LOCAL L^2 -REGULARITY OF RIEMANN'S FOURIER SERIES

STÉPHANE SEURET* AND ADRIÁN UBIS

ABSTRACT. We are interested in the convergence and the local regularity of the lacunary Fourier series $F_s(x) = \sum_{n=1}^{+\infty} \frac{e^{2i\pi n^2 x}}{n^s}$. In the 1850's, Riemann introduced the series F_2 as a possible example of nowhere differentiable function, and the study of this function has drawn the interest of many mathematicians since then. We focus on the case when $1/2 < s \leq 1$, and we prove that $F_s(x)$ converges when x satisfies a Diophantine condition. We also study the L^2 -local regularity of F_s , proving that the local L^2 -norm of F_s around a point x behave differently around different x , according again to Diophantine conditions on x .

1. INTRODUCTION

Riemann introduced in 1857 the Fourier series

$$
R(x) = \sum_{n=1}^{+\infty} \frac{\sin(2\pi n^2 x)}{n^2}
$$

as a possible example of continuous but nowhere differentiable function. Though it is not the case (R is differentiable at rationals p/q where p and q are both odd [\[5\]](#page-20-0)), the study of this function has, mainly because of its connections with several domains: complex analysis, harmonic analysis, Diophantine approximation, and dynamical systems $[6, 7, 5, 4, 8, 10]$ $[6, 7, 5, 4, 8, 10]$ $[6, 7, 5, 4, 8, 10]$ $[6, 7, 5, 4, 8, 10]$ $[6, 7, 5, 4, 8, 10]$ $[6, 7, 5, 4, 8, 10]$ and more recently $[2, 3, 12]$ $[2, 3, 12]$ $[2, 3, 12]$.

In this article, we study the local regularity of the series

(1.1)
$$
F_s(x) = \sum_{n=1}^{+\infty} \frac{e^{2i\pi n^2 x}}{n^s}
$$

when $s \in (1/2, 1)$. In this case, several questions arise before considering its local behavior. First it does not converge everywhere, hence one needs to characterize its set of convergence points; this question was studied in [\[12\]](#page-20-8), and we will first find a slightly more precise characterization. Then, if one wants to characterize the local regularity of a (real) function, one classically studies the pointwise Hölder exponent defined for a locally bounded function $f : \mathbb{R} \to \mathbb{R}$ at a point x by using the functional spaces $C^{\alpha}(x)$: $f \in C^{\alpha}(x)$ when there exist a constant C and a

²⁰¹⁰ Mathematics Subject Classification. 42A20,11K60,28C15, 28A78.

Key words and phrases. Fourier series, Diophantine approximation, local regularity, Hausdorff dimension.

[∗] Research partially supported by the ANR project MUTADIS, ANR-11-JS01-0009.

polynomial P with degree less than $|\alpha|$ such that, locally around x (i.e. for small H), one has

$$
||(f(\cdot) - P(\cdot - x))\mathbf{1}_{B(x,H)}||_{\infty} := \sup(|f(y) - P(y - x)| : y \in B(x,H)) \leq CH^{\alpha},
$$

where $B(x,H) = \{y \in \mathbb{R} : |y-x| \leq H\}$. Unfortunately these spaces are not appropriate for our context since F_s is nowhere locally bounded (for instance, it diverges at every irreducible rational p/q such that $q \neq 2 \times \text{odd}$.

Following Calderon and Zygmund in their study of local behaviors of solutions of elliptic PDE's [\[1\]](#page-20-9), it is natural to introduce in this case the pointwise L^2 -exponent defined as follows.

Definition 1.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function belonging to $L^2(\mathbb{R})$, $\alpha \geq 0$ and $x \in \mathbb{R}$. The function f is said to belong to $C_2^{\alpha}(x)$ if there exist a constant C and a polynomial P with degree less than $|\alpha|$ such that, locally around x (i.e. for small $H > 0$, one has

$$
\left(\frac{1}{H}\int_{B(x,H)}|f(h)-P(h-x)|^2dh\right)^{1/2}\leq CH^{\alpha}.
$$

Then, the pointwise L^2 -exponent of f at x is

$$
\alpha_f(x) = \sup \big\{ \alpha \in \mathbb{R} : f \in C_2^{\alpha}(x) \big\}.
$$

This definition makes sense for the series F_s when $s \in (1/2, 1)$, and are based on a natural generalizations of the spaces $C^{\alpha}(x)$ be replacing the L^{∞} norm by the L^2 norm. The pointwise L^2 -exponent has been studied for instance in [\[11\]](#page-20-10), and is always greater than $-1/2$ as soon as $f \in L^2$.

