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Abstract 

Recent investigations have presented an application of the scale entropy diffusion theory to 

model liquid atomization process. This theory describes multi-scale behavior by a diffusion 

equation of the scale entropy function. In atomization, this function is related to the scale-

distribution which provides a measurement of the specific-length of the eroded liquid system 

according to the scale of erosion. The present paper performs a detail description of the scale 

diffusion mechanism for the atomization process of a liquid jet emanating from a gasoline 

injector with the objective of determining the scale diffusivity parameter introduced by the 

diffusion theory. The 2-D description of the gasoline jet as a function of the injection pressure 

reveals that the scale space is divided in two regions according to the sign of the scale 

specific-length variation rate: The small-scale region refers to the scales that undergo an 

elongation mechanism whereas the large-scale region concerns the scales that undergo a 

contraction mechanism. Furthermore, two phases of the atomization process are identified 

depending on whether the elongation mechanism is governed by the jet dynamics or surface 
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tension effects. A non-dimensional number segregating these two phases is established. 

During the atomization process, the contraction mechanism diffuses in the small scale region. 

This manifests by a temporal decrease of the scale with a zero specific-length variation. It is 

found that the scale diffusivity parameter can be determined from the evolution of this 

characteristic scale in the second phase of the atomization process.  

Keywords: Liquid atomization process, multi-scale analysis, scale entropy diffusion model 
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1 Introduction 

The atomization of a liquid jet ejected into a gaseous environment is a process during which 

the jet deforms and fragments until a flow of stable droplets of different size and velocity, 

called a spray, is formed. The prediction of the spray drop-size distribution has always been 

considered as an important issue and still requires specific investigations aiming to develop 

liquid atomization models. Visualizations found in the literature demonstrate the multi-scale 

nature of atomization processes. The fractal concept due to Mandelbrot [1] was convoked to 

describe the tortuosity of the atomizing system contour [2, 3]. It reported that atomizing liquid 

systems require a scale and time-dependent fractal dimension to be fully described. This 

deviation from pure fractality has been pointed out for different systems and a specific 

geometrical framework to describe these systems and their temporal evolution has been 

introduced by Queiros-Conde [4] in the context of turbulent interfaces. Derived from the 

entropic-skins geometry formalism [5], this model defines the scale entropy function to 

describe the system and uses a diffusion equation to model its temporal evolution. Similar to a 

1-D heat diffusion equation with a local heat production term, this scale entropy diffusion

equation introduces the concepts of scale diffusivity and of scale entropy flux sink or scale-

evolutivity. The scale diffusivity defines the capacity for the system to propagate 

perturbations through scale-space [6] and the scale-evolutivity describes variation of the 

evolutive potential (i.e., the scale entropy flux) of the system. The scale entropy diffusion 

model has been applied to turbulent interfaces and turbulent flames [4, 7]. Among other 

results, an expression for the scale diffusivity has been established for turbulent interfaces.  

In the context of two-phase flows, the scale entropy diffusion model has been applied on a 

liquid spray [8] and on the atomization of a liquid sheet [9, 10, 11]. The analysis of a liquid 

sprays revealed a constant scale entropy flux gradient through scale space which corresponds 
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to a parabolic behavior for scale analysis [8]. In the description of the liquid sheet 

atomization, it has been evidenced that the scale entropy function can be obtained from the 

cumulative scale-distribution E2(d) introduced in a previous investigation [12]. Performed on 

2D images, this distribution is obtained from the application of the Euclidean Distance 

Mapping (EDM) method which is a “sausage technique” to determine the fractal dimension of 

a contour [13]. E2(d) is a measurement of the proportion of surface loss caused by erosion 

operations at successive increasing scales. Its first-derivative according to the scale is a 2D 

and generalized version of the concept of specific-area introduced by Evers [14]. The 

specific-area designates the interface surface per unit liquid volume and the surface energy of 

a two-phase system is proportional to this quantity. It is therefore relevant in atomization. In 

the present case, the 2D description reports specific-length quantity and the generalization 

means that this specific-length is considered as a function of the scale, becoming the scale 

specific-length. The application of the scale entropy theory to describe liquid sheet 

atomization revealed that the process of flow deformation, fragmentation and droplet 

production is associated to a continuous evolution of the scale entropy function [9]. The scale 

diffusivity was determined and correlated to the experimental operating conditions [10] and a 

scale parabolic behavior was identified in the small scale region [11]. 

