ β if t ≤ t.
If we let e = exp -απ/ β , it is plain that the limit of the sequence (u k ) as k tends to infinity is

u ∞ (t) = u 0 + tv 0 , if 0 ≤ t ≤ t, -ev 0 (t -t), if t ≤ t.
If α > 1, we let ξ 1 and ξ 2 be the roots of the characteristic equation

ξ 2 + 2αξ + 1 = 0 (7) 
of the over-damped system ÿ + 2α ẏ + y = 0.

Then, u k (t) is given by

u k (t) = ⎧ ⎪ ⎨ ⎪ ⎩ u 0 + tv 0 , if 0 ≤ t ≤ t, v 0 2 (α 2 -1)k e ξ 1 t √ k -e ξ 2 t √ k , if t ≤ t.
The limit of u k as k tends to infinity is given now by

u ∞ (t) = u 0 + tv 0 , if 0 ≤ t ≤ t, 0, if t ≤ t. ( 8 
)
The case α = 1 resembles very much the case α > 1; details are left to the reader. These calculations let us think that penalty can be a useful and natural tool.

Penalty as a theoretical tool

If we can define a projection on the set of constraints K, we can write down the penalized equation for [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a non-smooth set of constraints[END_REF]. Indeed, if K is defined by [START_REF] Paoli | Approximation et existence en vibro-impact[END_REF], it is possible to define locally a projection, since the non smooth points of K have tangent cones which are convex, and in fact polyhedral.

Define, for u close enough to K and for all v

G(u, v) = v T M(u) -1 (u -P K u) (u -P K u)/|u -P K u| 2 , if u is close to K, but not in K, 0 i f u ∈ K. (9) With this definition, the penalized equation for (3) is ü + 2α √ kG(u, u) + k(u -P K u) = f (t, u, u). ( 10 
)
From the theoretical point of view, the penalty method is indeed useful, and it has been used in previous work to establish the existence of solutions of (3), ( 4) and [START_REF] Ballard | Dynamique des systèmes mécaniques avec laiaisons unilatérales parfaites[END_REF]. The first works in this direction were [START_REF] Schatzman | Le système différentiel (d 2 u/dt 2 ) + ∂ϕ(u) f avec conditions initiales[END_REF] and [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF] in the case of convex constraints, a scalar mass matrix and a nonlinearity deriving from a convex potential; the article [START_REF] Paoli | An existence result for vibrations with unilateral constraints: case of a non-smooth set of constraints[END_REF], which was originally a part of the Ph. D [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF], establishes that more general forces can be dealt with; the article [START_REF] Paoli | Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales : cas avec perte d'énergie[END_REF] shows existence for problems with loss of energy at impact, when the set of constraints is convex and smooth enough; in work in progress, we show the convergence of the penalty approximation when the set of constraints is not convex, and the mass matrix is arbitrary.

From the technical point of view, the case of conserved energy is simpler: some of the techniques of classical convex analysis are available, and they are powerful enough to treat set of constraints which are not smooth. On the other hand, the case with loss of energy requires a local study of the behavior of the solution: we do this by mapping locally the set of constraints to a half-space, which is possible only if the set of constraints is reasonably smooth.

Of the previous works, none covers the case of non-smooth set of constraints together with loss of energy, and for good reason. We will examine the mathematical difficulties of the non smooth case in the next section.

PENALTY IN A NON-SMOOTH SET OF CONSTRAINTS

We will restrict ourselves to the case when K is an angular domain in Ê 2 and examine the limit of the penalty method when α = 0 or when α > 1.

Let us define our coordinate conventions: the angle at the vertex of K is θ ∈ (0, π); the domain K is the intersection of the half-planes x 1 ≤ 0 and -x 1 cos θ + x 2 sin θ ≤ 0. It will be convenient to consider a second system of Euclidean coordinates, with basis vectors i = (-cos θ, sin θ) * and j = (-sin θ,cos θ). In this new basis, the coordinates will be denoted y 1 and y 2 . See figure 2 for a graphical description.

Elastic impact in an angle

The first case that we shall consider is α = 0. We show that if θ ≥ π/2 we can find a sequence of initial data such that the sequence of penalized solution starting at these initial data tends towards tv when k tends to infinity and v can be chosen in an uncountable set. Therefore we cannot enforce uniqueness in a natural way, and the problem is ill-posed.
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The regions and the coordinates in the plane.

