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RANDOM SPARSE SAMPLING
IN A GIBBS WEIGHTED TREE

JULIEN BARRAL AND STÉPHANE SEURET

Abstract. Let µ be the geometric realization on [0, 1] of a Gibbs measure on Σ = {0, 1}N
associated with a Hölder potential. The thermodynamic and multifractal properties of
µ are well known to be linked via the multifractal formalism. In this article, the impact
of a random sampling procedure on this structure is studied.

More precisely, let {Iw}w∈Σ∗ stand for the collection of dyadic subintervals of [0, 1]
naturally indexed by the set of finite dyadic words Σ∗. Fix η ∈ (0, 1), and a sequence
(pw)w∈Σ∗ of independent Bernoulli variables of parameters 2−|w|(1−η) (|w| is the length
of w). We consider the (very sparse) remaining values µ̃ = {µ(Iw) : w ∈ Σ∗, pw = 1}.

We prove that when η < 1/2, it is possible to entirely reconstruct µ from the sole
knowledge of µ̃, while it is not possible when η > 1/2, hence a first phase transition
phenomenon.

We show that, for all η ∈ (0, 1), it is possible to reconstruct a large part of the
initial multifractal structure of µ, via the fine study of µ̃. After reorganization, these
coefficients give rise to a random capacity with new remarkable scaling and multifractal
properties: its Lq-spectrum exhibits two phase transitions, and has a rich thermodynamic
and geometric structure.

1. Introduction

Statistical mechanics and multifractals are well known to be closely related. Typical
situations are provided by the energy model associated with a Gibbs measure on the
boundary Σ of the dyadic tree Σ∗ in the context of the thermodynamic formalism [34, 15,
33], or the random energy model associated with a branching random walk on Σ∗, namely
directed polymers on disordered trees [16, 14, 24, 31, 2, 3]. The purpose of this paper is
to investigate the thermodynamic and geometric impact of a random sparse sampling on
such structures.

Let us start by describing the interplay between thermodynamics and multifractals.

1.1. Free energy and singularity spectrum as a Legendre pair. For the sake of
generality, we work on the d-dimensional dyadic tree and on [0, 1]d, d ≥ 1. Let Σj be the
set of words of length j ≥ 1 over the alphabet {0, 1}d, i.e.

Σj =
{

(w1w2 · · ·wj) : ∀ k ∈ {1, ..., j}, wk = (w
(1)
k , w

(2)
k , , ..., w

(d)
k ) ∈ {0, 1}d

}
.

If w ∈ Σj , we denote by |w| = j its length (or its generation). Then, Σ∗ =
⋃
j≥1 Σj and

Σ = ({0, 1}d)N+ denote the set of finite words and infinite words over {0, 1}d respectively.
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2 JULIEN BARRAL AND STÉPHANE SEURET

The set Σ is endowed with the standard ultra-metric distance, and Σ∗∪Σ is endowed with
the shift operation denoted σ.

If w ∈ Σ∗ ∪ Σ and 1 ≤ j ≤ |w| is finite, w|j stands for the prefix of length j of w. If
W ∈ Σ∗, [W ] is the cylinder of those words w ∈ Σ such that w||W | = W .

With each w = w1...wj ∈ Σj is naturally associated the dyadic point

(1) xw =

(
j∑

k=1

w
(i)
k 2−k

)

1≤i≤d
,

of [0, 1]d, and the dyadic subcube Iw =
∏d
i=1

[
x

(i)
w , x

(i)
w + 2−j

]
of [0, 1]d.

If x = (x(1), x(2), , ..., x(d)) ∈ [0, 1]d has no dyadic component, then x is encoded by a
unique w = w(1)w(2)...w(d) ∈ Σ, and Ij(x) stands for Iw|j . When x(i) is dyadic, we choose
w(i) as the largest element of {0, 1}N+ in lexicographical order which encodes x(i). In both
cases, w|j is also denoted x|j .

Definition 1. We call capacity a non-negative and non-decreasing function µ of the dyadic
subcubes of [0, 1]d, i.e. for every W,w ∈ Σ∗ such that Iw ⊂ IW , 0 ≤ µ(Iw) ≤ µ(IW ).

The set of capacities is denoted by Cap([0, 1]d).
The support of µ ∈ Cap([0, 1]d) is the set supp(µ) =

⋂

j≥1

⋃

w∈Σj :µ(Iw)>0

Iw.

We focus on two quantities especially relevant in the thermodynamic and geometric
measure theoretic contexts.

• The free energy of a capacity µ ∈ Cap([0, 1]d) with a non empty support is defined as
the thermodynamic (lower) limit given for q ∈ R by

(2) τµ(q) = lim inf
j→∞

τµ,j(q), where τµ,j(q) :=
−1

j
log2

∑

w∈Σj :µ(Iw)>0

µ(Iw)q,

and q is interpreted as the inverse of a temperature when it is positive (the precise con-
nection with statistical mechanics terminology is that in finite volume j, τµ,j(q) is the free
energy associated with the potential V (w) = − log(µ(Iw)), w ∈ Σj).

When the free energy τµ(q) is a limit (not only a liminf) and is differentiable, the value
τµ(q) allows one to describe the asymptotical distribution properties of µ over Σj thanks
to large deviations theory, which roughly gives the approximation:

∀H ∈ R, #
{
w ∈ Σ∗ : |w| = j, µ(Iw) ≈ 2−jH

}
≈ 2jτ

∗
µ(H) as j → +∞,

where τ∗µ is the Legendre transform of τµ, i.e.

(3) τ∗µ(H) := inf
q∈R

(
Hq − τµ(q)

)
.

• The singularity, or multifractal, spectrum of µ is defined as

Dµ : H 7→ dimEµ(H), H ∈ R,

where

Eµ(H) =

{
x ∈ supp(µ) : lim inf

j→∞

log2

(
µ(Ix|j )

)

−j = H

}
.
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τµ(q)

q
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−d

1

Dµ(H) = τ∗
µ(H)

H
0

d

Hmin HmaxHs

Figure 1. Left: Free energy function of a Gibbs measure µ on [0, 1]d.
Right: The singularity spectrum of µ.

The Hausdorff dimension in Rd is denoted by dim, and by convention, dim ∅ = −∞. The
singularity spectrum provides a fine geometric description of the energy distribution at
small scales by giving the Hausdorff dimension of the iso-Hölder sets Eµ(H) of µ.

It turns out that when µ possesses nice scaling properties, one has

∀H ∈ R, Dµ(H) = τ∗µ(H).

Definition 2. When the above formula is satisfied, τµ and Dµ are said to form a Legendre
pair (see Figure 1). In this situation, one says that µ obeys the multifractal formalism at
any H ∈ R.

Forming a Legendre pair implies that the geometric description of µ provided by its
singularity spectrum Dµ matches with the asymptotic statistical description of the energy
distribution µ provided by the free energy τµ and its Legendre transform. Our goal is to
investigate the impact on such well-organized structures of a natural sampling procedure.

1.2. Random sparse sampling operation on capacities. We perform on any capacityµ
the random sampling process consisting in acting independently on the vertices of Σ∗ by
letting a vertex of generation j survive with probability 2−jd(1−η), where η ∈ (0, 1) (it is
also a special case of decimation rule used in percolation theory on Σ∗). More formally:

Definition 3. Fix a real parameter 0 < η < 1, called the sampling index. Let (Ω,F ,P) be
a probability space, and (pw)w∈Σ∗ a sequence of independent Bernoulli random variables so
that pw ∼ B(2−d(1−η)|w|), i.e.

(4) P(pw = 1) = 1− P(pw = 0) = 2−d(1−η)|w|.

When pw = 1, w is said to be a surviving vertex (or a survivor).
For every j ≥ 1, denote by Sj(η) the (random) set of surviving vertices in Σj:

Sj(η) :=
{
w ∈ Σj : pw = 1}.

Let µ ∈ Cap([0, 1]d). We denote by µ̃ : Σ∗ → R+ the function defined by

∀w ∈ Σ∗, µ̃(Iw) = µ(Iw) · pw.
See Figure 2 for an illustration. The problems we address are the following.
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Figure 2. Left: Capacity µ on dyadic cubess. Right: Function µ̃ and
surviving vertices after sampling.

• Recovering from sparse information: The set of surviving vertices Sj(η) has
a cardinality of expectation 2djη (which is exponentially less than the 2dj initial
coefficients), and is very sparse. The first question concerns the information re-
maining after the sampling operation. Can one recover the initial Gibbs measure µ
(i.e. all the values (µ(Iw))w∈Σ∗) from the sole knowledge of µ̃? If not, what about
recovering the free energy and multifractal spectrum of µ?
• Structure of µ̃: The new object µ̃ is not a capacity any more. Does it have a
well-organized structure though?

The last two above questions are of course related to each other.
Concerning the reconstruction problematics, recovering the scaling behavior from sparse

information is a very natural issue in signal processing (this is one issue in compressive
sensing). This allows one to evaluate the “incompressible” information represented by the
initial capacity. We bring an answer when µ is the geometric realization on [0, 1] of a
Gibbs measure associated with a Hölder continuous potential on Σ, and more generally a
non trivial Gibbs capacity. Specifically, the capacity µ satisfies that there exists a Gibbs
measure ν, K > 0 and (α, β) ∈ R+ × R+ such that

µ(Iw) = Kν(Iw)α2−β|w|, ∀w ∈ Σ∗,

and µ is not constant, so (α, β) 6= (0, 0) (see Section 2.1 for a precise definition of Gibbs
measures and capacities).

Theorem 1. Suppose that µ is a Gibbs capacity. With probability one, when η < 1/2,
one can reconstruct, up to some multiplicative constant depending only on µ, all the values
{µ(Iw) : w ∈ Σ∗}, while when η > 1/2, it is impossible provided µ is not built from a
potential on Σ depending on only finitely many letters.

See Section 3, Theorem 4 for a more precise statement. This constitutes a first phase
transition phenomenon at η = 1/2.

Regarding recovering of statistical and geometrical properties of µ, we first reorganize
the surviving information in a suitable and exploitable way, as follows. If w, v ∈ Σ∗, wv
stands for the concatenation of w and v.

Definition 4. Let µ ∈ Cap([0, 1]d). We consider the random capacity Mµ ∈ Cap([0, 1]d)
associated with µ and the sequence (pw)w∈Σ∗ defined by

(5) Mµ(Iw) = max
{
µ(Iwv) : v ∈ Σ∗ and pwv = 1

}
.
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Figure 3. Left: surviving vertices after sampling, and the coefficients
used to compute Mµ(I0) and Mµ(I11). Right: The capacity Mµ.

See Figure 3 for the construction of Mµ. By construction, any capacity µ ∈ Cap([0, 1]d)

satisfies µ(Iw) = max
{
µ(Iwv) : v ∈ Σ∗

}
, hence (5) is the most natural formula to be used

to build a capacity from µ̃.
It is not difficult to see that with probability 1, for every w ∈ Σ∗, the set

{
v ∈

Σ∗ and pwv = 1
}
is non-empty, so that Mµ is well defined. Observe that by our choice

(4), most of the coefficients µ̃(Iw) equal 0, hence typically one has Mµ(Iw) << µ(Iw) when
limj→+∞max{µ(Iw) : w ∈ Σj} = 0.

The definition of Mµ can be rephrased as

Mµ(Iw) = max {µ(Iv) : v survives, [v] ⊂ [w]} = max {µ̃(Iwv) : v ∈ Σ∗} .

We notice that Mµ and µ̃ are equivalent objects in the following sense. If µ is strictly
positive, µ̃ can be recovered from Mµ since µ̃(Iw) 6= 0 if and only if Mµ(Iw) > Mµ(Iwv) for
all v ∈ Σ∗ such that |v| ≥ 1. From now on, we work with the capacitiy Mµ only.

Starting from a positive capacity µ whose free energy τµ and singularity spectrum Dµ

form a Legendre pair, we consider the following questions in order to estimate the structural
perturbations induced by the sampling process:

• Do the free energies in finite volume τMµ,j converge to a thermodynamic limit τMµ

as j → +∞?
• Is it possible to conduct a fine analysis of the local behavior of Mµ so that DMµ is
computable? If so, do τMµ and DMµ form a Legendre pair?
• Are there explicit relations between the new pair (τMµ , DMµ) and the original
one (τµ, Dµ), so that one can recover the initial information (before sampling)?

When µ is a Gibbs Capacity, we are going to prove that the free energy τMµ exists as a
limit, and that it forms a Legendre pair with the singularity spectrum of Mµ. Nevertheless,
we will see that the sampling deeply modifies and complexifies the initial structure, creating
several phenomenological differences between µ and Mµ, both from thermodynamic and
geometric viewpoints.

1.3. Statement of the main result for the random capacity Mµ when µ is Gibb-
sian. We only consider capacities with full support, i.e. µ(Iw) > 0 for all w ∈ Σ∗.



6 JULIEN BARRAL AND STÉPHANE SEURET

Dµ(H)

H

d(1 − η)

H`(η`)

H`(η̃)
0

d
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H
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H`(η`)
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d

Figure 4. Values of H`(η`) and H`(η̃) depending on Dµ and η: Left:
when Dµ(Hmin) ≤ d(1− η). Right: when Dµ(Hmin) > d(1− η).

Definition 5. Let µ ∈ C([0, 1]d) with full support. For x ∈ [0, 1]d, the lower and upper
local dimensions of µ at x are respectively defined as

dim(µ, x) = lim inf
r→0+

log2 µ(B(x, r))

log r
and dim(µ, x) = lim sup

r→0+

log2 µ(B(x, r))

log r
.

When dim(µ, x) = dim(µ, x), their common value is denoted by dim(µ, x).
For H ∈ R, set

Eµ(H) =
{
x ∈ [0, 1]d : dim(µ, x) = H

}
,

Eµ(H) =
{
x ∈ [0, 1]d : dim(µ, x) = H

}
,

Eµ(h) = Eµ(H) ∩ Eµ(H).

Recall that the singularity spectrum of µ is the mapping

Dµ : H ∈ R 7−→ dimEµ(H).

The lower local dimension is distinguished with respect to dim(µ, x) or dim(µ, x), be-
cause it provides at any x the best local control of the capacity µ. Since µ is bounded, one
has dim(µ, x) ≥ 0 at any x, hence Eµ(H) = ∅ = Eµ(H) for all H < 0.

The multifractal formalism states that for every capacity µ ∈ C([0, 1]d) with full support,

(6) dimEµ(H) ≤ τ∗µ(H) := inf
q∈R

(
Hq − τµ(q)

)
, ∀H ∈ R,

see for instance [11, 32], which deal with measures, but easily extend to capacities. Recall
that the multifractal formalism holds for µ at H ∈ R when there is equality in (6).

We consider a non-homogeneous Gibbs capacity µ, i.e. associated with a Hölder potential
non cohomologous to a constant (see Definition 8 in Section 2.1 for a precise description).
For such an object, the following statement gathers information deduced from the study
of Gibbs measures and almost-additive potentials [34, 15, 33, 11, 23, 21, 20]: Let Hmin =
τ ′µ(+∞) ≤ Hs := τ ′µ(0) ≤ Hmax = τ ′µ(−∞).

(1) The free energy function τµ is the limit of (τµ,j)j≥1 as j → +∞. The function τµ
is analytic, increasing, and strictly concave on R.
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0

d

Figure 5. Case Dµ(Hmin) ≤ d(1 − η): Left: singularity spectrum of µ.
Right: Almost sure singularity spectrum of Mµ. The parts drawn with
same color are translated copies of each other. One sees that the left part
H ≤ H`(η̃) of the spectrum of µ (drawn in purple) does not appear in the
singularity spectrum of Mµ, and a linear part appears in DMµ which was
not present in Dµ. Observe that the slope of DMµ at H`(η`) is finite.

(2) The stricly concave function τ∗µ is non-negative on its domain of definition, namely
[Hmin, Hmax] ⊂ R∗+, and analytic on (Hmin, Hmax). It reaches its maximum at Hs,
and τ∗µ(Hs) = d.

(3) For all H ≥ 0, we have Dµ(H) = dimEµ(H) = dimEµ(H) = τ∗µ(H). The multi-
fractal formalism holds for µ, and (τµ, Dµ) forms a Legendre pair.

Let us describe our result on the random capacity Mµ obtained after the sampling of µ.
For this, let us introduce some notations.

Definition 6. Let µ be a non-homogeneous Gibbs capacity. Given η ∈ (0, 1), one introduces
three exponents H`(η`), H`(η̃) and H̃`(η̃), which depend on µ and η only, by the following
formulas:

• H`(η`) is defined as

H`(η`) = min{H ≥ 0 : Dµ(H) ≥ d(1− η)}. Then we set qη` = D′µ(H`(η`)).

• H`(η̃) is the (unique) real number such that the tangent to the graph of Dµ at
(H`(η̃), Dµ(H`(η̃)) passes through (0, d(1− η)). Also let qη̃ = D′µ(H`(η̃)).

• Finally, H̃`(η̃) = − τµ(qη̃)
qη̃

.

See Figure 4 for an illustration. The origin and roles of the three exponents H`(η`),
H`(η̃) and H̃`(η̃), as well as the notations themselves, will be explained in Sections 4 and
next. Observe that these exponents depend continuously on Dµ and η.

Theorem 2. Let µ be a non-homogeneous Gibbs capacity on [0, 1]d. Let 0 < η < 1 be a
sampling parameter. With probability 1:
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τµ(q)

q
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−d
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q

qη̃ qη`

Phase
transitions

0

−d

Figure 6. Case Dµ(Hmin) ≤ d(1− η): Left: Free energy τµ of µ; Right:
Free energy τMµ of Mµ.

(1) The singularity spectrum of Mµ reads:

DMµ(H) =





Dµ(H)− d(1− η) when H`(η`) ≤ H ≤ H`(η̃),

qη̃ ·H when H`(η̃) ≤ H ≤ H`(η̃) + H̃`(η̃),

Dµ

(
H − H̃`(η̃)

)
when H`(η̃) + H̃`(η̃) ≤ H ≤ Hmax + H̃`(η̃),

−∞ otherwise.

(2) The free energy function of Mµ is is the limit of (τMµ,j)j≥1 as j →∞, and (Mµ, τMµ)
forms a Legendre pair. One has

τMµ(q) =





τµ(q) + H̃`(η̃) · q when q ≤ qη̃,
τµ(q) + d(1− η) when qη̃ < q < qη` ,

H`(η`) · q when qη` < +∞ and q ≥ qη` .

(3) For all H ≥ H`(η̃) + H̃`(η̃),

dimEMµ(H) = dimEMµ(H) =

{
Dµ

(
H − H̃`(η̃)

)
if H`(η̃) + H̃`(η̃) ≤ H ≤ Hmax + H̃`(η̃),

−∞ if H > Hmax + H̃`(η̃).

1.4. Comments. • It is quite easy to see that the lower local dimension of Mµ at any x
must be greater than H`(η`) (see Lemma 4). It is much more involved to define and to
understand the role of the other parameters.

• From the free energy function τMµ , one recovers the initial free energy τµ, except for
q ≥ qη` . Similarly, one recovers Dµ from DMµ for H ≥ H̃`(η`). In this sense, the sampling
procedure implies a loss of information on the local dimensions, since the values of the
singularity spectrum Dµ(H) are “lost” when H < H`(η`).

• The singularity spectra associated with the level sets EMµ(H) or EMµ(H) are just
translated from Dµ over [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)]. In fact, Dµ(· − H̃`(η̃)) is still a
lower bound for these spectra over [Hmin+H̃`(η̃), H`(η̃)+H̃`(η̃)), but, whetherDµ(·−H̃`(η̃))
is a sharp upper bound in this case or not, remains an open question (see Remark 5).
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• The thermodynamic and geometric phase transitions mentioned earlier can now be
made more precise. The free energy τMµ is not differentiable at qη̃, and it differentiable
but not twice differentiable at qη` when d(1 − η) > Dµ(Hmin). Moreover, τMµ is analytic
outside these singularities. In the thermodynamics language, τMµ presents a first order
phase transition at the inverse temperature qη̃, and a second order phase transition at the
inverse temperature qη` whenever d(1− η) > Dµ(Hmin).

Let us mention that the study of phase transitions for weak Gibbs measures associated
with continuous potentials, started with [34, 25], is still an active domain of research
[35, 26, 12, 13, 19, 22].

• In most of the usual situations, upper bounds for dimensions of “fractal sets” are easily
deduced from covering arguments, and lower bounds are more difficult to derive. The
structure of Mµ, combining random and dynamical phenomena, makes both the derivation
of the sharp upper bound and lower bound for DMµ delicate.

It is too soon in the paper to give an intuition of the proofs. Let us only say that they
follow from a careful analysis of the distribution and the scaling behavior (with respect
to µ) of the surviving vertices. Also, results on large deviations for Gibbs measures,
heterogeneous mass transference principles (which combines ergodic and approximation
theories) and percolation theory, are involved.

• One may also want to describe the asymptotical statistical distribution of Mµ through
the notion of large deviations, as is often the case in statistical physics.

Definition 7. Let µ ∈ C([0, 1]d) with full support. For every set I ⊂ R+, and every integer
j ≥ 1, set

Eµ(j, I) =

{
w ∈ Σj :

log2 µ(Iw)

−j ∈ I
}
.

If H ≥ 0 and ε > 0, we introduce the notation

Eµ(j,H ± ε) =

{
w ∈ Σj :

log2 µ(Iw)

−j ∈ [H − ε,H + ε]

}
.

Then, the lower and upper large deviations spectra of µ are respectively

fµ(H) = lim
ε→0

lim inf
j→+∞

log2 #Eµ(j,H ± ε)
j

and fµ(H) = lim
ε→0

lim sup
j→+∞

log2 #Eµ(j,H ± ε)
j

.

