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Abstract

In this paper a simulation comparison of the bootstrap confidence intervals for the

coefficients of the autocovariance function of a periodically correlated time series is pro-

vided. Two bootstrap methods are used: the circular version of the Extension of Moving

Block Bootstrap and the circular version of the Generalized Seasonal Block Bootstrap.

The bootstrap pointwise and simultaneous confidence intervals for the real and the imag-

inary parts of the Fourier coefficients of the autocovariance function are constructed.

The actual coverage probabilities, the average lengths and the average upper and lower

quantiles values are calculated. A heuristic method of the block length choice is proposed.
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1 Introduction

Studies of periodically correlated (PC) processes were started in 1961 by Gladyshev [14].

Time series Xt, t ∈ Z with finite second moments is called PC with the period d, if it has

periodic mean and covariance function, i.e.,

E (Xt+d) = E (Xt) , Cov (Xt, Xs) = Cov (Xt+d, Xs+d) .

For more details concerning PC processes we refer the reader to [15].

Over the last 60 years the theory of PC processes has developed fast and found applications

in many branches of vibroacoustics, mechanics, signal analysis, hydrology, climatology and

econometrics (e.g., energy markets). Many motivating examples can be found in [1], [13],

[15], [20] and [23]. The wide range of possible applications resulted in thousands of papers.

Unfortunately, the analysis of PC processes is very difficult. One of the major problems is

the estimation of the asymptotic covariance matrix for parameters of interest. In practice

it is almost impossible and to construct confidence intervals and hence resampling methods

need to be used.

The idea of resampling techniques is to approximate the distribution of the statistics of in-

terest. Nowadays, bootstrap is the most popular resampling method. It was introduced

in 1979 by Efron ([11]). At the beginning it was designed for i.i.d. data. In such cases

the bootstrap sample is created by random sampling with the replacement of observations

from the original sample. However, this approach cannot be applied for dependent data. In

1986 Carlstein ([3]) proposed to select randomly blocks of observations. This allows us to

preserve the dependence structure of the data inside the blocks. If the data are weakly de-

pendent, i.e., observations that are far from each other are almost independent, this approach

provides consistent estimators for many characteristics of stationary and also nonstationary
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time series. The number of block bootstrap techniques is constantly growing. New methods

or modifications of existing techniques appear to provide estimators with lower bias, better

rates of convergence or that mimic some specific structure of the data such as periodicity.

In this paper we consider two block methods: the Extension of Moving Block Bootstrap

(EMBB) and the Generalized Seasonal Block Bootstrap (GSBB). The EMBB is a modifica-

tion of Carlstein’s approach based on the Moving Block Bootstrap (MBB) method. It allows

us to select any block of observations from the sample, while Carlstein’s idea was to choose

only non-overlapping blocks. On the other hand, the GSBB is designed for periodic data.

To preserve periodicity during the block selection process, the set of blocks is restricted and

varies in each step of the algorithm. The detailed description of the EMBB and the GSBB

is presented in Section 2.

In this paper we focus on the second-order analysis of a periodically correlated (PC) time

series. Time series Xt, t ∈ Z with finite second moments is called PC with the period d, if it

has periodic mean and covariance function

E (Xt+d) = E (Xt) , Cov (Xt, Xs) = Cov (Xt+d, Xs+d) .

For more details concerning PC processes we refer the reader to [15].

Proper detection of so-called second-order frequencies is crucial in many applications like

e.g., diagnostics of rotating machines ([7], [6]) and the analysis of the human walk ([10]).

These problems are of great importance and mistakes can be very costly, for example a large

machine in a factory might be needlessly stopped for repair. Thus, we decided to perform

a study that may help practitioners to choose the optimal bootstrap approach. Recently

there appeared a few theoretical results for constructing bootstrap consistent pointwise and
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simultaneous confidence intervals for the coefficients of the autocovariance function of a PC

time series. Unfortunately, the provided tools are not complete. There is no method for

choosing the block length. Moreover, there is no study comparing properties of different

approaches. For our work we decided to use computational resources available in the Polish

Grid Infrastructure PL-Grid. That allowed us to consider a wide range of block length values,

from small to very large sample sizes, and different period lengths. In the sequel we try to

provide answers for often posed questions like:

- does using the EMBB have any advantage over the GSBB;

- do some existing methods of block length choice for stationary time series also apply for

our nonstationary case;

- does preserving periodic structure by the GSBB improve, compared with the EMBB, the

coverage of the confidence intervals;

- how are the coverage probabilities affected by non-optimal block length choices;

- can the same block length be used to construct all pointwise confidence intervals for the

considered frequencies;

- are simultaneous confidence intervals less sensitive to non-optimal block length choice than

pointwise ones.