Let v = (v 1 , v2 ) * be a vector with strictly positive components. Choose a number β in the interval [0, π], and define ū = 0 -βv [START_REF] Paoli | Approximation et existence en vibro-impact[END_REF] .

Consider now the penalized problem

ü + k(u -P K u) = 0, u(0) = ū/ √ k, u(0) = v. ( 11 
)
We perform the change of variables

t = τ √ k, u(t) = U(τ )/ √ k.
In the new variables, [START_REF] Panet | Vibrations with an obstacle and a finite number of degrees of freedom[END_REF] becomes

Ü + U -P K U = 0, U(0) = ū, U (0) = v. ( 12 
)
If β = π, the solution of ( 12) is given by

U(τ ) = v1 sin τ v2 (τ -π) , if 0 ≤ τ ≤ π, U(τ ) = -v 1 (τ -π) v2 (τ -π) , if τ ≥ π. ( 13 
)
If β = 0, the solution of (12) depends on the sign of v1 sin θ + v2 cos θ = p. If p ≥ 0, the solution is given by

U(t) = v sin τ if 0 ≤ τ ≤ π, -(τ -π)v if τ ≥ π.
If p ≤ 0, the solution is given by

U(τ ) = (v • i)i sin τ + (v • j)jτ if 0 ≤ τ ≤ π, -(v • i)i(τ -π) + (v • j)jτ if τ ≥ π.
When β belongs to (0, π), U remains in the set {x 1 ≥ 0, x 2 ≤ 0} on the time interval [0, β]. We claim that U has to enter K ⊥ and to leave it in finite time, whereas it enters in {x • i ≥ 0, x • j ≥ 0}. To see that this claim is true, we observe that on [0, β],

U(τ ) = v1 sin τ v2 (τ -β) .
At time β, we start using polar coordinates: we let

U(τ ) = R cos(Θ) sin(Θ) .
The equations satisfied by Θ and R are

R -R Θ2 + R = 0, ( 14 
) d dτ (R 2 Θ) = 0. (15) 
The data at time β are

R(β) = v1 sin β, Ṙ(β) = v1 cos β, Θ(β) = 0, Θ(β) = v2 v1 sin β .
We integrate once [START_REF] Paoli | Dynamics of an impacting bar[END_REF], we let Γ 0 = v1 v2 sin β,

and we can see that R satisfies R - Γ 2 0 R 3 + R = 0. (16) 
Equation ( 16) has the first integral Ṙ2 +R 2 +Γ 2 0 /R 2 . Thus, R, 1/R and Ṙ remain bounded as long as ( 16) remains valid. Moreover Θ is bounded from below by a strictly positive number. Therefore, there exists a time τ 1 such that Θ(τ 1 ) is equal to π -θ for the first time. After time τ 1 , U is given by

U(t) = [ U (τ 1 ) sin(τ -τ 1 ) + U(τ 1 ) cos(τ -τ 1 )] • i i + [(τ -τ 1 ) U (τ 1 ) + U(τ 1 )] • j j. ( 17 
)
Of course, U(τ 1 ) • j vanishes and for geometric reasons, U(τ 1 ) • j is strictly positive. Therefore, there exists a time τ 2 such that for the first time, the function U given by ( 17) enters K. Elementary arguments show that U(τ 2 ), U(τ 2 ) and τ 2 are continuous functions of β.

Let us emphasize the dependence of U(τ 2 ) by denoting it v(β). Moreover, the energy is conserved: we multiply scalarly [START_REF] Panet | Vibrations with an obstacle and a finite number of degrees of freedom[END_REF] by U, we integrate, remembering that d dτ

|U -P K U| 2 2 = (U -P K U) • U ,
and we find that [START_REF] Panet | Vibrations with an obstacle and a finite number of degrees of freedom[END_REF] has the first integral

| U| 2 + |U -P K U| 2 . Therefore, | U(τ 2 )| = |v|.
A connexity argument enables us to infer that the set { U (τ 2 ) : β ∈ [0, π]} contains one of the two arcs which join v(0) and v(π) in the unit circle.

