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Joackim Bernier

October 6, 2017

Abstract

In this paper, we revisit the old problem of compact finite difference approximations of the homoge-

neous Dirichlet problem in dimension 1. We design a large and natural set of schemes of arbitrary high

order, and we equip this set with an algebraic structure. We give some general criteria of convergence

and we apply them to obtain two new results. On the one hand, we use Padé approximant theory to

construct, for each given order of consistency, the most efficient schemes and we prove their conver-

gence. On the other hand, we use diophantine approximation theory to prove that almost all of these

schemes are convergent at the same rate as the consistency order, up to some logarithmic correction.
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1 Introduction

Many decades ago, compact finite differences methods were widely studied. Nowadays, we can find a
huge literature about these methods that are widely applied and used for the approximation of partial
differential equations (see, for example, [3] or [10]). In particular, we can find a lot of examples of accurate
schemes for elliptic problems and many classical mathematical arguments are proposed to prove their
convergence (monotonicity, energy, green functions, ...). However, it seems that there is not general and
algebraic study of compact finite difference schemes for elliptic problems, equivalent to what we can find,
for example, for the Runge Kutta methods applied to Cauchy problems (general stability criteria, algebraic
order conditions using Hopf algebras and trees as we can see in [6] or [5]).

As the field of elliptic problems is clearly too wide, we propose, in this paper, a general study of a large
and natural class of compact finite difference schemes of high order for the homogeneous Dirichlet problem
in dimension 1. In this context, a compact finite difference scheme is a linear system of the form

DNu
N = SN f

N,ex,
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where f
N,ex is a discretization of the source term on a grid of stepsize h = (N + 1)−1, DN and SN are

matrices and u
N is the approximation of the solution of the Dirichlet problem.

To study their convergence (i.e. the approximation of the exact solution by u
N ), we first introduce

some specific and rigorous notions of consistency and stability taking into account the boundary conditions.
Then, we describe precisely the class of schemes that we consider, namely when the matrix DN is a
polynomial in the usual discrete second derivative matrix AN defined by

AN =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



∈ L (CN ). (1)

This choice is made for two reasons. First it allows for a relatively simple stability analysis, and second
it is in fact not so restrictive. Indeed, if we take a symmetric finite difference formula d = (dj)j∈Z that
approximates the second derivative, i.e. for all smooth function u,

∑

j∈Z

dju(hj) ≃ −h2u′′(0),

then we get, from a convolution formula and for some specific and natural choice of the coefficients near
the boundary, a matrix DN that is a polynomial in AN .

In this paper, we give some general criterion of convergence for this family of schemes. Moreover, we
address the following two questions:

• Are these schemes stable in general ?

• Amongst these schemes, what are the most efficient and are they stable?

We will precise the two ambiguous terms general and efficient by introducing, on one hand, a Lebesgue
measure on the set of schemes, and on the other hand, an optimization problem defining efficiency. The
first main result of this paper will be to prove that almost all schemes are convergent at the same rate
as its consistency order, up to some logarithmic correction. It is based on a careful analysis of small
denominators appearing in the stability conditions, linked with diophantine approximation theory. The
second main result of this paper is the design and construction of the most efficient schemes in the class
considered, which turn to be stable, this latter property requiring the use of Padé approximant theory to
be proved.

2 Formalism and main results

The goal of this section is to present the two main results of this paper. To this aim, we first define
rigorously compact finite difference schemes for the homogeneous Dirichlet problem in dimension 1. Then,
we recall the usual concept of convergence, consistency and stability for these schemes. And finally, we
define the particular set of schemes that we consider.

2.1 Context

We consider the homogeneous Dirichlet problem in dimension 1, namely:

For a given f : R→ C, find u : [0, 1]→ C such that

{
−u′′(x) = f(x), ∀x ∈]0, 1[,
u(0) = u(1) = 0.

(2)

To design finite difference schemes, we will consider regular grids on R. More precisely, we choose
N ∈ N∗ to be the number of grid points into ]0, 1[ (the number of unknowns) and we define h as the
stepsize of the grid. As a consequence, h and N are linked by the relation

h =
1

N + 1
.

Let xN
j = jh, j ∈ Z denote the grid points, see Figure 1.
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. . .

xN
−1 = −h xN

0 = 0 xN
1 = h xN

2 = 2h xN
N = Nh xN

N+1 = 1 xN
N+2 = 1 + h

Figure 1: Regular grid with N points into ]0, 1[.

In this context, a finite difference scheme is a couple of sequences of matrices ((DN )N∈N∗ , (SN )N∈N∗)
such that DN ∈ L (CN ) is a square matrix of size N and SN ∈ L (CZ;CN ) is a rectangle matrix with N
rows and a finite number of columns.

If DN is invertible for all N , such a scheme leads to an approximation of the solution u of the Dirichlet
problem (2). More precisely, we define f

N,ex and u
N,ex as the vectors of the values of f and u on the grid:

f
N,ex = (f(xN

j ))j∈Z ∈ CZ and u
N,ex = (u(xN

j ))j∈J1,NK ∈ CN . (3)

Then, the scheme gives an approximation u
N of uN,ex through the solution of the linear system

DNu
N = h2

SN f
N,ex. (4)

It may seem unusual to use the values of f outside [0, 1] but it is just a way to have more symmetric
formulas. In practice, as we will explain in the subsection 2.3, we only use a finite number of values of
f outside [0, 1] independent of N and at a distance of order h of [0, 1]. Consequently, as we will assume
that f is a regular function, these values could be extrapolated from those of f in [0, 1] with some Newton
series.

To estimate the accuracy of a scheme, we define a notion of rate of convergence and of order of
convergence. Let (ǫN )N∈N∗ be a sequence of positive numbers that tends to 0, as N goes to infinity. Then,
a scheme ((DN )N∈N∗ , (SN )N∈N∗) is said to be convergent at the rate (ǫN )N∈N∗ , if DN is invertible for all
N ∈ N∗ and if for all f ∈ C∞(R) there exists a constant c > 0 such that for all N ∈ N∗,

sup
j=1,...,N

|uN
j − u

N,ex
j | =: ‖uN,ex − u

N‖∞ ≤ cǫN . (5)

Furthermore, if n is a positive integer and ǫN = hn, then a scheme that is convergent at the rate (ǫN )N∈N∗

is said to be convergent of order n.

2.2 Notions of consistency and stability

In order to establish a convergence result of the form (5), we use introduce the notions of consistency and
stability. Then, we give a Lax theorem to deduce the convergence from the consistency and the stability.

A scheme ((DN ), (SN )) is said to be consistent of order n ∈ N, if for all f ∈ C∞(R) there exists a
constant c > 0 such that for all N ∈ N∗, the vectors u

N,ex and f
N,ex, defined by (3), verify

‖DNu
N,ex − h2

SN f
N,ex‖∞ ≤ chn+2. (6)

In the context of the Dirichlet problem, it is usual to relax this notion of consistency near the boundary
(see [3]). A scheme ((DN ), (SN )) is said to be consistent of order n ∈ N in the center and of order n− 2
at a distance l ∈ N of the boundary, if for all f ∈ C∞(R) there exists a constant c > 0 such that for all
N ∈ N∗, the vectors u

N,ex and f
N,ex, defined by (3), verify for all j = 1, . . . , N ,

∣∣∣
(
DNu

N,ex
)
j
− h2

(
SN f

N,ex
)
j

∣∣∣ ≤
{

chn+2 if l < j < N + 1− l,
chn else.

(7)

In this article, it is useful to distinguish some notions of stability. A scheme ((DN ), (SN )) or a sequence

(DN )N∈N∗ ∈
∏

N∈N∗

L (CN ) of matrices is said to be

• stable, if there exists a positive constant c > 0 such that for all N ∈ N∗, we have

∀v ∈ CN , c‖v‖∞ ≤ h−2‖DNv‖∞. (8)
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• strongly stable, if for all l ∈ N, there exists a positive constant c > 0 such that for all N ∈ N∗,

∀v ∈ CN , c‖v‖∞ ≤ sup
j=1,...,N

{
h−2 (DNv)j if l < j < N + 1− l,

(DNv)j else.
. (9)

• stable relatively to a sequence (ηN )N∈N∗ of positive numbers, if there exists a positive constant c > 0
such that for all N ∈ N∗, we have

∀v ∈ CN , c‖v‖∞ ≤ ηN‖DNv‖∞. (10)

We remark that, if a scheme is strongly stable, then it is stable, and, if it is stable, then it is stable relatively
to ηN = (N + 1)2 = h−2.