This paper is organized as follows. In Section 2 the necessary notation and definitions are

introduced. Moreover, block bootstrap algorithms and bootstrap consistency results are re-

called. Section 3 is dedicated to the results of the simulation study. The performance of

the two considered block bootstrap methods is compared. Different sample sizes and block

lengths are used. Pointwise and simultaneous confidence intervals for the coefficients of the
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autocovariance function are constructed. Additionally, the problem of the block length choice

is discussed and a new heuristic approach is proposed. In Section 4 a short summary of the

results is provided.

2 Problem formulation

Let {Xi, i ∈ Z} be a PC time series with period d. From now on we assume that E(Xt) ≡ 0.

Moreover, let B(t, τ) = Cov(Xt, Xt+τ ) be its autocovariance function. The variables t and τ

represent time and shift, respectively. Note that B(t, τ) is periodic in t. Its analysis in the

frequency domain is performed using the following Fourier decomposition

B(t, τ) =
∑
λ∈Λτ

a(λ, τ) exp(iλt),

where Λτ = {λ : a(λ, τ) ̸= 0}. The set Λτ is finite and is a subset of the set Λ = {2kπ/d, k =

0, . . . , d−1}. This means that there is a finite number of the second-order significant frequen-

cies. To detect them it is enough to point out the nonzero Fourier coefficients of B(t, τ). For

that purpose one needs to construct confidence intervals for a(λ, τ). Below we recall results

from literature to show how difficult this task is.

Let X1, . . . , Xn be a sample from the considered time series. Without loss of generality

we assume that τ ≥ 0. An estimator of a(λ, τ) is of the form

ân(λ, τ) =
1

n

n−τ∑
t=1

XtXt+τ exp(−iλt).

Moreover, the asymptotic results that we present below require the mixing assumptions. To

be precise Xt is assumed to be α-mixing i.e., αX(k) → 0 as k → ∞, where

αX(k) = sup
t

sup
A∈FX (−∞,t)

B∈FX (t+k,∞)

|P (A ∩B) − P (A)P (B)|
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and FX(−∞, t) = σ ({Xs : s ≤ t}), FX(t + k,∞) = σ ({Xs : s ≥ t + k}). If αX(k) = 0 it

means that the observations that are k time units apart are independent. In general mixing

assumptions are introduced to ensure that observations that are far from each other are ’al-

most’ independent. An easy example of α-mixing process is a m-dependent time series.

Let us introduce some additional notation. By λ and τ we denote r-dimensional vectors

of frequencies and shifts of the form λ = (λ1, . . . , λr)
′
, τ = (τ1, . . . , τr)

′
. Additionally,

a(λ, τ ) =
(
ℜ(a(λ1, τ1)),ℑ(a(λ1, τ1)), . . . ,ℜ(a(λr, τr)),ℑ(a(λr, τr))

)′
and ân(λ, τ ) is its esti-

mator. By ℜ(z) and ℑ(z) we denote the real and the imaginary part of the complex number

z.

Theorem 1 below states asymptotic normality of ân(λ, τ ). For the proof we refer the reader

to [26] (Theorem 2.6) and [18] (Theorem 1).

Theorem 1 Assume that {Xt, t ∈ Z} is a PC α-mixing time series with E(Xt) ≡ 0 and

WP(4) such that:

(i) supt∈Z E|Xt|4+2δ < ∞ for some δ > 0,

(ii)
∑∞

τ=1 τα
δ/(2+δ)
X (τ) < ∞.

Then

√
n (ân (λ, τ ) − a (λ, τ ))

d−→ N2r (0,Σ(λ, τ )) ,
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where Σ(λ, τ ) = [σef ]e,f=1,...,2r,

σef =



1
d

∑d
s=1

∑∞
k=−∞C(s, k) cos(λes) cos(λf (s + k)) for e = 2g1 − 1, f = 2g2 − 1,

1
d

∑d
s=1

∑∞
k=−∞C(s, k) sin(λes) sin(λf (s + k)) for e = 2g1, f = 2g2,

−1
d

∑d
s=1

∑∞
k=−∞C(s, k) sin(λes) cos(λf (s + k)) for e = 2g1, f = 2g2 − 1,

−1
d

∑d
s=1

∑∞
k=−∞C(s, k) cos(λes) sin(λf (s + k)) for e = 2g1 − 1, f = 2g2,

where C(s, k) = Cov
(
XsXs+τe , Xs+kXs+k+τf

)
, g1, g2 = 1, . . . , r and det(Σ(λ, τ )) ̸= 0.