Choose now any element in the set { U (τ 2 ) : β ∈ [0, π]}, and take initial data as in [START_REF] Panet | Vibrations with an obstacle and a finite number of degrees of freedom[END_REF]. It is immediate that the limit of

u(t) = U(t √ k) √ k is equal to tv(β)
, which proves our claim.

We can see now that the penalty method will give essentially unpredictable results after two reflexions: small delays can considerably change the outcome of the convergence process, and we consider that this difficulty should be treated in detail, possibly by estimating the measure of the set of initial values for which these phenomena occur in finite time.

We conjecture that in well-behaved situations, the set of initial data for which the phenomenon occur in finite time is negligible in the phase space, in the measure-theoretic sense.

Though a sequence of solutions of penalized problems can have many limit points, it is always possible to extract from it a convergent subsequence whose limit conserves the energy at impact. This fact has been proved in [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF].

Anelastic impact in an angle

We choose now α > 1, so that the restitution coefficient vanishes for the limiting problem in the smooth case. In a work in progress, we study the limit of the motion of a free material point in the angular domain K as in subsection 3.1. We characterize precisely the limit of the sequence of solutions of the approximated problem when the first impact does not take place at the corner.

The limiting situation is much simpler than in subsection 3.1, though the analysis is much more complicated. Indeed, for the limiting problem, if the first impact does not take place at the vertex of K, then the velocity is obtained by using Moreau's selection rule [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF]: after the first reflexion on a side, the new velocity is the projection on the tangent half-space; after reflexion at the vertex, the new velocity is the projection of the velocity before the vertex on the sedon side of K.

Let us sketch the strategy of proof: without loss of generality, we may assume that the initial position is on the boundary between K and R 1 , and that the initial velocity points up and out.

In the region R 1 of figure 2, the solution of ( 10) is explicit: the component of the position normal to the side becomes exponentially small, since the problem is over-damped; the tangential component moves with constant velocity equal to the projection of the initial velocity.

When the representative point of the system reaches region R 2 , at time t 0 = -u 0 2 /v 0 2 , we have to change the recall force to a central one, according to [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF]. The study of the relevant system is quite tricky, and we first have to scale the equation. If the polar coordinate of the point are r and θ, we define

r(t) = ηR(τ )/ √ k τ = (t -t 0 ) √ k, η = e ξ 1 t 0 √ k /2 , Θ(τ ) = θ(t),
recalling that ξ 1 is the largest root of (7).

In the new variables, equation (10) becomes the system

R - E(1 -ε) 2 R 3 + 2α Ṙ + R = 0. ( 18 
) and Θ = √ E (1 -ε) R 2 . ( 19 
)
Here E is a fixed number which depends only on the initial data and α.

In order to explain the difficulties of the problem, we give a representation of the phase space of equation [START_REF] Moreau | Les liaisons unilatérales et le principe de Gauss[END_REF] in figure 3 In region A 1 , R decreases somewhat and then increases, Ṙ increases from a size equivalent to Cη to a size equivalent to C/η. The dominant terms in equation ( 18) are R and E(1ε) 2 /R 3 ; therefore, we are led to the problem

R1 - E R 3 1 = 0, R 1 (0) = R(0), Ṙ1 (0) = Ṙ(0). ( 20 
)
We study the solution R 1 of (20); as well as the evolution of the function Θ 1 satisfying Θ1 = √ E/R 2 1 ; this can be done explicitly, thanks to the simple structure of [START_REF] Moreau | Rafle par un convexe variable[END_REF]. We validate the comparison between R and R 1 by a fixed point argument on the interval [0, τ -1], where τ 1 is equal to η γ 1 , with γ 1 belonging to [START_REF] Paoli | A numerical scheme for impact problems[END_REF][START_REF] Paoli | Approximation et existence en vibro-impact[END_REF].

Assuming θ < π/2, we are able to exploit validated equivalents and to prove that Θ, solution of [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF], crosses through θ at some time τ < O(η 2 ). Moreover, our estimates enable us to describe the limit u ∞ of u k as k tends to infinity. Let Π 1 be the orthogonal projection on {x 1 = 0}, and let Π 2 be the orthogonal projection on {x 1 cos θ+x 2 sin θ = 0}; then

u ∞ (t) = u(0) + tΠ 1 u(0) if 0 ≤ t ≤ t 0 , (t -t 0 )Π 2 Π 1 u(t 0 ) if t 0 ≤ t. ( 21 
)
If θ ≥ π/2, the representative point of the system enters region A 2 of Fig. 3. We have to produce an asymptotic for the solution of [START_REF] Moreau | Les liaisons unilatérales et le principe de Gauss[END_REF]; in this region, it is the linear part of this ordinary differential equation which is dominant; more precisely, let R 2 be the solution of R2 + 2α Ṙ2 + R 2 = 0, with R 2 and Ṙ2 respectively coinciding with R and Ṙ at time τ 1 = η γ 1 , where, now the interval of γ 1 is reduced to (1, 4/3).

