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ON SOJOURN OF BROWNIAN MOTION

INSIDE MOVING BOUNDARIES

STÉPHANE SEURET AND XIAOCHUAN YANG

Abstract. We investigate the large scale structure of certain sojourn sets of one dimensional
Brownian motion within two-sided moving boundaries. The macroscopic Hausdorff dimension and
upper mass dimension of these sets are computed. We also give a uniform macroscopic dimension
result for the Brownian level sets.

1. Introduction

This article is concerned with the sojourn properties of the one-dimensional Brownian motion
{Bt : t ≥ 0} within some moving boundaries. More precisely, for an appropriate function ϕ : R+ →
R+, consider the sets

E(ϕ) = {t ≥ 0 : |Bt| ≤ ϕ(t)} . (1)

that we call the set of Brownian sojourn within two sided boundary ϕ(·).
Besides its obvious application in physics and finance, the understanding of these sets at different

scales entails considerable information on the path properties of the Brownian motion. Two types
of study are of particular interest.

• Geometric properties of E(ϕ) near t0 = 0. This corresponds to the regular behavior of a Brownian
path near zero. Concretely, local asymptotics of the Brownian motion such as Khintchine’s law of
iterated logarithm can be described in terms of geometric properties of these sets around 0 with
specific choices for ϕ. A natural question is under which condition on ϕ these sets admit an upper
density with respect to Lebesgue measure (denoted by | · | throughout the paper), i.e.

lim sup
s→0

|E(ϕ) ∩ [0, s]|
s

= cϕ > 0.

Uchiyama [20] treated the case ϕ(t) = h(t)
√
t where h is taken from a whole class of correction

functions (of logarithmic order), and he found the precise value of the constant cϕ.

• Geometric properties of E(ϕ) at infinity. This is related to the long time behavior of the Brownian
motion. As {Bt : t ≥ 0} behaves like a square root function at infinity (in expectation), the set
E(ϕ), when ϕ grows slower than the square root function, concerns the lower than normal growth
of the Brownian motion. Uchiyama [20] established upper density bounds for ϕ(t) =

√
t/h(t) with

h belonging to a large class of correction functions with logarithmic order.

Let us mention briefly some related work. Consider

Ẽ(ϕ) = {t ≥ 0 : |Bt| ≥ ϕ(t)}.
where ϕ grows like a square root function with a logarithmic order correction. The geometry of
these sets around zero describes the local behavior of Brownian motion, whereas their geometry
around infinity describes the distribution of high peaks of the Brownian motion - we refer the
interested reader to Strassen [18] and Uchiyama [20] for upper density results (around zero and
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infinity). We also mention the recent work of Khoshnevisan, Kim and Xiao [11] and Khoshnevisan
and Xiao [12] who consider, among other things, the high peaks of symmetric stable Lévy processes.
We refer the reader to [8, 16, 4, 5, 3] for other results on sojourn properties of stochastic processes.

Motivated by these studies, we focus on the asymptotics around infinity of the sojourn sets of
Brownian motion within moving boundaries with much lower than normal growth. For this, we
introduce the sets

∀ γ ∈ [0, 1/2], Eγ := E(ϕγ) with ϕγ(t) = tγ ,

and our goal is to estimate the size of Eγ for all values of γ. The “size” is expressed in terms of
the notion of large scale dimensions developed by Barlow and Taylor [1, 2] in the late 80’s, recently
“refreshed” in the work of Xiao and Zheng [21], Georgiou et al. [9], Khoshnevisan et al. [11, 12].

The initial motivation of Barlow and Taylor was to define a notion of fractals in discrete spaces
such as Zd. This permits to describe the size properties of models in physical statistics, such as
the infinite connected component of a percolation process, the range of a transient random walk
for instance. To this end, they introduced and investigated several notions of dimension describing
different types of asymptotics of a set around infinity. Each dimension corresponds to an analogue
in large scales of a classical fractal dimension. Among these dimensions, we are going to use the
“macroscopic Hausdorff dimension” and the “mass dimensions”, which are respectively the analogs
of the classical Hausdorff and Minkowski dimensions in large scales.

Let us state our main result. The macroscopic Hausdorff dimension of a set E ⊂ Rd is denoted
by DimHE and the upper mass dimension by DimUME. Their definitions are recalled in Section 2.

Theorem 1. Almost surely, for all γ ∈ [0, 1/2],

DimHEγ =

{
1
2 if γ ∈ [0, 1/2)

1 if γ = 1/2
(2)

DimUMEγ =
1

2
+ γ. (3)

It is quite surprising that the macroscopic Hausdorff dimension of Eγ is constant for all γ ∈
[0, 1/2). This can be interpreted by the fact that, from the macroscopic Hausdorff dimension
standpoint, B spends most of the time at its ”boundary”, i.e. the farthest possible from 0.

Further, one notices in the proof below that a.s. the Brownian zero set

Z = {t ≥ 0 : Bt = 0},

which is a priori thinner than E0 (hence than all the Eγ ’s), also has macroscopic Hausdorff dimen-
sion 1/2. The local structure of Z is well understood since the works by Taylor and Wendel [19]
and Perkins [15], who proved Hausdorff measure results for Z using local times. In particular, the
classical Hausdorff dimension of Z is 1/2, a result already known in [7]. Our result gives the large
scale structure of Z and might be compared with an interesting result by Khoshnevisan [10] who
states that the zero set of a symmetric random walk {ξn : n ∈ N} in Z1 with finite variance

{n ∈ N : ξn = 0}

has macroscopic Hausdorff dimension 1/2.
Although they have the same macroscopic Hausdorff dimension, the sets Eγ differ by their upper

mass dimensions DimUM. Indeed, (3) indicates a multifractal behavior for DimUMEγ , and also
gives a natural example of sets for which the macroscopic Hausdorff dimension and the upper mass
dimension differ.
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Our contribution to the formula (2) is for all γ ∈ [0, 1/2). The case γ = 1/2 is deduced from
Theorem 2 in [20] where Uchiyama obtained that a.s.

lim sup
r→+∞

|E(1/2) ∩ [0, r]|
r

> 0.

This inequality entails that a.s. DimHE(1/2) = 1 thanks to the following fact proved in [11] : for
any E ⊂ R, (

lim sup
r→+∞

|E ∩ [0, r]|
r

> 0
)
⇒ DimHE = 1.