Heuristically, one should have in mind that the number of words of length j satisfying
µ(Iw) ∼ 2−jH is between 2jfµ(H) and 2jfµ(H). Next theorem states that Mµ behaves nicely
with respect to the large deviations theory, as the Gibbs capacity µ does.

Theorem 3. Under the same assumptions as in Theorem 2, with probability 1, we have

for all H ≥ 0, f
Mµ

(H) = fMµ
(H) = DMµ(H).

1.5. Conclusion and further perspectives. The hierarchical structure of the initial
capacity µ is so robust that, although we greatly sample it, the remaining coefficients still
possess a rich structure, especially in terms of scaling properties and multifractal formalism.
For instance, one consequence of Theorem 2 is that no matter how close to 0 η is (i.e. even
if only a very small logarithmic proportion of vertices are kept), it is always possible to
reconstruct from the knowledge of τMµ all the dimensions of the set of points with local
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−d

1

Figure 7. Case Dµ(Hmin) > d(1 − η): Observe that Dµ and DMµ have
an infinite slope at H`(η`) = Hmin.

dimension greater than Hs (one can even show that when η = 0, one has EMµ
(H) =

EMµ(H) = EMµ(H) = ∅ if H < Hs, dimEMµ
(H) = dimEMµ(H) = dimEMµ(H) = 0 if

H ≥ Hs, and dimEMµ(+∞) = d).
This phenomenon is remarkable, since at the same time, most of the information on

the dimensions of the set of points with local dimension smaller than Hs is lost. This
asymmetry was, at least from our point of view, unexpected.

Let us finish with some perspectives:

• A remaining question concerns the possible reconstruction of the Gibbs tree at the
critical parameter 1/2 (see Section 3).

• It is natural to expect our result to extend to capacities obtained after sampling of
branching random walks.

• Instead of starting by assigning the value µ(Iw) at every node w ∈ Σj , one could
give the value µ(Iw|bjρc) with ρ < 1. This creates redundancy in the dyadic tree,
which may balance the sparsity associated with the sampling process and provide
different behaviors than those exhibited in Theorem 2.

• Other sampling procedures can be investigated. In particular, one would like to
allow correlations between the pw, or make η depend on the vertex w. One may also
multiply µ(Iw) by some positive random variable when pw = 1. Other interesting
phase transitions phenomena will certainly occur.

• It is tempting to iterate the sampling process by applying it to Mµ. Unfortunately
our analysis does not apply to Mµ any more, since Mµ is not a Gibbs capacity in
the sense considered in this paper. An interesting related question is whether the
capacity Mµ could be made equivalent, after a natural renormalization procedure,
to a measure, as it is the case for Gibbs capacities.

The paper is organized as follows.
Section 2 provides the reader with details on Gibbs measures and capacities, and gathers

some information about large deviations and multifractal analysis.
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Section 3 focuses on the reconstruction of the original capacity µ from its sample µ̃.
The rest of the paper is devoted to the investigation of the structure of Mµ.
We first need to introduce new definitions to explain the origin of the parameters in-

troduced in Theorem 2. This is achieved in Section 4. There, we first explain that we
will work with a slight, and natural, modification of Mµ possessing the same statistical
and geometric properties as Mµ, but necessary to get an application of our result to Gibbs
weighted wavelets series.

In Section 5, we investigate the scaling and distribution properties of the surviving
vertices. A key decomposition of the value of µ(Iw) when w survives, is proved (see
Proposition 5).

Sections 6 and 7 respectively establish the sharp upper bound and lower bound for the
singularity spectrum DMµ , while Section 9 is devoted to the dimensions of the sets EMµ(H)

and EMµ(H). The studies achieved in the Sections 6 and 7 are used in Section 8 to get the
free energy τMµ as the limit of (τMµ,j)j≥1, as well as the large deviations spectra f

Mµ
and

fMµ
. The case of homogeneous Gibbs capacities (i.e. when the associated Gibbs measure

is the Lebesgue measure) is dealt with in Section 10.

Notational conventions:
• We always use:

- capital letters (EMµ(H), Fµ, ...) to characterize sets of points x ∈ [0, 1]d enjoying
some properties,

- curved letters for sets of finite words having specific properties (Sj(η,W ) for
some surviving coefficients, Rµ(j, η′, α ± ε) or Tµ(j, η′, ε) for words with specific
properties, see next Definition 17).

- calligraphic letters (A , B,...) to denote probabilistic events.

• For every finite word W ∈ ΣJ , N (W ) stands for the set of 3d − 1 words of length J
corresponding to the 3d − 1 neighboring cubes at generation J of IW . Sometimes we will
write NJ(W ) when the length J of W is specified.

2. Complements on Gibbs measures and capacities structure

2.1. Formal definition of Gibbs measures and capacities. Let ψ : Σ → R be a
Hölder continuous mapping. Then, the function Ψ defined as

Ψ([w]) = sup
t∈[w]

|w|−1∑

i=0

ψ(σit), ∀w ∈ Σ∗

is almost additive: there exists C1 ∈ R such that for all u, v ∈ Σ∗,

|Ψ([u]) + Ψ([v])−Ψ([uv])| ≤ C1

(see [34]). This almost additivity property implies that the topological pressure

P (σ, φ) = lim
j→∞

1

j
log

∑

w∈Σj

exp(Ψ([w]))

exists in R, and there exists a fully supported Gibbs measure ν on Σ such that for another
constant C2 > 0 one has

C−1
2 exp(Ψ([w])− nP (σ, ψ)) ≤ ν([w]) ≤ C2 exp(Ψ([w])− nP (σ, ψ)), ∀w ∈ Σ∗.
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Also, there is a unique choice of such a ν so that ν is ergodic. Moreover, the mapping
q ∈ R 7→ P (σ, qψ) is convex, analytic, and it is strictly convex if and only if ψ is not
cohomologous to a constant, i.e. there is no continuous function ϕ on Σ and constant
c ∈ R such that ψ = c + ϕ − ϕ ◦ σ. These are important facts from thermodynamic
formalism (see e.g. [34]).

Definition 8. A capacity µ ∈ Cap([0, 1]d) is a Gibbs capacity if

(7) µ(Iw) = Kν([w])αe−|w|β, ∀w ∈ Σ∗,

where K > 0, (α, β) ∈ R+ × R+ \ {(0, 0)}, and ν is a Gibbs measure associated with a
Hölder continuous potential ψ has above.

Equivalently, one says that µ is associated with the Hölder potential

φ = αψ − αP (σ, ψ)− β.
The capacity µ is said to be homogeneous when ψ is cohomologous to a constant or α = 0,
i.e. when φ is cohomologous to a constant, and non-homogeneous otherwise.

Observe that if (α, β) = (1, 0), µ reduces to the Gibbs measure associated with ψ, and
that

τµ(q) =
1

log(2)

(
(β + αP (σ, ψ))q − P (σ, αqψ)

)
, ∀ q ∈ R.

The following fact is key: the capacity µ possesses self-similarity properties expressed
through the following almost multiplicative property (easy to check): there exists a con-
stant C > 0 such that

(8) for all words v and w, C−1µ(Iw)µ(Iv) ≤ µ(Iwv) ≤ Cµ(Iw)µ(Iv).

2.2. Large deviations and multifractal properties. Let µ ∈ C([0, 1]d) with non empty
support. The concave function τ∗µ is called Legendre spectrum of µ (recall that the Legendre
transform τ∗µ is given by (3)). For a non-homogeneous Gibbs capacity µ, one always has:

• τµ is strictly concave and analytic, and Dµ is strictly concave, and real analytic
over (Hmin, Hmax). Also, Dµ = τ∗µ and (D∗µ)∗ = Dµ.
• If H = τ ′µ(q), then τµ(q) = D∗µ(q) = qH −Dµ(H) = qτ ′µ(q)−Dµ(τ ′µ(q)).

• If q = Dµ
′(H), then Dµ(H) = τ∗µ(H) = Hq − τµ(q) = HD′µ(H)− τµ(D′µ(H)).

These relationships will be used repeatedly in the following.

Definition 9. For any fully supported capacity µ ∈ C([0, 1]d), define the level sets

E≤µ (H) = {x ∈ [0, 1]d : dim(µ, x) ≤ H} and E≥µ (H) = {x ∈ [0, 1]d : dim(µ, x) ≥ H}.

The sets E≤µ (H), E≥µ (H), E≤µ (H), E≥µ (H) are defined similarly using the lower and upper
local dimensions, respectively.

If j ≥ 1 and w ∈ Σj, denote by Nj(w) the set of at most 3d elements v ∈ Σ|w| such that
Iv is a neighbor of Iw in Rd. Also, for x ∈ [0, 1]d and j ≥ 1, set Nj(x) = N (x|j). One
defines the set

Ẽµ(H)=

{
x ∈ [0, 1]d : lim

j→+∞

log2 maxw∈Nj(x) µ(Iw)

j
= lim
j→+∞

log2 minw∈Nj(x) µ(Iw)

j
= H

}
.
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Obviously Ẽµ(H) ⊂ Eµ(H). This refinement of Eµ(H) is needed when looking for the
lower bound of the Hausdorff dimensions of some sets in Section 7.

A direct consequence of large deviations theory (see e.g. [11, 32]) is a property valid for
all capacities.

Proposition 1. Let µ ∈ C([0, 1]d) with full support. For all H ≤ τ ′µ(0+), one has

lim sup
j→∞

1

j
log2 #Eµ(j, [0, H]) ≤ τ∗µ(H).

Next proposition gathers information about upper bounds for the singularity spectrum
of Dµ in terms of Legendre and large deviation spectra, when µ is a Gibbs capacity.

Proposition 2. Let µ be a non-homogeneous Gibbs capacity. Recall that Hmin = τ ′µ(+∞) <
Hs := τ ′µ(0) < Hmax = τ ′µ(−∞).

(1) For every H ≥ 0, one has

dimEµ(H) = dimEµ(H) = dimEµ(H) = Dµ(H) = Dµ(H) = τ∗µ(H) = Dµ(H),

with Eµ(H) = ∅ if and only if Dµ(H) = −∞.
(2) For every H ∈ [Hmin, Hs] (i.e., in the increasing part of the singularity spectrum

Dµ), one has

dim E≤µ (H) = dim E≤µ (H) = dim E
≤
µ (H) = Dµ(H).

(3) For every H ∈ [Hs, Hmax] (i.e. in the decreasing part of Dµ), one has

dim E≥µ (H) = dim E≥µ (H) = dim E
≥
µ (H) = Dµ(H).

(4) For every possible local dimension H ∈ (Hmin, Hmax), there exists a unique q ∈ R
such that H = τ ′µ(q). The Gibbs measure µH associated with the potential qφ is
exact dimensional with dimension Dµ(H), and µH

(
Eµ(H)

)
= µ

(
Ẽµ(H)

)
= 1.

(5) For every ε > 0 and every interval I ⊂ R+, there exists an integer JI such that for
every j ≥ JI , ∣∣∣∣

log2 Eµ(j, I)

j
− sup

h∈I
Dµ(h)

∣∣∣∣ ≤ ε.

(6) There exists a constant K > 0 such that for every finite word w ∈ Σ∗,∣∣∣∣
log2 µ(Iw)

−|w|

∣∣∣∣ ≤ K.

This is deduced from [11, 32, 29, 10].
Items (1) and (3) of the last proposition say in particular that the Hausdorff dimension

of the sets of points at which dim(µ, x) = H is the same as the Hausdorff dimension of the
set of points at which dim(µ, x) = H. This will be of particular importance.

We often use item (5) under the following form. Recall the formula for Eµ(j,H ± ε)
in Definition 7: heuristically, Eµ(j,H ± ε) contains those words of length j such that
µ(Iw) ∼ 2−j(H±ε). For every Hmin ≤ H ≤ Hmax and ε, ε̃ > 0, there exists a generation J
such that j ≥ J implies

(9)

∣∣∣∣∣
log2 #Eµ(j,H ± ε)

j
− sup
h∈[H−ε,H+ε]

Dµ(h)

∣∣∣∣∣ ≤ ε̃.
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One needs to keep in mind that #Eµ(j,H ± ε) ≈ 2jDµ(H).

3. Reconstruction of the initial capacity µ

Fix a Gibbs capacity µ. We investigate the possibility to reconstitute the whole Gibbs
tree (µ(Iw))w∈Σ∗ from the sole knowledge of µ̃ (or equivalently, from Mµ).

Assume first that the capacity µ is associated with a Bernoulli measure, i.e. there exists
q0, q1 > 0 such that for any word w ∈ Σ∗ one has µ(Iw1) = q1µ(Iw) and µ(Iw0) = q0µ(Iw).
Hence, in order to reconstitute µ, it is enough to find q0 and q1. Assume that two surviving
vertices w and w′ have different proportions of zeros and ones in their dyadic decomposition.
It is easy to check that this event has probability one. Then the knowledge of µ(Iw) and
µ(Iw′) leads to two linearly independent equations with unknowns q0 and q1, hence to their
values.

This idea generalizes to the case where µ is constructed from a Markov measure, i.e.
there exist an integer k ≥ 0 and ((qv0, qv1))v∈Σk ∈ (0,∞)2k+1 such that for all w ∈ Σ∗ and
v ∈ Σk one has µ(Iwv0) = qv0µ(Iwv) and µ(Iwv1) = qv1µ(Iwv).

When µ is associated with a general Gibbs measure the situation is not that simple. The
answer we propose uses the basic tools we have at our disposal, namely concatenation of
words and quasi-Bernoulli property (8); it depends on the value of η, and there is a phase
transition at η = 1/2.

Definition 10. Let k ∈ N∗. A word u ∈ Σ∗ is k-reconstructible when there is a finite
sequence of words (w1, u1, w2, u2, ...wk, uk) in Σ∗ such that

• for every i ∈ {1, ..., k}, pwi = pwiui = 1,

• u = u1u2 · · ·uk.
One says that S ⊂ Σ∗ is k-reconstructible when every word u ∈ S is k-reconstructible.

This definition follows from the idea that when u is k-reconstructible, after sampling of
the initial tree one has access to the value of the weights µ(Iwi) and µ(Iwiui) for every i.
Hence, by the quasi-Bernoulli property (8), one estimates, up to the constant C > 1, the
value of µ(Iui), and by concatenation of the words u1, ..., uk and (8) again, one reconstructs
the value of µ(Iui) up to the constant Ck+1. Next Theorem completes Theorem 1 in the
introduction.

Theorem 4. When η < 1/2, Σ∗ is 1-reconstructible.
When η > 1/2, Σ∗ is not k-reconstructible, for any integer k ≥ 1.

Proof. • Assume first that η < 1/2.
Fix a generation ` ≥ 1, and a word u ∈ Σ`. By construction, for any word w ∈ Σj ,

(10) P(pwpwu = 1) = 2−j(1−η)2−(j+`)(1−η) = 2−`(1−η)2−j2(1−η).

Consider the random variable Zj = #{w ∈ Σj : pwpwu = 1} and the event Zj = {Zj =

0}. By independence, P(Zj) =
(
1− 2−`(1−η)2−j2(1−η)

)2j
= e−2−`(1−η)+j(1−2(1−η))+o(j) , which

tends exponentially fast to zero. By the Borel-Cantelli Lemma, there exists almost surely
an (infinite number of) words w ∈ Σ∗ such that pwpwu = 1, i.e. u is 1-reconstructible.

• Assume now that η > 1/2.



RANDOM SPARSE SAMPLING 15

For every u ∈ Σ∗, denote by ru the random variable equal to 1 if u is 1-reconstructible,
and 0 otherwise. Hence, ru is a Bernoulli variable, with parameter p̃|u|, the probability
that there exists w ∈ Σ∗ such that pwpwu = 1 (which depends only on |u|). By (10),

∀ j ≥ 1, p̃j ≤
∑

w∈Σ∗
P(pwpwu = 1) ≤ C̃2−j(1−η),

for some constant C̃ independent on w.
Fix ε > 0 so small that η + ε < 1 and (εj)j≥1 a positive sequence converging to zero,

such that 0 < εj ≤ ε and
∑

j≥1 2−jεj < +∞.
Let us introduce Z̃1

j =
∑

u∈Σj
ru, the number of 1-reconstructible words at generation j.

The random variable Z̃1
j is a sum of non-independent random variables with common law

the Bernoulli law with parameter p̃j . Markov’s inequality yields P(Z̃1
j ≥ 2jεj2j p̃j) ≤ 2−jεj ,

and Borel-Cantelli’s lemma implies that almost surely, for j large enough, we have

(11) Z̃1
j ≤ C̃2jεj2j p̃j ≤ C12j(η+εj),

for some other constant C1. This implies that Σ∗ is not 1-reconstructible, since at most
C12j(η+εj) << 2j words can be reconstructed.

Assume that for k ≥ 2, the number Z̃kj of k-reconstructible words at any generation
j is bounded from above by Ckj

k2j(η+ε) for some constant Ck. Let J ≥ k + 1. Any
(k + 1)-reconstructible word u in ΣJ is the concatenation of a k-reconstructible word and
a 1-reconstructible word. Hence, by (11), for the constant Ck+1 = C1Ck, one has

Z̃k+1
J ≤

J−k∑

i=1

Z̃1
i Z̃

k
J−i ≤ C1Ck

J−k∑

i=1

2i(η+εi)(J − i)k2(J−i)(η+ε) ≤ Ck+1J
k2J(η+ε).

One concludes that Σ∗ is not k-reconstructible, for any k, since Z̃kJ << 2J . �

The situation at the critical sampling index η = 1/2 must still be investigated.

4. New parameters, alternative definitions for the parameters H`(η`),
H`(η̃) and H̃(η̃)

From now on, we consider a non-homogeneous Gibbs capacity µ. The homogeneous case
will be dealt with at the all end of the paper (Section 10).

We work with the ‖ ‖∞ over Rd, so that balls are Euclidean cubes.

4.1. Modified version of the capacity Mµ. We will study a slight modification of Mµ.

Definition 11. Let µ ∈ Cap([0, 1]d). We set

(12) M̃µ(Iw) = max
u∈Nj(w)

Mµ(Iu) = max {µ(Iuv) : u ∈ Nj(w), v ∈ Σ∗, puv = 1} .

Thus, the difference between the capacities Mµ and M̃µ is that M̃µ(Ij(x)) carries infor-
mation about the behavior of µ in the neighborhood of x, not only in the dyadic cube
Ij(x) of generation j containing x. We consider M̃µ for the following reasons. First it is
natural to extend Mµ to balls: for x ∈ [0, 1]d and r > 0 one denotes B(x, r) the closed ball
of radius r centered at x, and defines Mµ(B(x, r)) = max{Mµ(Iw) : Iw ⊂ B(x, r)}. Then
the multifractal analysis of Mµ using the more intrinsic logarithmic density log(µ(B(x,r))

log(r) to

define the local dimensions of Mµ is given by the multifractal analysis of M̃µ.
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Dµ(H)

H
0

d

Hmin HmaxHs
H

d(1 − η)

H`(0) Hr(0)0

d

Figure 8. Left: Typical singularity spectrum of a Gibbs measure. Right:
Parameters H`(0) and Hr(0).

The second reason is that knowing the mutifractal nature of M̃µ yields that of the
sparse wavelets series weighted by using the random sample µ̃ of µ (see [28] for an account
of multifractal analysis of functions).

From now on, only M̃µ will be considered, and we denote it as Mµ.

The reader will check that our proofs to study the capacity defined by (12) are easily
adapted to the case where the capacity is defined by (5). In fact, the case we study is a
little bit more complicated, since it involves a control of all the immediate neighbors.

4.2. New parameters.

Definition 12. The real number η` ∈ [0, η] is defined as

η` =

{
0 if 0 ≤ Dµ(Hmin) ≤ d(1− η)

1− d(1−η)
Dµ(Hmin) otherwise.

For all η′ ∈ [η`, η], there exists a unique H`(η
′) ∈ [Hmin, Hs] such that

(13) Dµ

(
H`(η

′)
)

=
d(1− η)

1− η′ .

See Figures 8 and 9 for a geometrical interpretation of H`(η
′), which makes it easier to

understand. By construction one has:

• H`(η) = Hs,
• ifDµ(Hmin) ≤ d(1−η), η` = 0 andH`(η`) is the unique solution ofDµ(H) = d(1−η)
in [Hmin, Hs],
• if Dµ(Hmin) > d(1− η), η` > 0 and H`(η`) = Hmin.

Definition 13. For η′ ∈ [η`, η] \ {0}, let

H̃`(η
′) =

(
1

η′
− 1

)
H`(η

′)

and η̃ = argminη′∈[η`,η]\{0} H̃`(η
′).(14)

Again, see Figure 9 for a geometrical interpretation of these parameters (in the case
we discard at the moment, i.e. when µ is homogeneous, the function τµ is linear so that
Hmin = Hs = Hmax and η̃ = η` = η). It is easily seen that by definition the value η̃ is
so that the straight line passing through the points (0, d(1 − η)) and

(
H`(η̃), d(1−η)

1−η̃

)
is
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H

d(1 − η)

d(1−η)
1−η′

H`(0)

H`(η
′)

0

d

slope= d(1−η)
H̃`(η

′)

H

d(1 − η)

d(1−η)
1−η̃

H`(0)

H`(η̃) = τ ′µ(qη̃)

0

d

maximal slope= d(1−η)
H̃`(η̃)

Figure 9. Left: Parameters H`(η
′) and H̃`(η

′). Right: Optimal param-
eter η̃.

tangent to the singularity spectrum of µ. This value always exists and is unique. Since Dµ

is strictly concave, Dµ
′(Hmin+) =∞ and Dµ

′(Hs) = 0, one has η̃ ∈ (η`, η).