Although these previous investigations demonstrate the interesting potential of the use of the 

scale entropy diffusion theory in the context of liquid atomization, they show a limitation: the 

procedure to determine  doesn’t suit other systems than turbulent liquid sheets. Overcoming 

this problem requires a good understanding of the scale diffusion mechanism in the context of 

liquid atomization processes. For this task, the recent introduction of the concept of the scale-

diameter could be considered [15]. This length is equal to the inverse of the first derivative of 

E2(d). The temporal evolution of the scale-diameters leads to a scale segregation according to 

their own perception of the whole system evolution. Furthermore, for the case of atomizing 
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stretched ligaments, the quality of this perception allows identifying the physical mechanisms 

involved in the breakup process [15].  

The present investigation aims to produce a multi-scale analysis of the atomization process of 

a jet produced by a Gasoline Direct Injector (GDI) with the objectives of reaching a detailed 

description of the scale diffusion mechanism and of determining the scale diffusivity 

parameter. Despite the injector is conceived to work in transient conditions and has three 

identical discharge orifices, the study concentrates on one of the three jets and during the fully 

open stage of the injector only. Furthermore, the injection pressures are mainly low to ensure 

exploitable visualizations of the atomization process. Section 2 presents the scale entropy 

diffusion model and the scale diffusivity parameter. The experimental work is presented in 

Section 3. The experimental results and their analysis are the subject of Section 4.  

 

2 The scale entropy diffusion model and the scale diffusivity 

The scale entropy diffusion model as it is used in the present context has already been 

presented in previous articles [9, 10] and is summarized here only. This model concerns the 

temporal evolution of multi-scale systems showing scale- and time-dependent fractal 

dimensions. At each instant, the system is described by the scale entropy function (x,t). This 

function is a global quantity that monotonously decreases and reaches zero for the outer cutoff 

scale of the system. The scale entropy can be seen as a quantification of the representativeness 

of a scale d on the system’s morphology: the smaller the scale entropy is, the more organized 

is the shape of the system at this scale. The diffusion model suggests modeling the temporal 

evolution of the system by the following diffusion equation [4]: 
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The variable x is defined by x = ln(d/docs) where d is the scale and docs is a characteristic outer 

cutoff scale of the problem. In turbulence, this scale would be the integral scale. In Eq. (1) the 

parameter  is the scale diffusivity and the function (x,t) is the scale entropy flux sink 

defined by a unit of scale logarithm. It is in fact a scale entropy flux density. Queiros-Conde 

[4] emphasizes the analogy between Eq. (1) and the one-dimensional heat conduction 

equation: the scale logarithm x would correspond to the position, the scale entropy  to the 

temperature, the scale diffusivity  to the thermal diffusivity and the function  to a quantity 

proportional to a volumetric heat sink that would be space dependent. In heat diffusion, the 

local heat flux is proportional to the temperature gradient. In multi-scale system description, 

the scale entropy gradient corresponds to the scale entropy flux  (     xtxtx  ,,  ) that 

quantifies how scale entropy cascades through scale space. A constant scale entropy flux  in 

a scale range denotes a self-similarity of the system contour for this scale range and therefore 

a fractal characteristic [4]. At any time, the model beneficiates from a scale entropy flux 

condition in the small scale range, i.e.,   1lim 


x
x

 . In 2D, this condition corresponds to a 

fractal dimension equal to 1 [4]. 

The scale diffusivity  introduced in Eq. (1) characterizes diffusion of scale entropy through 

the scale space. This parameter is related to a scale range quantified by a value of x  and a 

diffusion time *, i.e., 
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* can be interpreted as the characteristic time needed by a perturbation to propagate over the 

scale range quantified by x . In turbulence, the diffusion time * between the integral scale l0 

(at which energy is injected) and the Kolmogorov scale lc (at which energy is dissipated) is 

* = ln
2
(lc/l0)/. According to Queiros-Conde [4] this time must be of the order of the 

dissipation time t. Indeed, if * < t, then energy would accumulate in space scale since 

dissipation is not efficient enough. Conversely, if * > t
 
, energy would dissipate completely 

before reaching the Kolmogorov scale. Thus, assuming * ≈ t, Queiros-Conde [4] derived the 

following estimation of the scale diffusivity: 

 

    2
0

223 ln
16
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where  is the kinematic viscosity and the Reynolds number Re is based on the integral scale 

and on the RMS of velocity fluctuation. Such a scenario has not been established for liquid 

atomization processes. 