As B is recurrent, it does return inside the boundary ϕγ infinitely many times, for every γ ∈
[0, 1/2]. In particular, the sets Eγ for γ ∈ [0, 1/2] are unbounded. Our result allows to quantify the
recurrence and fluctuation properties of Brownian motion at large scales.

Through an equivalent definition for the macroscopic Hausdorff dimension, we also obtain a
uniform dimension result for the level sets

Zx = {t ≥ 0 : Bt = x}.

Theorem 2. Almost surely, there exists at most one real number x0 ∈ R such that for every
x ∈ R \ {x0}, DimH(Zx) = 1/2.

Theorem 2 should be compared with Perkins’ uniform (classical Hausdorff) dimension result for
these level sets [15]. Our method leaves the possibility of an exceptional point, that we were not
able to dismiss; but we strongly believe that the result is globally uniform.

This paper is organized as follows. In Section 2, we recall the definition of large scale dimensions
and establish some preliminary estimates on the probability that the Brownian motion belongs to
a domain bounded by a moving boundary during some arbitrary time interval, on the Brownian
local time increments around infinity, and on the hitting probability of subordinators. The first
part of the main theorem (the macroscopic Hausdoff dimension) is proved in Section 3 and the
second part (upper mass dimension) in Section 4. Theorem 2 is proved in Section 5.

2. Preliminaries

Throughout the paper, c, C are generic positive finite constants whose value may change from
line to line. For two families of positive real numbers (a(x)) and (b(x)), the equation a(x) � b(x)
means that the ratio a(x)/b(x) is uniformly bounded from below and above by some positive finite
constant independent of x. Also, Px denotes the law of Brownian motion starting from x ∈ R, and
Ex denotes the expectation with respect to Px. For simplicity, we also write P = P0 and E = E0.

2.1. Macroscopic dimensions. We adopt the notations in [11] that we recall now. We will use
the notation Q(x, r) = [x, x+ r). The length of an interval Q ⊂ R is denoted by s(Q).

Define the annuli ∀n ≥ 1,Sn = [2n−1, 2n) and S0 = [0, 1). For any ρ ≥ 0, any set E ⊂ R+,
n ∈ N∗, we introduce the quantity

νnρ (E) = inf

{
m∑
i=1

(
s(Qi)

2n

)ρ
: E ∩ Sn ⊂

m⋃
i=1

Qi with s(Qi) ≥ 1 and Qi ⊂ Sn

}
. (4)

Other gauge functions could be used instead of x 7→ xρ, but we will not need them here.
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Definition 1. Let E ⊂ R+. The macroscopic Hausdorff dimension of E is defined as

DimHE = inf

ρ ≥ 0 :
∑
n≥0

νnρ (E) < +∞

 . (5)

The upper and lower mass dimension of E are defined as

DimUME = lim sup
n→+∞

ln(|E ∩ [0, n]|)
lnn

,

DimLME = lim inf
n→+∞

ln(|E ∩ [0, n]|)
lnn

.

The macroscopic Hausdorff dimension of a set does not depend on any of its bounded subsets,
since the series in (5) converges if and only if its tail series converges. Further, the covering
intervals are chosen to have length larger than 1, which explains why the macroscopic Hausdorff
dimension does not rely on the local structure of the underlying set. The same remarks apply to
mass dimensions.

It is known [1, 2] that for any set E ⊂ R,

DimHE ≤ DimLME ≤ DimUME.

To bound DimHE from above, one usually exhibits an economic covering of E. To get the lower
bound, the following lemma, which is an analog of the mass distribution principle, is useful.

Lemma 1. Let E ⊂ Sn. Let µ be a finite Borel measure on R with support included in E. Suppose
that there exists finite positive constants C and ρ, such that for any interval Q(x, r) ⊂ Sn with
r ≥ 1, one has

µ(Q(x, r)) ≤ Crρ.
Then

νnρ (E) ≥ C−12−nρµ(Sn).

Actually, there is more flexibility in the choice of covering intervals when we are only concerned
with the value of the macroscopic dimension. Let us introduce, for every integer n ≥ 1 and any set
E ⊂ R+, the quantity

ν̃nρ (E) = inf

{
m∑
i=1

(
s(Qn,i)

2n

)ρ
: E ∩ Sn ⊂

m⋃
i=1

Qn,i with
s(Qn,i)

n2
∈ N∗ and Qn,i ⊂ Sn

}
. (6)

The difference with νnρ is that coverings by sets of size that are multiple of n2 are used, and this does
not change the value of the macroscopic Hausdorff dimension, as stated by the following lemma.

Lemma 2. For every set E ⊂ R+,

DimHE = inf

ρ ≥ 0 :
∑
n≥0

ν̃nρ (E) < +∞

 . (7)

Proof. Let us denote by d̃ the value in the right hand-side of (7).

Obviously, for every ρ ≥ 0, ν̃nρ (E) ≥ νnρ (E). Hence, recalling (5), DimHE ≤ d̃. If DimH(E) = 1,
then (7) holds trivially. Assume thus DimH(E) < 1.

Let ρ′ > ρ > DimH(E), and fix n ≥ 1. Choose Qn := {Qi}i=1,...,m as a finite family of intervals

such that E ∩ Sn ⊂
⋃m
i=1Qi, with s(Qi) ≥ 1 and

∑m
i=1

(
s(Qi)

2n

)ρ
≤ 2νnρ (E).
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Define the finite family of intervals Q̃n := {Q̃i}i=1,...,m as follows: Q̃i is an interval containing
Qi, included in Sn, whose length is the smallest possible multiple of n2.

Observe that if s(Qi) ≥ n2, s(Q̃i) ≤ 2s(Qi), while if 1 ≤ s(Qi) < n2, s(Q̃i) ≤ n2s(Qi).

By construction, E ∩ Sn ⊂
⋃m
i=1 Q̃i. In addition, since ρ < ρ′ < 1,

m∑
i=1

(
s(Q̃i)

2n

)ρ′
=

m∑
i=1:s(Qi)<n2

(
s(Q̃i)

2n

)ρ′
+

m∑
i=1:s(Qi)≥n2

(
s(Q̃i)

2n

)ρ′

≤
m∑

i=1:s(Qi)<n2

n2

(
s(Qi)

2n

)ρ′
+ 2

m∑
i=1:s(Qi)≥n2

(
s(Qi)

2n

)ρ′

≤ n2+ρ′−ρ

2n(ρ′−ρ)

m∑
i=1:s(Qi)<n2

(
s(Qi)

2n

)ρ
+ 2

m∑
i=1:s(Qi)≥n2

(
s(Qi)

2n

)ρ
.