To establish convergence from consistency and stability, we give a Lax theorem.

Theorem 2.1. Lax

• A scheme that is strongly stable (see (9)) and consistent of order n ≥ 1 in the center and of order
n− 2 at a distance l ∈ N of the boundary (see (7)) is convergent of order n.

• Let (ηN )N∈N∗ be a sequence of positive number and n ∈ N∗ such that the sequence (ηNhn+2)N∈N∗

tends to zero as N goes to infinity. Then a scheme that is stable relatively to the sequence (ηN )N∈N∗

(10) and consistent of order n (6) is convergent at the rate ǫN = ηNhn+2 (5).

Proof. The invertibility of DN follows from the stability estimate. To prove the convergence estimate, it
is enough to apply the stability estimate to the error of consistency

DNv = DN

(
u
N,ex − u

N
)
= DNu

N,ex − h2
SN f

N,ex.

2.3 Expression of the schemes

Usually, to design a finite difference scheme ((DN ), (SN )), we need to introduce the notion of finite dif-
ference formulas. A finite difference formula is a sequence of complex numbers indexed by Z with finite

support. We denote by C(Z) their space. We say that a couple of finite difference formulas (d, s) ∈
(
C(Z)

)2

is consistent of order n, if

∀u ∈ C∞(R),
∑

j∈Z

dju(x
N
j ) + h2sju

′′(xN
j ) = O(hn+2). (11)

For example, if we introduce the usual formula for the second derivative

a = 21{0} − 1{−1,1}, (12)

then a Taylor expansion shows that (a, 1{0}) is consistent of order 2.

To preserve the classical properties of the second derivative, it is natural to assume that the sequences
d and s are symmetric,

d, s ∈ SC := {b ∈ C(Z) | ∀j ∈ Z, bj = b−j}, (13)

and it is then natural to restrict the analysis to the case where n is an even number. Sometimes, it is
interesting and more effective –for instance using formal calculus– to consider finite difference formulas
with coefficients in a smaller ring than C. For example, the usual high order formulas have rational or
integer coefficients. That is why, we introduce, the more general notation

SR := {b ∈ R(Z) | ∀j ∈ Z, bj = b−j} with R a ring such that Z ⊂ R ⊂ C. (14)

It is useful to associate to each finite difference formula the highest index associated to a non zero value.
It is a measure of the stencil of a formula. More formally, if b ∈ SC is a symmetric formula then τ(b) is
defined by

τ(b) = max{j ∈ Z | bj 6= 0}. (15)

The following proposition explains that there is a simple way to get finite difference formulas d, s ∈ SC

consistent of order n.
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Proposition 2.2. Let n ∈ 2N be an even integer and d ∈ SC be a symmetric formula with zero mean

∑

j∈Z

dj = 0. (16)

Then there exists a unique s ∈ SC such that (d, s) is consistent of order n (11) and τ(s) ≤ n
2 − 1.

Furthermore, ( s02 , s1, . . . , sn
2
−1) is the solution of the Vandermonde linear system

(
s0
2
, s1, . . . , sn

2
−1)((i − 1)2j−2)1≤i,j≤ n

2
= −

∑

j>0

dj

(
j2

2
, . . . ,

jn

n(n− 1)

)
. (17)

Proof. If 1 ≤ j ≤ n
2 is an integer and if we choose u = x2j in (11) then it comes

∑

i∈Z

di(hi)
2j + sj2j(2j − 1)h2ji2(j−1) = O(hn+2).

As j ≤ n
2 and h tends to 0, we deduce that the remainder vanishes and we recognize the Vandermonde

equation (17).
Conversely, since d and s are symmetric, if u is an odd function then

∑

i∈Z

diu(x
N
i ) + h2siu

′′(xN
i ) = 0.

Furthermore, since s is the solution of (17), this relation also holds if u = x2j with 1 ≤ j ≤ n
2 . As a

consequence, it is enough to apply a Taylor Young expansion to prove (11).

Then, to design the matrix DN and SN from the formulas d and s, a natural choice would be the
following:

(DNu)i =
∑

j∈Z

di−juj and (SN f)i =
∑

j∈Z

si−jfj . (18)

However, DN has to be square matrix. And, with such a definition, we use the values of u at the indexes
1 − τ(d), . . . , 0 and N + 1, . . . , N + τ(d). The usual way to solve this problem is to modify the formulas
near the boundary (for i ≤ τ(d) or i ≥ N +1− τ(d)). That is why, we introduce, for i = 1, . . . , τ(d), some
formulas di ∈ C(Z) and si ∈ C(Z) that satisfy a relation of consistency at a distance i of the boundary

∀u ∈ C∞(R), u(0) = 0 ⇒
∑

j>−i

diju(x
N
j+i) + h2

∑

j∈Z

siju
′′(xN

j+i) = O(hµ+2), (19)

here µ ∈ {n− 2, n} is the desired order of consistency. We use symmetrically in 1 these formulas to define,
if N is large enough, the following scheme ((DN ), (SN )), for u ∈ CN and f ∈ CZ, by

(DNu)i :=





∑

j>0

dij−iuj if 1 ≤ i ≤ τ(d),

∑

j∈Z

dj−iuj if τ(d) < i < N + 1− τ(d),

∑

j<N+1

dN+1−i
−j+i uj if N + 1− τ(d) ≤ i ≤ N + 1.

(20)

and

(SN f)i :=





∑

j∈Z

sij−ifj if 1 ≤ i ≤ τ(d),

∑

j∈Z

sj−ifj if τ(d) < i < N + 1− τ(d),

∑

j∈Z

sN+1−i
−j+i fj if N + 1− τ(d) ≤ i ≤ N + 1.

(21)

The following proposition enables to get the consistency of such a construction.

Proposition 2.3. For N large enough, let ((DN ), (SN )) be the scheme (defined by (20) and (21)), then

• if µ = n− 2, this scheme is consistent of order n− 2 at a distance τ(d) of the boundary and of order
n in the center, see (7).

• if µ = n, this scheme is consistent of order n, see (6).
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Proof. see Appendix 5.1.

The main difficulty with such a construction is to get stability. There are at least two general ways for
choosing the formulas near the boundary to ensure stability. A first principle is to rely on monotonicity
arguments, as explained by Bramble and Hubbart [3] and Price [8]. The methods they consider to design
the coefficients near the boundary are robust and lead, in general, to strong stability. However, the choice
of formulas d and di is quite limited, as the conditions to ensure monotonicity are in general difficult to
fulfil. Furthermore, it turns out that there exist very accurate high order schemes that do not satisfy any
hypothesis of monotonicity.

A second natural way of obtaining the boundary coefficients is to start from polynomial methods that
we consider below. For these methods, if we respect some algebraic structures, we can compute explicitly
the eigenvalues and the eigenvectors of DN , and analyse directly the stability. This method is not very
restrictive for the choice of the formulas d and there is a natural choice for the formulas di near the
boundary.