The validation of this ansatz is another consequence of the fixed point theorem for strict contraction, together with a number of technical estimates.

Finally, we use classical methods for dynamical systems and prove that the representative point of the system tends to (R c , 0) as time tends to infinity: R c is a number which depends only on the initial conditions, α and ε. We combine the use of a Lyapunov functional and some elementary properties of the system to conclude that R remains bounded from above and away from 0 for all time after leaving A 2 . Observe that the Lyapunov functional gives scant information in regions A 2 and A 1 , since it takes values of order 1/η.

With some technicalities in the case θ = π/2, it is possible to conclude that Θ(τ ) crosses θ at some time τ and to obtain precise equivalents for R, Ṙ and Θ at time τ . After this time, the representative point of the system enters region R 3 , and we conclude that the limit u ∞ of u k is given by

u ∞ (t) = u(0) + tΠ 1 u(0) if 0 ≤ t ≤ t 0 , 0 i ft 0 ≤ t.
Moreau's rule is described as follows: at impact, the outgoing velocity is projected onto the tangent cone to the convex of constraints, and the motion proceeds with this new velocity. Thus, it can be seen that the over-damped penalty approximation agrees completely with Moreau's rule if the first impact does not take place at the corner, or very close to it, i.e. at a distance O 1/ √ k from it. We conjecture that the behavior described here still holds if there is a right hand side, and the convex is replaced by a set with convex corners, and smooth and not necessarily convex curves between corners. We also conjecture that the behavior of the limit of the over-damped penalized solution is the same in higher spatial dimension.

NUMERICAL METHODS: AD HOC SCHEMES

A practical and elementary method for calculating the evolution of a vibro-impact system is the following: we integrate the equation numerically or exactly when the constraints are not saturated, we seek the first time of impact, and at this time, we transmit the tangential component, we reverse the normal component according to our model of the impact, and we start again.

There are some obvious advantages to this method: the first is its conceptual simplicity; the second is that if the system is simple enough to have an explicit solution involving trigonometric and exponential functions, we will have a solution which is exact to machine precision: we have to be careful when we sweep the time intervals, in order to avoid missing an impact time.

There are many disadvantages: one is the cost of the method; we have to solve by Newton iterations to find the contact times, and we may have an accumulation of impacts. As soon as the restitution coefficient is strictly less than one, we have systematically nonisolated impact times, which we have to detect.

Practically, we set a tolerance on the value of the normal component of the velocity, and under this tolerance, we let the solution stick to the constraints up to the end of the time step under consideration.

There is little reason to seek very high precision for the solution of these problems, since they are often highly sensitive to initial data. We have observed chaotic phenomena, [START_REF] Panet | Vibrations with an obstacle and a finite number of degrees of freedom[END_REF]; in such a case, any precision on the approximation of individual trajectories is destroyed in finite time.

Thus, we would be content with a numerical method which produces the right order of magnitude and the right qualitative behavior.

Motivated by cost considerations, and some knowledge of the requirements for integrating a stiff system of differential equations, we decided to develop an ad hoc scheme for the numerical integration of (3), ( 4) and [START_REF] Ballard | Dynamique des systèmes mécaniques avec laiaisons unilatérales parfaites[END_REF].

The projection P K is taken relatively to the geodesic distance measured with the help of the mass matrix M(u).