When n becomes large, n2+ρ′−ρ

2n(ρ
′−ρ) ≤ 1, hence

∑m
i=1

(
s(Q̃i)

2n

)ρ′
≤ 2

∑m
i=1

(
s(Qi)

2n

)ρ
.

One deduces that ν̃nρ′(E) ≤ 2νnρ (E). Since
∑

n≥1 ν
n
ρ (E) < +∞, the series

∑
n≥1 ν̃

n
ρ′(E) also

converges, and d̃ ≤ ρ′. Letting ρ′ tend to DimH(E) yields the result. �

Remark 1. The same argument shows that for any C ≥ 1, using coverings of a set E ∩Sn by sets
of size larger than C or than Cn2 instead 1 or n2 in the definitions (4) or (6), does not change the
value of the macroscopic Hausdorff dimension of E.

2.2. Hitting probability estimates of Brownian motion inside the moving boundaries.
The following estimate is useful when looking for an appropriate covering of Eγ with respect to
different large scale dimensions.

Lemma 3. Consider an interval Q(a, r) inside Sn, i.e. a ∈ Sn and a + r ≤ 2n. For each
0 ≤ γ < 1/2, define the event

A(n, a, r, γ) = {∃ t ∈ Q(a, r) : |Bt| ≤ tγ} . (8)

One has

P (A(n, a, r, γ)) ≤ 2√
π

2n(γ−1/2) +
4√
2π

(r
a

)1/2
.

Following a standard vocabulary, the event A(n, a, r, γ) describes the hitting probability of {Bt :
t ≥ 0} inside the moving boundary. Lemma 3 states that, when r

a is small, this hitting probability

is controlled by γ, while it behaves like
(
r
a

)1/2
when r

a becomes large. Basic properties of Brownian
motion used in the proof of Lemma 3 can be found in [17] or [14].

Proof of Lemma 3 : One has

P(A(n, a, r, γ)) ≤ P
(

inf
t∈Q(a,r)

|Bt| ≤ 2nγ
)

= P (|Ba| ≤ 2nγ) + P
(
|Ba| > 2nγ , inf

t∈Q(a,r)
|Bt| ≤ 2nγ

)
:= P1 + P2.

By the self-similarity of B and recalling that a ∈ Sn, one obtains

P1 = P(|B1| ≤ a−1/22nγ) ≤
√

2

π
a−1/22nγ ≤ 2√

π
2n(γ−1/2).
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Using the symmetry of B, one gets

P
(
Ba > 2nγ , inf

t∈Q(a,r)
Bt ≤ 2nγ

)
= P

(
Ba < −2nγ , sup

t∈Q(a,r)
Bt ≥ −2nγ

)
.

Thus,

P2 ≤ 2P
(
Ba > 2nγ , inf

t∈Q(a,r)
Bt ≤ 2nγ

)
= 2P

(
Ba > 2nγ , inf

t∈Q(a,r)
(Bt −Ba) ≤ 22nγ −Ba

)
.

Set B̃h = Ba+h − Ba which is a Brownian motion independent of Ba. Using successively the
self-similarity, the symmetry and the Markov property yields

P2 ≤ 2P
(
Ba > 2nγ , inf

0≤h≤r
B̃h ≤ 2nγ −Ba

)
= 2P

(
Ba > 2nγ , inf

0≤h≤1
B̃h ≤ r−1/2(2nγ −Ba)

)
= 2P

(
Ba > 2nγ , sup

0≤h≤1
B̃h ≥ r−1/2(Ba − 2nγ)

)

= 2

∫ +∞

2nγ
P

(
sup

0≤h≤1
B̃h ≥ r−1/2(x− 2nγ)

)
e−

x2

2a
dx√
2πa

:= I1 + I2,

where I1 is the integral between 2nγ and 2nγ + r1/2, and I2 is the other part of the integral. On
one hand, bounding from above the probability inside the integral by 1, one obtains

I1 ≤ 2

∫ 2nγ+r1/2

2nγ
e−

x2

2a
dx√
2πa

≤ 2√
2π

(r
a

)1/2
.

On the other hand, one knows by applying the reflection principle to B̃ that sup0≤h≤1 B̃h has the

same distribution as |B̃1|. Hence, using the tail probability estimates of standard Gaussian variable,
one has

I2 ≤ 4

∫ +∞

2nγ+r1/2
P
(
B̃1 ≥ r−1/2(x− 2nγ)

)
e−

x2

2a
dx√
2πa

≤ 4

∫ +∞

2nγ+r1/2

1

r−1/2(x− 2nγ)
√

2π
e−

(x−2nγ )2

2r e−
x2

2a
dx√
2πa

≤ 4
1√
2π

∫ +∞

2nγ
e−

(x−2nγ )2

2r
dx√
2πa

=
4√
2π

(r
a

)1/2
∫ +∞

2nγ
e−

(x−2nγ )2

2r
dx√
2πr

=
2√
2π

(r
a

)1/2
.

Therefore, one has established that

P2 ≤
4√
2π

(r
a

)1/2
.

Combining the estimates ends the proof. �

2.3. Brownian local times and 1/2-stable subordinator. Let us recall very briefly the notion
of local times. Let f be a non-negative continuous even function with integral one. For each ε > 0,
set fε,x(·) = f((· − x)/ε)/ε. Define

Lxt = lim
ε→0

1

2ε

∫ t

0
fε,x(Bs)ds.
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It is known [13, Lemma 2.4.1] that the convergence occurs uniformly on (t, y) ∈ [0, T ]× [−M,M ],
Py almost surely, for any y ∈ R and T,M > 0. There exists a version of the process {Lxt ; (t, x) ∈
R+×R} that is jointly continuous [13, Theorem 2.4.2]. We work with this version in the following.
For each fixed x, the process {Lxt : t ≥ 0} is called the Brownian local time at x. Below we write
Lt = L0

t for simplicity.
Note that the non-decreasing continuous process {Lt : t ≥ 0} gives rise to a Radon measure

whose support is included in the Brownian zero set Z [13, Remark 3.6.2]. We will use this
measure in an analog of Lemma 1 to study the large scale dimension of Z. Next lemma gives
the asymptotic behavior at infinity of the local time increments, which is the continuous analog of
Corollary 2.2 in [10].