Definition 14. Let qη̃ be the unique solution to the equation

H`(η̃) = τ ′µ(qη̃)(15)

and qη` = sup
{
q ≥ 0 : τ∗µ(τ ′µ(q)) ≥ d(1− η)

}
.(16)

Let τ̃ : R→ R be the mapping defined as

(17) τ̃(q) =





τµ(q) + H̃`(η̃)q if q ≤ qη̃,
τµ(q) + d(1− η) if qη̃ < q < qη` ,

H`(0)q if qη` <∞ and q ≥ qη` .

See Figure 6 for a representation of τ̃ .
Observe that qη` < +∞ if and only if η` = 0, and in this case τ ′µ(qη`) = H`(0).

Definition 15. The real number ηr ∈ [0, η] is defined as

ηr =

{
0 if 0 ≤ Dµ(Hmax) ≤ d(1− η)

1− d(1−η)
Dµ(Hmax) otherwise.

For all η′ ∈ [ηr, η], there exists a unique Hr(η
′) ∈ [Hs, Hmax] such that

Dµ

(
Hr(η

′)
)

=
d(1− η)

1− η′ .

By construction one has:

• Hr(η) = Hs,
• if Dµ(Hmax) ≤ d(1 − η), ηr = 0 and Hr(ηr) is the unique solution of Dµ(H) =
d(1− η) in [Hs, Hmax],
• if Dµ(Hmax) > d(1− η), ηr > 0 and Hr(ηr) = Hmax.
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The existence of H` and Hr is ensured by the continuity of the Legendre spectrum Dµ

on its support.

As H̃`(η
′) was defined in Definition 13, we can also define a parameter H̃r(η

′) as follows:
for every η′ ∈ [ηr, η] \ {0}, let

H̃r(η
′) =

(
1

η′
− 1

)
Hr(η

′).

The geometrical interpretation is the same as the one for H̃`(η
′) (see Figure 9), except now

that everything is done on the decreasing part of the spectrum.
Finally, the following lemma provides us with another interpretation of the exponent

H`(η̃) (see (14)), which is useful to simplify some formulas and to understand its role.

Lemma 1. One has

(18) H`(η̃) = argmaxH

(
Dµ(H)

H + H̃`(η̃)

)
.

Proof. Due to the unimodal character of Dµ, the maximum we seek for is reached at H ∈
[Hmin, Hs]. A rapid calculation shows that since Dµ is strictly concave and differentiable
over (Hmin, Hs] with Dµ

′(Hmin+) = +∞ and Dµ
′(Hs) = 0, then for any γ > 0, H 7→ Dµ(H)

H+γ

reaches its maximum at a unique point of (Hmin, Hs). Notice that from its definition the
function η′ 7→ H`(η

′) is differentiable.
Let us introduce the function ϕ(η′) = η′H̃`(η

′) = (1 − η′)H`(η
′). Recall that by (13),

Dµ

(
H`(η

′)
)

=
d(1− η)

1− η′ . So Dµ
′(H`(η

′)
)
H`
′(η′) =

d(1− η)

(1− η′)2
=
Dµ

(
H`(η

′)
)

1− η′ . One deduces

that

ϕ′(η′) = −H`(η
′) + (1− η′)H`

′(η′) = −H`(η
′) +

Dµ

(
H`(η

′)
)

Dµ
′(H`(η′)

) = −Dµ
∗(Dµ

′(H`(η
′)
))

Dµ
′(H`(η′)

) ,

since Dµ
∗(H) = HDµ

′(H)−Dµ(H).

On the other hand, the derivative ofH 7→ Dµ(H)

H + H̃`(η̃)
vanishes at α = argmaxH

(
Dµ(H)

H+H̃`(η̃)

)
.

This yields
Dµ
′(α)(α+ H̃`(η̃))−Dµ(α) = 0,

i.e.

H̃`(η̃) = −Dµ
∗(Dµ

′(α))

Dµ
′(α)

.

Since η̃ is chosen so that H̃`(η
′) is minimal at η̃, we have H̃ ′`(η̃) = 0. This implies that

ϕ′(η̃) = H̃`(η̃), so finally

(19) − Dµ
∗(Dµ

′(α)
)

Dµ
′(α)

= −Dµ
∗(Dµ

′(H`(η̃
))

Dµ
′(H`(η̃)

) .

Recalling that Dµ is the Legendre transform of τµ, we know that q ∈ R∗+ 7→ τ ′µ(q) is a

bijection onto (Hmin, Hs). Hence, since the mapping q > 0 7→ −τµ(q)

q
is injective (τµ

being strictly concave), the identification
(
H, q,Dµ

∗(Dµ
′(H)

))
=
(
τ ′µ(q), Dµ

′(H), τµ(q)
)
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implies that H ∈ (Hmin, Hs) 7→ −
Dµ
∗(Dµ

′(H)
)

Dµ
′(H)

is injective as well. Equation (19) yields

finally α = H`(η̃). �

The previous definitions and discussion clarify the origin of the parameters introduced
to state Theorem 2. The rest of the paper is devoted to the proof of the multifractal
properties of Mµ definied by (11).

5. Analysis of the surviving vertices

5.1. Basic properties of the distribution of the surviving vertices. Recall the
Definition 3 in which Sj(η) is defined, and recall that xw, defined by (1), is the dyadic
point corresponding to the projection of the finite word w ∈ Σj to [0, 1]d. The first
question concerns the distribution of the points xw, for w ∈ Sj(η).

Definition 16. For every j ≥ 1, and every finite word W ∈ Σ∗, we define

Sj(η,W ) = {w ∈ Sj(η) : Iw ⊂ IW }.
The set Sj(η,W ) describes the surviving coefficients at generation j included in IW .
Obviously, for every J ≤ j,

Sj(η) =
⋃

W∈ΣJ

Sj(η,W ).

Lemma 2. There exists a positive sequence (εj)j≥1 converging to 0 such that, with proba-
bility 1, for every j large enough, for every W ∈ Σbj(η−εj)c, Sj(η,W ) 6= ∅.

In other words, every cylinder of generation bj(η− εj)c contains a surviving vertex w of
generation j.

Proof. Fix a positive sequence (εj)j≥1 converging to 0. For each j ≥ 1 andW ∈ Σbj(η−εj)c,
the cylinder [W ] contains exactly 2j−bj(η−εj)c distinct cylinders [w], with w ∈ Σj . Denote
this set by S(W ). The probability of the event E (W ) = {∀w ∈ S(W ), pw = 0} is given
by (1− 2−j(1−η))2j−bj(η−εj)c

. Thus,

P
( ⋃

W∈Σbj(η−εj)c

E (W )
)
≤ 2bj(η−εj)c(1− 2−j(1−η))2j−bj(η−εj)c

≤ 2bj(η−εj)c exp(−2 · 2jεj ).

If we choose εj = (log2(j))/j, we get
∑

j≥1 P
(⋃

v∈Σbj(η−εj)c
E (W )

)
< ∞. So the Borel-

Cantelli lemma yields that, with probability 1, for j large enough, for all W ∈ Σbj(η−εj)c,
there exists w ∈ Σj such that Iw ⊂ IW and pw = 1, i.e. w ∈ Sj(η,W ). �

The sequence (εj)j≥1 is now fixed.
Lemma 2 has the following consequence: Almost surely, the set of points belonging to

an infinite number of balls of the form B(xw, 2
−b|w|(η−ε|w|)c) with pw = 1 is exactly the

whole cube [0, 1]d, i.e.

(20) [0, 1]d = lim sup
j→+∞

⋃

w∈Sj(η)

B(xw, 2
−b|w|(η−ε|w|)c).

Next we obtain an upper bound for the cardinality of Sj(η,W ) when W ∈ Σbηjc.
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Lemma 3. With probability one, for every large j, for every W ∈ Σbηjc, #Sj(η,W ) ≤ j.
Proof. This is standard computations. Denote for every j ≥ 1 and every word W ∈ Σbηjc,
the random variable

BW =
∑

w∈Σj : Iw⊂IW
pw

is equal to the cardinality of Sj(η,W ).
With this formulation, the (BW )W∈Σbηjc are i.i.d. random variables with common law

the binomial law B(nj , ρj) of parameters nj = 2d(j−bηjc) and ρj = 2−dj(1−η). We have

P
(
B(nj , ρj) ≥ j

)
=

nj∑

l=j

(
nj
l

)
(ρj)

l(1− ρj)nj−l =

nj∑

l=j

2d(j−bηjc)(2d(j−bηjc) − 1) . . . (2d(j−bηjc) − (l − 1))

l!
2−djl(1−η)(1− 2−dj(1−η))2d(j−bηjc)−l

Observing that

2d(j−bηjc) . . . (2d(j−bηjc) − (l − 1))

2djl(1−η)
= (2d(ηj−[ηj])) . . . (2d(ηj−[ηj]) − (l − 1)2−dj(1−η)),

this quantity is upper bounded by 2dl. Finally,

P
(
B(nj , ρj) ≥ j

)
≤

nj∑

l=j

2dl

l!
(1− 2−dj(1−η))2d(j−bηjc)−l ≤

+∞∑

l=j

2dl

l!
≤ 2−dj

for j large enough. We deduce that
∑

j≥1 2dbηjcP
(
B(nj , ρj) ≥ j

)
< +∞. Then the Borel-

Cantelli lemma yields that almost surely there exists J ≥ 1 such that for all j ≥ J , for all
W ∈ Σbηjc, one has BW < j. �

As a conclusion, one keeps in mind the intuition that every cylinder W ∈ Σbηjc contains
at least one, but not much more than one surviving vertex w ∈ Sj(η).

5.2. Analysis of the values of µ at the surviving vertices. The above lemmas give
some hints about the possible values for µ(Iw) for w ∈ Sj(η). Indeed, observe that any
word w can be written as the concatenation w = w|bηjc · σbηjcw. Further, by the almost
multiplicativity property of µ, one has

µ(Iw) ≈ µ(Iw|bηjc)µ(Iσbηjcw).

Lemmas 2 and 3 assert that all the possible values for µ(Iw|bηjc) are reached. Hence, in
order to describe the values of µ(Iw), it is necessary to investigate the possible values for
µ(Iσbηjcw) when w ∈ Sj(η). A quick analysis could lead to the intuition that since most
of the coefficients are put to zero, only the most frequent local dimension Hs survive, i.e.
µ(Iσbηjcw) ≈ 2−bjηcHs .

The goal of this section is to prove that this intuition is neither true, nor absolutely
false. In fact, we are going to explain that in order to investigate the values of µ(Iw) for
w ∈ Sj(η), one needs to look at all the decompositions

(21) w = w|bη′jc · σbη
′jcw,

and to use that
µ(Iw) ≈ µ(Iw|bη′jc)µ(Iσbη′jcw),
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w = w1w2 · · · wbjη′c wbjη′c+1wbjη′c+2 · · · wj

η′-tail of w

log2 µ(Iσbη′jcw)
j−bη′jc ∈ [H`(η

′)− ε,H`(η
′) + ε]

η′-root of w

log2 µ(Iw|bη′jc )

−bη′jc ∈ [α− ε, α+ ε]

Figure 10. Decomposition of a word w ∈ Rµ(j, η′, α ± ε) ∩ Tµ,`(j, η′, ε)
into its η′-tail and its η′-root.

for all possible values of η′ ∈ [η`, η] ∪ [ηr, η], and that the most frequent behaviors for
µ(Iσbη′jcw) are related to the local dimensions H`(η

′) and Hr(η
′), Hs corresponding to

H`(η) = Hr(η).
These considerations lead to the following definition.

Definition 17. Let α, ε ≥ 0 be two real numbers, and let η′ ∈ [0, η].
When w ∈ Σj, the prefix w|bη′jc is referred to as the η′-root of w, and the suffix σbη′jcw

is the η′-tail of w.

We introduce the following sets:

• Rµ(j, η′, α± ε) is the set of those finite words w ∈ Σj whose η′-root w|bη′jc belongs
to Eµ(bη′jc, α± ε), i.e.

log2 µ(Iw|bη′jc)

−bη′jc ∈ [α− ε, α+ ε].

• When W ∈ Σ∗, Tµ,`(j, η′, ε,W ) is the set of those finite words w ∈ Σj satisfying
Iw ⊂ IW and whose η′-tail σbη′jcw belongs to Eµ(j − bη′jc, H`(η

′)± ε), i.e.

(22)
log2 µ(Iσbη′jcw)

j − bη′jc ∈ [H`(η
′)− ε,H`(η

′) + ε].

• the sets Tµ,`(j, η′, ε) is the set of all finite words w ∈ Σj satisfying (22), so for every
J ≤ j,

Tµ,`(j, η′, ε) =
⋃

W∈ΣJ

Tµ,`(j, η′, ε,W ).

• Tµ,r(j, η′, ε,W ) and Tµ,r(j, η′, ε) are defined as Tµ,`(j, η′, ε,W ) and Tµ,`(j, η′, ε) by
replacing H`(η

′) by Hr(η
′).

• Tµ(j, η′, ε) = Tµ,`(j, η′, ε) ∪ Tµ,r(j, η′, ε).

Recall the decomposition (21) of any finite word w. The idea, illustrated by Figure 10,
is that the sets Rµ(j, η′, α ± ε) describe the scaling behavior of the η′-root w|bη′jc of the
word w ∈ Σj , while Tµ(j, η′, ε) describe the scaling behavior of the η′-tail σbη′jcw of w.
Observe that we focus on the cases where the η′-tail of w behaves with a local dimension
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close to some H`(η
′) or Hr(η

′). Indeed, these specific behaviors of the η′-tail will turn out
to be central to explain the structure of the local dimensions of Mµ, and Propositions 3,
and 5 to 7 will exhibit essential properties related to them.

Observe that the knowledge of which sets Rµ(j, η′, α ± ε) and Tµ(j, η′, ε) a given word
w belongs to, yields µ(Iw) up to a multiplicative factor of order 2±εj .

The first proposition gives upper and lower bounds for the possible values of µ(Iw),
when w survives after sampling.

Proposition 3. Almost surely, there exists a positive sequence (ε1
j )j≥1 converging to 0

such that for j large enough, for all w ∈ Sj(η), one has

j(H`(η`)− ε1
j ) ≤ − log2 µ(Iw) ≤ j(Hr(ηr) + ε1

j ).

Proof. This is a consequence of the large deviations properties of Gibbs measures. Fix
an integer p ≥ 1. Consider the interval Ip = [0, H`(η`) − 2−p] ∪ [Hr(ηr) + 2−p,+∞).
By definition of H` and Hr, one has sup{Dµ(h) : h ∈ Ip} < d(1 − η). Let us call
ξp = d(1− η)− sup{Dµ(h) : h ∈ Ip}.

By item (5) of Proposition 2, there exists a generation Jp such that j ≥ Jp implies
∣∣∣∣∣
log #Eµ(j, Ip)

−j log 2j − sup
h∈Ip

Dµ(h)

∣∣∣∣∣ ≤ ξp/2.

Using the definition of ξp, this rephrases as

#Eµ(j, Ip) ≤ 2j(suph∈Ip Dµ(h)+ξp/2) ≤ 2j(d(1−η)−ξp/2).

Let us compute the probability of the event A p
j = {Sj(η) ∩ Eµ(j, Ip) 6= ∅}. One has

∀ j ≥ Jp, P(A p
j ) ≤ 1− (1− 2−dj(1−η))#Eµ(j,Ip)

≤ 1− (1− 2−dj(1−η))2j(d(1−η)−ξp/2)

≤ 2−jξp/4.

The Borel-Cantelli lemma implies that, almost surely, A p
j is not realized when j becomes

greater than some integer J ′p ≥ Jp. In the construction, one can ensure that Jp+1 is always
strictly greater than Jp, for all integers p.

Choosing now ε1
j = 2−p for j ∈ [Jp, Jp+1) yields the result. �

The next proposition is complementary to the previous one: it precisely estimates the
number of surviving vertices with a given µ-local dimension. We state it for the sake of
completeness but it will not be used.

Proposition 4. Almost surely, for every ε > 0 and every H ∈ [H`(η`), Hr(ηr)], there
exists ε̃ > 0 with ε̃→ 0 as ε→ 0 such that for j large enough one has

2j
(
Dµ(H)−d(1−η)−ε̃

)
≤ # (Eµ(j,H ± ε) ∩ Sj(η)) ≤ 2j

(
Dµ(H)−d(1−η)+ε̃

)
.

Proof. The proof is close to that of Proposition 3 and is omitted. �

Next proposition is crucial. It shows that the parameters η′, H`(η
′) and Hr(η

′) play
a special role in our problem. The underlying idea is the following: The almost multi-
plicativity property implies that for every word w ∈ Σ, for every η′ ∈ [η`, η] ∪ [ηr, η], one
has

µ(Iw) ≈ µ(Iw|bη′jc)µ(Iw
σbη′jcw

).
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Generations

J

Cube IW
µ(IW ) = 2−Jα

µ(Iw)
µ(IW ) ≈ µ(IσJw) ≈ 2−J(1/η

′−1)H`(η
′) = 2−JH̃`(η

′)
J/η

J/η′ µ(Iw) = 2−(J/η
′)h′ ≈ µ(IW )µ(IσJw)

Figure 11. Behavior of the surviving vertices inside a cube IW

But if a vertex w survives after sampling, i.e. if w ∈ Σj(η), then we are going to prove
that µ(Iw) can be decomposed as

µ(Iw) ≈ µ(Iw|bη′jc)2
−(j−bη′jc)H`(η′) or µ(Iw) ≈ µ(Iw|bη′jc)2

−(j−bη′jc)Hr(η′),

for some suitable choice of η′ (depending on w). So we have an explicit formula for its η′-
tail. We will then establish a complementary information (Proposition 6): η′ being fixed,
with probability one for j large enough, for W ∈ Σbη′jc, there is necessarily at least one
word w ∈ Sj(η,W ) such that the above decomposition holds.

Proposition 5. With probability one, there exists a positive sequence (ε2
j )j≥1 converging

to 0 such that for all w ∈ Sj(η), there exists η′ ∈ [η`, η]∪ [ηr, η] such that w ∈ Tµ(j, η′, ε2
j ).

Proof. We fix w ∈ Sj(η), and we look for a suitable η′. See Figure 11.

Let us denote, for all j ≥ 1, αj := − log2 µ(Iw)

j
, and for all η′ ∈ [0, η], αj(η′) =

−
log2 µ(Iw|bη′jc)

bη′jc and Hj(η
′) =

− log2 µ(Iσbη′jcw)

j − bη′jc . By the almost multiplicativity property

of µ, we have

(23) αjj = αj(η
′)bη′jc+Hj(η

′)(j − bη′jc) +O(1),

where O(1) is bounded independently on w, j and η′ (it depends only on the constant C
involved in (8)).

On the other hand, for η,′ η′′ ∈ [0, η] we have

Hj(η
′′)(j − bη′′jc)−Hj(η

′)(j − bη′jc) = − log2 µ(Iσbη′jcw) + log2 µ(Iσbη′′jcw),

which is bounded above by c|bη′jc − bη′′jc| for some constant c > 0 by (8). Also, by item
(6) of Proposition 2, Hj(η

′) and Hj(η
′′) are bounded by a constant K > 0 independently

of j, w and η′. Subsequently,

|Hj(η
′′)−Hj(η

′)| ≤
∣∣∣∣Hj(η

′′)−Hj(η
′)
j − bη′jc
j − bη′′jc

∣∣∣∣+Hj(η
′)

∣∣∣∣1−
j − bη′jc
j − bη′′jc

∣∣∣∣

≤ (c+K)
|bη′jc − bη′′jc|
j − bη′′jc ≤ (c+K)

|η′′ − η′|+ 1/j

1− η .
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From this inequality, one deduces that there exists a continuous function H̃j : [0, η]→ R+

such that
sj = sup{|Hj(η

′)− H̃j(η
′)| : η′ ∈ [0, η]} = O(1/j)

independently of w as j →∞, and (23) holds with H̃j instead of Hj .

• Suppose that H̃j(η) = Hs. Since H`(η) = Hs, Proposition 5 is proved with η′ = η.

• Suppose now that H̃j(η) < Hs = H`(η).
- Suppose first that η` = 0. Recall that H`(0) = Hmin.
If H̃j(0) ≤ H`(0), then we see that jαj = jH̃j(0) + O(1) ≤ j(H`(0) + O(1/j)), which

due to Proposition 3 implies that H`(0)− ε1
j ≤ H̃j(0) +O(1/j) ≤ H`(0) +O(1/j). Hence

(24) is satisfied with η′ = 0.
If H̃j(0) > H`(0), observe that the mapping η′ 7→ (H̃j −H`)(η

′) is continuous, positive
at η′ = 0, negative at η′ = η. The continuity ensures the existence of η′ ∈ (0, η) such that
H̃j(η

′) = H`(η
′), and (24) is satisfied with this η′.

- Suppose now that η` > 0 and recall that H`(η
′) ranges in [H`(η`), Hs]. Notice that for

any η′, j − bη′jc ≥ j − bηjc which tends to +∞ when j → +∞. Hence, by Proposition 3,
for j large enough we have Hj(η

′) ≥ H`(η`)− ε1
j−bη′jc, so that for all η′ ∈ [η`, η],

H̃j(η
′) ≥ H`(η`)− ε1

j−bη′jc − sj .

By continuity of η′ 7→ (H̃j −H`)(η
′), there exists η′ ∈ [η`, η] such that |H̃j(η

′)−H`(η
′)| ≤

ε1
j−bη′jc + sj . In all cases, we found η′ ∈ [η`, η] such that |H̃j(η

′) − H`(η
′)| ≤ ε1

j−bη′jc +

2sj +O(1/j). Since Hj and H̃j differ by o(1), the result follows.

• Finally suppose that H̃j(η) > Hs. Similar arguments as above yield η′ ∈ [ηr, η] such
that |Hj(η

′)−Hr(η
′)| ≤ ε1

j−bη′jc + 2sj +O(1/j). We let the reader check the details.