The polynomial methods consists in studying schemes for which there exists a polynomial P such that,
for all N ∈ N, DN = P (AN ) is a polynomial of AN (the classical approximation of the second derivative,
defined in (1)). The interest of this method is that the spectral decomposition of these matrices is well
known. Indeed, we can verify by a straightforward calculation that

ANe
N
k = 4 sin2

(π
2
kh
)
e
N
k , with e

N
k := (sin(πkhj))j=1,...,N , (22)

and deduce classically that

DNe
N
k = P

(
4 sin2

(π
2
kh
))

e
N
k . (23)

Actually, it is not very restrictive to require for DN to be a polynomial in AN . Indeed, for a given
symmetric formulas d, there is a natural possible choice for the boundary formulas di, i = 1, . . . , τ(d) such
that the matrix DN defined by (20) is a polynomial in AN . This choice corresponds to extend all the
vectors u ∈ CN in sequences defined on Z through the relations

∀j ∈ Z, uj = −u−j and uN+1+j = −uN+1−j,

and use the natural convolution formula (18). In practice, when N is large enough, this choice leads to

dij = dj − d2i+j , i = 1, . . . , τ(d), j ∈ Z (24)

In all this paper, we denote by DN (d) the square matrix obtained from this construction (i.e. the matrix
(20) and the boundary formulas (24)– see Definition 3.1 for a formal construction).

The following proposition shows that the previous construction is relevant: First, we prove that all the
matrices DN (d) are polynomials in AN , and second we can find formulas si, i = 1, . . . , τ(d) satisfying (19)
for any given order of consistency µ.

Proposition 2.4.

• If R is a ring such that Z ⊂ R ⊂ C and if d ∈ SR is a R valued finite difference symmetric formula
then there exists a polynomial P ∈ R[X ] such that

∀N ∈ N∗, P (AN ) = DN (d)

and
degP = τ(d).

• Let n ∈ 2N∗ and µ = n or µ = n − 2. If there exists a finite difference formula s ∈ SC such that
(d, s) is consistent of order µ (see (11)) then for all i = 1, . . . , τ(d) there exists a unique symmetric
formula bi ∈ SC such that τ(b) ≤ µ

2 − 1 and

si := s+ (bii+j)j∈Z is consistent of order µ at a distance i of the boundary, see (19).

Furthermore, (
bi0
2 , b

i
1, . . . , b

i
µ
2
−1) is the solution of the Vandermonde linear system

(
bi0
2
, bi1, . . . , b

i
µ
2
−1)((i − 1)2j−2)1≤i,j≤ µ

2
= −

∑

j>0

di+j

(
j2

2
, . . . ,

jµ

µ(µ− 1)

)
. (25)
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Proof. The first point will be proved in the next section as a direct consequence of Lemma 3.3 and Lemma
3.4. To prove the second point, let consider u ∈ C∞(R) such that u(0) = 0. Then we have from (24), for
i = 1, . . . , τ(d),

∑

j>−i

diju(x
N
j+i) + h2

∑

j∈Z

sju
′′(xN

j+i) =
∑

j>−i

(dj − dj+2i)u(x
N
j+i) + h2

∑

j∈Z

sju
′′(xN

j+i)

=
∑

j∈Z

dju(x
N
j+i) + h2sju

′′(xN
j+i)−

∑

j<−i

dju(x
N
j+i)−

∑

j>−i

dj+2iu(x
N
j+i)

= −
∑

j>0

di+j

(
u(xN

−j) + u(xN
j )
)
+O(hµ+2)

= −
∑

j∈Z

d̃ju(x
N
j ) +O(hµ+2),

with d̃ ∈ SC a symmetric finite difference formula with zero mean (16) defined by d̃j = di+j if j > 0. Then
applying Proposition 2.2 enables to conclude the proof.

Remark 2.5. The formula (25) implies in particular that bτ(d) = 0 because, for i = 1, . . . , τ(d), the right
hand side term in (25) is zero by definition of τ(d).

To conclude this part, explicit expressions of a class a high order schemes constructed using the previous
principle are proposed. They will be used to give examples.

Proposition 2.6. Let (d, s) ∈ SC be a couple of symmetric finite difference formulas that is consistent
of order n with n ∈ 2N∗. Let µ ∈ {n − 2, n} be an even integer. Define l = τ(d) − 1, m = τ(s) and for
i = 1, . . . , l, bi as the solution of the system (25). If we choose si = s+(bii+j)j∈Z and di = dj − d2i+j then
the relations (20) and (21) define a scheme that is consistent of order n in the center and of order µ at
a distance l of the boundary. More precisely, if N is large enough, this scheme is given by the following
band matrices:

DN (d) =




d0 . . . dl+1

...
. . .

. . .

dl+1
. . .

. . .

. . .
. . . dl+1

. . .
. . .

...
dl+1 . . . d0




−




d2 . . . dl+1

...
...

dl+1

dl+1

...
...

dl+1 . . . d2




∈ L (CN ),

SN =




sm . . . s0 . . . sm
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

sm . . . s0 . . . sm




+



B

+
µ

0N−µ+2,N−µ+2

B
−
µ


 ∈ L (CZ;CN )

with 0N−µ+2,N−µ+2 the zero square matrix of size N − µ+ 2,

B
+
µ =




b1µ
2
−1 . . . . . . b10 . . . . . . b1µ

2
−1

...
...

...
...

...
...

...
blµ

2
−1 . . . . . . bl0 . . . . . . blµ

2
−1


 ∈ L (Cµ−1;Cl)

and

B
−
µ =




blµ
2
−1 . . . . . . bl0 . . . . . . blµ

2
−1

...
...

...
...

...
...

...
b1µ

2
−1 . . . . . . b10 . . . . . . b1µ

2
−1


 ∈ L (Cµ−1;Cl).
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2.4 Main results

We will first define the notion of efficiency discussed in the introduction. If we design our schemes as in
Proposition 2.6, and unless some more specific algebraic structure is given, the computation time for the
approximation of one solution of the Dirichlet problem – that is the solution of the linear system (4)– grows
a priori linearly with the size of the stencils τ(d) and τ(s). As a consequence, in general, the smaller τ(d)
and τ(s) are, the larger the order of consistency of (d, s) is, and hence the more efficient is our scheme. As
a consequence, we will define schemes to be the most efficient for given l,m ∈ N, those which are solutions
to the following optimization problem:

max
(d,s)∈S 2

C
\{(0,0)}

τ(d)≤l+1, τ(s)≤m

ord(d, s), (26)

where ord(d, s) is the exact order of consistency of (d, s)

ord(d, s) = sup{n ∈ 2N | (d, s) is consistent of order n according to (11)}.

The following theorem proves that for any given stencil sizes l and m in N, there exists a most efficient
scheme solution of the previous optimization problem, and it is unique, up to a multiplication by a scalar.

Theorem 2.7. For all l,m ∈ N, there exists a couple of rational symmetric formulas (dl,m, sl,m) ∈ S 2
Q

such that 



τ(dl,m) = l + 1,
τ(sl,m) = m,∑

j∈Z

dl,mj j2 = −2,

that is solution of the problem of optimization

max
(d,s)∈S 2

C
\{(0,0)}

τ(d)≤l+1, τ(s)≤m

ord(d, s) = ord(dl,m, sl,m) = 2(l +m+ 1).

Moreover if (d, s) ∈ S 2
C is such that τ(d) ≤ l + 1, τ(s) ≤ m and ord(d, s) = 2(l +m+ 1) then there exists

λ ∈ C such that d = λdl,m and s = λsl,m.

This theorem is the main result of the second section of this work (see Theorem 3.8). The proof relies
on an interpretation of the optimization problem (26) as Padé approximant problem. The optimal formulas
of this theorem are effective because we can prove, with the property of uniqueness of Theorem 2.8, that
they can be computed exactly as the solutions of these rational (l +m+ 3)× (l +m+ 3) linear systems




L
0
l+1 01,m+1

L
2
l+1 01,m+1

L
2
l+1 2L0

m

...
...

L
2(l+m+1)
l+1 2(m+ l + 1)(2(m+ l) + 1)L

2(l+m)
m







dl,m0
...

dl,ml+1

sl,m0
...

sl,mm




=




0
−1
0
...
0




, (27)

with
L
k
n =

(
0k

2 1k . . . nk

)
and 01,m+1 the zero row matrix of size m+ 1.

The formulas dl,m being constructed as the solution of an optimization problem, there is a priori no
reason that they generate stable schemes. However, the following theorem, which will be proved in the
third section (see Application 2 of Theorem 4.1), precisely states that all these optimal schemes are indeed
strongly stable.