Given two positive numbers h * ≤ 1 and T , assume that F is a continuous function from

[0, T ] × Ê d × Ê d × Ê d × [0, h * ] to Ê d ,
which is locally Lipschitz continuous with respect to its second, third and fourth arguments; assume moreover that F is consistent with f , i.e.

that for all t ∈ [0, T ], for all u and v in Ê d

F (t, u, u, v, 0) = M(u) -1 f (t, u, M(u)v). ( 22 
)
We approximate the solution of (3), ( 4) and (5) by the following numerical scheme: the initial values U 0 and U 1 are given by the initial position

U 0 = u 0 , ( 23 
)
and the position at the first time step

U 1 = u 0 + hM(u 0 ) -1 p 0 + hz(h), (24) 
where z(h) tends to 0 as h tends to 0. We will use systematically henceforth the notation

t m = t 0 + mh. ( 25 
)
Given U m-1 and U m , U m+1 is defined by the relations

U m+1 = -eU m-1 + (1 + e)P K 2U m -(1 -e)U m-1 + h 2 F m 1 + e ( 26 
)
and

F m = F t m , U m , U m-1 , U m+1 -U m-1 2h , h (27) 
provided that U m+1 is unique in a neighborhood of U m . We have proved that if the set of constraints has a boundary of class C 3 , the above numerical scheme converges locally in time to a solution of our problem, which proves in the same time the existence of a local solution. Once again, the proof consists in straightening the boundary; but things are more delicate here than in the case of the penalty method. The essential reason is that the definition of the scheme involves the vector structure of the space; when we map locally K to (a portion of) a half-plane, we lose the vector structure, and we have to estimate the quadratic terms which describe the deformation of the space; this makes the proof extremely technical. The result is announced in [START_REF] Paoli | Approximation et existence en vibro-impact[END_REF], and the details of the proof can be found in [START_REF] Paoli | A numerical scheme for impact problems[END_REF]. A previous version of the convergence proof, restricted to the case of convex constraints and Euclidean metrics could be found in [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF], and had been announced in [START_REF] Paoli | Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie[END_REF]; the numerical scheme described here has been implemented in the case of a trivial mass matrix in [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF], [START_REF] Paoli | Theoretical and numerical study for a model of vibrations with unilateral constraints[END_REF], [START_REF] Panet | Vibrations with an obstacle and a finite number of degrees of freedom[END_REF], [START_REF] Paoli | Resonance in impact problems[END_REF]. In all these articles, we compared the performances of this scheme with those of the method based on the detection of impact. When the issue of the precision of the method is not crucial, our numerical experiments have shown that the performance of the present numerical scheme is quite satisfactory from the qualitative viewpoint.

The case of a non-trivial mass matrix, and a stiff system, indeed the case of the discretization of a beam has been addressed in [START_REF] Paoli | Dynamics of an impacting bar[END_REF]. There, we simulated numerically the experiments of Stoianovici and Hurmuzlu, [START_REF] Stoianovici | A critical study of the applicability of rigid body collision theory[END_REF], [START_REF] Hurmuzlu | An energy based coefficient of restitution for planar impacts of slender bars with massive external surfaces[END_REF] who dropped a beam on a rigid foundation, and observed that the apparent restitution coefficient depends strongly on the angle between the horizontal and the initial position of the beam. Our results are wholly in agreement with these experiments.

Let us observe that many theoretical and numerical articles have treated the case of the anelastic impact; Moreau applied Gauss' principle of least constraint to unilateral problems in order to justify his choice of anelastic impact [START_REF] Moreau | Les liaisons unilatérales et le principe de Gauss[END_REF], which eventually led him to sweeping processes [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF], followed by [START_REF] Moreau | Rafle par un convexe variable[END_REF], [START_REF] Moreau | Rafle par un convexe variable[END_REF]; dry friction enters in Moreau's work as [START_REF] Moreau | Application of convex analysis to some problems of dry friction[END_REF]; frictionless anelastic impact starts as [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF], and the mathematical theory is tackled by M. Monteiro-Marques in a series of articles: his main contributions are [START_REF] Manuel | Differential inclusions in nonsmooth mechanical problems[END_REF] for the general theory of differential inclusions, [START_REF] Manuel | An existence, uniqueness and regularity study of the dynamics of systems with one-dimensional friction[END_REF] for one-dimensional dynamics with friction, [START_REF] Laghdir | Dynamics of a particle with damping, friction, and percussional effects[END_REF] which adds percussion to the previous framework; this work is improved as [START_REF] Laghdir | Measure-differential inclusions in percussional dynamics[END_REF], where dynamics of n particles on a plane with normal friction are considered. The discretization approach has been taken up by Monteiro-Marques and Kuntze in [START_REF] Kunze | On the discretization of degenerate sweeping processes[END_REF], but most significantly by Stewart and Trinkle: they use that approach in [START_REF] Stewart | A numerical method for friction problems with multiple contacts[END_REF], [START_REF] Stewart | An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction[END_REF] and [START_REF] Stewart | Dynamics, friction, and complementarity problems[END_REF]; the real coronation is the beautiful and difficult article of Stewart [START_REF] Stewart | Convergence of a time-stepping scheme for rigid-body dynamics and resolution of Painlevé's problem[END_REF], which concludes the study of dynamics with friction and anelastic impact for a finite number of degrees of freedom, and one constraint, and still important results in the multiple constraint case.