Since the bound ε1
j−bη′jc + 2sj +O(1/j) tends to 0 uniformly in η′ ∈ [0, η] as j → +∞,

the sequence (ε2
j := ε1

j−ηj + 2sj +O(1/j))j≥1 fulfills the conditions of Proposition 5. �

The previous proposition tells us that every surviving vertex w ∈ Sj(η) is such that its
η′-tail satisfies either for some η′ ∈ [η`, η] (depending on w),

(24) (j − bη′jc)(H`(η
′)− ε2

j ) ≤ − log2 µ(Iσbη′jcw) ≤ (j − bη′jc)(H`(η
′) + ε2

j ),

or for some η′ ∈ [ηr, η] (also depending on w) that

(j − bη′jc)(Hr(η
′)− ε2

j ) ≤ − log2 µ(Iσbη′jcw) ≤ (j − bη′jc)(Hr(η
′) + ε2

j ).

Next proposition claims that η′ being fixed in [η`, η], almost surely, for j large enough, for all

W ∈ Σbη′jc, there is a surviving vertex w ∈ Sj(η,W ) such that
− log2 µ(Iσbη′jcw)

j − bη′jc ≈ H`(η
′).

This property shall be understood as a renewal property for the local dimensions H`(η
′).

See Figure 10 for an illustration of this decomposition.

Proposition 6. Given η′ ∈ [η`, η), there exists a positive sequence (ε3
j )j≥1 converging

to 0 such that, with probability 1, for j large enough, for all W ∈ Σbη′jc, Sj(η,W ) ∩
Tµ,`(j, η′, ε3

j ) 6= ∅.

Of course, the same holds true for Tµ,r(j, η′, ε3
j ), but we do not need this second property.
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H

d(1−η)
1−η′ + 2−p

Dµ
(
H`(η

′)
)
=

d(1−η)
1−η′

H`(η
′)

H`(η
′) + βp

α2
p

α1
p

0

Figure 12. Relative positions of H`(η
′), H`(η

′) + βp, α1
p, α2

p.

Proof. Fix η′ ∈ [η`, η), which implies that Dµ(H`(η
′)) < d = ‖Dµ‖∞. For every integer

p ≥ 1 so large that Dµ

(
H`(η

′)
)

+ 2−p < d, let α1
p, α

2
p, βp be such that

• α1
p is the unique real number in [H`(η`), Hs] such that Dµ(α1

p) = Dµ(H`(η
′))+2−p,

• βp = (α1
p −H`(η

′))/2,
• α2

p is such that H`(η
′) < α2

p < H`(η
′) + βp = α1

p − βp.
Observe that Dµ(H`(η

′)) < Dµ(α2
p) < Dµ(α1

p − βp) < Dµ(α1
p) (see Figure 12).

For every integer p ≥ 1, due to the large deviations properties of µ (part (5) of Propo-
sition 2 and equation (9)), we can fix an integer jp such that for all j ≥ jp,

#Eµ(j, α1
p ± βp) ≥ 2jDµ(α2

p).

Using the definition of our parameters, this implies that

#Eµ(j,H`(η
′)± ε̃p) ≥ 2j

(
Dµ(H`(η

′))+ε̂p
)
,

where ε̃p = 3βp and ε̂p = Dµ(α2
p)−Dµ(H`(η

′)) > 0.
It is clear from the continuity and monotonicity of Dµ that (ε̃p)p≥1 and (ε̂p)p≥1 are two

positive decreasing sequences, and that limp→+∞ ε̃p = limp→+∞ ε̂p = 0.
For j ≥ jp/(1− η′) (hence so that j − bη′jc ≥ jp) and W ∈ Σbη′jc, consider the event

A (η′, ε̃p,W ) =
{
∀w′ ∈ Eµ

(
j − bη′jc, H`(η

′)± ε̃p
)
, pWw′ = 0

}
.

One has

P
(
A (η′, ε̃p,W )

)
= (1− 2−d(1−η)j)#Eµ

(
j−bη′jc,H`(η′)±ε̃p

)

≤ exp
(
−2−d(1−η)j#Eµ(j − bη′jc, H`(η

′)± ε̃p)
)

≤ exp
(
−2−d(1−η)j+(j−bη′jc)

(
Dµ(H`(η

′))+ε̂p
))
.

Recalling that Dµ

(
H`(η

′)
)

= d(1−η)
1−η′ , we get

P
(
A(η′, ε̃p,W )

)
≤ exp(−2(j−bη′jc)ε̂p +O(1)) ≤ C exp(−2(1−η′)jε̂p).

We choose the sequence (ε3
j )j≥1 as follows: we first build some sequences of integers

by induction. Pick an integer p0 so large that the previous inequality holds true for
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j ≥ jp0/(1 − η′). Also, choose j̃p0 > jp0 so large that for all j ≥ j̃p0/(1 − η′), one has
C exp(−2(1−η′)jε̂p0 ) ≤ 2−dj .

Then, assume that integers and j̃p0 , ..., j̃p0+m are found such that for n = 1, ...,m:

• j̃p0+n > max(jp0+n, j̃p0+n−1),
• for j(1− η′) ≥ j̃p0+n one has C exp(−2(1−η′)jε̂p0+n) ≤ 2−dj .

Then we choose j̃p0+m+1 > max(jp0+m+1, j̃p0+m) so large that for all j ≥ j̃p0+m+1/(1−η′),
one has C exp(−2(1−η′)jε̂p0+m+1) ≤ 2−dj .

Finally, for every j ≥ j̃p0/(1− η′), there is a unique integer mj such that

(25) j̃p0+mj/(1− η′) ≤ j < j̃p0+mj+1/(1− η′),

and we set ε3
j = ε̃p0+mj . By construction we obtain

(26) P
(
A (η′, ε3

j ,W )
)
≤ C exp(−2(1−η′)jε̂p0+mj ) ≤ 2−dj .

Subsequently,

P
({
∃ j ≥ j̃p0/(1− η′) and ∃W ∈ Σbη′jc : A (η′, ε3

j ,W ) holds
})

≤
∑

j≥j̃p0/(1−η′)

∑

W∈Σbη′jc

P
(
A (η′, ε3

j ,W )
)

≤
∑

j≥j̃p0/(1−η′)
2dbη

′jc2−dj < +∞.

We conclude thanks to the Borel-Cantelli lemma. �

Last proposition can be realized simultaneously on several η′ ∈ [η`, η].

Corollary 1. For all integers N ≥ 1 and 0 ≤ k ≤ N − 1, let ηN,k = η` + k
N (η− η`). There

exists a positive sequence (ε4,N
j )j≥1 converging to 0 when j tends to infinity, such that with

probability 1, for N ≥ 2 and j large enough, for all 0 ≤ k ≤ N − 1 and all W ∈ ΣbηN,kjc,
Sj(η,W ) ∩ Tµ,`(j, ηN,k, ε4,N

j ) 6= ∅.

Proof. Fix N ≥ 2. For each k ∈ {0, ..., N − 1}, we apply Proposition 5, so that we get a
sequence (ε3

j (k))j≥1 and a sequence (j̃p(k))p≥p0(k), such that (26) holds true, i.e. for every
j ≥ j̃p0(k)/(1− η′) and W ∈ ΣbηN,kjc,

(27) P
(
A(ηN,k, ε

3
j (k),W )

)
≤ 2−dj .

Observe that if 0 < ε < ε′, A (η′, ε′,W ) ⊂ A (η′, ε,W ). Hence, we can choose the integer
p = max(p0(0), ..., p0(N − 1)), and the sequences ε4,N

j := max(ε3
j (0), ..., ε3

j (N − 1)) and
j̃p := max(j̃p(0), ..., j̃p(N−1)), so that we have the following property: for all 0 ≤ k ≤ N−1,
for all j ≥ j̃p0/(1− η), for all W ∈ ΣbηN,kjc, (27) holds true with ε4,N

j instead of ε3
j (k).
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Thus,

P
({
∃ j ≥ j̃p0/(1− η), ∃ k ∈ {0, ..., N − 1}, ∃W ∈ ΣbηN,kjc : A(ηN,k, ε

4,N
j ,W ) holds

})

≤
N−1∑

k=0

P
({
∃ j ≥ j̃p0/(1− η) and ∃W ∈ ΣbηN,kjc : A(ηN,k, ε

3
j (k),W ) holds

})

≤
N−1∑

k=0

∑

j≥j̃p0/(1−η)

∑

W∈ΣbηN,kjc

P
(
A(ηN,k, ε

3
j (k),W )

)

≤
N−1∑

k=0

2−(d−ηN,k)j̃p0/(1−η) < +∞.

The result follows again by the Borel-Cantelli lemma. �

Next proposition completes the previous corollary by showing (roughly speaking), that
for a fixed W ∈ ΣJ with J large enough, for η′ in some interval [η0, η] fixed in advance,
the probability to find w ∈ ⋃J/η≤j≤J/η0

Sj(η,W ) with a η′-tail having a local dimension
smaller than H`(η

′) decreases exponentially with J .

Proposition 7. Let η0 =

{
Hmin

Hmin+H̃`(η̃)
if η` = 0

η0 = η` if η` > 0.

For all integers N ≥ 1 and k ∈ {−1, 0..., N − 1}, set η̃N,k = η − (η − η0) kN .
For J ≥ 1 and W ∈ ΣJ , consider the event C (N, J,W ) defined as

C (N, J,W ) =

{∃ k ∈ {−1, 0, ..., N − 1}, ∃ j ∈ [J/η̃N,k, J/η̃N,k+1],

∃w ∈ Sj(η̃N,k,W ) such that µ(IσJw) > 2−J(H̃`(η̃N,k)+εN )

}
,

with the convention that H̃`(η̃N,−1) = H̃`(η̃N,0) = H̃`(η).
With probability one, there exists a positive sequence (εN )N≥1 converging to 0 such that

for all N ≥ 1, J ≥ 1 and W ∈ ΣJ , we have P
(
C (N, J,W )

)
≤ 2−JεN .

The proof uses arguments similar to those developed earlier, and is left to the reader.

Proposition 6 asserts that for all W ∈ Σbη′jc, Sj(η,W )∩Tµ,`(j, η′, ε3
j ) is not empty when

j becomes large. The last proposition of this section shows that its cardinality cannot be
very large. This fact will be interpreted geometrically as a weak redundancy property from
the viewpoint of ubiquity theory [6, 9] and has nice geometric consequences for our study.

Proposition 8. (1) For all η′ ∈ [η`, η] \ {0}, for all ε ∈ (0, 1), there exists β > 0 such
that with probability 1, for every j large enough and all W ∈ Σbη′jc,

(28) 1 ≤ #
(
Sj(η,W ) ∩ Tµ,`(j, η′, β)

)
≤ 2η

′jε.

(2) The same holds true for η′ ∈ [ηr, η] \ {0} and the sets Sj(η,W ) ∩ Tµ,r(j, η′, β).

Proof. (1) It is clear that it is enough to get the conclusion for ε small enough. Fix ε ∈ (0, 1)
and η′ ∈ η′ ∈ [η`, η] \ {0}. Due to the almost multiplicativity property of µ, and equation
(9), there exists β > 0 and J0 such that for j ≥ J0, for each W ∈ Σbη′jc,

(29) #Tµ,`(j, η′, β,W ) ≤ 2

(
Dµ(H`(η

′))+dε2
)

(j−bη′jc).
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Notice that the cardinality nj = #Tµ,`(j, η′, β,W ) is independent ofW . SinceDµ(H`(η
′)) =

d(1− η)/(1− η′) ≤ d, ε < 1 and η′ ≤ η < 1, for j ≥ J0 we have

nj ≤ 2

(
Dµ(H`(η

′))+dε2
)

(j−bη′jc) ≤ 2d(1−η)j2dε
2j+d.

By definition, we have

#
(
Sj(η,W ) ∩ Tµ,`(j, η′, ε3

j )
)

=
∑

w∈Tµ,`(j,η′,β,W )

pw.

Denote this random variable by B(j, η′, β,W ). Its law is a binomial law of parameters
(nj , 2

−d(1−η)j). Thus

P
(
B(j, η′, β,W ) ≥ 2εη

′j
)
≤

∑

2εη′j≤l≤nj

(
nj
l

)
(2−d(1−η)j)l ≤

∑

2εη′j≤l≤nj

(nj2
−d(1−η)j)l

l!

≤
∑

2εη′j≤l≤nj

2djε
2l+dl

l!
≤

∑

l≥2εη
′j

(
e2djε

2+d

l

)l

for j large enough by Stirling’s formula. Then, if ε ≤ η′/(4d), there is another integer J ′0

such that for j ≥ J ′0, for all l ≥ 2εη
′j , we have

e2djε
2+d

l
≤ 2−εη

′j/2 ≤ 1/2, hence

P
(
B(j, η′, β,W ) ≥ 2εη

′j
)
≤ 2 · 2−b2εη

′jcεη′j/2,

and
∑

j≥J ′0

∑

W∈Σbη′jc

P
(
B(j, η′, β,W ) ≥ 2εη

′j
)
≤
∑

j≥J ′0

2dbη
′jc2 · 2−b2εη

′jcεη′j/2 <∞.

The desired conclusion follows from the Borel-Cantelli lemma.

(2) The computations are identical for η′ ∈ [ηr, η]\{0} and #
(
Sj(η,W )∩Tµ,`(j, η′, β)

)
. �

6. Upper bound for the singularity spectrum of Mµ

Section 6.1 derives the sharp upper bound provided by Theorem 2 for the decreasing
part of DMµ ; this bound comes rather directly after the preparation achieved in Section 5.2.
Next, Section 6.2 examines in detail the possible local behaviors of the surviving coefficients
µ(Iw) which contribute to a given set EMµ

(H) and provides a first expression for the upper
bound of the increasing part of DMµ . This bound is then simplified in Section 6.3 into the
formula given by Theorem 2. Also, precious information are pointed out in preparation of
next Section 7, which deals with the lower bound for DMµ .

Remark 1. This section is rather long and technical, but it is key to understand what
phenomena rule the local behavior of Mµ at a point x ∈ [0, 1]d. Let us mention that there is
a slightly faster way to obtain the upper bound for the multifractal spectrum of Mµ, using the
multifractal formalism and a lower bound for the Lq-spectrum τMµ obtained in Section 8.2.
Nevertheless, we choose to keep up with the first method, mainly for two reasons:

• The second method is “blind”, since it does not give any clue on how to obtain the
lower bound for the spectrum. Indeed, it will appear soon that for every possible
local dimension H, there is a favorite scenario which leads a point x to satisfy
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dim(Mµ, x) = H. This can absolutely not be guessed without the precise study
achieved in the following pages.
• Using the multifractal formalism to get an upper bound for the multifractal spectrum
is efficient only when the multifractal formalism is satisfied by the object under con-
sideration. Fortunately, this is the case for Mµ, and the bound is sharp. But there
are closely related sampling processes (not developed in this paper) not satisfying
the multifractal formalism, and in this case this method is useless.

6.1. Upper bound for the decreasing part of DMµ. It turns out that finding an upper
bound in the decreasing part of the singularity spectrum DMµ , i.e. for H ≥ Hs + H̃`(η̃), is
much easier than in the increasing one.

We start with quite a direct upper bound for all the local dimensions of Mµ.

Proposition 9. Almost surely, for every x ∈ [0, 1]d,

dim(Mµ, x) ≤ dim(Mµ, x) ≤ dim(µ, x) + H̃`(η̃).

As a consequence, for every x ∈ [0, 1]d, dim(Mµ, x) ≤ Hmax + H̃`(η̃).

Proof. Let x ∈ [0, 1]d. Due to Proposition 6 applied with η′ = η̃, for each j large enough
we have

Mµ(Ibjη̃c(x)) ≥ C−1µ(Ibjη̃c(x))2−(j−bjη̃c)(H`(η̃)+ε3j ).

Taking logarithm on both sides, dividing by −bjη̃c log(2), and taking the lim inf as j →∞
yields the desired conclusion.

Since for every x ∈ [0, 1]d, dim(µ, x) ≤ Hmax, the result follows. �

Using this upper bound for the local dimensions, and by anticipation the lower bound
given by Lemma 4 below, one deduces that the domain ofDMµ is included in [H`(η`), Hmax+

H̃`(η̃)]. Also, we get an upper bound for the decreasing part of the singularity spectrum.

Proposition 10. For all H ∈ [Hs + H̃`(η̃), Hmax + H̃`(η̃)], one has

DMµ(H) ≤ Dµ

(
H − H̃`(η̃)

)
,

and for all H > Hmax + H̃`(η̃),

dimE≥Mµ
(H ′) = −∞.

Proof. LetH ≥ Hs+H̃`(η̃). By Proposition 9, if x ∈ EMµ
(H), then dim(µ, x) ≥ H−H̃`(η̃),

hence EMµ
(H) ⊂ E≥µ (H − H̃`(η̃)). Using Part (3) of Proposition 2, one deduces that

dimEMµ
(H) ≤ Dµ

(
H − H̃`(η̃)

)
,

since H − H̃`(η̃) ≥ Hs (this corresponds to the decreasing part of Dµ). �

6.2. Upper bound for the increasing part of DMµ. Let us start with the lower bound
for the left end-point of the support of the singularity spectrum of Mµ.

Lemma 4. With probability 1, for every x ∈ [0, 1]d, dim(Mµ, x) ≥ H`(η`).

Proof. By Proposition 3, with probability 1, for j large enough, the surviving vertices
w ∈ Sj(η) all satisfy µ(Iw) ≤ 2−j(H`(η`)−ε

1
j ). Hence, for every large integer J and every

word W ∈ ΣJ , Mµ(IW ) ≤ 2−J(H`(η`)−ε1J ), since Mµ(IW ) is the maximum of µ(Iw) over all
surviving words w such that Iw ⊂ IW . Subsequently, for every x, dim(Mµ, x) ≥ H`(η`). �
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Further, we are going to provide a first expression for the sharp upper bound of dimEMµ

when H`(η`) ≤ H ≤ Hs + H̃`(η̃) in Proposition 12. It is based on the following defi-
nition and Proposition 11, which describe the possible scenarii leading to the property
dim(Mµ, x) ≤ H.

Definition 18. For each j ≥ 1, k ≥ 1, α ∈ R+, η′ ∈ [η`, η] \ {0} and δ ≥ 1, let

Fµ,`(j, α, η
′, δ, k) =

{
x ∈ [0, 1]d :

{
∃w ∈ Sj(η) ∩ Rµ(j, η′, α± 1/k) ∩ Tµ,`(j, η′, 1/k)

such that max(2−j , d(x, Iw)) ≤ 2−η
′jδ

}
.

Let P` be a countable set of parameters (α, η′, δ) dense in [Hmin, Hmax]× (η`, η]× [1,+∞).
Then, for H ≥ 0, let

(30) Fµ,`(H) =
⋂

ε∈(0,1)

⋂

k≥1

⋃

(α,η′,δ)∈P`:
δ∈[1,1/η′], α+H̃`(η

′)
δ

≤H+ε

lim sup
j→+∞

Fµ,`(j, α, η
′, δ − ε, k).

The sets Fµ,r(j, α, η′, δ, k), Pr and Fµ,r(H) are similarly defined.

The definition of the sets Fµ,`(j, α, η′, δ, k) and Fµ,r(j, α, η′, δ, k) is rather long and diffi-
cult to handle with at first sight. Nevertheless, it is the mathematical counterpart of the
following intuition: Fµ,`(j, α, η′, δ, k) contains those points x which are 2−η

′jδ close to some
cube Iw (i.e. max(2−j , d(x, Iw)) ≤ 2−η

′jδ) associated with a surviving vertex w whose
η′-root and η′-tail have a prescribed behavior with respect to the capacity µ.

The fact that these sets play a key role is illustrated by the following proposition, which
is the main result of this section.

Proposition 11. With probability 1, for all H ≥ 0,

EMµ
(H) ⊂ Fµ,`(H) ∪ Fµ,r(H).

Proof. Fix H ≥ 0 and x ∈ EMµ
(H). We denote by Mj(x) the coefficient Mµ(Ix|j ), and

Nj(x) the set N (x|j) (recall Definition 9). Let ε ∈ (0, 1).
By definition, since dim(Mµ, x) = H there is an infinite number of integers Jn such that

− log2 MJn (x)
Jn

≤ H + ε/2. We write Wn = x|Jn . By definition of the quantity MJn(x) =

Mµ(IWn), there exists a surviving vertex wn ∈ Sjn(η), jn ≥ Jn, such that wn ∈ NJn(x)
and MJn(x) = µ(Iwn). One can assume that Iwn ⊂ IWn , the other cases, i.e. when Iwn
is included in a neighboring cube Iw′ of IWn of generation Jn, are absolutely similar by
switching Wn and w′).

By Proposition 5, there are ηjn ∈ [η`, η] ∪ [ηr, η] and αbjnηjnc ∈ [Hmin, Hmax] such that

(1) either ηjn ∈ [η`, η], and

− log2 µ(Iwn) = αbjnηjncbjnηjnc+ (jn − bjnηjnc)H`(ηjn) + o(jn),(31)
− log2 µ(I

σbjnηjncwn
) = (jn − bjnηjnc)H`(ηjn) + o(jn),(32)

(2) or ηjn ∈ [ηr, η], and the same holds with Hr(ηjn) instead of H`(ηjn).
Obviously, max(2−jn , d(x, Iwn)) ≤ 2 · 2−Jn (recall that we work with the ‖.‖∞ norm).
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Generations

x

x

jn

Cube IWn

j′n

Cube Iwn
such that µ(Iwn

) = Mµ(IWn
) ∼ 2−JnH

Other cube Iw′
n

with another value µ(Iw′
n
)

Jn

Figure 13. Competition between surviving vertices

• Assume that the subsequence (ηjn)n≥1 has an accumulating point in (0, η].
Without loss of generality we can assume that the whole sequence (ηjn)n≥1 converges to

some η′ ∈ [η`, η] \ {0} and that we are in the above situation above (1) for infinitely many
values of jn, along which H`(ηjn) converges to H`(η

′). The other situation, absolutely
symmetric, is that the sequence (ηjn)n≥1 converges to some η′ ∈ [ηr, η] \ {0}, the situation
(2) holds for n large enough, and Hr(ηjn) converges to Hr(η

′).