A previous investigation [9] has reported that the scale entropy for an atomizing liquid system 

can be derived from the surface-based scale-distribution E2(d,t) [12], i.e.: 
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Using Eq. (4), the temporal evolution of the scale entropy for experimental turbulent liquid 

sheet at low Weber number was established [9]. As said in the introduction, the scale entropy 

reports a continuous evolution all over the process including the flow production, 

deformation, fragmentation and drop production. In [9], the specific evolution of the scale 
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entropy flux allowed deriving a procedure to estimate the scale diffusivity . It appears that  

increased linearly with the injection pressure Pi. The inverse of the slope of this evolution 

has the dimension of a dynamic viscosity and is called the scale “viscosity” µ*: 
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Furthermore, a correlation between  and the operating conditions was established [10]: 
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The liquid Weber number WeL is defined as (LVq
2
dor)/ where L is the liquid density, Vq is 

the flow rate mean-velocity, dor is the diameter of the discharge orifice and  is the liquid 

surface tension. There is a notable similarity between Eqs. (3) and (6): the Reynolds number 

in turbulence has been replaced by a Weber number in atomization. The last ratio in Eq. (6) is 

similar to the inverse of the characteristic time of a liquid thread subject to a viscosity 

controlled thinning process [16].  

 

3 Experimental setup and optical diagnostic 

3.1 Experimental setup 

The experimental setup is a traditional injection test bench for Gasoline Direct Injection 

(GDI) application and is similar to the one used in a previous investigation [17]. The liquid is 

pumped from a reservoir thanks to a combination of a low pressure pump and a high pressure 

pump. This arrangement provides an absolute pressure ranging from 0 to 16 MPa. The 



9 
 

pressure is regulated and measured by a high pressure sensor just before the injector. This 

measured pressure is the one referred as the injection pressure Pi. The experiments were 

performed under atmospheric ambient pressure and temperature.  

The injector is a three-jet GDI device. It is conceived to work in transient conditions and it is 

equipped with a needle that controls its opening and closing. In the closing position, the 

needle rests on the wall of the nozzle sac volume. The injector opening is controlled by a unit 

that is set in order that the needle reaches the maximum possible lift in every working 

condition. The nozzle discharge orifices are located at the bottom of the sac volume. The 

injector has three identical orifices with a diameter dor = 250 µm. They are regularly 

distributed at the nozzle tip and make an angle of 42° with the axis of the injector body. The 

maximum injection pressure tolerated by the injector is 12 MPa. In the present work, the 

injection pressure range is restricted to [0.1 MPa; 2.5 MPa].  

The liquid used is Shellsol D40 whose physical properties are: density L = 766 kg/m
3
; 

surface tension  = 0.025 N/m; dynamic viscosity µL = 0.9 10
-3

 Pa.s. The volume flow rate of 

the fully open stage, i.e., when the injector needle is maintained in its upper position, is 

measured as a function of the injection pressure according to the protocol detailed in a 

previous work [17]. For the present injection pressure range, these measurements reported a 

constant discharge coefficient CD = 0.47. From this value, a mean flow-rate velocity Vq can be 

calculated by: 
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Using this velocity, the Reynolds number (Re = LVqdor/µL) and the gaseous Weber number 

(WeG = GVq
2
dor/ where G is the gas density) of the flow issuing from one injector orifice 
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are calculated. The maximum values for Re and WeG are 8000 and 19, respectively. The 

critical WeG above which aerodynamic forces have a non-negligible effect on the spray scale 

distribution is of the order of 3 to 5 for liquids whose surface tension varies from 0.02 N/m to 

0.07 N/m [10]. These results indicate that, in the present work, the action of the aerodynamic 

forces is indisputable for Pi > 0.6 MPa.  

 

3.2 Visualization technique and Image processing 

Snapshots of the liquid flow issuing from the injector have been taken. A shadowgraph optical 

arrangement was chosen, i.e., the light source, the object and the camera are aligned and the 

image of the object shadow is recorded. The light source was a Nanolite HSPS whose flash 

duration is of the order of 20 ns. In the present configuration, the light source plays the role of 

the shutter. The receiver was a Kappa Camera (1380x1028 pixels). The injector was 

positioned so that a single jet among the three was visualized and that the top of the image 

coincided with the bottom of the injector, which is 1 mm below the discharge orifice exit 

plane. The field covered by the image is 6 mm x 8 mm. The corresponding spatial resolution 

is equal to 5.8 µm/pixel. At the maximum injection pressure (2.5 MPa), the velocity Vq (Eq. 