WP(k) denotes weakly periodic times series of order k with period d. In other words time

series is WP(k) when its k-th moments are periodic.

Theorem 1 enables construction of the asymptotic pointwise confidence intervals for a(λ, τ).

Unfortunately, the asymptotic covariance matrix Σ(λ, τ ) is very difficult to estimate. Thus,

in practice resampling methods are often used to approximate the quantiles of the asymptotic

distribution. Additionally, so-called percentile bootstrap confidence intervals do not require

estimation of the covariance matrix (see e.g., [12]). Since PC time series are an example of

the nonstationary processes, block bootstrap methods need to be used for them to keep the

dependence structure contained in the data. So far consistency of two bootstrap techniques

was shown for a(λ, τ). These are the EMBB and the GSBB. The EMBB was proposed in [7]

and [8]. It is the modification of the MBB. The MBB was introduced independently in [16]

and [19] and was designed for stationary time series. However, it turned out that it can be

successfully applied in some nonstationary cases ([25], [4] and [5]). The main disadvantage

of the MBB and its modifications like the EMBB in the context of PC time series, is the fact

that these methods do not preserve the periodic structure of the original data. On the other

hand, the GSBB was designed for periodic processes. The method was proposed by Dudek

et al. in [9]. Applied for a PC time series it perfectly retains the periodic structure contained

7



in the data.

In this paper we will use a modification of the EMBB and the GSBB, whose idea is to consider

data as wrapped on the circle. It was introduced in [21] to reduce edge effects caused by the

MBB and it was called the Circular Block Bootstrap (CBB). The CBB guarantees that each

observation is present in the same number of blocks which is not the case of the MBB, the

EMBB and the GSBB. Below we recall the algorithms of the circular versions of the EMBB

(cEMBB) and the GSBB (cGSBB).

Let Bi, i = 1, . . . , n be the block of observations from our sample X1, . . . , Xn, that starts

with observation Xi and has the length b ∈ N, i.e., Bi = (Xi, . . . , Xi+b−1). If i + b − 1 > n

then the missing part of the block is taken from the beginning of the sample and we get

Bi = (Xi, . . . , Xn, X1, . . . , Xb−n+i−1) for i = n− b + 2, . . . , n. To apply the cEMBB and the

cGSBB to a PC data, we need to assume that the sample size n is an integer multiple of the

period length d (n = wd). If wd < n ≤ (w + 1)d then the observations Xi, i = wd + 1, . . . , n

need to be removed from the considered dataset.

cEMBB Algorithm

Since the cEMBB approach is based on the CBB algorithm, as first we recall the CBB method.

1. Choose a block size b < n. Then our sample can be divided into l blocks of length b

and the remaining part is of length r, i.e., n = lb + r, r = 0, . . . , b− 1.

2. For t = 1, b + 1, 2b + 1, . . . , lb + 1, let B∗CBB
t =

(
X∗CBB

t , . . . , X∗CBB
t+b−1

)
= Bkt , where kt

are i.i.d. random variables drawn from a discrete uniform distribution P (kt = s) = 1/n

for s = 1, . . . , n.
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3. Join the selected l + 1 blocks
(
B∗CBB

1 , . . . , B∗CBB
l+1

)
and take the first n observations to

get the bootstrap sample
(
X∗CBB

1 , . . . , X∗CBB
n

)
of the same length as the original one.

The cEMBB algorithm is a simple modification of the CBB one.

1. Define a bivariate series Yi = (Xi, i) and then do the CBB on the sample (Y1, . . . , Yn)

to obtain (Y ∗
1 , . . . , Y

∗
n ).