Lemma 5. One has limn→+∞ jnηjn = +∞, and for n large enough, one has

(33) jnηjn ≤ Jn(1 + ε/6).

Proof. The first part limn→∞ jnηjn = +∞ is obvious since limn→∞ ηjn = η′ > 0.
Recall Corollary 1 and the notations therein. For N ≥ 1, let us write ηjn(N) for the

unique ηN,k such that

(34) ηjn ∈
[
ηN,k, ηN,k + (η − η`)/N

)
.

We apply Corollary 1 with an integer j′n > Jn such that bj′nηjn(N)c = Jn, to the word
Wn ∈ ΣJn : there exists w′n ∈ Sj′n(η) such that Iw′n ⊂ IWn and w′n ∈ Tµ,`(j′n, ηjn(N), ε4,N

j′N
),

i.e.

2
−(j′n−Jn)

(
H`(ηjn (N))+ε4,N

j′n

)
≤ µ(I

σbj
′
nηjn (N)cw′n

) ≤ 2
−(j′n−Jn)

(
H`(ηjn (N))−ε4,N

j′n

)
,

see Figure 13. Observe that Iw′n ⊂ IWn (hence (w′n)|bj′nηjn (N)c = (w′n)|Jn = Wn), so

µ(Iw′n) ≥ C−1µ(Iw′n|Jn )µ(IσJnw′n) ≥ C−1µ(IWn)2
−(j′n−Jn)

(
H`(ηjn (N))+ε4,N

j′n

)
.(35)

Assume towards contradiction that (33) is not true. We are going to prove that µ(Iw′n) >
µ(Iwn), contradicting the maximality of µ(Iwn) and the fact that MJn(x) = µ(Iwn). When
(33) does not hold, one has

j′n − Jn ≤ Jn + 1

ηjn(N)
− Jn = Jn

(
1 + 1/Jn
ηjn(N)

− 1

)
<

jnηjn
1 + ε/6

1 + 1/Jn − ηjn(N)

ηjn(N)
.

Moreover, since ηjn tends to η′ and |ηjn(N)− ηjn | ≤ 1/N , we choose N so large that that
when n becomes large we have

j′n − Jn ≤
jn − bjnηjnc

1 + ε/12
.
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Observe that jnηjn ≥ Jn(1 + ε/6) also yields Iwn|bjnηjnc ⊂ IWn . This, together with the
last inequality and (35) yields

µ(Iw′n) ≥ C−1µ(Iwn|bjnηjnc
)2
− jn−bjnηjnc

1+ε/12

(
H`(ηjn (N))+ε4,N

j′n

)
.

One chooses now the integers N and n so large that:
• |H`(ηj′n)−H`(η

′)| < H`(ηjn)ε/96,
• |H`(ηjn(N))−H`(ηjn)| < H`(ηjn)ε/96,
• ε4,N

j′n
< H`(ηjn)ε/96.

This is possible since ηj′n → η′ > 0, H`(η
′) > 0, and H` is differentiable as function of

η′ ∈ (η`, η). With these choices, one sees that
jn − bjnηjnc

1 + ε/12

(
H`(ηjn(N)) + ε4,N

j′n

)
≤ (jn − bjnηjnc)H`(ηjn)(1− ε/48).

Finally, we use (32) to get, for n large enough

µ(Iw′n) ≥ C−1µ(Iwn|bjnηjnc
)2−(jn−bjnηjnc)H`(ηjn )(1−ε/48)

≥ C−2µ(Iwn|bjnηjnc
)µ(I

σbjnηjncwn
)2(jn−bjnηjnc)H`(ηjn )ε/48+o(jn)

≥ C ′µ(Iwn)2(jn−bjnηjnc)H`(ηjn )ε/96.

When n becomes large, we conclude that µ(Iw′n) > µ(Iwn), hence a contradiction. �

Now we prove that x is well-approximated by some cubes Iw whose η′-tail and η′-root
have a controlled local behavior with respect to µ.

By construction and the last lemma, since ηjn tends to η′ when n→ +∞, we have

2−jn ≤ max(2−jn , d(x, Iwn)) ≤ 2 · 2−Jn ≤ 2 · 2−bjnηjnc/(1+ε/6) ≤ 2−jnη
′(1−ε/3).

Consequently, for n large enough we can write max(2−jn , d(x, Iwn)) = 2−jnη
′(δjn−ε/2) for

some δjn ∈ [1, 1/η′].
Up to extraction of a subsequence, the sequences (δjn)n≥1 and (αbjnηjnc)n≥1 can be as-

sumed to converge to some δ ∈ [1, 1/η′] and α ∈ [Hmin, Hmax]. In addition, by construction
we have Mbjnη′δjnc(x) = MJn(x) = µ(Iwn) and Jn ≤ bjnη′δjn + 1c. Thus, recalling (31),
one finally gets

αbjnηjncbjnηjnc+ (jn − bjnηjnc)H`(ηjn) + o(jn)

ηjnjnδjn
≤ − log2 MJn(x)

Jn
≤ H + ε/2,

which can also be written

αbjnηjnc
bjnηjnc
ηjnjnδjn

+
(jn − bjnηjnc)
ηjnjnδjn

(H`(ηjn) + o(1)) ≤ H + ε/2.

Finally, fix an integer k ≥ 1. Choosing ε such that ε < 1/(4k) and a triplet (α̃, δ̃, η̃′) in
the dense set P` so that for n large ‖(αjn , δjn , ηjn)− (α̃, δ̃, η̃′)‖∞ ≤ ε/4, we see that when
n becomes large, we ensured that:

• δ̃ ∈ [1, 1/η′],
• α̃+H̃`(η̃

′)
δ̃

= α̃+(1/η̃′−1)H`(η̃
′)

δ̃
≤ H + ε,

• max(2−jn , d(x, Iwn)) = 2−jnη̃
′(δ̃−ε),

•
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•
∣∣∣∣∣
− log2 µ(I(wn)|bjnη̃′c

)

bjnη̃′c
− α̃

∣∣∣∣∣ ≤ 1/k, hence wn ∈ Rµ(j, η̃′, α̃± 1/k),

•

∣∣∣∣∣∣

− log2 µ
(
Iσbjnη̃′cwn

)

jn − bjnη̃′c
−H`(η̃

′)

∣∣∣∣∣∣
≤ 1/k, hence wn ∈ Tµ,`(j, η̃′, 1/k).

Recalling Definition 18 and equation (30), this precisely shows that x belongs to the set
Fµ,`(jn, α̃, η̃

′, δ̃ − ε, k) with δ̃ ∈ [1, 1/η′] and α̃+H̃`(η̃
′)

δ̃
≤ H + ε, as claimed in the initial

statement.

• Assume now that (ηjn)n≥1 converges to 0 (this implies that η` = 0). Fix a small η′ > 0,
and rewrite (31) and (32) as

− log2 µ(Iwn) = αjnbjnη′c+ (jn − bjnη′c)H`(η
′) + o(jn) + jnξ1(jn, η

′),

− log2 µ(Iσbjnη′cwn) = (jn − bjnη′c)H`(η
′) + o(jn) + jnξ2(jn, η

′),

where both ξ1(jn, η
′) and ξ2(jn, η

′) are O (|H`(η
′)−H`(ηjn)|+ |η′|). If one chooses η′ so

small that lim supn→+∞ |H`(η
′)−H`(ηjn)|+ η′ ≤ |H`(η

′)−H`(0)|+ η′ ≤ ε2, we are back
to the previous situation. �

Using Proposition 11, we are now able to find an upper bound for the Hausdorff dimen-
sion of any EMµ

(H).

Proposition 12. For H > 0 and ε ≥ 0 let

(36) D(H, ε) = sup





Dµ(α)

δ
:





α ∈ [Hmin, Hmax],

∃ i ∈ {`, r}, η′ ∈ [ηi, η] \ {0},

1 ≤ δ ≤ 1/η′,
α+ H̃i(η

′)
δ

≤ H + ε




,

with the convention sup ∅ = −∞. For all H > 0, we have

(37) dimEMµ
(H) ≤ D(H) := lim

ε→0+
D(H, ε).

Proof. Recalling Proposition 11, it is enough to find an upper bound for the Hausdorff
dimensions of Fµ,`(H) and Fµ,r(H). But for Fµ,`(H) (the same hold true for Fµ,r(H)),
one needs only to focus on lim supj→∞ Fµ,`(j, α, η

′, δ− ε, k), for the suitable values of the
parameters α, δ, η′, ε described in (30). We are going to prove that the weak redundancy
(described in Proposition 8) implies that for ε ∈ (0, 1), for k large enough, uniformly in
(α, η′, δ) (under the constraint δ ∈ [1, 1/η′]), one has

(38) dim lim sup
j→∞

Fµ,`(j, α, η
′, δ − ε, k) ≤ Dµ(α)

δ
+ θ(ε),

where limε→0 θ(ε) = 0. Then, the result follows by taking the supremum over (α, η′, δ) in
P` and letting ε tend to 0.

We prove (38). Fix ε > 0.
For every α ∈ [Hmin, Hmax], using Proposition 2 and the large deviations properties (9)

of µ, there exists βα > 0 and jα ∈ N such that for j ≥ jα,
(39) #Eµ(j, βα, α) ≤ 2j(Dµ(α)+ε/2).

Moreover, Dµ being continuous over [Hmin, Hmax], one can choose βα so small thatDµ(α) ≤
Dµ(α′) + ε/2 for all α′ ∈ [α − βα, α + βα]. Using the compactness of [Hmin, Hmax], there
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exists finitely many real numbers α1, . . . , αp ∈ [Hmin, Hmax], such that for the associated
numbers β1, ..., βp > 0 and integers j1, ..., jp, one has [Hmin, Hmax] ⊂ ⋃p

i=1[αi − βi, αi + βi]
and (39) holds for every j ≥ ji.

Pick an integer k ≥ 1 such that 1/k ≤ min{βi : 1 ≤ i ≤ p}. For all j ≥ J1
ε = max{ji :

1 ≤ i ≤ p}, for every α ∈ [Hmin, Hmax], there exists 1 ≤ i ≤ p such that α ∈ [αi−βi, αi+βi],
hence because of (39), one has

(40) #Eµ(j, 1/k, α) ≤ 2j(Dµ(αi)+ε/2) ≤ 2j(Dµ(α)+ε).

Consider one triplet (α, η′, δ) ∈ P` with δ ∈ [1, 1/η′]. We choose the integer k such that
1/k ≤ β. Observe that with these parameters,

Fµ,`(j, α, η
′, δ − ε, k) ⊂

⋃

W∈Σbjη′c

Tµ,`(j, η
′, β,W ).

We use Proposition 8 to find an upper bound for the cardinality Tµ,`(j, η′, β,W ) . Applying
part (1) of this proposition, one can find β > 0 and an integer J2

ε such that for all j ≥ J2
ε ,

equation (28) holds true.
For each j ≥ Jε := max(J1

ε /η
′, J2

ε ), every point x belonging to Fµ,`(j, α, η′, δ − ε, k) is
close at distance at most 2−bη

′jc(δ−ε) from some cube Iw such that w ∈ Sj(η)∩Rµ(j, η′, α±
1/k) ∩ Tµ,`(j, η′, 1/k), with δ ∈ [1, 1/η′].

One combines now two facts:

• By (40), the cardinality of those words W ∈ Σbη′jc satisfying
∣∣∣∣
− log2 µ(IW )

bjη′c − α
∣∣∣∣ ≤ 1/k

is bounded from above by

#Eµ(bη′jc, α, 1/k) ≤ 2bjη
′c(Dµ(α)+ε).

This applies to the words W = wbη′jc when w ∈ Rµ(j, η′, α± 1/k)

• If W ∈ Σbη′jc is fixed, we know by (28) that the cardinality the words w ∈
Tµ,`(j, η′, 1/k) is bounded from above by 2η

′jε.

The first item allows us to control the number of possible η′-roots wbη′jc of w, and the
second item the number of possible η′-tails wσj−bη′jcw.

We deduce that for all J ≥ Jε, the set Fµ,`(j, α, η′, δ − ε, k) is covered by at most
2bjη

′c(Dµ(α)+ε) times 2η
′jε cubes of diameter 2bη

′jc(δ−ε).
Fix a real number s >

Dµ(α) + 2ε

δ
. The s-Hausdorff measure Hs of the limsup set

F := lim supj→+∞ Fµ,`(j, α, η
′, δ − ε, k) satisfies for every integer J ≥ Jε

Hs(F ) ≤
∑

j≥J
2bjη

′c(Dµ(α)+ε)2η
′jε2−δbη

′jc(δ−ε) < +∞.

Hence dimF ≤ Dµ(α) + 2ε

δ
. Since δ ≥ 1, dimF ≤ Dµ(α)

δ
+ 2ε, and (39) is proved. �
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DMµ
(h)

h
H`(0)

H`(η̃)

H`(η̃) + H̃`(η̃)

Hs + H̃`(η̃)0

d

Dµ(H)− d(1− η)

H · η̃ Dµ(H`(η̃))

H`(η̃)

Dµ(H − H̃`(η̃))

Figure 14. The mapping H 7→ D(H)

6.3. Simplification of the upper bound formula (37) of Section 6.2. Summarizing
the previous information, we already established that, with probability 1, the domain of
the singularity spectrum DMµ of Mµ is included in [H`(η`), Hmax + H̃`(η̃)] (Lemma 4 and
Section 6.1), and for all H ∈ [H`(η`), Hmax + H̃`(η̃)] we found the upper bound D(H) for
DMµ(H) in Proposition 12.

Formula (37) defining D(H) is useless for the moment for at least two reasons: it is not
tractable as it it is written, and we ignore yet whether this upper bound is optimal. In
this section we investigate the optimization problem raised by the expression of D(H) and
prove the following proposition, which yields the upper bound announced in Theorem 2
for the increasing part of DMµ .

Proposition 13. For every H ∈ [H`(η`), Hs + H̃`(η̃)], one has

D(H) =





Dµ(H)− d(1− η) if H`(η`) ≤ H ≤ H`(η̃),

H · η̃ Dµ(H`(η̃))

H`(η̃)
if H`(η̃) ≤ H ≤ H`(η̃) + H̃`(η̃),

Dµ(H − H̃`(η̃)) if H`(η̃) + H̃`(η̃) ≤ H ≤ Hs + H̃`(η̃).

In particular H 7−→ D(H) is strictly increasing on the interval [H`(η`), Hs + H̃`(η̃)),
D(H`(η`)) = Dµ(H`(η`))− d(1− η) and D(Hs + H̃`(η̃)) = d.

Remark 2. For every H ∈ (H`(η`), Hs + H̃`(η̃)], we are going to show that D(H) =
D(H, 0) and there exists a unique triplet (αH , ηH , δH) which realizes the supremum in
D(H, 0). Lemma 6 is particularly important, since it describes the precise scenario leading
to the optimal upper and lower bounds for the dimensions of the level sets. In particular,
Lemma 6 distinguishes this triplet, which yields the simplified formula and is key for the
next Section 7, where we prove that the upper bound D(H) is a lower bound for DMµ(H)

as well, when H ∈ [H`(η`), Hs + H̃`(η̃)].
The rest of the section is less essential and more technical, since it involves only com-

putations based on Legendre transforms.

For the proof of Proposition 13, we will use the following facts:
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Fact 1: By Lemma 1, the mapping α 7→ Dµ(α)

α+H̃`(η̃)
is increasing when α ≤ H`(η̃), decreasing

when α ≥ H`(η̃).

Fact 2: For all η′ ∈ [η`, η] \ {0}, one has η′ = H`(η
′)+H̃`(η′)
H`(η′)

.

Fact 3: For all η′ ∈ [η`, η], one has Dµ(H`(η
′)) =

d(1− η)

1− η′ .

Proof of Proposition 13. We start with some direct observations.
Observe first that D(H, ε) and D(H) are non-decreasing mappings with respect to the

variable H. Hence we only need to deal with H > H`(η`), since it will follow from our
computations that D(H`(η`)) = limH→H`(η`)+ D(H) = Dµ(H`(η`))− d(1− η).

In addition, for all η′ ∈ [ηr, η]\{0}, one has H̃r(η
′) ≥ H̃`(η) ≥ H̃`(η̃). Hence it is enough

to consider H̃`(η
′) and η′ ∈ [η`, η] \ {0} to obtain the greatest upper bound in D(H, ε).

One deduces that (36) reduces to

D(H, ε) = sup




Dµ(α)

δ
:




α ∈ [Hmin, Hmax], η′ ∈ [η`, η] \ {0},

1 ≤ δ ≤ 1/η′,
α+ H̃`(η

′)
δ

≤ H + ε



 .

We call PH,ε the domain of admissible values appearing in the right hand-side above, so
that

D(H, ε) = sup

{
Dµ(α)

δ
: (α, η′, δ) ∈ PH,ε

}
.

One starts by finding the expected lower bounds for D(H).

Lemma 6. (1) If H ∈ [H`(η̃) + H̃`(η̃), Hs + H̃`(η̃)), the triplet

(41)
(
αH := H − H̃`(η̃), η̃, 1

)

belongs to the domain PH,0, and

(42) D(H) ≥ Dµ(αH)

1
= Dµ

(
H − H̃`(η̃)

)
.

(2) If H ∈ [H`(η̃), H`(η̃) + H̃`(η̃)), the triplet

(43)

(
H`(η̃), η̃,

H`(η̃) + H̃`(η̃)

H`(η̃)

)

belongs to the domain PH,0 and

(44) D(H) ≥ H Dµ(H`(η̃))

H`(η̃) + H̃`(η̃)
= H · η̃ ·Dµ(H`(η̃))

H`(η̃)
.

(3) If H ∈ (H`(η`), H`(η̃)), let ηH ∈ (η`, η̃) be the unique real number such that

(45) H = H`(ηH).

The triplet

(46) (H`(ηH), ηH , 1/ηH)
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belongs to PH,0 and

(47) D(H) ≥ Dµ(H`(ηH))

1/ηH
= Dµ(H)− d(1− η).

Proof. Observe that PH,0 ⊂
⋂
ε>0 PH,ε. So, if a triplet (α, η′, δ) belongs to PH,0, D(H, ε) ≥

Dµ(α)
δ for every ε, and one necessarily has D(H) ≥ Dµ(α)

δ .

The fact that the three triplets belong to the associated domains PH,0 is a simple cal-
culation.

Part (1) is immediate.
Part (2) follows from Fact 2.
Concerning Part (3), one observes that

Dµ(H`(ηH))

1/ηH
= ηH

d(1− η)

1− ηH
=
d(1− η)

1− ηH
− d(1− η)

= Dµ(H`(ηH))− d(1− η) = Dµ(H)− d(1− η).

�

From the above lower bounds, one deduces that D(H) = limε→0+ D(H, ε) = D(H, 0).

Indeed, take any H ∈ (H`(η`), Hs+ H̃`(η̃)]. Obviously d ≥ D(H, ε) ≥ D(H) > 0, for every
ε ≥ 0. Recalling that D(H, ε) is a supremum of quantities Dµ(α)

δ and Dµ(α) ≤ d, it is
enough to consider triplets of the form (α, η′, δ) with δ ≤ d/D(H, ε). As a consequence,

in this range of triplets, recalling the constraint
α+ H̃`(η

′)
δ

≤ H + ε, the quantity H̃`(η
′)

must be bounded to contribute to the value of D(H, ε). This means that η′ is bounded
from below by some positive constant depending on H only.

We know now that the domain of suitable parameters leading to D(H, ε) can be chosen
to be compact, and independent of ε > 0. The continuity of all the functions involved in
the domain PH,ε, ε ≥ 0, allows us to conclude that D(H, 0) = limε→0+ D(H, ε), and

(48) D(H) = D(H, 0) = max




Dµ(α)

δ
:




∃α ∈ [Hmin, Hmax], ∃ η′ ∈ [η`, η] \ {0},

1 ≤ δ ≤ 1/η′,
α+ H̃`(η

′)
δ

≤ H



 ,

where we know that the maximum is effectively reached (it is not only a supremum as in
formula (36)).

Now let us make some general remarks on D(H, 0).
Suppose the maximum in (48) is realized at some triplet (α, η′, δ). Observe that if α

were strictly greater than Hs, one could improve the bound Dµ(α)/δ by replacing α by
Hs and not changing the value of the other parameters. This contradicts the maximality
of Dµ(α)/δ. As a conclusion, α ≤ Hs.

Suppose now that
α+ H̃`(η

′)
δ

< H. Then necessarily δ = 1, otherwise one could improve

the upper bound Dµ(α)
δ by slightly decreasing δ. When δ = 1, one has α + H̃`(η

′) < H ≤
Hs + H̃`(η̃). Observe that it is necessary to have α < Hs, since H̃`(η

′) ≥ H̃`(η̃). By taking
α′ ∈ (α,Hs) still satisfying α′ + H̃`(η

′) < H, one gets a larger value for Dµ(α′)
δ , which
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contradicts again the maximality of Dµ(α)
δ . So, for the optimal triplet, one has necessarily

the equality

(49)
α+ H̃`(η

′)
δ

= H.