(1)) is equal to 38 m/s. At this velocity, the displacement during 20 ns is equal to 0.8 µm 

corresponding to 0.14 pixel. The optical arrangement is appropriate to provide frozen liquid 

flow images in all cases. As said in the introduction, the liquid jet behavior issuing from the 

injector during its fully open stage is investigated only. To ensure this, the injection time is set 

at 9 ms and a single image is taken at 8 ms after the injection command. For every working 

condition, a total of 250 images were taken and analyzed.  

The analysis of the atomization process requires two gray-level images. To achieve this, 

homemade image treatments similar to those presented in previous works [3, 9, 10] and 

including image normalization, contour detection and corrections have been applied. The 
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resulting images show the liquid system in white on a black background. Furthermore, in 

order to ease the local analysis of the liquid system, the images are oriented in order that the 

jet appears vertical. The resulting images are cropped to cover a 10 mm x 10 mm physical 

field. As in the initial images, the top of the reoriented image is at 1 mm downstream from the 

actual position of the discharge orifice exit section. 

 

4 Experimental Results and Analysis  

Figure 1 presents raw images of the liquid jet issuing from one orifice discharge as a function 

of the injection pressure. The quality of the image is good and the flow is well frozen for 

every injection pressure. 

At low injection pressures (first row in Fig. 1), the liquid jet is rapidly and highly corrugated. 

This corrugation is initiated by the liquid flow internal structures. Indeed, even at low 

injection pressures, the liquid flow issuing from the injector is not laminar because of the 

complex injector internal geometry that imposes drastic flow deflections and stresses. Some 

of the initial perturbations grow and structure the jet shape variation and breakup. This 

atomization process shows the production of transverse ligaments and the transformation of 

the bulk as a ligament network. When the injection pressure increases (second row in Fig. 1), 

more ligaments develop from the bulk flow, increasing the number of droplets. For the 

highest injection pressures (third row in Fig. 1) the bulk flow is surrounded by droplets and 

the jet liquid core is more indented. From a general point of view, we see in Fig. 1 that the jet 

plume broadens when the injection pressure increases, which actually is a mark of a more and 

more perturbed state. At the same time, structures at smaller and smaller scale develop during 

the atomization process. Thus, the representative scale interval of the liquid system enlarges 

with the injection pressure.  
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The performance of the image treatment procedure can be assessed in Fig. 2 that shows the 

monochrome-converted images corresponding to the snapshots in Fig. 1. The temporal 

description of the atomization process is performed on these images by analyzing a portion of 

the liquid system delimited by a rectangular Analyzing Window (AW) as shown in Fig. 3 and 

by sliding this AW from the top down to the bottom of the image. The position h of AW, 

which corresponds to the distance from the discharge orifice exit section plane to the AW 

middle line, is associated to an equivalent time t (see Fig. 3): 

 

qV

h
t   (8) 

 

The analysis of the part of the liquid system delimited by the AW consists of measuring the 

cumulative scale distribution introduced in [12]. This distribution, considered as a local 

information and noted E2(d,t), is defined by: 
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In this equation, d is the scale of observation, ST(t) designates the total surface of the liquid 

system portion delimited by the AW and S(d,t) is the remaining surface after the liquid system 

portion has been eroded by a circular structuring element with a diameter equal to d. The 

erosion of the liquid system with a circle of diameter d is illustrated in Fig. 4. In this figure, 

S(d,t) is the white surface, and ST(t) – S(d,t), numerator of Eq. (9), corresponds to the hashed 

surface. When d varies from 0 to infinity, E2(d,t) monotonously increases from 0 to 1. This 

function is the cumulative scale function. This measurement is performed on a series of AW 

positions (from the top down to the bottom of the image) and on the 250 images available for 



13 
 

each working condition. The final local cumulative scale distributions are averages of these 

250 measurements for each position.  

The first derivative of the cumulative scale distribution introduces the scale distribution 

e2(d,t) = dE2(d,t)/dd. It represents the perimeter of the eroded system portion at scale d (black 

line in Fig. 4) divided by its total surface area. It is interesting to note that for d = 0, this 

quantity is similar, in 2D, to the specific surface area introduced by Evers [14]. e2(d,t) is a 

more general quantity that represents the specific-length of the system as a function of the 

scale of observation. The dimension of the scale distribution e2(d,t) is the inverse of a length. 