Lemma 4. One has P-a.s.

lim sup
n→∞

n−1 sup
t≤2n

t∈N

sup
2≤h≤2n−2

h∈N

Lt+h − Lt√
h/ log2 h

< +∞.

Proof. Set St = sup0≤s≤tBs. A famous theorem by Lévy [17, page 240] states that the processes
{St; t ≥ 0} and {Lt; t ≥ 0} have the same law. Also, by the reflection principle, Lt = |Bt| in
distribution for any fixed t. Therefore, classical Gaussian tail probability estimates [13, page 192]
yield that for all t and x > 0,

P(Lt ≥ x) = P(|B1| ≥ x/
√
t) ≤ e−x2/(2t). (9)

For each t ≥ 0, define Tt = inf{s ≥ t : Bs = 0} the first hitting time at zero of Brownian motion
after time t. Since L only increases when the Brownian motion hits zero, one has for almost every
sample path ω that, Lt+h −Lt ≤ LTt+h −LTt = Lh ◦ θTt for any t, h ≥ 0, see [17, page 402] for the
equality. Here θ is the usual shift operator on the canonical Wiener space.

This, combined with (9) and the strong Markov property at the stopping time Tt, implies that
for every x > 0,

P

 sup
t≤2n

t∈N

sup
2≤h≤2n−2

h∈N

Lt+h − Lt√
h/ log2 h

≥ x

 ≤ 22n−2 sup
t≤2n

2≤h≤2n−2

P

(
Lt+h − Lt√
h/ log2 h

≥ x

)

≤ 22n−2 sup
2≤h≤2n−2

P
(
Lh ≥ x

√
h/ log2 h

)
≤ 22ne−x

2/(2n)

Taking x = 4n in the above inequality, and summing over n ≥ 1, the Borel-Cantelli lemma yields
the conclusion. �

It is well known that the right continuous inverse of the Brownian local time at zero {σt : t ≥ 0}
defined by σt = inf{s ≥ 0 : Ls > t} is a 1

2 -stable subordinator. Also, the closure of the range of
the associated subordinator coincides with Z, see [6] or [13]. A subordinator {σt : t ≥ 0} is a Lévy
processes with increasing sample paths. It is said to be 1/2-stable if the Laplace transform of σ1 is

e−Φ(λ) with

Φ(λ) = (2λ)1/2, for all λ > 0.

The renewal function U(x) is the distribution function of the 0-potential measure of {σt : t ≥ 0},
i.e.

U(x) = E
[∫ +∞

0
1σt≤xdt

]
.
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The 0-potential measure of {σt : t ≥ 0}, denoted by U(dx), characterizes the law of σ in the sense
that its Laplace transform is 1/Φ(λ) for all λ > 0. Tauberian theorems provide the relation between
the Laplace exponent Φ of a subordinator and its renewal function. More precisely, one has

U(x) � 1

Φ(1/x)
, (10)

see Section 1.3 in [6]. For a general subordinator, one has the following hitting probability estimate
in terms of its renewal function. It gives bounds for the probability that its range touches a
deterministic set A ⊂ R.

Lemma 5 ([6], Lemma 5.5). For every 0 < a < b, one has

U(b)− U(a)

U(b− a)
≤ P

(
R∩ [a, b] 6= ∅

)
≤ U(2b− a)− U(a)

U(b− a)
,

where R = σ
(
[0,+∞)

)
is the range of {σt : t ≥ 0}.

Next lemma gives a more precise hitting probability estimate for 1/2-stable subordinators.

Lemma 6. Let {σt : t ≥ 0} be a 1
2 -stable subordinator and Q(a, r) = [a, a + r) be a interval in

some annulus Sn. One has

c
(r
a

)1/2
≤ P

(
R∩Q(a, r) 6= ∅

)
≤ C

(r
a

)1/2
. (11)

where c, C are independent of a, r and n.

Proof. First, applying (10) yields

U((a+ r)− a) = U(r) ≥ Cr1/2. (12)

On the other hand, by the definition of U(x), one obtains

U(2(a+ r)− a)− U(a) =

∫ +∞

0
P(σt ∈ [a, a+ 2r])dt =

∫ +∞

0

∫ a+2r

a
pt(x)dx dt

where pt(x) is the density of σt, given by

pt(x) = C
t

x3/2
e−

t2

2x

and C is the normalizing constant such that pt(x) is a probability measure. As Q(a, r) ⊂ Sn, r < a
and one deduces that

U(a+ 2r)− U(a) ≤ C
∫ +∞

0

∫ a+2r

a

t

a3/2
e−

t2

6adx dt

≤ C r

a3/2

∫ +∞

0
te−t

2/(6a)dt = C
r

a1/2
. (13)

The right inequality in (11) follows then by combining (13), (12) and Lemma 5 applied with
b = a+ r.

Similarly, one gets by (10)

U((a+ r)− a) = U(r) ≤ Cr1/2,
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and by r < a

U(a+ r)− U(a) =

∫ +∞

0
P(σt ∈ [a, a+ r]) dt =

∫ +∞

0

∫ a+r

a
pt(x)dx dt.

≥ C
∫ +∞

0

∫ a+2r

a

t

a3/2
e−

t2

2adx dt = C
r

a1/2
. (14)

Applying Lemma 5 with b = a + r and using the last inequalities, one gets the left inequality in
(11). �

3. Proof of Theorem 1 : macroscopic Hausdorff dimension

In this section, we prove the dimension formula (2). As said in the introduction, by Uchiyama’s
upper density result [20], it is enough to compute DimHEγ for all γ ∈ [0, 1/2).

Let 0 ≤ γ < 1/2 be fixed throughout this section. Due to the monotonicity in γ of the sets Eγ ,
and the fact that the zero set of Brownian motion Z = {t ≥ 0 : Bt = 0} is included in E(0), we
divide the proof of (2) into two parts :

DimHEγ ≤
1

2
and DimHZ ≥

1

2
.