Finally, observe that (49) implies that

D(H, 0) ≤ H ·max





Dµ(α)

α+ H̃`(η′)
:




α ∈ [Hmin, Hmax], η′ ∈ [η`, η] \ {0},

∃ 1 ≤ δ ≤ 1/η′,
α+ H̃`(η

′)
δ

= H



 .(50)

We now distinguish three cases.

• First case: H ∈ (H`(η̃) + H̃`(η̃), Hs + H̃`(η̃)).
Recall the triplet (41), which satisfies (49).
If α > αH , Fact 1 yields

H
Dµ(α)

α+ H̃`(η′)
≤ H Dµ(α)

α+ H̃`(η̃)
≤ H Dµ(αH)

αH + H̃`(η̃)
= Dµ(αH)

If α < αH , we have Dµ(α)/δ < Dµ(αH)/1 = Dµ(αH).
Consequently, the maximum is reached necessarily at (αH , η̃, 1), and it equals (42).

• Second case: H ∈ [H`(η̃), H`(η̃) + H̃`(η̃)).
For any α ∈ [Hmin, Hmax] and any η′, by Fact 1 we have

H
Dµ(α)

α+ H̃`(η′)
≤ H Dµ(α)

α+ H̃`(η̃)
≤ H Dµ(H`(η̃))

H`(η̃) + H̃`(η̃)
,

which is the value obtained in (44) with the triplet (43), which satisfies (49).

• Third case: H ∈ (H`(η`), H`(η̃)).

The optimization process here is more intricate. Indeed, in the first two cases, only one
amongst the three parameters involved in the optimal triplet depends on H. In this range
of local dimensions, the three parameters of the optimal triplet are functions of H.

Lemma 7. When H ∈ (H`(η`), H`(η̃)), the value of D(H, 0) is reached at some triplet
(α, η′, 1/η′), for some η′ ∈ [η`, η̃) \ {0}.
Proof. Suppose that D(H, 0) is reached at some triplet (α, η′, δ), with 1 < δ < 1/η′.

If η′ 6= η̃, we can perturb slightly (α, η′, δ) into a new triplet (α′′, η′′, δ′′) such that
α′′ ≥ α, H̃`(η

′′) < H̃`(η
′), 1 < δ′′ < δ′ and δ′′ < 1/η′′, and such that (49) still holds for the

new triplet. This contradicts the maximality of Dµ(α)/δ. One deduces that η′ = η̃, and
the optimal triplet is in fact (α, η̃, δ) with 1 < δ < 1/η̃.

Now, the constraints (49) and H < H`(η̃) imply that α < H`(η̃), since H`(η̃) =

η̃(H`(η̃) + H̃`(η̃)). Then, optimizing in α the ratio Dµ(α)/δ under the constraint (49)
amounts to studying the mapping

α 7→ H
Dµ(α)

α+ H̃`(η̃)
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over [αmin, H`(η̃)). Fact 1 ensures that it is increasing. If the optimal triplet is (α, η̃, δ)
with 1 < δ < 1/η̃, we can slightly increase the values of α and δ in α′ and δ′, preserve (49),
α′ < H`(η̃) and 1 < δ′ < 1/η̃, and get the contradiction H Dµ(α′)

α′+H̃`(η̃)
> D(H, 0) =

Dµ(α)

α+H̃`(η̃)
.

Next suppose that D(H, 0) is reached at some triplet (α, η′, 1), for some η′ ∈ [η`, η]\{0}.
This imposes H = α + H̃`(η

′), and one looks for the maximum of Dµ(α). Necessarily
α ∈ I = [H`(η`)− H̃`(η

′), H`(η̃)− H̃`(η
′)), which is an interval included in the increasing

part of the spectrum Dµ. However Dµ does not reach a maximum over I, hence a new
contradiction.

The previous cases leading to a contradiction, we deduce that necessarily D(H, 0) is
reached at some triplet (α, η′, 1/η′), for some η′ ∈ [η`, η] \ {0}. Hence we have

(51) H = η′(α+ H̃`(η
′)) and D(H, 0) = η′Dµ(α),

with η′ ∈ [η`, η] \ {0}.
Further, we prove that it is enough to consider η′ ∈ [η`, η̃).
Suppose that (51) holds for some η′ ∈ [η̃, η]. Since H < η̃(H`(η̃) + H̃`(η̃)) and H̃`(η

′) ≥
H̃`(η̃), we have α < H`(η̃). Consequently, there exists α′ ∈ (α,H`(η̃)) such that H =

η̃(α′ + H̃`(η̃)). For the triplet (α′, η̃, 1/η̃), one has

η̃Dµ(α′) = H
Dµ(α′)

α′ + H̃`(η̃)
> H

Dµ(α)

α+ H̃`(η̃)
,

where we used Fact 1 and H`(η̃) > α′ > α. Finally, since H̃`(η̃) ≤ H̃`(η
′), one sees that

η̃Dµ(α′) > H
Dµ(α)

α+ H̃`(η′)
= D(H, 0),

which is a (last) contradiction. �

From last Lemma, the maximum D(H, 0) reduces to

D(H, 0) = max
{
η′Dµ(α) : α ∈ [Hmin, Hs], η

′ ∈ [η`, η̃) \ {0}, η′(α+ H̃`(η
′)) = H

}
.

This is standard optimization under constraints. The maximum is reached when

Dµ
′(α)(α+ H̃ ′`(η

′)) +Dµ(α) = 0,

or equivalently when

H̃ ′`(η
′) = −

D∗µ(Dµ
′(α))

D′µ(α)
.

When η′ is fixed, this happens if and only if α = H`(η
′). This means that H =

η′(H`(η
′) + H̃`(η

′)), so H = H`(η
′). This leads to the choice (45) for η′, and to the triplet

(46), which gives the value (47) for D(H). �

Remark 3. A key observation for the following is that actually we proved a little more
than what we announced. Indeed, as a direct by-product of the proof, not only we know that
when H ≤ Hs + H̃`(η̃), DMµ(H)(= dimEMµ

(H)) ≤ D(H), we also have that

(52) dimE≤Mµ
(H) ≤ D(H).

This inequality is useful in the following section.
Remark 4. There is no chance for D(H) to be an optimal bound in the decreasing part
of the singularity spectrum of Mµ, since the mapping H 7→ D(H) is non-decreasing.
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7. Lower bound for the singularity spectrum

For each admissible local dimension H, we are going to exhibit an auxiliary probability
measure ν (which depends on H) such that ν

(
EMµ

(H)
)

= 1, and such that the dimension
of ν equals the announced value for DMµ(H): i.e. D(H) when H ≤ Hs + H̃`(η̃), and
Dµ(H − H̃`(η̃)) when H > Hs + H̃`(η̃).

These auxiliary measures do not always have the same nature, depending on H. They
can be taken as a Gibbs measures when H ∈ [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)), but not for
the other values of H.

We introduce two families of measures in Section 7.1, whose properties are established
in Section 7.5. Then we obtain the sharp lower bound for DMµ in Sections 7.2 to 7.4.

7.1. Two families of measures. The first family will be used to obtain a sharp lower
bound for DMµ(H) when H ∈ [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)]. It is based on the following
result.

Recall Proposition 7 in which the event C (N, J,W ) is defined.

Theorem 5. With probability 1, for all α ∈ [Hmin, Hmax], there exists an exact dimen-
sional Borel probability measure να of Hausdorff dimension Dµ(α) supported on Ẽµ(α) (i.e.
να(Ẽµ(α)) = 1), such that:

(1) for all δ > 1 we have

να


⋂

J≥1

⋃

j≥J

⋃

w∈Sj(η)

B
(
xw, (2 · 2−bηjc)δ

)

 = 0.

(2) for all N > 1/η, for να-almost every x, there exists an integer JN,α,x ≥ 1 such that
for all J ≥ JN,α,x, the event C (N, J, x|J) is not realized.

Theorem 5 is proved at the end of this Section (Section 7.5). Observe that the result
holds simultaneously for all α ∈ [Hmin, Hmax].

In the first item, the limsup set contains those points x ∈ [0, 1]d that are very close to
the surviving coefficients, i.e. those x satisfying for some δ > 1

|x− xw| < 2 · 2−b|w|ηcδ

for infinitely many surviving words w. We know by the covering Lemma 2 that when δ < 1,
every x ∈ [0, 1]d satisfies the last inequality infinitely many times. Part (1) of Theorem 5
states that this is no longer true when δ > 1, in the sense that the να-measure of these
sets of points is always 0.

The second part of the Theorem is technical, and used in the proofs below.

The second family of measures allows us to compute the value of DMµ(H) when H ∈
[H`(η`), H`(η̃) + H̃`(η̃)]. These measures are built thanks to the theory of heterogeneous
ubiquity theory, developed in [5, 6, 9, 18], whose main results can be resumed as follows.

Theorem 6. Let F = ((xn, rn))n≥1 be a sequence of couples such that (xn)n≥1 is a sequence
of points in [0, 1]d, and (rn)n≥1 is a positive sequence converging to zero. Assume that

(53) (0, 1)d ⊂ lim sup
n→+∞

B(xn, rn).
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Let α ∈ (Hmin, Hmax). Recall that the Gibbs measure µα was defined in Proposition 2(4).
For every δ ≥ 1 and any positive sequence β̃ := (β̃n)n≥1 converging to zero, define

(54) Uµ
(
α, δ,F , β̃

)
:=

⋂

N≥1

⋃

n≥N :

(rn)α+β̃n≤µα(B(xn,rn))≤(rn)α−β̃n

B
(
xn, (rn)δ

)
.

For every δ ≥ 1, there exists a Borel probability measure να,δ and a positive sequence
β̃ := (β̃n)n≥1 converging to zero such that

να,δ

(
Uµ
(
α, δ,F , β̃

))
= 1,

and να,δ(E) = 0 for every set E such that dim E < Dµ(α)/δ.
In particular, one has

dimUµ
(
α, δ,F , β̃

)
≥ dim να,δ ≥

Dµ(α)

δ
.

Moreover, if (α(p),F (p), δ(p))p≥1 stands for a sequence of parameters satisfying the above
conditions, there exists a measure ν̃ and sequences β̃(p) := (β̃

(p)
n )p≥1,n≥1 converging to zero

satisfying

ν̃


⋂

p≥1

Uµ
(
α(p), δ(p),F (p), β̃(p)

)

 = 1,

and ν̃(E) = 0 for every set E such that dim E < inf
p≥1

Dµ(α(p))

δ(p)
.

In particular,

dim
⋂

p≥1

Uµ
(
α(p), δ(p),F (p), β̃(p)

)
≥ inf

p≥1

Dµ(α(p))

δ(p)
.

The last property is due to the fact that the sets Uµ
(
α, δ,F , β̃

)
enjoy the large intersec-

tion property, i.e. when intersecting a countable number of them, the Hausdorff dimension
of the resulting set is at least the infimum of all the dimensions, see [9, 18].

We are going to apply Theorem 6 with specific families (xn, rn)n≥1:

Let D` be a dense countable subset of [η`, η]\{0}, such that η̃ ∈ D`. With probability 1,
for all η′ ∈ D`, Proposition 6 proves the existence of words w ∈ Sj(η,W ) ∩ Tµ,`(j, η′, ε3

j ),
for j large enough, for all W ∈ Σbη′jc. For such a surviving word w, we set rw = 2 · 2−bη′jc.
The sequence of couples (xw, rw) obtained in this way is denoted

Fη′ :=
(
xn(η′), rn(η′)

)
n≥1

after being re-ordered so that the sequence of radii (rn(η′))n≥1 is non-increasing. By
construction, the covering property (53) is satisfied for the family F ′η, so that the second
part of Theorem 6 can be applied with the countable number of families

(
Fη′
)
η′∈D` .



42 JULIEN BARRAL AND STÉPHANE SEURET

7.2. The right part of the spectrum DMµ.
Recall that for H ∈

[
H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)

]
we defined αH = H − H̃`(η̃). Also

recall Theorem 5 in which the measure ναH is defined.

Lemma 8. With probability 1, for all H ∈ [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)], there exists a
set GH ⊂ Ẽµ(αH) such that:

• ναH (GH) = 1
• for all x ∈ GH , for all integers N > 1/η, there exists JN (x) ≥ 1 such that for all
J ≥ JN (x), for all J ≤ j < J/(η̃N,−1), one has

⋃

W∈NJ (x)

Sj(η,W ) = ∅.

Proof. Notice that for all N ≥ 1 we have 1/η̃N,−1 < 1/η. Assume towards contradiction
that with positive probability, there exists H ∈ [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)], a set FH
of positive ναH -measure, and N ≥ 1 such that

FH ⊂
⋂

J≥1

⋃

j≥J

⋃

w∈Sj(η)

B
(
xw, (2 · 2−bηjc)δ

)

for all δ ∈ (1, η̃−1η̃N,−1). This contradicts Theorem 5.
Consequently we get that, with probability 1, for all H ∈ [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)]

a set GH such that the two items of the statement hold. Moreover, GH can be taken a
subset of Ẽµ(αH) since ναH

(
Ẽµ(αH)

)
= 1. �

Now, we prove that DMµ(H) ≥ Dµ

(
H − H̃(η̃)

)
.

Consider a set Ω′ of probability 1 over which the conclusions of Theorem 5 and Lemma 8
hold true.

Lemma 9. For all ω ∈ Ω′, for all H ∈ [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)], one has GH ⊂
EMµ

(H).

Proof. Take ω ∈ Ω′, and fix an integer N > 1/η. Fix x ∈ GH . We focus on the values
of Mµ(IJ(x)). We analyse the values of µ(Iw) when w ∈ Sj(η) is a surviving vertex such
that Iw is included in the neighborhood NJ(x) of x. For this, we apply the quasi-Bernoulli
property (8) to get

µ(Iw) ≈ µ(Iw|J )µ(IσJw),

and we use some of the inequalities we proved above.
First, combining part (2) of Theorem 5 and Lemma 8, for all J large enough, for all

W ∈ NJ(x), one has:
• for all J ≤ j ≤ J/η̃N,−1,

⋃
W∈NJ (x) Sj(η,W ) = ∅;

• for all −1 ≤ k ≤ N − 1, for all J/η̃N,k ≤ j ≤ J/η̃N,k+1, for all w ∈ Sj(η,W ),

µ(IσJw) ≤ 2−J(H̃`(ηN,k)−εN ) ≤ 2−J(η−1
N,k−1)εN 2−JH̃`(η̃);

• if j > J/η0, for all w ∈ Σj such that Iw ⊂ IW , we have

µ(IσJw) ≤ 2−J(η−1
0 −1)(Hmin−εN ) ≤





2−J(η−1
0 −1)(Hmin−εN ) ≤ 2−J

(
H̃`(η̃)−(η−1

0 −1)εN

)
if η` = 0

2−j(η
−1
` −1)(H`(η`)−εN ) ≤ 2−J

(
H̃`(η̃)−(η−1

` −1)εN

)
if η` > 0.

.
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Secondly, since x ∈ GH ⊂ Ẽµ(αH), there exists a sequence (ε̃J)J≥1 (depending on x)
tending to 0 as J → +∞ such that x|J ∈ Eµ(J, αH ± ε̃J). In particular, one has for
IW ∈ NJ(x),

µ(IW ) ≤ 2−J(αH−ε̃J ).

When η` = 0, combining the previous inequalities, we get

Mµ(IJ(x)) = max{µ(Iw) : w ∈ Sj(η,W ), W ∈ NJ(x)}
≤ C ·max{µ(IW ) : IW ∈ NJ(x)} ·max{µ(IσJw) : w ∈ Sj(η,W ), WNJ(x))}

≤ C2−J
(
αH−ε̃J+H̃`(η̃)−(η−1

0 −1)εN

)
.

Consequently,

dim(Mµ, x) ≥ αH + H̃`(η̃)− (η−1
0 − 1)εN = H − (η−1

0 − 1)εN .

This holds for all N > 1/η hence dim(Mµ, x) ≥ H, for every x ∈ GH . The same estimate
are true when η` > 0 by replacing η0 by η`.

On the other side, by Proposition 9 we know that dim(Mµ, x) ≤ dim(µ, x) + H̃`(η̃) =

αH + H̃`(η̃) = H, hence dim(Mµ, x) = H (in fact we obtained that GH ⊂ EMµ(H)). �

We can now conclude. Recall that with probability 1, simultaneously for allH ∈ [H`(η̃)+

H̃`(η̃), Hmax + H̃`(η̃)], we have ναH (GH) = 1, so one has dimGH ≥ Dµ(αH) = Dµ(H −
H̃`(η̃)). Finally, since GH ⊂ EMµ

(H), one has

dim EMµ
(H) ≥ dim GH ≥ Dµ(H − H̃`(η̃)).

Remark 5. Observe that the previous arguments give also a lower bound for the Hausdorff
dimension of the level sets of the limit local dimension: for any H ∈ [Hmin +H̃`(η̃), Hmax +

H̃`(η̃)], dim EMµ(H) ≥ Dµ(H − H̃`(η̃)).

7.3. The middle part of the spectrum DMµ.

Let H ∈ [H`(η̃), H`(η̃) + H̃`(η̃)]. We apply Theorem 6 with the parameters:

• η′ = η̃,
• the family Fη̃ = (xn(η̃), rn(η̃))n≥1,
• α = H`(η̃),
• δ = H`(η̃)/(η̃H) (which does belong to [1, 1/η̃]).

There exists a sequence β̃ := (β̃n)n≥1 and a Borel probability measure να,δ supported
on the set Uµ

(
H`(η̃), δ,Fη̃, β̃

)
and such that

dim να,δ ≥
dimµH`(η̃)

δ
= η̃H

Dµ(H`(η̃))

H`(η̃)
= D(H).

Lemma 10. One has Uµ
(
H`(η̃), δ,Fη̃, β̃

)
⊂ E≤Mµ

(H).

Proof. Let x ∈ Uµ
(
H`(η̃), δ,Fη̃, β̃

)
. By definition of this limsup set, there is an increasing

sequence of integers (jk)k≥1 and words wk ∈ Sjk(η)∩Rµ(jk, η̃, H`(η̃)± β̃jk)∩Tµ,`(jk, η̃, ε3
jk

)

such that for each k ≥ 1, x ∈ B
(
xwk , (2 · 2−bη̃jkc)δ

)
. In other words, wk satisfies

{
2−bη̃jkc(H`(η̃)+β̃bη̃jkc) ≤ µ(Iwk|bη̃jkc

) ≤ 2−bη̃jkc(H`(η̃)−β̃bη̃jkc)

2
−(jk−bη̃jkc)(H`(η̃)+ε3jk

) ≤ µ(Iσbη̃jkcwk) ≤ 2
−(jk−bη̃jkc)(H`(η̃)−ε3jk )

.
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Consider for each k ≥ 1 the largest integer Jk such that 2−Jk ≥ (2 ·2−bη̃jkc)δ. With such
a choice, one has Iwk ⊂ NJk(x), so that MJk(x) ≥ µ(Iwk). Since Jk = δη̃jk + o(1/k), one
concludes that

MJk(x) ≥ µ(Iwk) ≥ C−12−bη̃jkc(H`(η̃)+β̃bη̃jkc)2
−(jk−bη̃jkc)(H`(η̃)+ε3jk

) ≥ 2−
Jk
δ

(H`(η̃)+β̂k),

for some sequence β̂k converging to 0 as k → +∞. Taking the liminf as k → +∞ on both
sides yields dim(Mµ, x) ≤ H. �

From the previous lemma, we deduce that

να,δ

(
E≤Mµ

(H)
)
≥ να,δ

(
Uµ
(
H`(η̃), δ,Fη̃, β̃

)
> 0.

But for any H ′ < H, applying formula (52) of Remark 3, one knows that dimE≤Mµ
(H ′) ≤

D(H ′) < D(H). In addition, Theorem 6 asserts that να,δ
(
E≤Mµ

(H ′)
)

= 0. We deduce that

να,δ


E≤Mµ

(H) \
⋃

n≥1

E≤Mµ
(H − 1/n)


 = 1.

Since EMµ
(H) = E≤Mµ

(H) \⋃n≥1E
≤
Mµ

(H − 1/n), we conclude that να,δ
(
EMµ

(H)
)

= 1, i.e.
DMµ(H) ≥ D(H). Since we already proved the converse inequality, equality holds.

7.4. The left part of the spectrum DMµ.

Let H ∈
[
H`(η`), H`(η̃)

)
. Recall the definition (45) of ηH when H ∈ (H`(η`), H`(η̃)).

When H = H`(η`), we set ηH`(η`) = η`. Let (H(p))p≥1 be a decreasing sequence of real
numbers in the interval

(
H`(η`), H`(η̃)

)
converging to H, with the constraint that ηH(p) ∈

D`. For each p ≥ 1, we consider any sequence (δ(p))p≥1 converging to 1/ηH as p → +∞,

and such that the sequence of real numbers

(
Dµ(H(p))

δ(p)

)

p≥1

is non increasing.

We apply the second part of Theorem 6: there exist a collection of positive sequences(
β̃(p) := (β̃

(p)
n )n≥1

)
p≥1

converging to 0, such that the set
⋂
p≥1 Uµ

(
H(p), δ(p),Fη

H(p)
, β̃(p)

)

supports a measure ν̃H , whose dimension is greater than or equal to

inf
p≥1

Dµ(H(p))

δ(p)
= ηHDµ(H) = D(H).

Also, similarly to what was done in Section 7.3, we can get
⋂

p≥1

Uµ
(
H(p), δ(p),Fη

H(p)
, β̃(p)

)
⊂ E≤Mµ

(H)

and ν̃H
(
E≤Mµ

(H − 1/n)
)

= 0 for all n ≥ 1. This yields

ν̃H


E≤Mµ

(H) \
⋃

n≥1

E≤Mµ
(H − 1/n)


 = 1,

and finally that DMµ(H) = D(H).
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7.5. Proof of Part (1) of Theorem 5. If α ∈ (Hmin, Hmax), we can choose for να the
Gibbs measure µα of item (4) of Proposition 2 and it is not too difficult to prove the desired
property by using natural coverings because the Hausdorff dimension of µα is positive.