Theorem 2.8. For all l ∈ N∗ and for all m ∈ N, (DN (dl,m))N∈N∗ is strongly stable, see (9).

In particular, following Theorem 2.1, the schemes designed in Proposition 2.6, with d = dl,m, s = l,m,
n = 2(l +m+ 1) and µ = 2(l +m), are convergent of order 2(l +m+ 1).
Experimentally, these schemes are very efficient and we can notice that the smaller |m − l| is, the more
accurate the scheme is. This is illustrated in Figure 2 in which some convergence plots are displayed for
the 10th order optimal formulas (i.e. l +m+ 1 = 5)
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Figure 2: Convergence curves, with u(x) = x(1 − x)e4 cos(41x) and EN := ‖uN − u
N,ex‖∞, N ∈

{200, 235, 271, 300, 341, 372, 401, 447, 500}, for the optimal schemes designed in Proposition 2.6, with
n = 10, µ = 8, d = dl,m and s = sl,m.

As explained in the introduction, we now address the question of generic performance of the schemes
that we have constructed above: are they stable and convergent in general once the algebraic order
conditions are satisfied. To give a meaning to this question, we decide to use measure theory. Of course
there exist formulas such that (DN (d))N can not be stable. It is the case, for example, when DN (d) is
not invertible for all N which occurs for when the polynomial P defining the scheme admit a root of the
form 4 sin2

(
π
2 kh

)
, see (23), which are eigenvalues of the matrix AN . But even if this is not the case,

these eigenvalues can be very close to the roots of P , which induces small denominators in the stability
estimates. Of course, these situations have to be avoided as well.

The following theorem gives an answer to these questions (see Application 1 of Theorem 4.1 and
Application 2 of Theorem 4.3 for the proof).

Theorem 2.9. Let K ∈ {R,C} be a field and l ∈ N be an integer. Let CK,l be the K finite dimensional
vector space of symmetric formulas d ∈ SK with zero mean (16) and τ(d) ≤ l + 1

CK,l = {d ∈ SK |
∑

j∈Z

dj = 0 and τ(d) ≤ l + 1}.

Then for any Lebesgue measure on CK,l, we have that:

• For almost all d ∈ CC,l, (DN (d))N∈N∗ is strongly stable (9).

• For almost all d ∈ CR,l, (DN (d))N∈N∗ is stable relatively to any sequence (ηN )N (10) such that

∑

N∈N∗

N + 1

ηN
<∞ and sup

N∈N∗

(N + 1)2

ηN
<∞.

As for Bertrand series, there is no optimal choice of sequence (ηN )N∈N that satisfy this condition and
we can not directly deduce stability in the sense of (8), but we can choose

ηN = ((N + 1) log(N + 1))2 =

(
log h

h

)2

.

As a consequence, we affirm that, up to some logarithmic corrections, almost all real symmetric formula
generates stable schemes.

We use this theorem to deduce a convergence result.

9



Proposition 2.10. With any given d ∈ CK,l, we can associate the scheme of Proposition 2.6, with µ = n−2
if K = C and µ = n if K = R, and the formula s given by Proposition 2.2. Then, it follows from Theorem
2.1 that for all l ∈ N,

• for almost all d ∈ CC,l, the associated scheme is convergent of order n.

• for almost all d ∈ CR,l, the associated scheme converges at the rate hn(log(h))2.

In the proof of Theorem 2.9 for real formulas, the logarithmic correction is due to the use of a dio-
phantine control of some resonances. Experimentally, we can indeed evidence these quasi-resonances by
plotting convergence curves for various schemes of Proposition 2.10 for randomly drawn formulas d. Two
typical kinds of behaviors for the convergence curves can be observed (see Figures 3 and 4 below). For
random d, either we observe classical convergence curves (which are close to straight lines and correspond
to non-resonant situations), or we obtain strange curves with a complex behaviour corresponding to close
to resonant situations.

3.5 4 4.5 5 5.5 6
-12

-10

-8

-6

-4

-2

0

log(N)

lo
g(

E
_N

)

quasi-resonant

non-resonant

log(10 N^{-2})

Figure 3: Convergence curves with u(x) = x(1 − x)e2x , n = 2 and EN := ‖uN − u
N,ex‖∞. For the

non-resonant scheme d = 21{0} − 1{−1,1} and for the quasi-resonant scheme d = (2 − 6z)1{0} + (4z −
1)1{−1,1} − z1{−2,2} with z = 0.358946420670826.

3 Polynomials and high order formulas

The aim of this section is two fold. First, to explain why the matrices DN (d) constructed in Proposition
2.6 are polynomials in d. Second, to give criteria of consistency on these polynomials to interpret Theorem
2.7 as a classical problem of Padé approximant.

To highlight the algebraic structure of the matrices DN (d) of Proposition 2.6 we will now give a more
formal definition of these matrices.

Let d ∈ SC be a symmetric formula. We introduce Td ∈ L (CZ), the operator of convolution by d,

∀w ∈ CZ, Td(w) = d ⋆ w =



∑

j∈Z

djwi−j




i∈Z

. (28)

Let N ∈ N∗ and EN be the space of the odd functions from Z to C that are odd in 0 and in N + 1

EN := {w ∈ CZ | ∀j ∈ Z, wN+1+j = −wN+1−j and w−j = −wj}. (29)
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Figure 4: Convergence curves with u(x) = x(1 − x)e2x , n = 4 and EN := ‖uN − u
N,ex‖∞. For the

non-resonant scheme d = 21{0} − 1{−1,1} and for the quasi-resonant scheme d = (2 − 6z)1{0} + (4z −
1)1{−1,1} − z1{−2,2} with z = 32.12121212.

Let BN be the canonical basis of EN

BN = (1j+(2N+2)Z − 1−j+(2N+2)Z)j=1,...,N . (30)

Since d is symmetric, we verify that EN is stable by Td.

Definition 3.1. With the previous construction, we define DN (d) through the relation

DN (d) = matBN
Td| EN

.

Remark 3.2. Of course, this definition of DN (d) gives the same matrices, when N is large enough, as
the matrix of Proposition 2.6.

The space of symmetric formulas has a structure of free module on the ring of polynomial that is very
useful to write efficient and accurate high order schemes. More precisely, we equip the set of formula C(Z)

of its structure of commutative algebra for the convolution

∀d, s ∈ C(Z), d ⋆ s =




∑

j∈Z

djsi−j





i∈Z

.

Then, if R is a ring such that Z ⊂ R ⊂ C, we consider SR as a subalgebra of C(Z).

On the one hand, this structure explains, through the following lemma, the importance of the formula
a (defined in (12) by a = 21{0} − 1{−1,1}).

Lemma 3.3. If R is a ring such that Z ⊂ R ⊂ C then SR is a free R[X ] module whose a is a basis

∀d ∈ SR, ∃ ! P ∈ R[X ], d = P (a).

Furthermore, if P ∈ C[X ] then
τ(P (a)) = degP.

Proof. If we consider C(Z) as a subalgebra of C(
Z

2 ) then we remark that

a = −
(
1{ 1

2} − 1{− 1
2}
)⋆2

.

11



Consequently, a binomial expansion gives

∀n ∈ N, a⋆n = (−1)n
(
1{ 1

2} − 1{− 1
2}
)⋆2n

=

n∑

k=0

(2n)!

(n+ k)!(n− k)!
(−1)k1{k,−k}.

The second point of the lemma is clearly a consequence of this expansion. Furthermore, since the term
associated to the highest index of a⋆n (i.e. (−1)n) is invertible in R, the first point follows from an
induction.

On the other hand, this structure explains, why the matrices DN (d) are polynomials in AN .

Lemma 3.4. For all N ∈ N∗, d 7→ DN (d) is a C[X ] module morphism:

∀P ∈ C[X ], ∀d ∈ SC, DN (P (d)) = P (DN (d)).

Proof. It follows directly of Definition 3.1 of DN (d) and of the associativity of the convolution.