Let us start with the upper bound. Let γ ∈ [0, 1/2) and ρ > 1/2 be fixed. Set

xn,i = 2n−1 + i22nγ for i ∈ {0, . . . , b2n−1/22nγc}.

Consider the intervals Q(xn,i, 2
2nγ) which form a partition of Sn. Note that Eγ ∩Q(xn,i, 2

2nγ) = ∅
outside of the event A(n, xn,i, 2

2nγ , γ) (see its definition in Lemma 3). Thus,

νnρ (Eγ) ≤
b2(1−2γ)n−1c∑

i=0

(
22nγ

2n

)ρ
1A(n,xn,i,22nγ ,γ).

By choosing the side length 22nγ , one observes that the two terms in Lemma 3 are of the same
order. Taking expectation in the above inequality, one obtains by Lemma 3 that there exists a
positive finite constant C such that for all n ∈ N∗

E[νnρ (Eγ)] ≤ 2(1−2γ)(1−ρ)n · C2n(γ−1/2)

= C2(1/2−γ)(1−2ρ)n.

Thus, the Fubini Theorem entails E[
∑

n∈N∗ ν
n
ρ (Eγ)] < +∞. This proves that DimHEγ ≤ ρ almost

surely. Letting ρ→ 1/2 yields the upper bound.

Next we move to the lower bound DimHZ ≥ 1/2. To this end, we follow the idea of Khoshnevisan
[10, page 581].

Let g(ε) =
√
ε log2(1/ε) for 0 < ε ≤ 1/2. Let C > 0 be an upper bound for the limsup in Lemma

4. There exists a random integer n0(ω) such that for all n ≥ n0(ω),

sup
t≤2n

t∈N

sup
2≤h≤2n−2

h∈N

Lt+h − Lt√
h/ log2 h

≤ 2Cn. (15)

Consider any finite sequence of intervals {Qn,i = [an,i, bn,i]}i=1,...,m with integer endpoints and
with sidelength 2 ≤ s(Qn,i) ≤ 2n−2, that form a covering of Z ∩ Sn.
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Using (15), one obtains

g

(
s(Qn,i)

2n

)
=

√
s(Qn,i)

2n
log2

2n

s(Qn,i)
= 2−n/2

√
s(Qni)

log2 s(Qn,i)
(n− log2 s(Qni)) log2 s(Qn,i)

≥ (n− 1)1/22−n/2
Lbn,i − Lan,i

2Cn
≥ n−1/22−n/2

4C
(Lbn,i − Lan,i).

where we used the elementary inequality
√
x(n− x) ≥

√
n− 1 for all 1 ≤ x ≤ n − 1. Therefore,

a.s. for all n ≥ n0(ω) and any covering of Z ∩ Sn by a finite family of intervals (Qn,i)i=1,...,m,

m∑
i=1

g

(
s(Qn,i)

2n

)
≥ L2n − L2n−1

4C
√
n2n

.

The desired lower bound for DimHZ follows if we can show that a.s.

FN =

N∑
n=1

L2n − L2n−1√
n2n

(16)

diverges as N → +∞. Indeed, this would demonstrate that the sum (5) diverges for every ρ < 1/2
and for any choice of covering.

To this end, let us use a second moment argument. As for any fixed t, Lt = |Bt| in distribution,
one knows that

E[Lt] = c
√
t and E[(Lt)

2] = t. (17)

An Abel summation manipulation gives

FN =
L2N√
N2N

− L2√
2

+

N∑
n=2

L2n

(
1√
n2n
− 1√

(n+ 1)2n+1

)
.

Thus,

E[FN ] �
√
N.

By Cauchy-Schwarz inequality, E[F 2
N ] ≥ cN . To deduce an upper bound for E[F 2

N ], we come back
to the expression (16). Recall that Tt is the first time the Brownian motion hits zero after time t
and Lt+h − Lt ≤ LTt+h − LTt = Lh ◦ θTt . By the strong Markov property applied at the stopping
times T2n−1 , T2`−1 , T2j−1 (for the integers j and ` defined below), one has using (17)

E[F 2
N ] =

N∑
n=1

E[(L2n − L2n−1)2]

n2n
+ 2

N∑
`=1

`−1∑
j=1

E[(L2j − L2j−1)(L2` − L2`−1)]√
j2j`2`

≤
N∑
n=1

1

n
+ 2c

N∑
`=1

`−1∑
j=1

(j`)−1/2 ≤ 3cN.

Therefore, applying Paley-Zygmund inequality yields that there are constants c, c′ > 0 for which
for every N ≥ 1,

P(FN ≥ c
√
N) ≥ c′.

This proves P(F∞ = ∞) > 0. By Kolmogorov’s zero-one law, F∞ = ∞ almost surely, which
completes the proof.
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4. Proof of Theorem 1 : upper mass dimension

In this section, we prove that almost surely, for all γ ∈ [0, 1/2],

DimUMEγ := lim sup
n→+∞

ln |Eγ ∩ [0, n]|
lnn

=
1

2
+ γ.

We are going to show that the sojourn time |Eγ ∩ Sn| is larger than 2n(1/2+γ) for infinitely many

integers n, but at the same time never exceeds 2n(1/2+γ+ε) for all large n, where ε > 0 can be chosen
arbitrarily small. As the underlying sequence of sojourn time are dependent random variables, the
following strong law of large numbers for dependent events, proved in Xiao and Zheng [21], is
needed.

Lemma 7. [21, Lemma 2.9] Suppose that {Ak}k≥1 and {Dk}k≥1 are two sequences of events adapted
to the same filtration {Fk}k≥1 and are such that for some positive constants p, a and δ

∀ k ≥ 1, P(Ak+1|Fk) ≥ p on the event Dk, and P(Dck) ≤ ae−δk.

Then there exists ε > 0 such that almost surely,

lim inf
n→+∞

∑n
k=1 1Ak
n

≥ ε.

Let us first prove the upper bound DimUMEγ ≤ 1
2 + γ. For each annulus Sn, consider the unit

intervals Q(k, 1) with left endpoint k ∈ Sn.
Recall the definition of the events A(p, k, 1, γ) in Lemma 3. We observe that the union of those

intervals Q(k, 1) inside each Sp (0 ≤ p ≤ n) satisfying 1A(p,k,1,γ) = 1 forms a covering of Eγ∩ [0, 2n].
This implies that

|Eγ ∩ [0, 2n]| ≤
n∑
p=0

2p−1∑
k=2p−1

1A(p,k,1,γ).