Note that in the second coordinate of the series Y ∗
1 , . . . , Y

∗
n we preserve the information on the

original time indices of chosen observations. This simple modification of the CBB approach

allows to construct the consistent estimators for the Fourier coefficients of the autocovariance

function of a PC time series.

cGSBB Algorithm

The cGSBB algorithm differs from the CBB only in the second step, i.e.,

2’. For t = 1, b + 1, 2b + 1, . . . , lb + 1, let

B∗cGSBB
t =

(
X∗cGSBB

t , . . . , X∗cGSBB
t+b−1

)
= Bkt (1)

where kt is i.i.d. random variables drawn from a discrete uniform distribution P (kt = t + vd) =

1/w for v = 0, 1, . . . , w − 1.

Constructing the CBB or the cEMBB sample we are choosing among n blocks. The cGSBB

case is much more subtle. The idea is to perfectly mimic the periodic structure of the data.

Thus, during the block selection process the additional criteria need to be fulfilled.

Remark It is well known that a PC time series with period d can be equivalently expressed

as d-variate stationary time series (see e.g., [15]). Moreover, bootstrap methods and their
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properties are well investigated in the stationary case (see [17]) and hence it may seem useless

to consider bootstrap for univariate periodic time series (especially when one is interested in

estimation of the mean). However, as pointed out in [8] (Section 2.4) bootstrap approach

via one dimensional time series is preferable. There are several reasons for that. The most

important is that the EMBB and the GSBB allow to use blocks that do not contain an integer

number of periods. Moreover, these blocks can start with any observation. None of those

two properties hold when one wants to use the multivariate stationary representation of PC

time series. As a result there are no bootstrap approaches designed for d-variate stationary

time series that are equivalent to the EMBB and the GSBB for univariate PC time series.

Bootstrap confidence intervals

The consistency of the cGSBB and the cEMBB for a(λ, τ ) was shown in [10] and [7], respec-

tively. Since both results were obtained under the same assumptions, in order to recall them,

to simplify notation, we use â∗n(λ, τ ) instead of â∗cEMBB
n (λ, τ ) and â∗cGSBB

n (λ, τ ). This

means that whenever â∗n(λ, τ ) is used all statements are valid for both bootstrap approaches.

Theorem 2 Assume that {Xt, t ∈ Z} is an α-mixing PC time series with E(Xt) ≡ 0 and

WP(4) such that:

(i) supt∈Z E|Xt|8+2δ < ∞ for some δ > 0,

(ii)
∑∞

τ=1 τα
δ/(4+δ)
X (τ) < ∞.

If b → ∞ as n → ∞ such that b = o(n), then

ρ
(
L
(√

n (ân(λ, τ ) − a(λ, τ ))
)
,L∗ (√n (â∗n(λ, τ ) − E∗â∗n(λ, τ ))

) ) p−→ 0,

where ρ is any distance metricizing weak convergence of probability measures on R2r.
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L(·) denotes probability low and L∗(·) is its bootstrap counterpart. Moreover, E∗ is the con-

ditional expectation given the sample (X1, . . . , Xn).

Using Theorem 2 one may construct bootstrap pointwise confidence intervals for the real

and the imaginary part of a(λ, τ). For the sake of simplicity below we describe the basic

ideas only for ℜa(λ, τ). As we mentioned before the asymptotic variance is very difficult to

estimate. Since the construction of the bootstrap percentile confidence intervals does not

require variance estimation, this kind of interval is the most often used for different charac-

teristics of PC time series. To get it for a fixed frequency λ and shift τ we define the following

statistic

KCBB(x) = P ∗ (√nℜ
(
â∗cEMBB
n (λ, τ) − E∗ (â∗cEMBB

n (λ, τ)
))

≤ x
)
,

where P ∗ is the conditional probability given the sample (X1, . . . , Xn). Then, the equal-tailed

95% bootstrap confidence interval for ℜa(λ, τ) obtained using the cEMBB is of the form

(
ℜân(λ, τ) − ucEMBB (0.975)√

n
,ℜân(λ, τ) − ucEMBB (0.025)√

n

)
,

where and ucEMBB (0.975) and ucEMBB (0.025) are 97.5%. and 2.5% quantiles of KcEMBB(x),

respectively. The confidence interval for the cGSBB is defined correspondingly.

In real data applications usually many different values of λ and τ are considered. In such

situation the simultaneous confidence intervals are used. To obtain them the consistency of

bootstrap for the smooth functions of a(λ, τ ) is required. Such results for the cEMBB and

the cGSBB can be found in [10] and [7]. The quantiles of the 95% equal-tailed bootstrap
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simultaneous intervals can be calculated using the maximum and the minimum statistics.