Our goal is to perform the multifractal analysis of the series F_s . In other words, we aim at computing the Hausdorff dimension, denoted by dim in the following, of the level sets of the pointwise L^2 -exponents.

Definition 1.2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function belonging to $L^2(\mathbb{R})$. The L^2 multifractal spectrum $d_f : \mathbb{R}^+ \cup \{+\infty\} \to \mathbb{R}^+ \cup \{-\infty\}$ of f is the mapping

 $d_f(\alpha) := \dim E_f(\alpha),$

where the iso-Hölder set $E_f(\alpha)$ is

$$
E_f(\alpha) := \{ x \in \mathbb{R} : \alpha_f(x) = \alpha \}.
$$

By convention one sets $d_f(\alpha) = -\infty$ if $E_f(\alpha) = \emptyset$.

Performing the multifractal analysis consists in computing its L^2 -multifractal spectrum. This provides us with a very precise description of the distribution of the local L^2 -singularities of f. In order to state our result, we need to introduce some notations.

Definition 1.3. Let x be an irrational number, with convergents $(p_i/q_i)_{i\geq 1}$. Let us define

(1.2)
$$
x - \frac{p_j}{q_j} = h_j, \qquad |h_j| = q_j^{-r_j}
$$

with $2 \leq r_j < \infty$. Then the approximation rate of x is defined by

$$
r_{\text{odd}}(x) = \overline{\lim}\{r_j : q_j \neq 2 * \text{odd}\}.
$$

This definition always makes sense because if q_j is even, then q_{j+1} and q_{j-1} must be odd (so cannot be equal to 2 \ast odd). Thus, we always have $2 \le r_{\text{odd}}(x) \le +\infty$. It is classical that one can compute the Hausdorff dimension of the set of points with the Hausdorff dimension of the points x with a given approximation rate $r \geq 2$:

(1.3) for all
$$
r \ge 2
$$
, $\dim\{x \in \mathbb{R} : r_{\text{odd}}(x) = r\} = \frac{2}{r}$.

When $s > 1$, the series F_s converges, and the multifractal spectrum of F_s was computed by S. Jaffard in [\[10\]](#page-20-5). For instance, for the classical Riemann's series F_2 , one has

$$
d_{F_2}(\alpha) = \begin{cases} 4\alpha - 2 & \text{if } \alpha \in [1/2, 3/4], \\ 0 & \text{if } \alpha = 3/2, \\ -\infty & \text{otherwise.} \end{cases}
$$

Here our aim is to somehow extend this result to the range $1/2 < s \leq 1$. The convergence of the series F_s is described by our first theorem.

Theorem 1.4. Let $s \in (1/2, 1]$, and let $x \in (0, 1)$ with convergents $(p_j/q_j)_{j\geq 1}$. We set for every $j \geq 1$

$$
\delta_j = \begin{cases}\n1 & \text{if } s \in (1/2, 1) \\
\log(q_{j+1}/q_j) & \text{if } s = 1,\n\end{cases}
$$

and

(1.4)
$$
\Sigma_s(x) = \sum_{j: q_j \neq 2 \text{ * odd}} \delta_j \sqrt{\frac{q_{j+1}}{(q_j q_{j+1})^s}}.
$$

- (i) $F_s(x)$ converges whenever $\frac{s-1+1/r_{\text{odd}}(x)}{2} > 0$. In fact, it converges whenever $\Sigma_s(x) < +\infty$.
- (ii) $F_s(x)$ does not converge if $\frac{s-1+1/r_{\text{odd}}(x)}{2} < 0$. In fact, it does not converge whenever

$$
\overline{\lim}_{j:\,q_j\neq 2 \text{*odd}} \,\,\delta_j \sqrt{\frac{q_{j+1}}{(q_j q_{j+1})^s}} > 0,
$$

In the same way we could extend this results to rational points $x = p/q$, by proving that $F_s(x)$ converges for $q \neq 2*$ odd and does not for $q \neq 2*$ odd. Observe that the convergence of $\Sigma_s(x)$ implies that $r_{odd}(x) \leq \frac{1}{1-s}$. Our result asserts that $F_s(x)$ converges as soon as $r_{\text{odd}}(x) < \frac{1}{1-s}$, and also when $r_{\text{odd}}(x) = \frac{1}{1-s}$ when $\Sigma_s(x) < +\infty$.