Taking expectation, one obtains by Lemma 3 that for some finite positive constant C,

E[|Eγ ∩ [0, 2n]|] ≤ C
n∑
p=0

2p2p(γ−1/2) = C2n(γ+1/2).

For ρ > 1/2 + γ, the first moment Markov inequality yields that for all n ∈ N∗,

P (|Eγ ∩ [0, 2n]| ≥ 2nρ) ≤ C−12−n(ρ−γ−1/2)

which is the general term of a convergent series. Thus, an application of Borel-Cantelli Lemma
gives almost surely, for all n large enough,

|Eγ ∩ [0, 2n]| < 2nρ.

Hence, for all m large enough, denote by n the unique integer such that m ∈ Sn, one gets

ln |Eγ ∩ [0,m]|
lnm

≤ ln |Eγ ∩ [0, 2n]|
ln 2n−1

≤ n

n− 1
ρ

Taking lim sup entails DimUMEγ ≤ ρ, almost surely. The desired upper bound follows by letting ρ
tend to γ + 1/2.

Now we prove the lower bound DimUMEγ ≥ 1
2 + γ. Let us fix some notations before moving

forward.
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Define the super-exponential increasing sequence of integers{
n0 = 1,

nk+1 = 2nk for all k ∈ N∗.

Set

Ŝn = Sn ∪ Sn+1 ∪ Sn+2.

We introduce two sequences of events for k ≥ 1

Ak =
{
|Eγ ∩ Ŝnk | ≥ K2nk(γ+1/2)

}
and Dk =

{
|B2nk+2 | ≤ nk · 2(nk+2)/2

}
,

recalling that 2nk+2 is the right endpoint of Ŝnk . Here K ≥ 1 is a universal constant which will be
chosen later.

One observes that when Ak is realized, |Eγ∩Sn| ≥ K2n(γ+1/2)/3 for some n ∈ {nk, nk+1, nk+2}.
So if Ak is realized for infinitely many k’s,

ln |Eγ∩Sn|
ln 2n ≥ γ + 1/2 for infinitely many integers n, from

which the result follows.
To this end, we first chek that the events {Ak}k≥1 and {Dk}k≥1 verify the conditions of Lemma

7, and then apply this lemma.
Let Fk = σ(Bs : s ≤ 2nk+2). The condition on {Dk}k≥1 is easy to check. Indeed, by the self-

similarity of Brownian motion, the tail probability estimate of a Gaussian variable, and the rapid
increasing rate of {nk}, one gets that

P(Dck) = P(|B1| > nk) ≤
2

nk
√

2π
e−n

2
k/2 ≤ e−k.

It remains to check the condition on {Ak}k≥1. Applying the Markov property of {Bt : t ≥ 0} at
time 2nk+2 yields

P(Ak+1|Fk) = g(B2nk+2),

where

g(x) = Px
(∫ 2nk+1+2−2nk+2

2nk+1−1−2nk+2
1|Bt|≤(t+2nk+2)γdt ≥ K2nk+1(1/2+γ)

)

≥ Px
(∫ 2·2nk+1

2nk+1−1
1|Bt|≤tγdt ≥ K2nk+1(1/2+γ)

)
.

Define the x-level set of the Brownian motion

Zx = {t ≥ 0 : Bt = x}

and the stopping time

τk+1 = inf{t ∈ Snk+1
: Bt = x}.

Since [τk+1, τk+1 + 2nk+1 ] ⊂ [2nk+1−1, 2 · 2nk+1 ] under the event {Zx ∩ Snk+1
6= ∅}, one has

g(x) ≥ Px
(
Zx ∩ Snk+1

6= ∅,
∫ τk+1+2nk+1

τk+1

1|Bt|≤tγdt ≥ K2nk+1(1/2+γ)

)
.

By the strong Markov property of Brownian motion at τk+1,

g(x) ≥ Px
(
Zx ∩ Snk+1

6= ∅
)
×Px

(∫ 2nk+1

0
1|Bt|≤2(nk+1−1)γdt ≥ K2nk+1(1/2+γ)

)
:= P 1

k (x)P 2
k (x).
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We estimate separately the two terms in the last product. Observe that Zx under Px coincides
with the range of a 1/2-stable subordinator. So, the hitting probability estimate given by Lemma
6 yields that

P 1
k (x) ≥ C (18)

uniformly for all k. Finally, one observes that uniformly for all x ∈ [−nk · 2(nk+2)/2, nk · 2(nk+2)/2],

P 2
k (x) ≥ P

(∫ 2nk+1

0
1|Bt|≤2(nk+1−1)γ−xdt ≥ K2nk+1(1/2+γ)

)

≥ P

(∫ 2nk+1

0
1|Bt|≤2(nk+1−1)γ−1dt ≥ K2nk+1(1/2+γ)

)
:= pk (19)

The sequence {pk}k≥1 is uniformly controlled from below by the following lemma.

Lemma 8. For k ≥ 1, let

Mk =

∫ 2nk+1

2nk+1−1
1|Bt|≤2(nk+1−1)γ/2

dt.

There exist positive constants C1, C
′
1, C2 such that for all k ≥ 1

C12nk+1(γ+1/2) ≤ E[Mk] ≤ C ′12nk+1(γ+1/2)

and

E[M2
k ] ≤ C22nk+1(1+2γ).

Proof. An application of Fubini theorem and the self-similarity of {Bt : t ≥ 0} yields the first
moment estimate. For the second moment, one has

E[M2
k ] = 2

∫ 2nk+1

2nk+1−1

∫ 2nk+1

t
P(|Bt| ≤ 2(nk+1−1)γ−1, |Bs| ≤ 2(nk+1−1)γ−1)ds dt

≤ 2

∫ 2nk+1

2nk+1−1

∫ 2nk+1

0
P(|Bt| ≤ 2(nk+1−1)γ−1)P(|Bu| ≤ 2(nk+1−1)γ)du dt

≤ 2

∫ 2nk+1

2nk+1−1
P(|Bt| ≤ 2(nk+1−2)γ)dt

(
1+

nk+1∑
i=1

∫ 2i

2i−1

P(|Bu| ≤ 2(nk+1−1)γ)du

)
.