Thus, its inverse is equivalent to a length. This length is called the scale diameter and is noted 

D(d,t), i.e.: 

 

 
 tde

tdD
,

1
,

2

  (10) 

 

The scale diameter D(d,t) can be seen as the width of the rectangle whose height is equal to 

half perimeter of the eroded system at scale d and whose surface is equal to ST(t). A decrease 

of the scale diameter D(d,t) during time for a given scale d could be due to either an increase 

of the perimeter of the eroded system or a decrease of its surface ST(t) or a combination of 

these two possibilities. The increase of the perimeter can be associated to an elongation of the 

system in the image plane whereas the decrease of the system surface would result from an 

elongation mechanism in a direction perpendicular to the image plane. In consequence, a 

decreasing D(d,t) in time is representative of the action of an elongation mechanism. 

Inversely, an increasing D(d,t) in time is representative of the action of a contraction 

mechanism. Thus, the temporal variation of the scale diameter gives information on the 

impact of the system shape variation at each scale: if   0,  ttdD , the system shape 
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variation at scale d is undergone as elongation; if   0,  ttdD , the system shape variation 

at scale d is undergone as contraction.  

The cumulative scale distribution is measured on the images with the software ImageJ. A high 

frequency filter is applied to remove the high frequency variations of the averaged local 

cumulative scale distributions E2(d,t). The scale distribution e2(d,t) is determined from 

centered scheme formulation. The resulting distributions report a good accuracy all over the 

scale space. We have to mention however that pixelization may deteriorate this accuracy at 

scale d = 0. However, the error remains less than 10% for this specific scale. Finally, 

following the protocol defined in a previous investigation [9] the most appropriate AW height 

is determined. This height is defined as the maximum one below which the scale distribution 

e2(d,t) displays no sensitivity to this parameter. In the present configuration, this height is 

found equal to 140 pixels, i.e., 0.813 mm. 

 

Figure 5 shows a typical temporal evolution of the cumulative scale distribution E2(d,t) for 

Pi = 0.4 MPa. This figure illustrates that the atomization process is described by a 

continuous evolution of E2(d,t). We see that the smallest scale at which E2(d,t) = 1 decreases 

with time indicating the production of smaller and smaller liquid structures and, consequently, 

the increase of the system specific-surface. Note that since atomization process is not 

completed at the bottom of the image (see Fig. 2), E2(d,t) remains time-dependent at the larger 

times. In the small scale range, Fig. 5 reports a linear behavior at all times. Being a log-log 

representation, this figure is a Richardson-Mandelbrot plot and this linear behavior denotes a 

fractal behavior whose dimension in the present case is close to 1. This value comes from the 

fact that the surface area removed by the erosion operation for small scales d is proportional 

to d (it is equal to LMd where LM is the interface length or the perimeter of the system). This 

result agrees with the behavior described by the scale entropy diffusion model (see Section 2).  
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The measurement of the cumulative function E2(d,t) incorporates the determination of the 

local system surface area (ST(t) in Eq.(9)) and allows calculating the interface length 

(L(t) = 2ST(t)e2(0,t)). The mean interface length and surface area, LM(t) and SM(t) respectively, 

are shown in Fig. 6. The interface length increases with time and saturates at an asymptotic 

value (Fig. 6-a). The result for Pi = 0.1 MPa displays a slight decrease of LM at long time. As 

observed in other situations [18], this reduction is likely the mark of an interface loss during 

the final step of the atomization process. The limited visualization field of the experiments did 

not allow catching this behavior for the other injection pressures. Figure 6-a shows that the 

temporal evolution of the interface length is exponential at initial times. The slope of the 

initial linear behavior shown in Fig. 6-a represents the growth rate of LM. This growth rate 

increases with the injection pressure and, as shown in Fig. 7, correlates with the issuing liquid 

flow Reynolds number Re. This result underlines the dominant role of the liquid flow in its 

initial deformation. We note in Fig. 7 that the result at Pi = 0.1 MPa escapes from the 

behavior reported by the other injection pressures. This difference denotes a different primary 

atomization process for the lowest injection pressure likely due to an insufficient development 

of liquid turbulence. For this reason, this case is eliminated in the rest of the analysis. 

The evolution of the mean surface area SM depends on the injection pressure (see Fig. 6-b). 

For small Pi, SM decreases and reaches an asymptotic value. For medium Pi (0.5 and 

0.6 MPa) this behavior is preceded by a slight increase and the asymptotic value is not 

reached. For high Pi, the initial increase is very much pronounced. The initial increase of SM 

illustrates a more and more perturbed state of the liquid jet. Indeed, the line-of-sight nature of 

the visualization diagnostic does not allow initial highly perturbed jets to be fully resolved, 

and their 2D projection is mainly sensitive to the jet radial expansion, which is perceived as 

an increasing surface area SM. The subsequent decrease of SM occurs when the liquid 
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fragments produced during the process and their own evolution become observable by the 

imaging diagnostic.  