Jaffard's result is then extended in the following sense:

Theorem 1.5. Let $s \in (1/2, 1]$.

FIGURE 1. L^2 -multifractal spectrum of F_s

- (i) For every x such that $\Sigma_s(x) < +\infty$, one has $\alpha_{F_s}(x) = \frac{s 1 + 1/r_{\text{odd}}(x)}{2}$.
- (ii) For every $\alpha \in [0, s/2 1/4]$

$$
d_{F_s}(\alpha) = 4\alpha + 2 - 2s.
$$

The second part of Theorem [1.5](#page-2-0) follows directly from the first one. Indeed, using part (i) of Theorem [1.5](#page-2-0) and [\(1.3\)](#page-2-1), one gets

$$
d_{F_s}(\alpha) = \dim \left\{ x : \frac{s - 1 + 1/r_{\text{odd}}(x)}{2} = \alpha \right\} = \dim \{ x : r_{\text{odd}}(x) = (2\alpha + 1 - s)^{-1} \}
$$

$$
= \frac{2}{(2\alpha + 1 - s)^{-1}} = 4\alpha + 2 - 2s.
$$

The paper is organized as follows. Section 2 contains some notations and preliminary results. In Section 3, we obtain other formulations for F_s based on Gauss sums, and we get first estimates on the increments of the partial sums of the series F_s . Using these results, we prove Theorem [1.4](#page-2-2) in Section 4. Finally, in Section 5, we use the previous estimates to obtain upper and lower bounds for the local L^2 means of the series F_s , and compute in Section 6 the local L^2 -regularity exponent of F_s at real numbers x whose Diophantine properties are controlled, namely we prove Theorem [1.5.](#page-2-0)

Finally, let us mention that theoretically the L^2 -exponents of a function $f \in$ $L^2(\mathbb{R})$ take values in the range $[-1/2, +\infty]$, so they may have negative values. We believe that this is the case at points x such that $r_{odd}(x) > \frac{1}{1-s}$, so that in the end the entire L^2 -multifractal spectrum of F_s would be $d_{F_s}(\alpha) = 4\alpha + 2 - 2s$ for all $\alpha \in [s/2-1/2, s/2-1/4].$

Another remark is that for a given $s \in (1/2, 1)$, there is an optimal $p > 2$ such that F_s belongs locally to L^p , so that the p-exponents (instead of the 2-exponents) may carry some interesting information about the local behavior of F_s .

2. Notations and first properties

In all the proofs, C will denote a constant that does not depend on the variables involved in the equations.

For two real numbers $A, B \geq 0$, the notation $A \ll B$ means that $A \leq CB$ for some constant $C > 0$ independent of the variables in the problem.

In Section 2 of [\[3\]](#page-20-7) (also in [\[2\]](#page-20-6)), the key point to study the local behavior of the Fourier series F_s was to obtain an explicit formula for $F_s(p/q + h) - F_s(p/q)$ in the range $1 < s < 2$; this formula was just a twisted version of the one known for the Jacobi theta function. In our range $1/2 < s \leq 1$, such a formula cannot exist because of the convergence problems, but we will get some truncated versions of it in order to prove Theorems [1.4](#page-2-2) and [1.5.](#page-2-0)

Let us introduce the partial sum

$$
F_{s,N}(x) = \sum_{n=1}^{N} \frac{e^{2i\pi n^2 x}}{n^s}.
$$

For any $H \neq 0$ let $\tilde{\mu}_H$ be the probability measure defined by

(2.1)
$$
\widetilde{\mu}_H(g) = \int_{\mathcal{C}(H)} g(h) \frac{dh}{2H},
$$

where $\mathcal{C}(H)$ is the annulus $\mathcal{C}(H) = [-2H, -H] \cup [H, 2H]$.