Applying the first moment estimate yields the results. �

Applying Paley-Zygmund inequality to pk with K = C1/2, one obtains that for all k,

pk ≥
E[Mk]

2

4E[M2
k ]

=
C1

4C2
> 0.

Combining this, (18) and (19), one deduces that for all k, on the event Dk,

P(Ak+1|Fk) = g(B2nk+2)≥ C C1

4C2
> 0.

Applying Lemma 7, there exists ε > 0 such that almost surely,

lim inf
n→+∞

∑n
k=1 1Ak
n

≥ ε.

In particular, Ak is realized for infinitely many k’s. As explained before, this completes the proof
for the lower bound.
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5. Proof of Theorem 2 : dimension of all level sets

In the preceding sections, we have proved that almost surely, DimH(Z0) = 1/2. We are going to
prove that almost surely, for every x ∈ R except maybe one point, DimH(Zx) = 1/2.

For this, we start with the following easy lemma. For any function f : R+ → R and any interval
I ⊂ R+, the oscillation of f on I is written

OscI(f) = sup
I
f − inf

I
f.

Lemma 9. Let {Bt : t ≥ 0} be a Brownian motion. With probability one, there exists an integer

N ≥ 1 such that for every n ≥ N , for any integer ` ∈ [2n, 2n+1 − n3/2], there exists at least
one interval amongst the consecutive intervals {Ik := [` + k, ` + k + 1]}k=0,...,n3/2−1 such that the
oscillation of B on Ik is larger than log logn.

Proof. Fix n ≥ 1. For any integer interval [k, k + 1] ⊂ Sn, let us denote p̃n = P(Osc[k,k+1]B ≥
log logn) > 0. A standard estimate shows that p̃n = Cne

−(log logn)2/2/ log log n, where Cn is a
constant uniformly bounded by above and below with respect to n.

The Markov property implies that the oscillation of Brownian motion on non-overlapping unit
intervals are independent and identically distributed. Therefore, for any sequence of bn3/2/2c
consecutive intervals I1, ..., Ibn3/2/2c of length 1, the probability that simultaneously the oscillation

of {Bt : t ≥ 0} on each of these intervals is less than log log n is pn := (1 − p̃n)bn
3/2/2c. One sees

that pn ∼ e−Cnn
3/2e−(log logn)2/2/ log logn, hence goes fast to 0 (Cn is another constant, still bounded

away from 0 and ∞).

There are C2n/bn3/2/2c disjoint sequences of consecutive bn3/2/2c integer intervals included in

Sn. Hence, by independence, the probability that there is at least one such sequence of bn3/2/2c
consecutive intervals such that the oscillation of {Bt : t ≥ 0} on all these intervals is less than
log logn is

p̂n := 1− (1− pn)C2n/bn3/2/2c, (20)

which tends exponentially fast to 1. The Borel-Cantelli lemma yields that there exists some (ran-

dom) integer N such that for every n ≥ N , there is always an interval I of length 1 in the bn3/2/2c
consecutive intervals such that the oscillation of {Bt : t ≥ 0} on I is larger than log log n.

As a conclusion, with probability one, every interval of length n3/2 (which contains necessarily

bn3/2/2c consecutive intervals above) in Sn contains a subinterval of length 1 on which the oscillation
of {Bt : t ≥ 0} is larger than log log n. �

We now prove that the macroscopic Hausdorff dimension is 1/2 over a semi-infinite interval.
Recall that Zx = {t ≥ 0 : Bt = x}.

Lemma 10. For every x0 ∈ R, almost surely, DimHZx = 1/2 either for all x ≥ x0 or for all
x ≤ x0.

Proof. We prove the Lemma for x0 = 0. One knows that almost surely, DimHZ0 = 1/2.
First, Lemma 9 gives an integer N such that the conclusions of this lemma hold for n ≥ N .
Let Qn = (Qn,i)i=1,...,mn be a finite family of intervals forming a covering of Z0 ∩Sn by intervals

of diameter multiple of n2.
Each Qn,i can be split into a finite number of contiguous intervals Q of length n2.
Consider one of these intervals Q, and enlarge it by adding on its right side an interval of size

n2. Call Q̃ = Q+ [0, n2] the obtained interval.
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If Q intersects Z0, by Lemma 9, when n is large, there exists an interval I ⊂ Q̃ of length 1
on which the oscillation of B is greater than log log n. Hence, (at least) one of the two intervals

[0, log logn/2] or [− log logn/2, 0] is necessarily included in B
Q̃

(the image of Q̃ by {Bt : t ≥ 0}).
So Q̃ ∩ Zx 6= ∅, simultaneously for all x ∈ [0, log logn/2] or for all x ∈ [− log log n/2, 0].

We introduce the sets

Q+
n,i =

⋃
Q∈Qn,i:Q∩Z0 6=∅, [0,log logn/2]⊂B

Q̃

Q̃ and Q−n,i =
⋃

Q∈Qn,i:Q∩Z0 6=∅, [− log logn/2,0]⊂B
Q̃

Q̃. (21)

Observe that the two sets Q+
n,i and Q−n,i are union of intervals, and that these unions may intersect

each other.

Remark 2. Notice that in this situation, for every x ∈ [0, log log n/2] (resp. x ∈ [− log log n/2, 0]),

if Rn is a covering of Zx∩Qn,i by intervals I of size that are multiple of n2, then
⋃
I∈Rn

(I+[−n2, n2])

necessarily contains Q+
n,i (resp. Q−n,i).

Finally we set

Q+
n =

mn⋃
i=1

Q+
n,i and Q−n =

mn⋃
i=1

Q−n,i. (22)

Let ρ < 1/2. By definition, almost surely,
∑

n≥0 ν̃
n
ρ (Z0) = +∞.

In order to simplify the notation, we denote for any family Qn = {Qn,i}i=1,...,mn of intervals
included in Sn

sρ(Qn) :=

mn∑
i=1

(
s(Qn,i)

2n

)ρ
. (23)

By abuse of notation, we use s(E) to denote the diameter of a set E even when E is not an interval.
Assume that for every integer n ≥ 1, the family Qn = (Qn,i)i=1,...,mn is a covering of Sn ∩Z0 by

intervals of length multiple of n2 and in addition, that Qn is one of the families that minimize the
sum sρ(Qn) in (6), so that ∑

n≥0

sρ(Qn) = +∞. (24)

It is obvious from the construction that Z0 ∩Qn,i ⊂ Q−n,i ∪Q
+
n,i.