Let us assume that one is interested in frequencies λ1, . . . , λr and shift τ . Again we describe

the construction only for the cEMBB. We define:

KcEMBB,max(x) = P ∗
(√

nmax
i

ℜ
(
â∗cEMBB
n (λi, τ) − E∗ (â∗cEMBB

n (λi, τ)
))

≤ x

)
,

KcEMBB,min(x) = P ∗
(√

nmin
i

ℜ
(
â∗cEMBB
n (λi, τ) − E∗ (â∗cEMBB

n (λi, τ)
))

≤ x

)

and we get the confidence region of the form(
ân(λi, τ) −

ucEMBB,max (0.975)√
n

, ân(λi, τ) −
ucEMBB,min (0.025)√

n

)
, (2)

where i = 1, . . . , r and ucEMBB,max (0.975) and ucEMBB,min (0.025) are 97.5%. and 2.5%

quantiles of KcEMBB,max(x) and KcEMBB,min(x), respectively.

In the next section we compare bootstrap pointwise and simultaneous confidence intervals

obtained with the cEMBB and the cGSBB. We try to provide answers for questions posed

in Section 1.

3 Simulation study

The aim of our study is to compare the performance of the cEMBB and the cGSBB applied

to construct the pointwise and the simultaneous confidence intervals for the real and the

imaginary parts of the coefficients of the autocovariance function. For that purpose the actual

coverage probabilities (ACPs), the average lengths and the average upper and lower quantiles

values were calculated for all constructed intervals. Finally, confidence intervals were used

to identify the significant frequencies. For our consideration we chose a few examples of PC

time series that are listed below.
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M1 Xt = cos(2πt/4)ε1t + cos(2πt/5)ε2t + Zt,

M2 Xt = cos(2πt/4)ε1t + cos(2πt/6)ε2t + Zt,

M3 Xt = cos(2πt/4)ε1t + cos(2πt/8)ε2t + Zt,

M4 Xt = 4 cos(2πt/4)ε1t + cos(2πt/5)ε2t + Zt,

M5 Xt = 8 cos(2πt/4)ε1t + cos(2πt/5)ε2t + Zt,

where Zt is zero-mean moving-average time series of the form

Zt = 0.5εt−3 + 0.3εt−2 + 0.2εt−1 + εt.

{εt}t≥1, {ε1t }t≥1, {ε2t }t≥1 are i.i.d. from the standard normal distribution. Moreover, the

initial observations in each model were generated as standard normal random variables.

Each considered model M1-M5 has exactly 4 true significant frequencies. Models M1-M3

differ in period length and distance between the consecutive significant frequencies. In fact we

were changing period lengths of the cosine function to see what will happen if two consecutive

frequencies will be close to (M3) or far from each other (M2). Better separation may improve

the detection. Moreover, if two frequencies λ1 and λ2 are close to each other and a(λ1, τ)

is much bigger than a(λ2, τ), the detection of λ2 can be more difficult than in the situation

when a(λ1, τ) and a(λ2, τ) are comparable. The frequency λ = 0 is always the strongest

(value of the corresponding coefficient is always the largest among all significant frequencies).

Thus, to investigate its influence on our results the distance between the three remaining

frequencies and λ = 0 was set to be short (M3), medium (M2) and large (M1). Finally, we

added to our considerations models M4-M5 to check how strengthening of some frequencies

will affect the detections. Note that M4 and M5 were obtained from M1 by multiplying
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the first cosine function by an appropriate constant. That increased the value of a(λ, 0) from

2.38 (M1) to 9.88 (M4) and 33.88 (M5) for λ = 0 Hz and from 0.5 (M1) to 8 (M4) and 32

(M5) for λ = 0.5 Hz. Values of a(λ, 0) for λ = 0.4 Hz and λ = 0.6 Hz remained unchanged

and were equal to 0.25. In Figure 1 we present the estimated values of |a(λ, τ)| for M1-M5

for sample size n = 1920.

For our study we took three sample sizes, namely n ∈ {120, 480, 1920}. We set τ = 0 and we

considered all frequencies λ ∈ {2kπ/d : k = 0, . . . , d−1}. Using the cEMBB and the GSBB we

constructed the 95% equal-tailed pointwise and simultaneous confidence intervals (see Section

2) for the real and the imaginary part of a(λ, τ). The number of bootstrap resamples was

B = 500 and the number of algorithm iteration was 1000. The block lengths b were chosen

from the set {1, 2, . . . , 100}. To compare the cEMBB and the cGSBB we calculated the

ACPs, the average lengths and the average quantiles for all constructed confidence intervals.