 

An example of the temporal evolution of the scale diameter D(d,t) (Eq. (10)) for a series of 

scale d is shown in Fig. 8 (Pi = 0.4 MPa). For this injection pressure, the first AW position 

corresponds to the time t = 146 µs. For the scale d = 0, the scale diameter continuously 

decreases with time. As said above, this behavior indicates that the system shape variation is 

undergone at d = 0 as an elongation mechanism, which synthetizes the increase of the 

interface length per unit surface area during the atomization process. The temporal evolution 

of the scale diameter is investigated by considering an exponential dependence with time that 

introduces the variation-rate (d,t): 

 

    ttdtdD ,exp,   (11) 

 

The elongation mechanism identified for the scale d = 0 is associated to a positive variation-

rate, i.e., (0,t) > 0. We see in Fig. 8 that, at initial times, (0,t) is independent of the time. It 

is therefore noted (0). This specific period of time (140 µs-200 µs for Pi = 0.4 MPa) 

roughly corresponds to the one during which the growth rate of LM is constant. Similar 

observations are made for the other injection pressures. Therefore, as for the growth-rate of 

LM, the initial elongation characteristic time 1/(0) correlates with the jet Reynolds number. 

This behavior is illustrated in Fig. 9 from which the correlation   2810 .Re  is obtained. This 

result says that the initial elongation mechanism undergone at d = 0 is imposed by the 

complex internal liquid flow dynamics.  

When time increases, Fig. 8 shows that the variation-rate (0,t) continuously decreases. In 

other words, the characteristic time 1/(0,t) of the elongation mechanism increases. This 
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behavior is illustrated in Fig. 10 for four injection pressures. After a period of time during 

which 1/(0,t) is constant, it increases linearly with the time. This increase begins sooner 

when the injection pressure increases and appears very similar from one injection pressure to 

another. It indicates a less and less effective elongation mechanism in terms of interface 

specific-length production. Figure 10 also shows the temporal evolution of the characteristic 

capillary time T defined as: 

 

 





3
,0 tD

T L  (12) 

 

The capillary characteristic time decreases with time because of the continuous decrease of 

the scale diameter D(0,t) (Fig. 8). We see in Fig. 10 that, for every injection pressure, the 

characteristic elongation time increases when it becomes of the order of the capillary 

characteristic time T. This shows that the loss of elongation mechanism efficiency illustrated 

by a continuous increase of the 1/(0,t) is due to surface tension effects. This result 

underlines the relevance of the time T (Eq. (12)) as well as the use of the scale diameter 

D(0,t) to evaluate a pertinent capillary characteristic time.  

These results suggest the existence of two phases in the jet atomization process. During the 

first phase, the elongation mechanism has a constant variation rate that correlates with the jet 

Reynolds number. The mechanism is therefore controlled by the jet internal dynamics. During 

the second phase, the elongation mechanism has a linearly increasing characteristic time and 

this increase is independent of the jet Reynold number. The liquid jet is not subject to its 

internal dynamics anymore and it relaxes according to a mechanism mainly controlled by the 

surface tension forces. The transition from phase 1 to phase 2 occurs when 1/(0,t) and T are 

of the same order of magnitude. Using Eqs. (11) and (12), this condition writes: 
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Equation (13) introduces a new time-dependent Weber number based of the scale diameter 

D(0,t). In the first phase, this number is greater than 1 and it becomes less than 1 in the second 

phase. 

 

Figure 8 also shows that whereas D(0,t) decreases continuously with time, this is not the case 

for other scales. The scale diameters of the larger scales (between 200 µm and 300 µm) 

increase continuously with time, and those for intermediate scales (around 100 µm) may 

decrease first and then increase. Thus, the perception of the system temporal evolution 

depends on the scale. At the same instant, small scales undergo an elongation mechanism 

whereas larger scales undergo a contraction mechanism. The ranges of scales undergoing 

elongation or contraction vary with time. This point is evidenced in Fig. 11 where the 

variation rates (d,t) are shown as a function of d for several times (Pi = 0.4 MPa). At each 

time, (d,t) continuously decreases with the scale, starting at a positive value for d = 0 to end 

at a negative value for the largest scale. As said above, the scales for which (d,t) is positive 

are those undergoing an elongation, whereas those with a negative (d,t) undergo a 

contraction. The scale space is thus divided in two regions: the small scale region associated 

to (d,t) > 0 and the large scale region associated to (d,t) < 0. The temporal evolution of 

these two regions describes the atomization process. We see that the large scale region 

enlarges to the detriment of the small scale region. Furthermore, in the small scale region, 