We give a construction of a measure να that works for α ∈ {Hmin, Hmax}, based on a
concatenation method. It is also possible to adapt this method to get another choice for
να when α ∈ (Hmin, Hmax) (as explained at the end of the proof).

Due to Lemma 3 we can fix a positive sequence (εj)j≥1 converging to 0, such that, with
probability 1, for j large enough, for all W ∈ Σbηjc,

(55) #Sj(η,W ) ≤ 2ηjεj .

Without loss of generality we can assume that (εj)j≥1 is non-increasing, 1/j ≤ εj ≤ d for
all j ≥ 1, and εj+1/εj converges to 1 as j → +∞.

We treat the case Hmin, the case Hmax is identical.

7.5.1. Construction of the measure νHmin and an associated Cantor set CHmin . Let (qk)k≥1

be an increasing sequence of real numbers, and let αk := τ ′µ(qk). We assume that :

• If Dµ(Hmin) = 0, we choose qk such that Dµ(αk) =
√
εk, for every k ≥ 1.

Hence (qk) satisfies limk→+∞ αk = Hmin and limk→∞Dµ(αk) = 0.
• If Dµ(Hmin) > 0, we choose qk such that limk→+∞ αk = Hmin and one also has

limk→+∞Dµ(αk) = Dµ(Hmin).
In all cases, by construction we have

(56) |Dµ(αk+1)−Dµ(αk)| = θk
√
εk ≤ θkDµ(αk),

with limk→+∞ θk = 0.

We start by selecting some intervals words at which µ and µαk have the desired scaling
properties.

Recall that by item (4) of Proposition 2, the measure Gibbs µαk satisfies

µαk
(
Ẽµ(αk)

)
= µαk

(
Ẽµαk

(
Dµ(αk)

))
= 1.

Hence, for all k ≥ 1, the sets

AkJ =
{
W ∈ ΣJ : ∀W ′ ∈ N (W ), W ′ ∈ Eµ

(
J, αk ± εk

)}

and BkJ =
{
W ∈ ΣJ : ∀W ′ ∈ N (W ), W ′ ∈ Eµαk

(
J,Dµ(αk)± εk

)}

satisfy limJ→+∞ µαk(AkJ) = limJ→+∞ µαk(BkJ) = 1. Up to extraction of a subsequence,
one deduces that there exists an integer Jk ∈ N+ and a collectionWk of words of generation
Jk such that the cubes IW , W ∈ Wk, are pairwise disjoint,

∑
W∈Wk

µαk(IW ) ≥ e−εk , and
(57) ∀W ∈ Wk, ∀W ′ ∈ N (W ), W ′ ∈ Eµ(J, αk ± εk) ∩ Eµαk (J,Dµ(αk)± εk).

Now, let (Nk)k≥1 be an increasing sequence of integers such that for all k ≥ 1,
k−1∑

p=1

NpJp max
(
1, αp + 2εp, Dµ(αp) + 2εp

)
≤ εkNkJk,(58)

Jk+1

NkJk
max

(
1, αk+1 + 2εk+1, Dµ(αk+1) + 2εk+1

)
≤ εk+1αk.
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We also define J̃k =
∑k

p=1NpJp, which satisfies

NkJk ≤ J̃k ≤ NkJk(1 + εk).

Then we define recursively a Cantor-like set CHmin and simultaneously a Borel proba-
bility measure νHmin on [0, 1]d supported on CHmin . To do so, we use a construction by
concatenation: the measure νHmin behaves like µαk between the generations J̃k−1 + 1 and
J̃k. More precisely:

- We set I∅ = [0, 1]d and νHmin([0, 1]d) = 1,
- For every k ≥ 1, we write W̃k ∈ WNk

k as W̃k = Wk,1 · · ·Wk,Nk where Wk,i ∈ Wk ⊂ ΣJk ,
- The Cantor set is

CHmin =
⋂

k≥1

⋃

(W̃1,...,W̃k)∈WN1
1 ×···×W

Nk
k

I
W̃1···W̃k

- The measure νHmin is defined recursively as follows: for every k ≥ 1, for every
(W̃1, . . . , W̃k) ∈ WN1

1 × · · · ×WNk
k , we set for every i ∈ {1, ..., Nk}

νHmin

(
I
W̃1···W̃k−1Wk,1···Wk,i−1Wk,i

)
= νHmin

(
I
W̃1···W̃k−1Wk,1···Wk,i−1

) µαk(IWk,i
)∑

W ′k∈Wk
µαk(IW ′k)

.

It is clear that this measure νHmin , defined only on the cubes appearing in the Cantor’s
construction, uniquely extends to a Borel probability measure on the cube [0, 1]d.

7.5.2. Properties of the measure νHmin . We first prove that the Cantor set lies on the
elements x ∈ [0, 1]d satisfying simultaneously dim(µ, x) = Hmin and dim(νHmin , x) =
Dµ(Hmin).

Lemma 11. One has CHmin ⊂ Ẽµ
(
Hmin

)
∩ ẼνHmin

(
Dµ(Hmin)

)
.

Proof. If k ≥ 2 and J̃k < J ≤ J̃k+1, we set kJ = k.
Fix x ∈ CHmin . Using the quasi-Bernoulli property (8) of µ and the inequalities (57),

one gets that for every k ≥ 2 and J̃k < J ≤ J̃k+1, and for every cube W ∈ NJ(x),

2−
(
N1J1(α1+ε1)+....+NkJk(αk+εk)+(J−J̃k)(αk+1+εk+1)

)

≤ µ(IW ) ≤ 2−
(
N1J1(α1−ε1)+....+NkJk(αk−εk)+(J−J̃k)(αk+1−εk+1)

)
.

Using the equations (58), we deduce that

2−
(

(αk+2εk)NkJk+(J−J̃k)(αk+1+εk+1)
)
≤ µ(IW ) ≤ 2−

(
(αk−2εk)NkJk+(J−J̃k)(αk+1−εk+1)

)
,

which yields

2−
(

(αk+2εk)(1+εk)J̃k+(J−J̃k)(αk+1+εk+1)
)
≤ µ(IW ) ≤ 2−

(
(αk−2εk)(1+εk)J̃k+(J−J̃k)(αk+1−εk+1)

)
.

Since αk → Hmin when k → +∞, we deduce that limJ→+∞
log2 µ(IW )
−J = Hmin, where

W ∈ NJ(x). This proves that x ∈ Ẽµ(Hmin).
Similarly, the same arguments show that for every k ≥ 2 and J̃k < J ≤ J̃k+1, and for

every cube W ∈ NJ(x),

2−
(

(Dµ(αk)+2εk)(1+εk)J̃k+(J−J̃k)(Dµ(αk+1)+εk+1)
)

≤ νHmin(IW ) ≤ 2−
(

(Dµ(αk)−2εk)(1+εk)J̃k+(J−J̃k)(Dµ(αk+1)−εk+1)
)
.
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The equation (56) then yields

(59) 2−JDµ(αk)(1+θ̃k) ≤ νHmin

(
IW
)
≤ 2−JDµ(αk)(1−θ̃k),

for some decreasing sequence θ̃k, tending to 0 when k → +∞. This yields that x ∈
ẼνHmin

(
Dµ(Hmin)

)
, since Dµ(αk)→ Dµ(Hmin) when k → +∞. �

Observe also that (59) implies that for each j large enough, we have

(60) #{W ∈ Σj : IW ∩ CHmin 6= ∅} ≤ 2
jDµ(αkj )(1+θ̃kj )

.

7.5.3. Proof that well-approximated points have νHmin-measure 0. Fix an approximation
rate δ > 1. To get the result, one focuses first on the value of

νHmin

( ⋃

w∈Sj(η)

B(xw, (2 · 2−bηjc)δ)
)

= νHmin

( ⋃

W∈Σbηjc

⋃

w∈Sj(η,W )

B(xw, (2 · 2−bηjc)δ)
)
.

For each j large enough, consider W ∈ Σbjηc such that IW ∩ CHmin 6= ∅. One looks
for points x ∈ IW ∩ CHmin such that x ∈ B(xw, (2 · 2−bη′jc)δ) for some surviving word
w ∈ Sj(η,W ). Hence, one sees that

νHmin

( ⋃

W∈Σbηjc

⋃

w∈Sj(η,W )

B(xw, (2 · 2−bηjc)δ)
)

≤
∑

W∈Σbηjc: IW∩CHmin
6=∅

∑

w∈Sj(η,W ),
Iw∩CHmin

6=∅

νHmin

(
B(xw, (2 · 2−bηjc)δ)

)
.

Recall that by (55), the number of such possible surviving vertices w (in the second sum
above) is bounded from above by 2ηjεj . Applying (60) to B(xw, (2 · 2−bηjc)δ) for the
generation J = bηjδc, we get

νHmin

( ⋃

W∈Σbηjc

⋃

w∈Sj(η,W )

B(xw, (2 · 2−bηjc)δ)
)

≤
(

#{W ∈ Σbηjc : IW ∩ CHmin 6= ∅}
)
· 2ηjεj · 2−bηjδcDµ(αkbηjδc )(1−θ̃kbηjδc )

≤ 2
ηjεj+bηjcDµ(αkbηjc )(1+θ̃kbηjc )−bηjδc(Dµ(αkbηjδc )(1−θ̃kbηjδc ).

It follows now from the properties imposed to the sequences (εk)k≥1 and (αk)k≥1 that

ξj := νHmin

( ⋃

w∈Sj(η)

B(xw, (2 · 2−bηjc)δ)
)
≤ C ′2ηj(1−δ)Dµ(αkbηjc )(1+o(1))

,

where C is another constant coming from the fact that we dropped some integer parts.

• When Dµ(Hmin) > 0, it is direct that the series
∑

j

ξj converges.

• When Dµ(Hmin) = 0, for large values of j one has by construction j > kbηjc, so
j−1 ≤ εj ≤ εkbηjc , and Dµ(αkbηjc) = √εkbηjc . Thus, for j large enough we get

2
ηj(1−δ)Dµ(αkbηjc )(1+o(1)) ≤ 2−

√
jη(1−δ)(1+o(1)),
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hence the series
∑

j

ξj still converges.

Finally, the Borel-Cantelli lemma proves Part (1) of Theorem 5.
Observe that everything works similarly if we replace Hmin with Hmax and change the

sequence αk accordingly. When α ∈ (Hmin, Hmax), we can even take the sequence (αk)k≥1

to be constant (if not, this process gives other measures sitting on Ẽµ(α)).

7.6. Proof of Part (2) of Theorem 5. Recall Proposition 7. Applying the Borel-Cantelli
lemma, it is enough to prove that for all integers N ≥ 1 and p > 2(Hmax −Hmin)−1,

(61) E
(

sup
α∈{Hmin,Hmax}∪Ip

∑

J≥1

∑

W∈ΣJ

να(IW )1C (N,J,W )

)
< +∞.

where Ip = [Hmin + 1/p,Hmax − 1/p].
At first, notice that for any Borel probability measure ν on [0, 1] we have

E
(∑

J≥1

∑

W∈ΣJ

ν(IW )1C (N,J,W )

)
=

∑

J≥1

∑

W∈ΣJ

ν(IW )P
(
C (N, J,W )

)

≤
∑

J≥1

2−JεN
∑

W∈ΣJ

ν(IW ) <∞.

Applying this to νHmin and νHmax constructed above, it remains us to prove (61) only with
the interval Ip.

Recall that when α ∈ Ip ⊂ (Hmin, Hmax), one can take να = µα (where µα is the Gibbs
measure ofProposition 2) .

Let us write the interval Ip as Ip = τ ′µ([q′p, qp]), for some real numbers qp > q′p. Recall
that the Gibbs capacity µ is associated with a Hölder potential φ which belongs to the
Cβ Hölder class, for some β > 0. Standard arguments based on the bounded distorsion

property give that for κ = 2‖φ‖∞/ log(2) and Cq,q′ = e
(|q|+|q′|)C
(1−2−β) , for all q, q′ ∈ [q′p, qp] and

W ∈ Σ∗, setting αq = τ ′µ(q), we have

µαq′ (IW ) ≤ Cq,q′2κ|q−q
′|·|W |µαq(IW ).

The interval Ip being compact, one can extract a finite collection of intervals [αq̃k−1
, αq̃k ],

1 ≤ k ≤ K, such that qp = q̃0 > . . . > q̃K = q′p and |q̃k − q̃k−1| ≤ εN/(2κ). Setting
Ck = supq′∈[q̃k,q̃k−1]Cq′,q̃k , one rewrites the above properties as follows: for all W ∈ Σ∗, for
all 1 ≤ k ≤ K,

sup
q′∈[q̃k,q̃k−1]

µαq′ (IW ) ≤ Ck2|W |εN/2µαqk (IW ).

From these considerations, we get for 1 ≤ k ≤ K,

E
(

sup
α∈[αq̃k−1

,αq̃k ]

∑

J≥1

∑

W∈ΣJ

να(IW )1C (N,J,W )

)

≤ E
(∑

J≥1

∑

W∈ΣJ

sup
α∈[αq̃k−1

,αq̃k ]
να(IW )1C (N,J,W )

)

≤ Ck
∑

J≥1

∑

W∈ΣJ

2JεN/2ναqk (IW )P
(
C (N, J,W )

)

≤ Ck
∑

J≥1

2−JεN/2 < +∞.
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It follows that

E
(

sup
α∈Ip

(∑

J≥1

∑

W∈ΣJ

να(IW )1C (N,J,W )

))
≤

K∑

k=1

Ck
∑

J≥1

2−JεN/2 < +∞,

i.e. (61) holds.

8. Free energy and large deviations for Mµ

Recall the definitions (15) and (16) for qη̃ and qη` , and also formula (17) for τ̃(q) that
we reproduce for convenience:

τ̃(q) =





τµ(q) + H̃`(η̃)q if q ≤ qη̃,
τµ(q) + d(1− η) if qη̃ < q < qη` ,

H`(0)q if qη` <∞ and q ≥ qη` .

In this section we prove that, with probability 1:

• (Section 8.1) the Legendre transform of τ̃ equals DMµ ,
• (Section 8.2) the lower Lq-spectrum τMµ is bounded below by τ̃ ,
• (Section 8.3) the lower large deviation spectrum satisfies

(62) f
Mµ

(H) ≥ τ∗Mµ
(H).

Using that DMµ(H) ≤ τ∗Mµ
(H) holds true for every H, the first result yields τ̃ ≥ τMµ .

The second result ensures that there is in fact equality: τ̃ = τMµ .
Since one always has f

Mµ
(H) ≤ fMµ

(H) ≤ τ∗Mµ
(H), we conclude thatDMµ(H) = τ∗Mµ

(H) =

f
Mµ

(H) = fMµ
(H) = τ̃(H). In particular, Mµ obeys the multifractal formalism.

Finally, by Varadhan’s lemma (or in our situation very simple estimates), the free energy
τMµ(q) exists as a limit, not only as a liminf, for all q ∈ R.

This completes Part (2) of Theorem 2 and Theorem 3.

8.1. Equality between τ̃∗ and the singularity spectrum of Mµ. First, we prove that
DMµ(H) (given by part (2) of Theorem 2) is indeed the Legendre transform of τ̃ .

Lemma 12. With probability one, one has τ̃∗ = DMµ.

Proof. Let us start with a few observations. By definition of H`(η̃) (see Figure 9), qη̃ is
the slope of the tangent line to the graph of τ∗µ at H`(η̃), and this tangent line passes
through the point (0, d(1 − η)). Hence τ∗µ(H`(η̃)) − d(1 − η) = qη̃H`(η̃). Recalling that
τ∗µ(H`(η̃)) = d1−η

1−η̃ , one deduces that

η̃τ∗µ(H`(η̃)) = qη̃τ
′
µ(qη̃).

But by the definition of the Legendre transform, one has τ∗µ(H`(η̃)) = τ∗µ(τ ′µ(qη̃)) =
qη̃τ
′
µ(qη̃)− τµ(qη̃). We deduce that

τµ(qη̃) = τ∗µ(H`(η̃))(η̃ − 1) = −d(1− η),

i.e. τ̃(qη̃) = 0. Notice that τ̃ is continuous on R, and that there is a first order phase
transition at qη̃, since H`(η̃) + H̃`(η̃) = τ̃ ′(qη̃−) > τ̃ ′(qη̃+) = H`(η̃).

•When H ≥ H`(η̃): Since τ̃ and τµ differ by a linear term of slope H̃`(η̃) over (−∞, qη̃],
their Legendre transform are translated versions of each other by H̃`(η̃) over the interval
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[τ̃ ′(qη̃),+∞) = [H`(η̃) + H̃`(η̃),+∞). Hence, for H ≥ H`(η̃) + H̃`(η̃), one has τ̃∗(H) =

τ∗µ(H − H̃`(η̃)) = DMµ(H).

• When H ∈ [H`(η̃), H`(η̃) + H̃`(η̃)]: The discontinuity of (τ̃)′ at qη̃ implies that for H
in the interval [τ̃ ′(qη̃+), τ̃ ′(qη̃−)] = [H`(η̃), H`(η̃) + H̃`(η̃)], one has

τ̃∗(H) = inf
q∈R

(qH − τ̃(q)) = qη̃H − τ̃(qη̃) = qη̃H = DMµ(H).

• When η` = 0 and H ≤ H`(η̃): In this case we have qη` < +∞. Since τ̃ and τµ
differ by the constant d(1 − η) over [qη̃, qη` ], for H ∈

[
τ̃ ′(qη`), τ̃

′(qη̃)
]

=
[
H`(0), H`(η̃)

]
,

one has τ̃∗(H) = τ∗µ(H)− d(1− η). Then, when q ≥ qη` , τ̃ is linear with slope τ̃ ′(q−η`), so
τ̃∗(H) = −∞ for all H < H`(0). In all cases, τ̃∗(H) = DMµ(H).
• When η` > 0 and H ≤ H`(η̃): Here qη` = +∞ and H`(η`) = Hmin. The same

argument as above yields τ̃∗(H) = τ∗µ(H)− d(1− η) for all H ≤ H`(η̃). �

We know now that DMµ(H) = τ̃∗(H), for all H ∈ R. Since the multifractal formalism
states that DMµ(H) ≤ τ∗Mµ

(H) for all H ∈ R, one deduces that τ̃∗ ≤ τ∗Mµ
. By inverse

Legendre transform, one gets

for all q ∈ R , τ̃(q) ≥ τMµ(q).

The next section establishes that τ̃ ≤ τMµ , so that equality indeed holds almost surely.

8.2. Lower bound for τMµ.

8.2.1. When qη̃ < q < qη` : The sub-multiplicativity property of µ gives for j ≥ 1

∑

W∈ΣJ

Mµ(IW )q =
∑

W∈ΣJ

(
max

W ′∈NJ (W )
max

w∈Sj(η,W ′)
µ(Iw)

)q

≤ 3d
∑

W∈ΣJ

max
w∈Sj(η,W )

µ(Iw)q

≤ 3dCq
∑

W∈ΣJ

µ(IW )q
∑

w∈Σ∗, pWw=1

µ(Iw)q

= 3dCq
∑

W∈ΣJ

µ(IW )q
∑

k≥0

∑

w∈Σk

µ(Iw)qpWw.

The random variables pWw being independent, with law B(2−d(J+k)(1−η)), this yields

E


 ∑

W∈ΣJ

Mµ(IW )q


 ≤ 3dCq


 ∑

W∈ΣJ

µ(IW )q


∑

k≥0

2−(J+k)d(1−η)


∑

w∈Σk

µ(Iw)q


 .

Observe that a direct consequence of (8) is that for some positive constant Cq > 0,

(63) sup
k≥1

2kτµ(q)
∑

w∈Σk

µ(Iw)q ≤ Cq.

Consequently,

E


 ∑

W∈ΣJ

Mµ(IW )q


 ≤ 3dCqC

q


2−Jd(1−η)

∑

W∈ΣJ

µ(IW )q


∑

k≥0

2−k(τµ(q)+d(1−η)).
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Since q > qη̃, we have τµ(q) + d(1 − η) > 0. Hence for some constant C ′q depending on q
only,

E


 ∑

W∈ΣJ

Mµ(IW )q


 ≤ 3dC ′q


2−Jd(1−η)

∑

W∈ΣJ

µ(IW )q


 .

Finally, for every ε > 0, applying (63) we get

E


∑

J≥1

2J(τµ(q)+d(1−η)−ε) ∑

W∈ΣJ

Mµ(IW )q


 ≤ 3dC ′qCq

∑

J≥1

2−Jε,

which is finite. We conclude that with probability 1, we have

lim inf
J→+∞

1

J
log2

∑

W∈ΣJ

Mµ(IW )q ≤ −τµ(q)− d(1− η),

i.e. τMµ(q) ≥ τµ(q) + d(1− η) = τ̃(q).
This holds for each qη̃ < q < qη` almost surely, and by concavity (hence continuity) of

τMµ and τ̃ , this holds almost surely for all qη̃ ≤ q ≤ qη` .
8.2.2. When q ∈ (0, qη̃): • Suppose for a while that both η` and ηr are positive.

Fix 0 < ε < H`(η`), and two integers N`, Nr > 2/ε. Due to Proposition 5 and the
continuity of the mappings H` and Hr, there exists j0 ≥ 1, and two sets of parameters
η` = η`,1 < . . . < η`,N` = η and ηr = ηr,1 < . . . < ηr,Nr such that for j ≥ j0, if w ∈ Sj(η),
then w ∈ Tµ(j, ηi,k, ε) for some i ∈ {`, r} and 1 ≤ k ≤ Ni, i.e.