Lemma 2.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function in $L^2(\mathbb{R})$, and $x \in \mathbb{R}$. If $\alpha_f(x) < 1$, then

(2.2)

$$
\alpha_f(x) = \sup \left\{ \beta \in [0,1) : \exists C > 0, \exists f_x \in \mathbb{R} \, \| f(x + \cdot) - f_x \|_{L^2(\widetilde{\mu}_H)} \le C |H|^{\beta} \right\}.
$$

Proof. Assume that $\alpha := \alpha_f(x) < 1$. Then, for every $\varepsilon > 0$, there exist $C > 0$ and a real number $f_x \in \mathbb{R}$ such that for every $H > 0$ small enough

$$
\left(\frac{1}{H}\int_{B(x,H)}\left|f(h)-f_x\right|^2dh\right)^{1/2}\leq CH^{\alpha-\varepsilon}
$$

.

Since $\mathcal{C}(H) \subset B(x, 2H)$, one has (2.3)

$$
\left\|f(x+\cdot)-f_x\right\|_{L^2(\widetilde{\mu}_H)}=\left(\int_{\mathcal{C}(H)}\left|f(x+h)-f_x\right|^2\frac{dh}{2H}\right)^{1/2}\leq C|2H|^{\alpha-\varepsilon}\ll |H|^{\alpha-\varepsilon}.
$$

Conversely, if (2.3) holds for every $H > 0$, then the result follows from the fact that $B(x, H) = x + \bigcup_{k \geq 1} C(H/2^k)$ \Box

So, we will use equation [\(2.2\)](#page-4-1) as definition of the local L^2 regularity.

It is important to notice that the frequencies in different ranges are going to behave differently. Hence, it is better to look at N within dyadic intervals. Moreover, it will be easier to deal with smooth pieces. This motivates the following definition.

Definition 2.2. Let $N \geq 1$ and let $\psi : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function with support included in $[1/2, 2]$. One introduces the series

(2.4)
$$
F_{s,N}^{\psi}(x) = \sum_{n=1}^{+\infty} \frac{e^{2i\pi n^2 x}}{n^s} \psi\left(\frac{n}{N}\right),
$$

and for $R > 0$ one also sets

$$
w_R^{\psi}(t) = e^{2i\pi R t^2} \psi(t)
$$

and

$$
E_N^{\psi}(x) = \frac{1}{N} \sum_{n=1}^{+\infty} w_{N^2 x}^{\psi} \left(\frac{n}{N}\right),
$$

For the function $\psi_s(t) = t^{-s}\psi(t)$ (which is still C^{∞} with support in $(1/2, 2)$) it is immediate to check that

(2.5)
$$
F_{s,N}^{\psi}(x) = N^{1-s} E_N^{\psi_s}(x).
$$

3. SUMMATION FORMULA FOR
$$
F_{s,N}
$$
 and $F_{s,N}^{\psi}$

3.1. Poisson Summation. Let p, q be coprime integers, with $q > 0$. In this section we obtain some formulas for $F(p/q + h) - F(p/q)$ with $h > 0$. This is not a restriction, since

(3.1)
$$
F_s\left(\frac{p}{q}-h\right)=\overline{F_s\left(\frac{-p}{q}+h\right)}.
$$

We are going to write a summation formula for E_N^{ψ} $N \choose N(p/q+h)$, with $h > 0$.

Proposition 3.2. We have

(3.2)
$$
E_N^{\psi} \left(\frac{p}{q} + h \right) = \frac{1}{\sqrt{q}} \sum_{m \in \mathbb{Z}} \theta_m \cdot \widehat{w_{N^2 h}^{\psi}} \left(\frac{Nm}{q} \right)
$$

where $\widehat{f}(\xi) = \int_{\mathbb{R}} f(t)e^{-2i\pi t\xi}dt$ stands for the Fourier transform of f and $(\theta_m)_{m\in\mathbb{Z}}$ $J_{\mathbb{R}}$
are some complex numbers whose modulus is bounded by $\sqrt{2}$.

.

Proof. We begin by splitting the series into arithmetic progressions

$$
E_N^{\psi} \left(\frac{p}{q} + h \right) = \frac{1}{N} \sum_{n=1}^{+\infty} e^{2i\pi n^2 \frac{p}{q}} \cdot w_{N^2 h}^{\psi} \left(\frac{n}{N} \right)
$$

=
$$
\sum_{b=0}^{q-1} e^{2i\pi b^2 \frac{p}{q}} \sum_{\substack{n=1:\\n \equiv b \mod q}}^{+\infty} \frac{1}{N} w_{N^2 h}^{\psi} \left(\frac{n}{N} \right).
$$