3.1 Consistency for the polynomials

We start with a lemma that we have used implicitly in the introduction (in Proposition (2.2) and Propo-
sition (2.4)).

Lemma 3.5. Let n ∈ 2N. Then a couple of formulas (d, s) ∈ S 2
C is consistent of order n (11) if and only

if

∀p ∈ Cn+1[X ],
∑

j∈Z

djp(j) + sjp
′′(j) = 0.

Proof. It is enough to choose u(x) = xi with i ≤ n + 1 is the definition of the consistency and then to
simplify the powers of "h". Conversely, it is enough to do a Taylor expansion.

In particular, if we choose p = 1, we find that the consistency of order n = 0 is nothing but the
condition of zero mean (16) for d.

We introduce the formal Fourier transform F from the algebra of formulas C(Z) to the algebra of formal
series CJXK defined by

F :






C(Z) → CJXK

d 7→
∑

j∈Z

dje
ijX .

We give a characterization of consistency through this transform.

Lemma 3.6. Let n ∈ 2N. A couple of formulas (d, s) ∈ S 2
C is consistent of order n (11) if and only if

Fd = X2
Fs mod Xn+2.

Proof. Let ∂X ∈ L (C[X ]) be the formal derivative on the space of the polynomials C[X ]. As a consequence,
since the Taylor expansion in 0 of a polynomial is exact, if p ∈ C[X ] and x0 ∈ C then we have

p(x0) = ex0∂Xp(0).

Consequently, following Lemma (3.5), (d, s) ∈ S 2
C is consistent of order n (11) if and only if

∀p ∈ Cn+1[X ],
(
Fd−X2

Fs
)
(i∂X)p(0) = 0.

We conclude the proof by considering the lowest power in the expansion of Fd−X2Fs in 0.

The formal Fourier transform is as usual an algebra morphism. As a consequence, if P ∈ C[X ] and
d = P (a) then

∑

k∈N∗

∑

j∈Z

dj
(−1)kj2k
(2k)!

X2k = Fd = P (Fa) = P (2− 2 cos(X)) = P

(
4 sin2

(
X

2

))
. (31)

The consistency and the stability of the formulas often involve moment of d or s. In particular, this relation
provides simple expressions for the first moments of d in function of P

∑

j∈Z

dj = P (0) and
∑

j∈Z

djj
2 = −2P ′(0).

In fact, with the formula (31), we get a criterion of consistency directly on the polynomials.
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Lemma 3.7. Let P,Q ∈ C[X ] and n ∈ 2N∗. The couple of symmetric formulas (P (a), Q(a)) is consistent
of order n (11) if and only if

P (4X2) = 4 (arcsin(X))
2
Q(4X2) mod Xn+2,

where (arcsin(X))
2

is the square of the inverse sine function whose expansion is (for a reference, see, for
example, [2])

(arcsin(X))2 =
∑

n∈N∗

22n−1

n2Cn
2n

X2n.

Proof. If we apply (31) to the criterion of consistency of Lemma 3.6 then it comes

P

(
4 sin2

(
X

2

))
= X2Q

(
4 sin2

(
X

2

))
mod Xn+2.

To conclude the proof, it is enough to do the change of variable

X ← 2 arcsin(X).

3.2 The optimal case

In order to prove Theorem 2.7 we are going to explain the link between the problem of optimization (26)
and the theory of Padé approximant. To see this link we introduce the usual valuation on CJXK:

∀C ∈ CJXK, val(C) = min{k ∈ N | ∀0 ≤ j ≤ k, C(j)(0) = 0}.

As a consequence, with this formalism, Lemma 3.7 can be written

∀P,Q ∈ C[X ], ord (P (a), Q(a)) = val
(
P (4X2)− 4 (arcsin(X))

2
Q(4X2)

)
− 2.

However, Lemma 3.3 proves that (P,Q) 7→ (P (a), Q(a)) is a bijection from Cl+1[X ]× Cm[X ] to the space
of the couples of symmetric formulas (d, s) such that τ(d) ≤ l + 1 and τ(s) ≤ m. As a consequence, the
problem of optimization (26) is equivalent to the following

max
(P,Q)∈C[X]2\{(0,0)}
degP≤l+1, degQ≤m

val
(
P (4X2)− 4 (arcsin(X))

2
Q(4X2)

)
.

Since if P (0) 6= 0 then val
(
P (4X2)− 4 (arcsin(X))

2
Q(4X2)

)
= 0, it is natural to study this problem of

optimization for polynomials P such that

P = XR where R ∈ Cl[X ].

Consequently, it is enough to study the following problem of optimization

max
(R,Q)∈C[X]2\{(0,0)}
degR≤l, degQ≤m

val (R− CQ) , (32)

with (see [2] for the expansion)

C(X) := 4

(
arcsin(

√
X
2 )√

X

)2

= 2
∑

n∈N

Xn

(n+ 1)2Cn+1
2n+2

. (33)

The theory of Padé approximants is a deep theory about approximation of formal series by rational
ones. It has been extensively developed in the last decades (see [1] or [4] for an overview). Its aim is to
give to each formal series F ∈ CJXK a rational approximation

pl,m

ql,m
(usually noted [l/m]) such that

F =
pl,m
ql,m

mod X l+m+1 , with pl,m ∈ Cl[X ] and ql,m ∈ Cm[X ]. (34)

A natural way to find such an approximation is to try to solve

pl,m = Fql,m mod X l+m+1 , with pl,m ∈ Cl[X ] and ql,m ∈ Cm[X ]. (35)
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Indeed, if we get a solution (pl,m, ql,m) of (35) with ql,m(0) 6= 0 then it is also a solution of (34). The second
formulation (35) is interesting because it is a linear system of l+m+1 equations and l+m+2 unknowns.
Consequently, it admits at least one non trivial solution. However, the question of its uniqueness (up to
multiplication by a scalar) is generaly non trivial. In the classical Padé theory, if for a formal series F ,
the linear system (35) admits for all l,m ∈ N, a unique non trivial solution (up to multiplication by a
scalar), then it is said that the Padé table of F is normal. Furthermore, if F (0) 6= 0 and if its Padé table
is normal then a non trivial solution (pl,m, ql,m) of (35) satisfies deg pl,m = l, deg ql,m = m, ql,m(0) 6= 0
and val(pl,m − Fql,m) = l +m+ 1 (see [1] or [4] for details).

What is crucial for us is that the Padé table of C is normal. In fact, D. Karp and E. Prilepkina have
proved in [7] that the Padé tables of many generalized hypergeometric functions are normals. To see that
the Padé table of C is normal, we just have to verify that C is one of those generalized hypergeometric
functions. The generalized hypergeometric functions are the formal series defined by

pFq

[
α1 . . . αp

β1 . . . βq

;X

]
=
∑

k∈N

(α1)k . . . (αp)k
(β)1 . . . (βq)k

Xk

k!
with (γ)k =

k−1∏

j=0

γ + j. (36)

D. Karp and E. Prilepkina have proved in Theorem 9 of [7] that if





p = q + 1,
0 < αq+1 ≤ 1,
0 < α1 ≤ · · · ≤ αq,
0 < β1 ≤ · · · ≤ βq,

∀k ∈ J1, qK,

k∑

j=1

αj ≤
k∑

j=1

βj

then the Padé table of pFq

[
α1 ... αp

β1 ... βq
;X

]
is normal. However, C is one of those generalized hypergeometric

functions because

C(X) = 3F2

[
1 1 1
3
2 2

;
X

4

]
. (37)

We verify this assertion by the following elementary calculation

(n+ 1)2Cn+1
2n+2

(n+ 2)2Cn+2
2n+4

=
(n+ 1)2

(2n+ 3)(2n+ 4)
=

1

4

(n+ 1)2

(n+ 3
2 )(n+ 2)

,

which shows by induction that the coefficients of C(X) (see (33)) coincide with those of one of the gener-
alized hypergeometric functions in (37), see (36).

Now, we just have to link these results of Padé approximation with our optimization problem (26).
But if we denote by (Rl,m, Ql,m) the solution of (35) such that Rl,m(0) = 1, then we have

val(Rl,m − CRQl,m) = l +m+ 1.