Since we considered 100 values of block length, the computation needed to be supported by

the supercomputer available via the PL-Grid Infrastructure. For the sake of clarity we split

the summary of our results into three parts.

Actual coverage probabilities

For the sake of simplicity, from now on we denote by cEMBB-ACPs and cGSBB-ACPs the

ACPs obtained with the cEMBB and the cGSBB, respectively. The main conclusions are the

same for all models. Generally, the cEMBB provides higher ACPs than the cGSBB. This

means that confidence intervals constructed using the cEMBB are wider than corresponding

ones obtained with the cGSBB. Moreover, in most of the cases taking b < 20 we get confidence

intervals too wide (using the cEMBB) or too narrow (using the cGSBB).

Some of the cEMBB-APC curves contain periodic structure (see Figure 2(a)). In fact for
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(a) M1 (b) M2

(c) M3 (d) M4

(e) M5

Figure 1: Estimated values of |a(λ, τ)| for M1-M5 with sample size n = 1920.

15



0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

(a)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

(b)

Figure 2: Model M1 with n = 120: ACPs (black lines) of pointwise confidence intervals for

ℜa(0.05 Hz, 0) together with nominal coverage level (grey lines) for cEMBB (first column)

and cGSBB (second column). On the horizontal axis block length b ∈ {1, 2, . . . , 100}.

M1-M5 this phenomena can be observed for frequencies that are close to λ = 0 Hz, i.e.,

λ = 1/d Hz and λ = 2/d Hz. Let us recall that a(0, 0) is always the largest among a(λ, 0)

values for λ ∈ Λ0. For M1 a(0, 0) is almost 5 times higher than the corresponding value for

λ = 0.5 Hz and 10 times than for λ = 0.4 Hz and λ = 0.6 Hz. Interestingly, for models M4

and M5 periodicity appears also for λ = 0.4 Hz and λ = 0.45 Hz. These two frequencies are in

neighbourhood of another very strong frequency λ = 0.5 Hz. Sometimes periodicity is difficult

to detect in APCs graphs. However, it can be much easier captured in figures presenting the

average lengths of confidence intervals. Moreover, it is worth noticing that periodic structure

appears not only in the context of the pointwise confidence intervals. We deal with it also

in cEMBB-ACP graphs for the simultaneous confidence intervals. On the other hand, the

cGSBB provides ACP curves without any periodicity (see Figure 2(b)). We think that the

periodicity phenomena may be caused by the bias of the cEMBB estimator. Both bootstrap

estimators are only asymptotically unbiased but bias of the cEMBB estimator may be strongly

dependent on the chosen block length. Let us recall that the cGSBB preserves the periodic

structure contained in the original data, while the cEMBB destroys it completely.
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Block length choice - validity of some existing approaches

To popularize bootstrap techniques in the analysis of the PC time series, it is important to

provide a method of block length choice. For now there is no such result. It concerns not

only coefficients of the autocovariance function. Even in the simplest case of the overall mean

estimation there are no indications for practitioners how to choose b. For stationary time

series this issue is quite well investigated. Thus, we decided to check if some of the existing

heuristic approaches can be applied for our non-stationary case.

In the literature it is often advised for periodic data to use the MBB with the block length

equal to an integer multiple of the period length (see e.g., [24]). Our study confirms the

validity of this approach. For b = kd, k ∈ N the cEMBB-ACP curves behave very similar to

the cGSBB-ACP ones. In general median differences for the pointwise confidence intervals

range from 0% to 3%, but for n > 120 from 0% to 0.5%. For the simultaneous confidence

intervals the situation is very similar. For n = 120 the largest absolute difference is around

4% and for n > 120 all absolute differences belong to the interval (0, 0.019). If periodic struc-

ture is present, a small change of the b value may result in big change of the actual coverage

probability. Additionally, for large samples one may always find the block length being an

integer multiple of the period length that provides cEMBB-ACPs close to nominal level.

The Minimum Volatility Method (see [22] p. 197) assumes that the block length b should

be chosen from the region in which confidence interval is a stable function of b. For that

purpose one may use a plot of the average confidence interval lengths or the average quantile

values. We look for a region in which the curve is quite flat and there is not much variation.