PENALTY with STANDARD ODE PACKAGES DOES NOT WORK

We have often been asked why we did not use the penalty method and standard packages for solving ordinary differential equations. First, there is a theoretical argument: assume that α is less than 1; then, the analysis of section 2 shows that the smallest time scale which can be detected is of order 1/ √ k; moreover, if we want to calculate adequately the rebound, we need, say, four to five discretization points in the time interval where the rebound takes place. This puts a very small upper bound on the possible time steps.

There is another difficulty: we cannot replace the penalized approximation (10) by a smoother approximation. Elementary considerations show that if we require the following conditions for the one degree of freedom Euclidean problem

• the restitution coefficient is independent of the velocity • as the stiffness tends to infinity, the penalized solution converges to the solution (8), we have essentially defined equation [START_REF] Schatzman | Le système différentiel (d 2 u/dt 2 ) + ∂ϕ(u) f avec conditions initiales[END_REF]. Therefore, the ordinary differential system (10) cannot be replaced by something smoother. This means that we have to work with a stiff non smooth system of ordinary differential equations, not a very easy situation.

However, it is better to check the numerical results given by a standard free package for scientific computation, viz. SCILAB, a free software distributed by INRIA; see the web page http://www-rocq.inria.fr/scilab/.

The data are as follows:

f (t, u, v) = -2βv -u + a cos(ωt), K = [u min , ∞),
with numerical values of the parameters of the problem β = 0.5, ω = 50, u min , u 0 = u min , v 0 = 0.1.

In figure 4, we plot the result of the calculation by the impact detection method (continuous line), and of the calculation by the ad hoc scheme (dotted line). The time step for the ad hoc scheme is 0.005.

Next, we plot the result of the calculation by the penalty method, taking e = 0.5, so that α = 0.2154538. The time step is 0.005 in figure 5, 0.00125 in figure 6 and0.0003125 in figure 7.

The comparison between these three figures show little dependence on the time step. The comparison with figure 4 shows that the beginning of the motion is correctly approximated, but the error on the size of the small oscillations after the initial transient is enormous: their size is more than 25 times larger than what the detection and ad hoc scheme give! Here, after the transient, the solution is apparently periodic, and this example should be considered as particularly easy and well behaved; in more complicated situations, a much worse behavior takes place.

The precision of the ad hoc method presented here needs improvement, and globally, it would make sense to agree on benchmarks which would enable the end-user to decide between different numerical methods. A first step is the article [START_REF] Janin | Comparison of several numerical methods for mechanical systems with impact[END_REF], which attempts a systematic construction of higher order schemes for vibro-impact. However, all the comparisons between numerical schemes are performed for one degree of freedom. Nevertheless, we believe that the numerical penalty method is of little help in this respect, since it involves a parameter, the stiffness, whose effect on the qualitative properties of the system is difficult to predict, and which is very difficult to measure experimentally. 
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 31 Figure 1: Ill-posedness in an angular region.
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 3 Figure 3: The phase portrait for the R equation, and several trajectories of solutions in the R, Ṙ plane. A 1 : region of the first asymptotic ; A 2 : region of the second asymptotic.
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 6 Figure 6: Computation by penalty method; time step h = 0.0125; stiffness 10 -4 , 10 -6 , 10 -8 .
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 7 Figure 7: Computation by penalty method; time step h = 0.0003125; stiffness 10 -4 , 10 -6 , 10 -8 .

  Figure 4: Computation with the ad hoc scheme, compared to the computation by detection of impacts.Figure 5: Computation by penalty method; time step h = 0.005; stiffness 10 -4 , 10 -6 , 10 -8 .
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