Conversely, if (R,Q) satisfyies val(R−CRQ) ≥ l+m+1 with degR ≤ l and degQ ≤ m then it is a solution
of (35). But since the Padé table of C is normal, (R,Q) is equal to (Rl,m, Ql,m), up to multiplication by
a scalar.

Consequently, we have proved that the numerator and the denominator of the Padé approximant of
C are the solutions to the optimization problem (32), up to multiplication by a scalar. All the results of
this analysis is summarized in the following theorem that is nothing but a version of Theorem 2.7 with
polynomials.

Theorem 3.8. For all l,m ∈ N, there exists a couple of rational polynomial (Rl,m, Ql,m) ∈ Q[X ]2 such
that 





degRl,m = l,
degQl,m = m,
Rl,m(0) = 1.

Moreover (Rl,m, Ql,m) is solution of the optimization problem

max
(R,Q)∈C[X]2\{(0,0)}
degR≤l, degQ≤m

val (R− CQ) = val (Rl,m − CQl,m) = l +m+ 1.

Furthermore, this solution is essentially unique: if (R,S) ∈ C[X ]2 is such that degR ≤ l, degQ ≤ m and
val (Rl,m − CQl,m) = l +m+ 1 then there exists λ ∈ C such that R = λRl,m and Q = λQl,m.
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There exists many very efficient methods to compute effectively Padé approximants (see for example
[1] or [4]). Consequently, if the order of consistency is large enough, it is interesting to not compute the
optimal formulas of Theorem 2.7 through the resolution of the linear system (27), but to compute them
from the optimal polynomials of Theorem 3.8 through the relations

sl,m = Ql,m(a) and dl,m = Pl,m(a) with Pl,m(X) = XRl,m(X). (38)

4 Stability

In this section we study criteria of stability for the sequences of matrices of the form P (AN ) with P a
polynomial. These conditions hold on the polynomial P . As a consequence, if we want to apply one of
these criteria to a matrix of the form DN (d), with d a symmetric formula, we have to solve P (a) = d (see
Lemma 3.3 for details).

In the first part, we give a criterion of strong stability (9) and then we deduce Theorem 2.8 and the first
part of Theorem 2.9 (when the formulas are complex). In the second part, we give a diophantine criterion
of relative stability (10) that is enough to prove the second part of Theorem 2.9 (when the formulas are
real).

4.1 Strong stability

Theorem 4.1. Let P ∈ C[X ] be a polynomial such that

P (0) = 0, P ′(0) 6= 0 and ∀x ∈]0, 4], P (x) 6= 0. (39)

Then the sequence of matrices (P (AN ))N∈N∗ is strongly stable (9).

Proof. The assumptions (39) implies that there exists β 6= 0 a real number and a sequence (µk)k=1...d of
complex numbers such that

P (X) = βX

d∏

k=1

(X − µk) .

On the one hand, a straightforward calculation shows that AN is invertible and

∀i, j ∈ J1, NK, (A−1
N )i,j = min(j(1− hi), i(1− hj)).

On the other hand, since by assumption µk /∈ [0, 4], the following lemma (proved in Appendix 5.2) shows
that AN−µkIN is invertible and that there exists a constant cµk

such that for all N , ‖(AN−µkIN )−1‖∞ ≤
cµk

.

Lemma 4.2. If µ ∈ C \ [0, 4] then there exists c > 0 such that for all N ∈ N∗, AN −µIN is invertible and
for all v ∈ CN

‖v‖∞ ≤ c‖ANv − µv‖∞.

As a consequence, P (AN ) is invertible and we have

∀N ∈ N∗, ∀v ∈ RN , ‖P (AN )−1
v‖∞ ≤ |β|−1‖A−1

N v‖∞
d∏

k=1

cµk
.

Hence, to prove Theorem 4.1, it is enough to prove that (AN )N is strongly stable (9). The estimation of
strong stability of (AN )N is very explicit and is given for l ∈ N by

‖A−1
N v‖∞

≤ N
sup
i=1

N∑

j=1

|vj |min{i(1− hj), j(1− hi)}

≤ N
sup
i=1

∑

j∈Jl+1,N−lK

|vj |min{i(1− hj), j(1− hi)}+ N
sup
i=1

∑

j∈Jl+1,N−lKc

|vj |min{i(1− hj), j(1− hi)}

≤ N
sup
i=1

∑

j∈Jl+1,N−lK

|vj |
4

h
+

N
sup
i=1

∑

j∈Jl+1,N−lKc

|vj |l

≤ N
sup
j=1

{
4h−2|vj | if l + 1 ≤ j ≤ N − l,
2l2|vj | else.
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Application 1: Proof of the first part of Theorem 2.9.

The more direct application of this criterion of strong stability is the first part of Theorem 2.9. Since we
have proved in Lemma 3.3 that P 7→ P (a) induce an isomorphism of vector space between XCl[X ] and
CC,l, it is enough to prove that almost all complex polynomials of degree smaller than l + 1 do not have
any zero point in [0, 4] to conclude with the criterion of stability of Theorem 4.1. In fact, we show that
almost all complex polynomials of degree smaller than l + 1 do not have any real zero point.

Proof. Since the null sets are the same for all the Lebesgue measures on Cl[X ] it is enough to prove the
result for one well chosen Lebesgue measure. As a consequence, we introduce λ be a Lebesgue measure on
Rl[X ] and we consider λ⊗2 as a Lebesgue measure on Cl[X ] induced by the direct sum

Cl[X ] = Rl[X ]⊕ iRl[X ].

Now, we remark that if a polynomial P ∈ Cl[X ] admits the decomposition P = P1 + iP2 and has a real
zero point x ∈ R then x is a zero point of P1 and of P2. As a consequence, we conclude by the following
calculation

λ⊗2{P ∈ Cl[X ] | ∃x ∈ R, P (x) = 0} =
∫

Rl[X]

∫

Rl[X]

1∃x∈R, (P1+iP2)(x)=0dλ(P1)dλ(P2)

=

∫

Rl[X]

∫

Rl[X]

1∃x∈R, P2(x)=P1(x)=0dλ(P1)dλ(P2)

≤
∫

Rl[X]

∑

x∈R,P2(x)=0

∫

Rl[X]

1P1(x)=0dλ(P1)dλ(P2)

= 0.

The last equality is nothing but, since {P1 ∈ Rl[X ]| P1(x) = 0} is an hyperplane of Rl[X ], its Lebesgue
measure is zero.

Application 2: Proof of Theorem 2.8 .

The second application of the criterion of strong stability of Theorem 4.1 is the Theorem 2.8 about the
strong stability of the most efficient schemes. In fact, to apply this criterion to the optimal formulas of
Theorem 2.7, we exactly have to prove that the optimal polynomials Rl,m of Theorem 3.8 do not have any
zeros point in [0, 4].

Proof. Let l,m ∈ N be some integers and Rl,m the optimal polynomial given by Theorem 3.8. In the
proof of this theorem, Rl,m is built as the numerator of the Padé approximant of the function C (33).
Futhermore, as we have explained in the proof of Theorem 3.8, D. Karp and E. Prilepkina have proved
in [7] that C(−X) is a Stieltjes transform of a measure supported in [0, 4]. As a consequence, we can use
the classical results about the localization of the zeros points and poles of the Padé approximants of such
series.

On the one hand, it is enough to apply the point (vii) of Theorem 3 page 251 of the book of J. Gilewicz
[4] to prove that if k ≤ 0 and l ≥ −k then all the zero points of Rl+k,l are in ]4,∞[.

On the other hand, J. Gilewicz proves at the point (iii) of this theorem that if k ≥ −1, l + k ≥ 0 and
l ≥ 0 then all the zero points of Ql+k,l (the denominator of the Padé approximant of C) are in ]4,∞[.
Futhermore, page 264 of his book [4], J. Gilewicz gives a theorem of Stieltjes and Wynn (point (iii) of
Theorem 5) that implies that if k ≥ 0 and l ≤ 0 then

∀x ∈ [0, 4],
Rl+k,l(x)

Ql+k,l(x)
≤ Rl+k+1,l+1(x)

Ql+k+1,l+1(x)
.