This method is not suitable for the cEMBB because of the periodic structure that appears
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sometimes. However, we tried to use it for the cGSBB. Unfortunately, we did not manage

to find rules how to select b values for the different frequencies to obtain cGSBB-ACPs close

to 95%. Curves of the average lengths of pointwise and simultaneous confidence intervals

obtained with the cGSBB are quite smooth and having low volatility. Some parts of the

functions are quite flat, but often they do not contain block lengths corresponding to ACPs

close to 95%.

The approach based on the logarithm of quantile for the subsampling method was recently

discussed in [2] (see also references therein). The author proposed to find the largest b be-

fore the function becomes more erratic. Unfortunately, this methods does not work in the

considered problem. When periodic structure is not present, the log of quantiles are smooth.

We cannot localize regions with different behaviour.

Block length choice - new heuristic method for the cEMBB

Inspired by the aforementioned methods, to choose the value b we investigated plots of av-

erage lengths and logarithm of upper quantiles. In the latter case we managed to detect the

property that allows us to choose the block length for the cEMBB. However, we would like to

indicate that for now we do not have any theoretical confirmation for the proposed heuristic

approach. Thus, further research needs to be done to confirm its validity. Our study shows

that it seems to work quite well for the simultaneous confidence intervals.

Block length choice algorithm

1. If the log of quantile contains strong periodic structure, we look at local minima of

the considered function. Their values create a string m1,m2, . . . , which is decreasing

18



starting from mo, o ∈ N. Finally, we choose the block length b for which the log of the

quantile is equal to mo.

2. If the log of quantile does not contain any periodic structure, we do not consider very

small or very large block lengths. From the remaining ”reasonable” block lengths we

choose the largest b before the first break point, i.e., point after which the function starts

to decrease sharply. In fact for very small b a sharp decrease can also be observed. But

we are interested in the largest b from the first region where the function is quite flat.

We would like to indicate that this choice is not always easy. Sometimes the region in

which the function is not decreasing is very small.

In Figure 3 we present the log of quantiles for the cEMBB simultaneous confidence intervals

for ℜa(λ, 0) and ℑa(λ, 0) obtained for M1 model. Using the proposed algorithm for M1-

M5 we chose the block lengths for the cEMBB simultaneous confidence intervals. Table 1

contains obtained values together with the ACPs generated by them for each sample size. In

general, independently of the considered model and sample size, the chosen b differs for the

real and imaginary part of a(λ, 0). Those for ℑa(λ, 0) are higher than the corresponding ones

for ℜa(λ, 0). The ACPs obtained for ℜa(λ, 0) are usually below the nominal coverage level.

The lowest value equal to 89% was got for M3 with n = 120. The highest equal to 95.3% was

observed for M4 with n = 1920. For other cases the ACPs belong to interval (91%, 95%). On

the other hand the simultaneous confidence intervals for ℑa(λ, 0) are too wide independently

on the sample size. The ACPs change from 95.7% to 97.9%.

For n = 1920 in the case of the real and the imaginary part of a(λ, τ) sometimes we were

forced to choose some b ≤ 100 while the minima of log of quantiles in the corresponding fig-

ures never started to decrease. In such a situation we were taking the largest possible integer
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multiple of the period length. But in fact we should consider b > 100. For M1, M4 and M5

we performed an additional study taking b ∈ {120, 140, . . . , 600}. The new choices of b values

are in Table 2. One may observe that new cEMBB-ACPs are closer to 95%. Especially in

the case of ℑa(λ, τ) the improvement is significant.

Finally, we compared results for M1 with those for M4 and M5. Let us recall that these

models differ in values of ℜa(0 Hz, 0) and ℜa(0.5 Hz, 0). M4 and M5 contain two strongly

significant frequencies (λ = 0 Hz and λ = 0.5 Hz) in contrast to M1 for which frequency

λ = 0 Hz is strongly dominating all other frequencies. For M4-M5 we obtained with our

algorithm b values that resulted in cEMBB-ACPs that are closer to 95% than the correspond-

ing ones for M1. Strengthening of some frequencies improved their detection.

The proposed algorithm works quite well for the simultaneous confidence intervals obtained

with the cEMBB. Unfortunately, for the cGSBB we did not manage to find any properties of

the log of quantiles curves that would allow us to choose the block length. For the cEMBB we

take advantage of the fact that for b = 1 it provides too wide confidence intervals and hence

the first stabilization area usually contains b close to optimal one. Using the cGSBB with

small b results sometimes in too low and sometimes too high ACP and hence, for example,

local maximum can be very misleading.