(d,t) decreases as a function of t for a given scale d whereas in the large scale region |(d,t)| 

increases. This says that during the atomization process the elongation mechanism decreases 
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in strength and concerns less and less scales, whereas the contraction mechanism is more and 

more effective and concerns an enlarging scale interval. The contraction mechanism diffuses 

in the space scale. This diffusion process can be characterized by considering the temporal 

evolution of the specific scale d0(t) for which, at each time, (d0,t) = 0. The scale d0(t) is 

understood as the one not influenced by the system shape variation at time t.  

Figure 12 shows the specific scale d0(t) for five injection pressures. As expected from Fig.11, 

this scale decreases with time and the decreasing rate increases with the injection pressure. 

For Pi = 0.2 MPa, d0 initiates an increase at large times. This behavior seems to be 

associated with the breakup region. For these times, the small scale (d < d0) elongation rate 

becomes almost equal to zero. The increase of d0 with time illustrates the progressive 

reduction of the effect of the contraction mechanism. At the end of the process, d0 tends 

towards infinity and (d,t) = 0 for all scales. This part of the process could not be investigated 

in detail here because the breakup region was not visualized for the injection pressure larger 

than 0.2 MPa.  

An attempt of modeling the scale diffusion mechanism characterized by d0(t) is performed by 

using Eq. (2). For every injection pressure this equation is applied in the scale range d0(t=0) to 

d0(t), i.e., x = ln(d0(t)/d0(0)). We assume here that at t = 0, the specific scale d0(0) is equal to 

the injector discharge orifice diameter dor. Note that this assumption agrees relatively well 

with the results shown in Fig. 12. This suggests that at the initial time, all existing scales 

undergo an elongation mechanism. The characteristic time corresponding to the scale range 

[d0(t); d0(0)] is the time t. Rearranging Eq. (2) yields: 
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The elements of Eq. (14) are plotted in Fig. 13 for four injection pressures. The resulting 

curves show two regions, each of them reporting a rather linear behavior. These regions 

correspond to the two phases of the process identified in Fig. 10, i.e., the internal dynamics 

mechanism phase and the relaxation mechanism phase. (These two phases are noted in Fig. 

13.) For every injection pressure, the linear behavior of the second region displays a slope 

equal to ½ in agreement with Eq. (14) (see Fig. 13) indicating that the evolution of the scale 

d0 follows the diffusion expressed by the scale entropy diffusion model. According to Eq. 

(14), it is therefore possible to evaluate the scale diffusivity for every injection pressure by 

considering the value at the origin of the curves shown in Fig. 13. The results of this 

evaluation are presented in Fig. 14 as a function of the injection pressure. This figure shows 

that for an injection pressure up to 1.5 MPa, the scale diffusivity linearly depends on the 

injection pressure. This result agrees with the one found in a previous investigation [9]. For 

larger injection pressures, the scale diffusivity still increases but the linear dependence is lost. 

This behavior may be due to the modification of the atomization process for these pressures 

because of the action of the aerodynamic forces. Further work is required to confirm this 

point.  

 

5 Conclusion 

In the present paper, the scale diffusion mechanism of the atomization process of a jet 

emanating from a GDI injector has been achieved. The experimental work is limited to low 

injection pressures in order to maintain a sufficiently visible atomization process and to 

produce well spatially resolved images of it. The analysis is based on a multi-scale description 

of the process by measuring the local cumulative scale distribution E2(d,t) and its temporal 

evolution and by analyzing the scale diameter D(d,t) defined as the inverse of the first 

derivative of E2(d,t) in the scale space. The temporal variation of this diameter indicates 
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whether the scale undergoes an elongation or a contraction mechanism. The main conclusions 

provided by this analysis are the following.  