Since Ql+k,l does not have any zero point on [0, 4] and since by construction Ql+k,l(0) = Rl+k,l(0) = 1
then it follows that for all k ≥ 0 and all l ≥ 0 we have

∀x ∈ [0, 4], Ql+k,l(x) > 0.

As a consequence, if k ≥ 0 and l ≥ 0 then, we have

∀x ∈ [0, 4],
Ql+k+1,l+1(x)

Ql+k,l(x)
Rl+k,l(x) ≤ Rl+k+1,l+1(x).
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Consequently, if for all k ≥ 0, we prove that Rk,0 is positive on [0, 4], then we conclude by induction
on l ≥ 0, that Rl+k,l is positive on [0, 4]. Indeed, it is clear that Rk,0 is positive on [0, 4] because by
construction (see Theorem 3.8), we have

Rk,0 = 2
k∑

n=0

Xn

(n+ 1)2Cn+1
2n+2

> 0 on R+.

4.2 Relative stability

Theorem 4.3. Let P ∈ C[X ] be a polynomial and let Λ be the set of the roots of P in [0, 4] and assume
that P satisfies the following assumptions:

i) 0 ∈ Λ,

ii) 4 /∈ Λ,

iii) the roots of P in [0, 4] are simple,

iv) ∃δ : N∗ → R∗
+,

∀λ ∈ Λ, ∀q ∈ N∗, ∀1 ≤ p ≤ q − 1, 0 < δq ≤
∣∣∣∣λ− 4 sin2

(
π

2

p

q

)∣∣∣∣ . (40)

Then the sequence of finite difference matrices (P (AN ))N∈N∗ is stable relatively to the sequence ηN = 1
δN+1

(10).

Proof. see Appendix 5.3.

Application 1: stability for second order algebraic zero points

The first application of this diophantine criteria is based on a classical result about approximation of
algebraic numbers by rational ones. It gives a way to design sequences of matrices DN that are stable (8),
but such that DN has not a positive or a negative spectrum for all N .

Theorem 4.4. Liouville’s Theorem. (from the book of Andrei B. Shidlovskii [9] page 23)
If α is a real algebraic number of degree n, n ≥ 1, then there exists a constant c = c(α) > 0 such that the
following inequality holds for any p ∈ Z and q ∈ N∗, p

q
6= α:

∣∣∣∣α−
p

q

∣∣∣∣ >
c

qn
.

Corollary 4.5. If a polynomial P ∈ C[X ] satisfies the three first hypothesis of Theorem 4.3 and if for all
root λ ∈ Λ\{0} there exist an algebraic number of degree 2, α, such that λ = 4 sin2(π2α), then the sequence
of finite difference matrices (P (AN ))N is stable (8).

Application 2: Proof of the second part of Theorem 2.9.

The proof of the second part of Theorem 2.9 is an adaptation of a classical qualitative result about
approximation of real numbers by rational ones.

Theorem 4.6. A version of the Khinchin’s Theorem. (see for example [9] page 17)
Let (νq)q be a sequence of positive real numbers such that the series

∑
νq converges. Then, for almost all

α ∈ R, there exists a constant c > 0 such that for all p, q ∈ Z× N∗, one has

|α− p

q
| ≥ c

νq
q
.

More precisely, to prove the second part of Theorem 2.9 with the criterion of Theorem 4.3, it is enough
to prove that the following set are null set for a Lebesgue measure on Rl[X ] (they are the sets of the
polynomials that do not satisfy ii, iii or iv):

E1 = {R ∈ Rl[X ] | R(4) = 0 or R(0) = 0},

E2 = {R ∈ Rl[X ] | ∃λ ∈ [0, 4], R(λ) = R′(λ) = 0},

E3 =

{
R ∈ Rl[X ] | ∃λ ∈ [0, 4], R(λ) = 0 and lim inf

q→∞
min

p∈J1,q−1K
ηq−1

∣∣∣∣λ− 4 sin2
(
π

2

p

q

)∣∣∣∣ = 0

}
.
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Indeed, since we have proved in Lemma 3.3 that R 7→ (XR)(a) induce an isomorphism of vector space
between Rl[X ] and CR,l, the null sets for the Lebesgue measures on Rl[X ] are associated to the null sets
for the Lebesgue measures on CR,l.

It is quite clear that E1 and E2 are null sets. Indeed, E1 is a null set because since P 7→ P (4) is
linear, it is an hyperplane and E2 is a null set because it is the set of the zero points of the discriminant
∆(R) = Res(R,R′) that is a non zero polynomial of R. However, to prove that E3 is a null set, we have
to adapt the proof of the Khinchin’s Theorem 4.6.

In order to use the Borel Cantelli Theorem, we introduce a probability measure ρ on Rl[X ] with the
same null set as a Lebesgue measure. More precisely, we introduce the Lebesgue measure µ on Rl[X ]
induced by the Hardy’s scalar product 〈., .〉H2 . This scalar product is defined by

∀R1, R2 ∈ Rl[X ], 〈R1, R2〉H2 :=

l∑

k=0

R
(k)
1 (0)R

(k)
2 (0)

k!2
.

Then, we define ρ through its density with respect to µ

dρ

dµ
=

1
√
2π

l+1
e−

1
2
‖R‖2

H2 .

As ρ has a positive density with respect to µ, ρ and µ have the same null sets.
Hence, since E2 is a null set, it is enough to prove that E3 ∩ Ec

2 is a null set. As a consequence, we can
use the following inclusion

Ec
2 ∩ E3 ⊂ Ec

2 ∩
{
R ∈ Rl[X ] | lim inf

q→∞
min

p∈J1,q−1K
ηq−1

∣∣∣∣R
(
4 sin2

(
π

2

p

q

))∣∣∣∣ = 0

}
.

Then, we introduce the measurable sets

Fq :=

{
R ∈ Rl[X ] | min

p∈J1,q−1K

∣∣∣∣R
(
4 sin2

(
π

2

p

q

))∣∣∣∣ ≤
1

ηq−1

}
,

to get the inclusion
Ec

2 ∩ E3 ⊂ Ec
2 ∩ lim sup

q→∞
Fq .

Consequently, it is enough to prove that
∑

ρ(Fq) <∞ to conclude by the Theorem of Borel Cantelli that
E3 is a null set.

To control ρ(Fq), we begin assuming the following lemma, that we will show at the end of this proof.

Lemma 4.7. For all λ ∈ R and for all β > 0, we have

ρ ({R ∈ Rl[X ] | |R(λ)| ≤ β}) ≤
√

2

π
β.

Consequently, we deduce from the last assumption of Theorem 2.9 that
∑

ρ(Fq) <∞,

ρ(Fq) ≤
q−1∑

p=1

ρ

{
R ∈ Rl[X ] |

∣∣∣∣R
(
4 sin2

(
π

2

p

q

))∣∣∣∣ ≤
1

ηq−1

}

≤ (q − 1)

√
2

π

1

ηq−1
∈ l1(N \ {0, 1})

To conclude this proof, we have to prove Lemma 4.7. We introduce the polynomial Rα ∈ Rl[X ] defined
by

Rα(X) =

l∑

k=0

(αX)k.

Rα is the Riesz representer of the evaluation in α

∀R ∈ Rl[X ], R(α) = 〈Rα, R〉H2 .
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Consequently, since the Gaussian measure ρ is isotropic, we have

ρ ({R ∈ Rl[X ] | |R(λ)| ≤ β}) = ρ ({R ∈ Rl[X ] | |〈Rα, R〉H2 | ≤ β})

=
1√
2π

∫

R

1|y|‖Rα‖2

H2
≤βe

− y2

2 dy

≤ 1√
2π

∫

R

1|y|‖Rα‖2

H2
≤βdy

=

√
2

π
β

(
l∑

k=0

α2k

)−1

≤
√

2

π
β.