Simplification of algorithm for the pointwise confidence intervals case

Choice of the block length for the pointwise confidence intervals is more problematic. In

practice one would prefer to use one value of b for all considered frequencies. Moreover,

when period length is long, the amount of calculations to get all plots is too big. Thus, we

decided to check what would happen if we choose b only on the basis of curves that contain
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Figure 3: Model M1: logarithms of the upper quantiles of simultaneous confidence intervals

for ℜa(λ, 0) (first row) and for ℑa(λ, 0) (second row), λ ∈ Λ for cEMBB. On the horizontal

axis block length b ∈ {1, 2, . . . , 100}.

periodic structure. And to make procedure even simpler for each model we restricted our

consideration only to two consecutive frequencies from Λ after λ = 0 Hz, i.e., λ = 1/d Hz and

λ = 2/d Hz. For the n = 480 and n = 1920 the absolute deviation from 95% of majority

of APC values is maximally 2.3% and 2.1% in the ℜa(λ, τ) and ℑa(λ, τ) case, respectively.

It seems that our method of block length works quite well also for the pointwise confidence

intervals.

4 Conclusions

To obtain bootstrap confidence intervals for the coefficients of the autocovariance function of

PC time series we can use two bootstrap approaches. These are the EMBB and the GSBB or

their circular versions. We performed an extensive study to compare their behaviour and we

are unable to state, which of them is better. The ACPs obtained with the cEMBB are usu-
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Table 1: For M1-M5 and each sample size n and block length choice b ≤ 100 for the cEMBB

used to construct simultaneous confidence intervals for ℜa(λ, 0) (column 3) and ℑa(λ, 0)

(column 5), where λ ∈ Λ. In columns 4 and 6 are the obtained cEMBB-ACPs.

Real part Imaginary part

model n b cEMBB-ACP b cEMBB-ACP

M1 120 10 0.935 20 0.968

480 40 0.912 60 0.957

1920 100 0.934 100 0.976

M2 120 5 0.918 24 0.962

480 5 0.947 48 0.970

1920 48 0.935 84 0.975

M3 120 8 0.890 16 0.966

480 16 0.931 24 0.974

1920 60 0.949 96 0.964

M4 120 8 0.944 20 0.965

480 30 0.938 60 0.975

1920 60 0.953 100 0.979

M5 120 5 0.947 20 0.957

480 30 0.938 60 0.966

1920 100 0.949 100 0.973
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Table 2: For M1, M4, M5 and sample size n = 1920 and block length choice b > 100 for

the cEMBB used to construct simultaneous confidence intervals for ℜa(λ, 0) (column 3) and

ℑa(λ, 0) (column 5), where λ ∈ Λ. In columns 4 and 6 are the obtained cEMBB-ACPs.

Real part Imaginary part

model n b cEMBB-ACP b cEMBB-ACP

M1 1920 200 0.943 320 0.972

M4 1920 60 0.953 340 0.952

M5 1920 180 0.946 280 0.955

ally higher than the corresponding ones for the cGSBB. It means that the cEMBB confidence

intervals are often wider than the cGSBB ones. For very large samples, the performance of

both bootstrap methods is very comparable.

The cEMBB-ACPs curves sometimes contain periodic structure. It seems this happens for

frequencies that are close to the true strong frequencies. This phenomena may be considered

as a disadvantage of the cEMBB, because a slight change in the chosen block length has a

significant affect on the confidence interval. However, it can also be used in the future to

construct a test for the significant frequency detection. Moreover, we used this feature to

propose a heuristic method of block length choice that seems to work well in the case of

pointwise and the simultaneous confidence intervals. In fact for the pointwise confidence in-

tervals we simplified it to make the choice only on the basis of 1-2 figures, which substantially

reduces the amount of computations and provides satisfactory results. We also checked a few

heuristic approaches for the block length choice that were designed for the stationary data,

but none of them is working for PC processes. We did not succeed in finding any indication
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how the block length should be chosen when the cGSBB is used. Finally, we managed to

confirm the suggestion appearing in the literature that for the cEMBB block lengths that

are integer multiples of the period length should be considered. If we do not have any other

method of block length choice, taking b = kd allows us to avoid the periodicity effect and can

provide the ACP close to the nominal one.
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