(64) (j − bηi,kjc)(Hi(ηi,k)− ε) ≤ − log2 µ(I
σ
bηi,kjcw

) ≤ (j − bηi,kjc)(Hi(ηi,k) + ε).

For J large enough, givenW ∈ ΣJ , assume that Mµ(IW ) is realized at w, i.e. Mµ(IW ) =
µ(Iw), for some word of length |w| = j ≥ J , Iw ⊂ IW ′ and W ′ ∈ NJ(W ). In this case,
there exists ηi,k such that (64) holds. We have to distinguish the two following possibilities
for the parameters {ηi,k}i∈{`,r},k∈{1,...,max(N`,Nr)}:

- if bηi,kjc ≤ J , then IW ⊂
⋃
u∈Nbηi,kjc(w|bηi,kjc)

Iu.

- if bηi,kjc > J , then

Mµ(IW ) ≤ Cµ(Iw)µ(I
σ
j−bηi,kjcw

) ≤ Cµ(IW )2(j−bjηi,kc))(Hi(ηi,k)−ε),

where (64) has been used.
In the second case, some information is lost between the generations J and bη′jc. We

deduce from these observations and the quasi-Bernoulli property of µ that

∑

W∈ΣJ

Mµ(IW )q ≤
∑

i∈{`,r}

Ni∑

k=1
bηi,kjc≤J

∑

w∈Tµ(j,ηi,k,ε)

µ(Iw)q +
∑

i∈{`,r}

Ni∑

k=1
bηi,kjc>J

∑

w∈Tµ(j,ηi,k,ε)

µ(Iw)q

≤
∑

i∈{`,r}

Ni∑

k=1

3d
∑

J≤j≤J/ηi,k

∑

u∈Σbjηi,kc

Cqµ(Iu)q2−q(j−bjηi,kc)(Hi(ηi,k)−ε)

+
∑

i∈{`,r}

Ni∑

k=1

3d
∑

W∈ΣJ

∑

j>J/ηi,k

Cqµ(IW )q2−q(j−bjηi,kc)(Hi(ηi,k)−ε).
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Recalling (63) and the fact that H̃i(η
′) = Hi(η

′)(η′−1 − 1) for every η′, the first term in
the last sum is bounded from above by

3dCqCq
∑

i∈{`,r}

Ni∑

k=1

∑

J≤j≤J/ηi,k
2−bjηi,kcτµ(q)2−q(j−bjηi,kc)(Hi(ηi,k)−ε)

≤ C ′q
∑

i∈{`,r}

Ni∑

k=1

2qJε/ηi,k
∑

J≤j≤J/η′i,k

2−jηi,k(τµ(q)+qH̃i(ηi,k))

and the second by

3dCqCq
∑

i∈{`,r}

Ni∑

k=1

2−Jτµ(q)
∑

j>J/ηi,k

2−q(j−bjηi,kc)(Hi(ηi,k)−ε)

≤ C ′q
∑

i∈{`,r}

Ni∑

k=1

2−J(τµ(q)+qH̃i(ηi,k))2qJ(ηi,k
−1−1)ε

for some other constant C ′q. Since q ≥ 0, τµ(q) + qH̃i(ηi,k) is bounded from below for all
p ∈ {1, ...,max(N`, Nr)} by τµ(q) + qH̃`(η̃), which is negative. Consequently,

∑

J≤j≤J/ηi,k
2−jηi,k(τµ(q)+qHti(ηi,k)) = O(2−J(τµ(q)+qH̃`(η̃))).

In addition, one always has ηi,k ≥ ηi, hence

2−J(τµ(q)+qH̃i(ηi,k))2qJ(ηi,k
−1−1)ε ≤ 2−J(τµ(q)+qH̃(η̃))2qJ(ηi

−1−1)ε.

Putting everything together we get for some C ′′q > 0
∑

W∈ΣJ

Mµ(IW )q

≤ C ′′q
(
N`(2

qJε/η` + 2qJ(η`
−1−1)ε) +Nr(2

qJε/ηr + 2qJ(ηr−1−1)ε)
)

2−J(τµ(q)+qH̃`(η̃)).

This yields τMµ(q) ≥ τµ(q) + qH̃`(η̃) + O(ε), and letting ε tend to 0 gives the desired
conclusion.

• Now we deal with the case where at least one of parameters η` and ηr equals zero.

According to the value of ηi, we construct a subset Σ
(i)
J of words of length J having

specific properties:

First case: ηi > 0: set Σ
(i)
J = ∅.

Second case: ηi = 0: in this case, Dµ(Hi(ηi)) = d(1− η). Heuristically, Σ
(i)
J contains

those words W such that Mµ(IW ) = µ(Iw) for some surviving vertex w ∈ Sj(η) having an
“extreme” behavior, i.e. µ(Iw) ∼ 2−jHi(ηi). We proceed as follows:

At first, let K ≥ Hmax be as in Proposition 2(6). For η′i ∈ [ηi, η] close to ηi, we denote
by η̂i the unique real number in [ηi, η] such that Hi(η̂i) = Hi(η

′
i) + Kη′i if i = ` and

Hi(η̂
′) = Hi(η

′
i)−Kη′i if i = r. Notice that η̂i > η′i.
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Now, fix ε = qHi(ηi)/4, and choose η′i small enough so that (1 − η′i)(Hi(η̂i) −Kη̂i) >
Hi(ηi)/2 if i = ` and Hi(η

′
i)− 2Kη̂i > Hi(ηi)/2 if i = r, and

{
Hi(η

′
i) + 2Kη̂i < Hs and Dµ(Hi(η

′
i) + 2Kη̂i) ≤ Dµ(Hi(ηi) + ε/2 if i = `,

Hi(η
′
i)− 2Kη̂i > Hs and Dµ(Hi(η

′
i)− 2Kη̂i) ≤ Dµ(Hi(ηi)) + ε/2 if i = r

.

By item (5) of Proposition 2, there exists an integer Ji such that for j ≥ Ji,
#Eµ(j, [0, H`(η

′
i) + 2Kη̂i]) ≤ 2j(Dµ(Hi(η

′
i)+2Kη′i)+ε/2) ≤ 2j(Dµ(Hi(ηi))+ε) if i = `,

#Eµ(j, [Hi(η
′
i)− 2Kη̂i,+∞)) ≤ 2j(Dµ(Hr(η′i)+2Kη′i)+ε/2) ≤ 2j(Dµ(Hi(ηi))+ε) if i = r

.(65)

We can also choose Ji such that ε2
j ≤ Kη′i/2 ≤ Kη̂i/2 for j ≥ Ji, where(ε2

j )j≥1 is the
sequence introduced in Proposition 5.

For J ≥ Ji, we take Σ
(i)
J as the set of those words W ∈ ΣJ such that Mµ(IW ) = µ(Iw),

where w ∈ Sj(η,W ) ∩ Tµ,i(j, η′, ε2
j ,W ) for some η′ satisfying

{
H`(η

′) + ε2
j ≤ H`(η

′
`) +Kη′` if i = `,

Hr(η
′)− ε2

j ≥ Hr(η
′
r)−Kη′r if i = r

.

In particular, we have η′ ≤ η̂i. The words W ∈ Σ
(i)
J are the ones that may cause problems

when compared to the case where η`, ηr > 0. The other words W are such that Mµ(IW ) is
reached at some w associated with η′ satisfying H`(η

′) ∈ [H`(η
′
`)+Kη′`/2, Hr(η

′
r)−Kη′r/2],

i.e. η′ stays bounded away from 0.
When J ≥ Ji and W ∈ Σ

(i)
J , for the associated word w ∈ Sj(η,W ) ∩ Tµ,i(j, η′, ε2

j ,W )

(according to the previous notations), we have, using (8) and the definition of K:

C−12−bjη
′cKµ(Iσbη′jcw) ≤ Mµ(IW ) = µ(Iw) ≤ Cµ(Iσbη′jcw),

which yields, due to the property of (W,w) and the fact that η′ ≤ η̂i:
C−12−jη̂iK2−j(Hi(η

′)+ε2j ) ≤ Mµ(IW ) = µ(Iw) ≤ C2−(j−bη̂ijc)(Hi(η′)−ε2j ).

This yields, for J large enough,{
2−j(Hi(η

′
i)+2Kη̂i) ≤ Mµ(IW ) = µ(Iw) ≤ 2−(j(1−η′i)(Hi(η̂i)−Kη̂i) if i = `,

Mµ(IW ) = µ(Iw) ≤ 2−j(Hi(η
′
i)−2Kη̂i) if i = r

.

Hence, each such word W is associated with one surviving word w ∈ Eµ(j, [0, Hi(η
′
i) +

2Kη̂i]), for some j ≥ J if i = `, and one surviving word w ∈ Eµ(j, [Hi(η
′
i) − 2Kη̂i,+∞)),

for some j ≥ J if i = r.
Then, if i = `, writing j = J + k one gets :

∑

W∈Σ
(i)
J

Mµ(IW )q ≤
+∞∑

k=0

∑

w∈Eµ(J+k,[0,Hi(η′i)+2Kη̂i])

pwC
q2−(J+k)q(1−η′i)(Hi(η̂i)−Kη̂i).

Taking expectations and recalling (65), one gets

E
( ∑

W∈Σ
(i)
J

Mµ(IW )q
)
≤ 3dCq

∑

k≥0

2−(J+k)d(1−η)2(J+k)(d(1−η)+ε)2−q(J+k)(1−η′i)(Hi(η̂i)−Kη̂i)

= 3dCq
∑

k≥0

2(J+k)(ε−q(1−η′i)(Hi(η̂i)−Kη̂i)).
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Now by our choice for ε and η′i, we have ε− q(1− η′i)(Hi(η̂i)−Kη̂i) ≤ −ε. We deduce
that

E
( ∑

W∈Σ
(i)
J

Mµ(IW )q
)
≤ Cq,ε2−Jε

for some constant Cq,ε > 0. Finally, applying the Borel-Cantelli lemma, we deduce that
with probability 1, for J large enough we have

(66)
∑

W∈Σ
(i)
J

Mµ(IW )q ≤ 1.

Observe that (66) holds true even if ηi > 0 (in which case Σ
(i)
J is empty). If i = r, similar

computations yield

E
( ∑

W∈Σ
(i)
J

Mµ(IW )q
)
≤ 3dCq

∑

k≥0

2(J+k)(ε−q(Hi(η′i)−2Kη̂i)),

with a similar conclusion.

Finally, the same estimates as when both η` and ηr are strictly positive yield

lim inf
J→+∞

−1

J
log2

∑

W∈ΣJ\(Σ(`)
J ∪Σ

(r)
J )

Mµ(IW )q ≥ τµ(q) + qH̃`(η̃) = τ̃(q).

Since τ̃(q) < 0 and (66) holds for J large enough, we conclude that τMµ(q) ≥ τ̃(q).

8.2.3. When q < 0: Applying Proposition 6 with η′ = η̃, there exists a positive sequence
(ε3
j )j≥1 converging to 0 such that with probability 1, for j large enough, for all W ∈ Σbη̃jc,

there exists w ∈ Sj(η,W ) such that the η̃-tail of w satisfies

2−(j−bη̃jc)(H`(η̃)+ε3j ) ≤ µ(Iσbη̃jcw).

The quasi-Bernoulli property implies that Mµ(IWw) ≥ C−1µ(IW )2−j(1−η̃)(H`(η̃)+εj), which
for q < 0 yields

∑

W∈Σbη̃jc

Mµ(IW )q ≤ Cq2−jq(1−η̃)(H`(η̃)+εj)
∑

W∈Σbη̃jc

µ(IW )q

≤ Cq+12−bη̃jcq(H̃`(η̃)+εj/η̃)
∑

W∈Σbη̃jc

µ(IW )q.

One concludes that τMµ(q) ≥ τµ(q) + H̃`(η̃)q = τ̃(q).

8.2.4. When qη` < +∞ and q > qη`. Recall that this implies η` = 0. We have already
shown that τMµ(q) ≥ τµ(q) + d(1− η) when q ∈ [qη̃, qη` ].

The tangent to the graph of q 7→ τMµ(q) at (qη` , τMµ(qη`)) is the affine line passing
through (0, 0), whose slope is τ ′Mµ

(qη`) = H`(0). Consequently, the concavity of τMµ

implies that τMµ(q) ≤ qH`(0) for all q ≥ qη` . On the other hand, if q ≥ qη` , for all integers
J ≥ 1 we have ∑

W∈ΣJ

Mµ(IW )q ≤
( ∑

W∈ΣJ

Mµ(IW )qη`
)q/qη`

,
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from which it follows that τMµ(q) ≥ q
qη`
τMµ(qη`) = qH`(0).

8.3. Lower bound for the lower large deviations spectrum f
Mµ

(H). Let us check
that (62) holds. It is enough to deal with a dense countable subset of the support
[H`(η`), Hmax + H̃`(η̃)] of τMµ .

• Suppose first that H ∈ [H`(η`), H`(η̃)]. Recall the definition (45) of ηH : H = H`(ηH).
By item (4) of Proposition 2, for every ε > 0, there exists β(ε) > 0 such that when j

becomes large,

#Eµ(bηHjc, [0, H`(ηH) + ε]) ≥ 2bηHjc(Dµ(H`(ηH))−β(ε)).

One also knows that β(ε) can be taken so that β(ε)→ 0 when ε→ 0.
In addition, by Proposition 6, there is a positive sequence (ε3

j )j≥1 converging to 0 such
that, with probability 1, for j large enough, each cube IW (withW ∈ Eµ(bηHjc, [0, H`(ηH)+
ε])) contains a smaller cube Iw, with w ∈ Sj(η,W ) ∩ Tµ,`(j, ηH , ε3

j ).
By the quasi-Bernoulli property of µ,

Mµ(Iw) ≥ µ(Iw) ≥ C−12−bηHjc(H`(ηH)+ε)2−(j−bηHjc)(H`(η′)+ε3j ) = 2−j(H`(ηH)+2ε)

when j becomes large. Thus,

lim inf
j→+∞

1

j
log2 #EMµ(j, [0, H`(ηH) + 2ε]) ≥ ηH

(
Dµ(H`(ηH))− β(ε)

)
,

Since by construction H = H`(ηH) and ηHDµ(H`(ηH)) = Dµ(H) − d(1 − η), letting ε go
to zero gives

lim
ε→0+

lim inf
j→+∞

1

j
log2 #EMµ(j, [0, H + 2ε]) ≥ Dµ(H)− d(1− η) = τ∗Mµ

(H).

We conclude that f
Mµ

(H) ≥ τ̃∗(H), for otherwise there would exist H ′ < H such that

lim sup
j→+∞

1

j
log2 #EMµ(j, [0, H ′]) ≥ τ∗Mµ

(H) > τ∗Mµ
(H ′),

which contradicts the fact that for all H ′ ≤ Hs + H̃`(η̃) = τ ′Mµ
(0), Proposition 1 yields

lim sup
j→+∞

1

j
log2 #EMµ(j, [0, H ′]) ≤ τ∗Mµ

(H ′).

• For H ∈ [H`(η̃), H`(η̃)+ H̃`(η`)] we use the same idea: There exist a positive sequence
(βj)j≥1 converging to 0 such that, for j is large enough, at generation bjη̃c there are at
least 2bjη̃c(Dµ(H`(η̃))−εj)) elements W in Eµ(bjη̃c, [0, H`(η̃) + βj ]).

In addition, by Proposition 6, with probability 1, for j large enough, each of these IW
contains a smaller cube Iw, with w ∈ Sj(η,W ) ∩ Tµ,`(j, η̃, ε3

j ).
Then, let w′ be the word of generation j′ = bjH`(η̃)/Hc such that Iw ⊂ Iw′ ⊂ IW . We

have − log2 Mµ(Iw′) ≥ − logMµ(IW ) ∼ jH`(η
′) ∼ j′H. It follows that for any ε > 0,

lim inf
j′→+∞

1

j′
log2 #EMµ(j′, [0, H + ε]) ≥ η̃Dµ(H`(η̃)

H`(η̃)
H = τ̃∗(H) = τ∗Mµ

(H).

We conclude as in the previous case.

• For H ∈ [H`(η̃) + H̃`(η̃), Hmax + H̃`(η̃)], we can use Section 7.2 which directly yields
the conclusion.
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9. Dimension of the level sets EMµ(H) and EMµ(H) for H ≥ H`(η̃) + H̃`(η̃)

Due to Remark 5 we only have to prove the sharp upper bound for dimEMµ(H).
Proposition 9 yields dim(µ, x) ≥ dim(Mµ, x) − H̃`(η̃) for all x ∈ [0, 1]d. Hence for all

H ≥ 0 we have EMµ(H) ⊂ E≥µ (H − H̃`(η̃)). By item (3) of Proposition 2, we deduce that
dim EMµ(H) ≤ Dµ(H − H̃`(η̃)) for H ≥ Hs + H̃`(η̃).

It remains us to treat the case H ∈ [H`(η̃) + H̃`(η̃), Hs + H̃`(η̃)). We already know by
item (2) of Proposition 2 that dim

(
EMµ(H) ∩ E≤µ (H − H̃`(η̃))

)
≤ Dµ(H − H̃`(η̃)).

In order to complete the proof, it is enough to prove that dim
(
EMµ(H) ∩ E≥µ (H −

H̃`(η̃))
)
≤ Dµ(H − H̃`(η̃)). For this, consider x ∈ EMµ(H) ∩ E≥µ (H − H̃`(η̃)). Based on

the discussion achieved in the proof of Proposition 11, we know that x ∈ F̃µ(H), where

F̃µ(H) =
⋃

i∈{`,r}

⋂

ε∈(0,1)

⋂

k≥1

⋃

(α,η′,δ)∈Pi(H):

δ∈[1,1/η′], α+H̃i(η
′)

δ
≤H+ε

lim sup
j→+∞

Fµ,`(j, α, η
′, δ − ε, k),

and Pi(H) is a countable set of parameters (α, η′, δ) dense in [H − H̃`(η̃), Hmax]× (ηi, η]×
[1,+∞). Also, if α ≥ H − H̃`(η̃) and α+H̃i(η

′)
δ ≤ H + ε, then

Dµ(α)

δ
≤ (H + ε)

Dµ(α)

α+ H̃i(η′)
≤ (H + ε)

Dµ(α)

α+ H̃`(η̃)
≤ (H + ε)

Dµ(H − H̃`(η̃))

H
,

since α 7→ Dµ(α)

α+H̃`(η̃)
is decreasing over [H`(η̃), Hmax] and H ≥ H`(η̃) + H̃`(η̃). Then, using

the same estimates as in the proof of Proposition 12, we get dim F̃µ(H) ≤ Dµ(H − H̃`(η̃)),
hence dim

(
EMµ(H) ∩ E≥µ (H − H̃`(η̃))

)
≤ Dµ(H − H̃`(η̃)). Hence the conclusion.

Remark 6. We could conclude for all H ∈ [Hmin + H̃`(η̃), Hmax + H̃`(η̃)] if we were able
to prove the property dim(Mµ, x) ≥ dim(µ, x) + H̃`(η̃) for all x ∈ [0, 1]d to hold.

10. Case of a homogeneous Gibbs measure

We rapidly explain the case of a homogeneous capacity that we denote λ. We assume
without loss of generality that for some β > 0, for every finite word w ∈ Σ∗, λ(Iw) ∼ 2−β|w|.

In this situation, Hmin = Hs = Hmax = β, so η` = ηr = η̃ = η, andH`(η`) = Hr(ηr) = β.
One also has H̃`(η̃) = β(1/η − 1). Moreover, qη` = +∞.

The free energy function τλ(q) = βq − d is linear, and qη̃ is the solution to τλ(q) =
−d(1− η), i.e. qη̃ = dη/β.

The proof follows exactly the same lines as in the previous sections, except that most
of the arguments are trivial. Indeed, all the survivors at a given generation j satisfy
λ(Iw) ∼ 2−jβ (there is no dependence of the value λ(Iw) on the location of w). The sets
Rλ, Tλ are similarly defined, but are also trivial.

The obtained energy function is

τMλ
(q) =

{
τλ(q) + β(1/η − 1)q = qβ/η − d if q ≤ dη/β,
τλ(q) + d(1− η) = qβ − d(1− η) if q > dη/β,
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Figure 15. Left: Free energy function (top) and associated multifractal
spectrum (bottom) of a homogeneous capacity λ. Right: The almost sure
free energy (top) and the multifractal spectrum (bottom) of Mλ.

and the associated multifractal spectrum is

DMλ
(H) =





dη

β
H if H ∈ [β, β/η],

−∞ otherwise.

Actually, this case was already studied by Jaffard in the context of “lacunary wavelet
series” and multifractal analysis of functions [27]. More precisely, Jaffard computes the
singularity spectrum of wavelet series whose wavelet coefficients are defined as follows:
Fix (ψj,k)j,k∈Z, a wavelet basis of L2(R) associated with a smooth mother wavelet and
normalized so that all its elements have the same L∞ norm. Fix β > 0, and for each
j ≥ 1 select uniformly and independently 2bηjc intervals among the 2j dyadic subintervals
of [0, 1] of generation j. Then assign the coefficient 2−βj to ψj,k if [k2−j , (k + 1)2−j ] has
been selected; otherwise assign the coefficient 0. Though different, this sparse collection of
coefficients is close to that obtained by sampling the homogeneous capacity λ as above in
the special situation where λ(Iw) = 2−β|w| for all w ∈ Σ∗. It turns out that the multifractal
analysis of the resulting sparse wavelet series is essentially reducible to that of Mλ, which
in this case follows from quite a direct application of homogeneous ubiquity theory [17, 27].
Of course, Jaffard obtained the same multifractal spectrum, although he did not compute
the free energy function.
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