5 Appendix

5.1 Proof of Proposition 2.3

Let f ∈ C∞(R) be the source function of the Dirichlet problem (2), and u its solution. For each N ∈ N∗

we consider u
N,ex and f

N,ex the discretizations of u and f defined by (3).

We begin proving the consistency of the scheme in the center. We introduce an integer j such that
τ(d) < j < N + 1− τ(d). Then, we do the estimation of consistency with a Taylor Lagrange formula

∣∣∣
(
DNu

N,ex
)
j
− h2

(
SN f

N,ex
)
j

∣∣∣

=
∑

i∈Z

diu(x
N
i+j) + h2siu

′′(xN
i+j)

=
∑

i∈Z

dipj(x
N
i ) + h2sip

′′
j (x

N
i ) +

∑

i∈Z

di(ξ
N,1
i,j − xN

i )n+2
u(n+2)(ξN,1

i,j )

(n+ 2)!
+ h2si(ξ

N,2
i,j − xN

i )n
u(n)(ξN,2

i,j )

n!
,

with ξN,1
i,j , ξN,2

i,j ∈]xN
i , xN

i+j [ and

pj(X) =
n+1∑

k=0

u(k)(xN
j )

k!
Xk.

However, we have proved in Lemma 3.5, that the polynomial part of this sum is zero. Consequently, it is
enough to estimate the second part. Finally, we get

∣∣∣
(
DNu

N,ex
)
j
− h2

(
SN f

N,ex
)
j

∣∣∣ ≤ hn+2‖u(n+2)‖L∞(0,1)

∑

i∈Z

|di|
τ(d)n+2

(n+ 2)!
+ |si|

τ(s)n

n!
.

The same type of estimations holds near the boundary and we can prove similarly that, if τ(d) ≥ j or
j ≥ N + 1− τ(d) and if µh

2 ≤ γ then

∣∣∣
(
DNu

N,ex
)
j
− h2

(
SN f

N,ex
)
j

∣∣∣ ≤ hµ+2‖u(µ+2)‖L∞(−γ,1+γ) max
1≤k≤τ(d)

∑

i∈Z

|dki |
τ(d)µ+2

(µ+ 2)!
+ |ski |

τ(sk)µ

µ!
.

5.2 Proof of Lemma 4.2

To prove this lemma, we need to use the notations introduced to define formally DN (d) in Definition 3.1.

Now, for all p ∈ Z and for all N ∈ N∗, we introduce an operator Op,N on EN defined by

∀w ∈ EN , Op,Nw =
1

2
T1{p,−p}

w =

(
wi+p + wi−p

2

)

i∈Z

.

A straightforward calculation shows that the spectral decomposition of Op,N is

∀k ∈ Z, Op,Nek,N = cos(pπkh)ek,N with ek,N = (sin(kπhj))j∈Z. (41)

Let z ∈ C\ [−1, 1] be a complex number. Since the periodic function x 7→ (cos(x)−z)−1 is real analytic,
its Fourier transform is summable. More precisely, there exists (cp(z)) ∈ l1(N) such that

∀x ∈ R,
1

cos(x)− z
=
∑

p∈N

cp(z) cos(px).
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Since (cp) is summable, it follows from (41) that O1,N − zIEN
is invertible and

(O1,N − zIEN
)−1 =

∑

p∈N

cp(z)Op,N .

Furthermore, if w ∈ EN then for all p ∈ N

‖Op,Nw‖l∞(Z) ≤ ‖w‖l∞(Z).

As a consequence, we have

‖(O1,N − zIEN
)−1w‖l∞(Z) ≤

∑

p∈N

|cp(z)|‖Op,Nw‖l∞(Z) ≤ ‖(cp(z))‖l1(N)‖w‖l∞(Z).

To finish the proof of Lemma 4.2, it is enough to see that

matBN
O1,N = IN −

1

2
AN and ∀w ∈ EN , ‖matBN

w‖∞ = ‖w‖l∞(Z).

5.3 Proof of Theorem 4.3

It follows of the spectral decomposition of AN (22), that (eNk )k=1...N is an orthogonal basis of CN . Fur-
thermore, a straightforward calculation shows that, if k ∈ J1, NK then we have

‖eNk ‖2 =
N∑

j=1

|(eNk )j |2 =

N∑

j=1

sin2(πhkj) =
1

2

N∑

j=1

1− cos(2πhkj) =
1

2h
.

Consequently, if we take a vector v ∈ CN , we get its discrete Fourier transform as

v = 2h

N∑

k=1

e
N
k

N∑

j=1

vj sin(πhkj).

However, since the vectors e
N
k are eigenvectors of AN , there are eigenvectors of P (AN ) and their

eigenvalues are P (4 sin2
(
π
2 kh

)
). Consequently, we know from assumption (iv) that P (AN ) is invertible

and that we have

P (AN )−1
v = 2h

N∑

k=1

eNk
P
(
4 sin2

(
π
2 kh

))
N∑

j=1

vj sin(πhkj).

Hence, if we do the estimation, | sin | ≤ 1, it comes

‖P (AN )−1
v‖∞ ≤ 2h

N∑

k=1

1

|P
(
4 sin2

(
π
2 kh

))
|

N∑

j=1

‖v‖∞ ≤
N∑

k=1

2

|P
(
4 sin2

(
π
2 kh

))
|
‖v‖∞.

Consequently, to conclude the proof of Theorem 4.3, it is enough to proof that there exists a constant
c > 0 such that

∀N ∈ N∗,
N∑

k=1

2

|P
(
4 sin2

(
π
2 kh

))
|
≤ c

δN+1
. (42)

But from the assumption (iii), we know that there exists a polynomial Q ∈ R[X ] such that

P (X) = Q(X)
∏

λ∈Λ

(X − λ) and ∀x ∈ [0, 4], Q(x) 6= 0. (43)

Hence, we deduce from (43) that the following partial fraction decomposition holds

1

P (X)
=

1

Q(X)

∑

λ∈Λ

Q(λ)

P ′(λ)

1

X − λ
.

Consequently, to prove the estimation (42), it is enough to prove that

∀λ ∈ Λ, ∃c > 0, ∀N ∈ N∗,
N∑

k=1

1

|4 sin2
(
π
2 kh

)
− λ|

≤ c
c

δN+1
. (44)
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To prove (44), it is crucial to deduce, from the conditions (i) and (iv), that there exists a constant
c > 0 such that

∀q ∈ N∗, δq ≤
c

q2
. (45)

Then, it is enough, to distinguish the case λ = 0 from the case λ 6= 0. On the one hand, if λ = 0, using
(45), we have

N∑

k=1

1

4 sin2
(
π
2kh

) ≤
N∑

k=1

1

4 (kh)
2 ≤

π2

6

1

4h2
≤ π2

24

c

δN+1
.

On the other hand, x 7→ 4 sin2
(
π
2x
)

is a diffeomorphism from ]0, 1[ to ]0, 4[. Hence, if λ 6= 0, and since we
know from assumption (ii) that λ 6= 4, there exists a constant c̃ > 0 such that one has

∀x ∈ [0, 1], |x− λ̃| ≤ c̃|4 sin2
(π
2
x
)
− λ|,

where λ̃ ∈]0, 1[ is defined by

4 sin2
(π
2
λ̃
)
= λ.

Since δ does not have any zero index, the assumption (iv) provides λ̃ /∈ Q. Hence, we deduce that

∀q ∈ N∗, ∃!pq ∈ J0, qK, |λ̃− pq
q
| < 1

2q
.

As a consequence, with the estimation (45), we have

N∑

k=1

1

|4 sin2
(
π
2 kh

)
− λ|

≤
∑

k∈J1,NK\{pN+1}

c̃

|kh− λ̃|
+

1

|4 sin2
(
π
2 pN+1h

)
− λ|

≤
∑

k∈J1,NK\{pN+1}

2c̃

h
+

1

δN+1

≤ 2c̃

h2
+

1

δN+1
≤ 2c̃c+ 1

δN+1
.
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