Now we apply Poisson Summation to the inner sum to get

$$
\sum_{\substack{n=1:\\n\equiv b\bmod{q}}}^{+\infty} \frac{1}{N} w_{N^2 h}^{\psi} \left(\frac{n}{N}\right) = \sum_{n=1}^{+\infty} \frac{1}{N} w_{N^2 h}^{\psi} \left(\frac{b+nq}{N}\right)
$$

$$
= \sum_{m\in\mathbb{Z}} \frac{1}{q} e^{2i\pi \frac{bm}{q}} \cdot \widehat{w_{N^2 h}^{\psi}} \left(\frac{Nm}{q}\right)
$$

This yields

$$
E_N^{\psi}\left(\frac{p}{q} + h\right) = \frac{1}{q} \sum_{m \in \mathbb{Z}} \tau_m \cdot \widehat{w_{N^2 h}^{\psi}}\left(\frac{Nm}{q}\right)
$$

with

$$
\tau_m = \sum_{b=0}^{q-1} e^{2i\pi \frac{pb^2 + mb}{q}}.
$$

This term τ_m is a Gauss sum. One has the following bounds:

• for every $m \in \mathbb{Z}$, $\tau_m = \theta_m \sqrt{q}$ with $\theta_m := \theta_m (p/q)$ satisfying

$$
0 \le |\theta_m| \le \sqrt{2}.
$$

- if $q = 2 * \text{odd}$, then $\theta_0 = 0$.
- if $q \neq 2 * \text{odd}$, then $1 \leq \theta_0 \leq$ √ 2.

Finally, we get the summation formula (3.2) .

3.3. Behavior of the Fourier transform of w_R^{ψ} $_{R}^{\psi}$. To use formula [\(3.2\)](#page-5-0), one needs to understand the behavior of the Fourier transform of w_R^{ψ} R

$$
\widehat{w_R^{\psi}}(\xi) = \int_{\mathbb{R}} \psi(t) e^{2i\pi (Rt^2 - \xi t)} dt.
$$

On one hand, we have the trivial bound $|w_R^{\psi} \rangle$ $\vert R(\xi) \vert \ll 1$ since ψ is C^{∞} , bounded by 1 and compactly supported. On the other hand, one has

Lemma 3.4. Let $R > 0$ and $\xi \in \mathbb{R}$. Let ψ be a C^{∞} function compactly supported inside [1/2,2]. Let us introduce the mapping g_R^{ψ} $R^{\psi}: \mathbb{R} \to \mathbb{C}$

$$
g_R^{\psi}(\xi) = e^{i\pi/4} \frac{e^{-i\pi\xi^2/(2R)}}{\sqrt{2R}} \psi\left(\frac{\xi}{2R}\right).
$$

Then one has

(3.3)
$$
\widehat{w_R^{\psi}}(\xi) = g_R^{\psi}(\xi) + \mathcal{O}_{\psi} \left(\frac{\rho_{R,\xi}}{\sqrt{R}} + \frac{1}{(1 + R + |\xi|)^{3/2}} \right),
$$

with
$$
\rho_{R,\xi} = \begin{cases} 1 & \text{if } \xi/2R \in [1/2,2] \text{ and } R < 1, \\ 0 & \text{otherwise.} \end{cases}
$$
. Moreover, one has

(3.4)
$$
\widehat{w_{2R}^{\psi}}(\xi) - \widehat{w_R^{\psi}}(\xi) = g_{2R}^{\psi}(\xi) - g_R^{\psi}(\xi) + \mathcal{O}_{\psi} \left(\rho_{R,\xi} \sqrt{R} + \frac{R}{(1 + R + |\xi|)^{5/2}} \right),
$$

Moreover, the constant implicit in \mathcal{O}_{ψ} depends just on the L[∞]-norm of a finite number of derivatives of ψ .

Proof. For $\xi/2R \notin [1/2, 2]$ the upper bound [\(3.3\)](#page-6-0) comes just from integrating by parts several times; for $\xi, R \ll 1$ the bound [\(3.3\)](#page-6-0) is trivial. The same properties hold true for the upper bound in (3.4) .