In addition, it is not possible to have s(Q−n,i)
ρ + s(Q+

n,i)
ρ < s(Qn,i)

ρ, otherwise the family Qn
would not be a minimizer. Hence max(s(Q−n,i)

ρ, s(Q+
n,i)

ρ) ≥ s(Qn,i)ρ/2.

For the same reason, it is also not possible to decompose Q−n,i (resp. Q+
n,i) into union of intervals

{Q−} (resp. {Q+}) (of length multiple of n2) such that

max
( ∑
Q+∈Q+

n,i

s(Q+)ρ,
∑

Q−∈Q−n,i

s(Q−)ρ
)
< s(Qn,i)

ρ/2.

In other words, one necessarily has

max
(
sρ(Q

+
n,i), sρ(Q

−
n,i)
)
≥ s(Qn,i)ρ/2.

One deduces by summation over i that

max
(
sρ(Q

+
n ), sρ(Q

−
n )
)
≥ 1

2

mn∑
i=1

(
s(Qn,i)

2n

)ρ
. (25)
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Changing a little bit the point of view, considering any set Q+
n of intervals covering the set(⋃

x∈[0,log logn/2]Zx
)
∩ Sn and any set Q−n of intervals covering

(⋃
x∈[− log logn/2,0]Zx

)
∩ Sn, and

using the same idea as the one which led to (25), the inequality (25) holds necessarily.
Finally, summing over n, one has

max

∑
n≥1

sρ(Q
+
n ),
∑
n≥1

sρ(Q
−
n )

 ≥ 1

2

∑
n≥1

mn∑
i=1

sρ(Qn) = +∞,

this being true for any coverings Q+
n and Q−n defined as above.

One concludes that at least one of the two sums
∑+∞

n=1 sρ(Q
+
n ) or

∑+∞
n=1 sρ(Q

−
n ) is +∞.

Assume that this is the first one:
∑
n≥1

sρ(Q
−
n ) = +∞.

Let x < 0 and consider Zx = {t ≥ 0 : Bt = x}.
Assume also that N (given by Lemma 9) is so large that (log logN)/2 > x.
Let Rn be a covering of Zx ∩ Sn by intervals Rn,i of length that are multiple of n2 (the sets Qn

and Qn,i are used for the optimal covering of Z).

We use Remark 2. By the construction above, necessarily each union of intervals Q−n,i is contained

in
⋃
Rn,i∈Rn(Rn,i±2n2) (recall that the notation Rn,i±n2 means that the interval Rn,i enlarged by

an interval of size 2n2 on both of its sides). Indeed, using the notations of (21), when Q ⊂ Rn,i is

an interval of size 1 such that the image of Q̃ = Q± n2 by B contains [− log logn/2, 0], necessarily

Zx ∩ Q̃ 6= ∅. We deduce that Q−n,i ⊂
⋃
Rn,i∈Rn(Rn,i ± n2).

Denote by R̃n =
⋃
Rn,i∈Rn Rn,i ± n

2.

Remark 3. Observe that by changing Rn,i into Rn,i± n2, sρ(R̃n) is simply sρ(Rn) multiplied by a
factor ∈ [1, 5ρ], which will not change the nature (convergence/divergence) of the series involved in
the computation of the macroscopic dimension.

The last lines of computations prove that

sρ(R̃n) ≥ 5−ρsρ(Q
−
n ),

which holds for any covering Rn of Zx ∩ Sn.
We conclude that for any sequence (Rn)n≥1, with Rn a covering of Zx ∩ Sn by intervals with

length multiple of n2 (and larger than 5n2), one necessarily has∑
n≥1

sρ(R̃n) ≥ 5−ρ
∑
n≥1

sρ(Q
−
n ) ≥ 1

2 · 5ρ
∑
n≥1

sρ(Qn) = +∞.

Hence, DimH(Zx) ≥ ρ. One also sees that the argument holds simultaneously for all x ≤ 0,
almost surely.

Finally, applying the previous result to a sequence (ρn)n≥1 which tends to 1/2 leads to DimH(Zx) ≥
1/2, for all x ≤ 0. �

Now we prove Theorem 2.

Proof. The upper bound follows from the fact that for every x ∈ R, Zx is ultimately included in
E(γ) for every γ > 0, and Theorem 1 (formula (2)) yields DimH(Zx) ≤ 1/2.
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We turn to the lower bound. Let (xn)n≥1 be a dense sequence of real numbers. With probability
one, the results of Lemma 10 apply to all the xn’s simultaneously. Define

Y = sup{y ∈ R : ∀xn < y, DimH(Zx) ≥ 1/2 for all x ≤ xn}

with the convention that the supremum of an empty set is −∞. One sees that, almost surely, there
are only three possibilities:

(i) Y = +∞, necessarily, for every x ∈ R, DimH(Zx) ≥ 1/2;
(ii) Y = −∞, in this case, for each y ∈ R, there exists xn ≥ y such that DimH(Zx) ≥ 1/2 for

all x ≤ xn. So, for every x ∈ R, DimH(Zx) ≥ 1/2;
(iii) −∞ < Y < +∞, consequently, for each xn < Y , DimH(Zx) ≥ 1/2 for all x ≤ xn, and for

each xn > Y , DimH(Zx) ≥ 1/2 for all x ≥ xn. This proves that for every x ∈ R \ {Y },
DimH(Zx) ≥ 1/2.

�

6. Discussions

In this article, we considered the large scale structure of certain sojourn sets where a Brownian
motion visits “exceptionally” small values in a large scale dimension sense. Along the way, we
use quite specific properties of the Brownian motion. For instance, the explicit probability density
function of Brownian motion and 1

2 -stable subordinator are used in Lemma 3 and 6. It would be
very interesting to extend the results here to general Lévy processes, where the densities (when
they exist) are not explicitly known.

We believe that Theorem 2 holds for all level sets simultaneously. The problem is a lack of
symmetry in the current proof. It would be interesting to find an alternative method to remove
the unique point of exception (if any) in our result.
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