At each instant of the process, the scale space is divided in two regions, i.e., the small-scale 

region corresponding to the scales that undergo an elongation mechanism and the large-scale 

region corresponding to the scales that undergo a contraction mechanism. The atomization 

process can be described as a succession of liquid structure formation and deformation. The 

production of liquid structures is associated to a mechanism of elongation. The deformation of 

these structures implies a contraction at their greater scales and an elongation at their small 

scales favoring the production of smaller structures on which the process repeats. This 

elongation-contraction mechanism diffuses therefore in the small-scale region. Furthermore 

the evolution rate of the elongation mechanism diminishes with time and the whole process is 

completed when this rate is equal to zero. As far as the elongation mechanism is concerned, it 

is found that it is controlled by the liquid jet dynamic at earlier times and by surface tension at 

later times defining two phases in the atomization process. During the first phase, the 

evolution rate of the elongation mechanism is constant with time and correlates with the jet 

Reynolds number. In the second phase, the inverse of this evolution rate linearly increases 

with time in a way that appears independent of the injection pressure. A temporal Weber 

number to identify the phase transition has been established. It is greater than 1 in the first 

phase and less than 1 in the second phase. 

The elongation-contraction diffusion mechanism is characterized by the temporal evolution of 

the scale that is not influenced by the system shape variation at time t. This scale decreases 

with time and it is found that its variation during the second phase of the atomization process 

allows determining the scale diffusivity introduced by the scale entropy diffusion model. In 

agreement with previous results it is found here that the scale diffusivity increases linearly 
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with the injection pressure when it is low. For higher injection pressures, this linearly 

dependency is lost for a reason that has not been identified here.  

These different results demonstrate the interest of the multi-scale description of liquid 

atomization process and of the scale entropy diffusion theory to model this phenomenon. 

Such developments bring a different view of this complex problem and do participate to 

improve our understanding and our capability to model them. Furthermore, these new 

concepts can find interesting connections with direct numerical simulation. For instance, they 

can be used to provide validation procedure based on different characteristics that those 

usually in use for this purpose. Furthermore, the direct numerical simulation offers an 

affordable way to perform a 3D multi-scale analysis of atomization processes. Indeed, the 2D 

approach presented here can be easily extended to 3D introducing the volume-based scale 

distribution. These aspects are under consideration in our group. Finally, in the future, the 

scale entropy theory might provide a new equation to model the final breakup phase which is 

always controlled by the mesh size in direct numerical simulation codes.  
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Figure Captions 

Figure 1: Raw image of the liquid flow issuing from the injector. From top left to bottom 

right: 0.1 MPa, 0.2 MPa, 0.3 MPa, 0.4 MPa, 0.5 MPa, 0.6 MPa, 1.5 MPa, 2.0 MPa, 

2.5 MPa. 

Figure 2: Two gray-level reoriented images of the liquid flow issuing from the injector. From 

top left to bottom right: 0.1 MPa, 0.2 MPa, 0.3 MPa, 0.4 MPa, 0.5 MPa, 0.6 MPa, 

1.5 MPa, 2.0 MPa, 2.5 MPa. 

Figure 3: Illustration of the Analyzing Window (the gray rectangle), of its position h and of 

the equivalent time t. (On scale.) 

Figure 4: Local cumulative scale distribution measurement: The portion of the liquid system 

delimited by the Analyzing window has an area equal to ST(t). It is eroded with a 

circular structuring element of diameter d (gray circle in the figure). The erosion 

step erases the hashed surface. The remaining surface area is S(d,t) (white surface 

in the figure). The erosion operation is performed for d ranging from 0 to infinity.  

Figure 5: Temporal evolution of the cumulative scale function E2(d,t) (Pi = 0.4 MPa) 

Figure 6: a – Temporal evolution of the mean interface length LM, b - Temporal evolution of 

the mean surface area SM 

Figure 7: Growth-rate of the mean interface length LM at small times as a function of the 

Reynolds number Re 

Figure 8: Temporal evolution of the scale diameter D(d,t) (Pi = 0.4 MPa, The scale 

increment between two consecutive curves is 11.6 µm) 

Figure 9: Characteristic time of the initial elongation rate of the interface (d = 0) as a function 

of the Reynolds number Re 
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Figure 10: Temporal evolution of the elongation rate of the interface (d = 0) and comparison 

with the characteristic capillary time (several injection pressures) 

Figure 11: Variation-rate of the scale diameter according to the scale for several times 

(Pi = 0.4 MPa, The time increment between two consecutive curves is 13.4 µs) 

Figure 12: Temporal evolution of the scale d0 

Figure 13: Illustration of Eq. (13) for four injection pressures (The dot line roughly delimits 

phase 1 and phase 2 of the atomization process) 

Figure 14: The scale diffusivity as a function of the injection pressure 
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Fig. 6-b 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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