Let us assume $\xi/2R \in [1/2, 2]$, and $R > 1$. The lemma is just a consequence of the stationary phase theorem. Precisely, Proposition 3 in Chapter VIII of [\[13\]](#page-20-11) (and the remarks thereafter) implies that for some suitable functions $f, g : \mathbb{R} \to \mathbb{R}$, and if g is such that $g'(t_0) = 0$ at a unique point t_0 , if one sets

$$
S(\lambda) = \int_{\mathbb{R}} f(t)e^{i\lambda g(t)} dt - \sqrt{\frac{2\pi}{-i\lambda g''(t_0)}} f(t_0)e^{i\lambda g(t_0)},
$$

then $|S(\lambda)| \ll \lambda^{-3/2}$ and also $|S'(\lambda)| \ll \lambda^{-5/2}$, where the implicit constants depend just on upper bounds for some derivatives of f and g , and also on a lower bound for g'' .

In our case, we can apply it with $f = \psi$, $\lambda = R$, and $g(t) = 2\pi(t^2 - \xi/\lambda)$ to get precisely [\(3.3\)](#page-6-0).

With the same choices for f and g , by applying the Mean Value Theorem and our bound for $S'(\lambda)$, we finally obtain formula [\(3.4\)](#page-6-1).

3.5. Summation formula for the partial series $F_{s,N}$. This important formula will be useful to study the convergence of $F_s(x)$.

Proposition 3.6. Let p, q be two coprime integers. For $N \ge q$ and $0 \le h \le q^{-1}$, we have

$$
F_{s,2N}\left(\frac{p}{q}+h\right) - F_{s,N}\left(\frac{p}{q}+h\right) = \frac{\theta_0}{\sqrt{q}} \int_N^{2N} \frac{e^{2i\pi ht^2}}{t^s} dt + G_{s,2N}(h) - G_{s,N}(h) + \mathcal{O}(N^{\frac{1}{2}-s} \log q),
$$

where

(3.5)
$$
G_{s,N}(h) = (2hq)^{s-\frac{1}{2}}e^{i\pi/4}\sum_{m=1}^{\lfloor 2Nhq \rfloor} \frac{\theta_m}{m^s}e^{-i\pi\frac{m^2}{q^2h}}.
$$

Pay attention to the fact that $G_{s,N}$ depends on p and q. We omit this dependence in the notation for clarity.

Proof. We can write

$$
F_{s,2N}(x) - F_{s,N}(x) = F_{s,N}^{\mathbf{1}_{[1,2]}}(x).
$$

Hence, we would like to use the formulas proved in the preceding section, but those formulas apply only to compactly supported C^{∞} functions. We thus decompose the indicator function $\mathbf{1}_{[1,2]}$ into a countable sum of C^{∞} functions, as follows. Let us consider η , a C^{∞} function with support [1/2, 2] such that

$$
\eta(t) = 1 - \eta(t/2) \qquad 1 \le t \le 2.
$$

Then, the function

$$
\psi(t) = \sum_{k \ge 2} \eta\left(\frac{t}{2^{-k}}\right)
$$

has support in [0, 1/2], equals 1 in [0, 1/4] and is C^{∞} in [1/4, 1/2]. Therefore, we have

(3.6)
$$
\mathbf{1}_{[1,2]}(t) = \psi(t-1) + \psi(2-t) + \widetilde{\psi}(t)
$$

with $\widetilde{\psi}$ some C^{∞} function with support included in [1, 2].

In order to get a formula for $F_{s,N}^{\mathbf{1}_{[1,2]}}(x)$, we are going to use [\(3.6\)](#page-8-0) and the linearity in ψ of the formula [\(2.4\)](#page-5-1).

We will first get a formula for $F_{s,N}^{\phi}$, where ϕ is any C^{∞} function supported in [1/2, 2]. In particular, this will work with $\phi = \tilde{\psi}$.

Lemma 3.7. Let ϕ be a C^{∞} function supported in [1/2, 2]. Then,

$$
(3.7) \quad F_{s,N}^{\phi} \left(\frac{p}{q} + h \right) = \frac{N^{1-s} \theta_0}{\sqrt{q}} \int_{\mathbb{R}} \frac{e^{2i\pi N^2 h t^2}}{t^s} \phi(t) dt + G_{s,N}^{\phi}(h) + \mathcal{O}_{\phi} \left(\frac{q}{N^{1/2+s}} \right),
$$

where

where

(3.8)
$$
G_{s,N}^{\phi}(h) = (2hq)^{s-\frac{1}{2}}e^{i\pi/4} \sum_{m\neq 0} \frac{\theta_m}{m^s} e^{-i\pi \frac{m^2}{2q^2h}} \phi\left(\frac{m}{2Nhq}\right).
$$

Proof. First, by [\(2.5\)](#page-5-2) one has $F_{s,N}^{\phi}(x) = N^{1-s} E_N^{\phi_s}$ $_N^{\varphi_s}(x)$. Further, by (3.2) one has

$$
E_N^{\phi_s} \left(\frac{p}{q} + h \right) = \frac{1}{\sqrt{q}} \sum_{m \in \mathbb{Z}} \theta_m \cdot \widehat{w_{N^2 h}^{\phi_s}} \left(\frac{Nm}{q} \right),
$$

and then, applying Lemma [3.4](#page-6-2) with $\xi = \frac{Nm}{a}$ $\frac{q}{q}$ and $R = N^2 h$, one gets

$$
E_N^{\phi_s} \left(\frac{p}{q} + h \right) = \theta_0 \frac{\hat{w}_{N^2 h}^{\phi_s}(0)}{\sqrt{q}} + \frac{e^{i\pi/4}}{\sqrt{q}} \sum_{m \neq 0} \left(\theta_m \phi_s \left(\frac{m}{2Nqh} \right) \frac{e^{-i\pi \frac{m^2}{2q^2 h}}}{\sqrt{2N^2 h}} + \mathcal{O}\left((Nm/q)^{-3/2} \right) \right).
$$

When $\frac{\xi}{2R} = \frac{m}{2Nqh} > 2$, $\phi_s\left(\frac{m}{2Nqh}\right) = 0$. Recalling that $N \geq q$, since $\phi_s(t) =$ $\phi(t)t^{-s}$, the above equation can be rewritten

(3.9)
$$
F_{s,N}^{\phi} \left(\frac{p}{q} + h \right) = \frac{N^{1-s} \theta_0}{\sqrt{q}} \int_{\mathbb{R}} \frac{e^{2i\pi N^2 h t^2}}{t^s} \phi(t) dt + G_N^{\phi}(h) + \frac{N^{1-s}}{\sqrt{q}} \sum_{m \ge 1} \mathcal{O}_{\phi} \left((Nm/q)^{-3/2} \right).
$$

The last term is controlled by

$$
\frac{N^{1-s}}{\sqrt{q}}\left(\frac{1}{(N/q)^{3/2}}\right) = \frac{q}{N^{1/2+s}},
$$

which yields (3.7) .

Now, one wants to obtain a comparable formula for $\eta^k(t) := \eta((t-1)/2^{-k})$ for all $k \geq 1$. We begin with a bound which is good just for large k.

Lemma 3.8. For any $k \ge 1$ and $0 < h \le 1/q$, one has

$$
F_{s,N}^{\eta^k} \left(\frac{p}{q} + h \right) = \frac{\theta_0 N^{1-s}}{\sqrt{q}} \int_{\mathbb{R}} \frac{e^{2i\pi N^2 h t^2}}{t^s} \eta^k(t) dt + G_{s,N}^{\eta^k}(h) + \mathcal{O}_{\eta} \left(N^{1-s} 2^{-k} \right).
$$

Proof. First, when k becomes large, since η has support in [1/2, 2], one has directly: - by [\(2.4\)](#page-5-1):

$$
|F_{s,N}^{\eta^k}(x)| \le \sum_{n=1}^{+\infty} \frac{1}{n^s} \left| \eta \left(\frac{\frac{n}{N} - 1}{2^{-k}} \right) \right| \le \sum_{n=N+N}^{N+N} \frac{1}{n^s} \ll N^{1-s} 2^{-k}
$$

- by [\(3.8\)](#page-8-2):

$$
|G_{s,N}^{\eta^k}(h)| \ll (qh)^{s-\frac{1}{2}} \sum_{m:\eta^k(\frac{m}{2Nhq})\neq 0} \frac{1}{m^s} \ll (qh)^{s-\frac{1}{2}} \frac{2Nhq2^{-k}}{(2Nhq)^s} \ll \sqrt{qh2^{-k}} N^{1-s}
$$

- and

$$
\left|\frac{\theta_0 N^{1-s}}{\sqrt{q}} \int_{\mathbb{R}} \frac{e^{2i\pi N^2 h t^2}}{t^s} \eta^k(t) dt \right| \ll N^{1-s} q^{-1/2} \int_{1+2^{-k-1}}^{1+2^{-k+1}} \frac{dt}{t^s} \ll 2^{-k} N^{1-s} q^{-1/2},
$$

hence the result by [\(3.9\)](#page-8-3), where we used that $qh \leq 1$.

$$
\Box
$$

One can obtain another bound that is good for any k .

Lemma 3.9. For every $k \geq 2$ and $0 < h \leq 1$, one has

$$
F_{s,N}^{\eta^k}\left(\frac{p}{q}+h\right) = \frac{\theta_0 N^{1-s}}{\sqrt{q}} \int_{\mathbb{R}} \frac{e^{2i\pi N^2 h t^2}}{t^s} \eta^k(t) dt + G_{s,N}^{\eta^k}(h) + \mathcal{O}_\eta \left(\frac{\sqrt{q}}{N^s} + N^{1/2-s} \gamma_k\right),
$$

where the sequence $(\gamma_k)_{k>1}$ is positive and satisfies $\sum_{k>1} \gamma_k \ll 1$

where the sequence $(\gamma_k)_{k\geq 1}$ is positive and satisfies $\sum_{k\geq 1} \gamma_k \ll 1$.

Proof. The proof starts as the one of Lemma [3.7.](#page-8-4) Using the fact that for any $(\eta^k)_s(t) = \frac{\eta((t-1)/2^{-k})}{t^s}$ and that

$$
\widehat{w_R^{(\eta^k)s}}(\xi) = \int_{\mathbb{R}} (\eta^k)_s(t) e^{2i\pi (Rt^2 - t\xi)} dt = \int_{\mathbb{R}} \frac{\eta(\frac{t-1}{2^{-k}})}{t^s} e^{2i\pi (Rt^2 - t\xi)} dt
$$

\n
$$
= 2^{-k} e^{2i\pi (R-\xi)} \int_{\mathbb{R}} \frac{\eta(u)}{(1 + u^{2^{-k}})^s} e^{2i\pi (R2^{-2k}u^2 - 2^{-k}(\xi - 2R)u)} du
$$

\n
$$
= 2^{-k} e^{2i\pi (R-\xi)} \widehat{w_{R2^{-2k}}}^{\eta^k}(2^{-k}(\xi - 2R)),
$$

where
$$
\widetilde{\eta^k}(u) = \frac{\eta(u)}{(1+u^{2-k})^s}
$$
. Hence,
\n
$$
E_N^{(\eta^k)s} \left(\frac{p}{q} + h\right) = \frac{1}{\sqrt{q}} \sum_{m \in \mathbb{Z}} \theta_m \cdot \widehat{w_{N^2h}^{(\eta^k)s}} \left(\frac{Nm}{q}\right)
$$
\n
$$
= \frac{2^{-k}}{\sqrt{q}} \sum_{m \in \mathbb{Z}} \theta_m \cdot e^{2i\pi(N^2h - \frac{Nm}{q})} \widehat{w_{N^2h2^{-2k}}^{(\eta^k)}} \left(2^{-k} \left(\frac{Nm}{q} - 2N^2h\right)\right)
$$

Here we apply again Lemma [3.4](#page-6-2) and we obtain

$$
E_N^{(\eta^k)_s} \left(\frac{p}{q} + h\right) = \frac{2^{-k}}{\sqrt{q}} \sum_{m \neq 0} \theta_m e^{2i\pi (N^2 h - \frac{Nm}{q})} \times \left(e^{i\pi/4} \widetilde{\eta^k} \left(\frac{2^{-k} \left(\frac{Nm}{q} - 2N^2 h\right)}{2N^2 h 2^{-2k}}\right) e^{-i\pi \frac{2^{-2k} \left(\frac{Nm}{q} - 2N^2 h\right)^2}{2N^2 h 2^{-2k}}} + \mathcal{O}_{\widetilde{\eta^k}} \left(\frac{\rho_{R_k, \xi_k}}{\sqrt{2^{-2k} N^2 h}} + \left(1 + 2^{-k} \left|\frac{Nm}{q} - 2N^2 h\right| + N^2 h 2^{-2k}\right)^{-3/2}\right)\right).
$$

with $R_k = 2^{-2k} N^2 h$ and $\xi_k = 2^{-k} |Nm/q - 2N^2 h|$. Finally, after simplification, one gets

$$
F_{s,N}^{\eta^k} \left(\frac{p}{q} + h \right) = N^{1-s} E_N^{(\eta^k)s} \left(\frac{p}{q} + h \right)
$$

(3.11)
$$
= \frac{(2qh)^{s-\frac{1}{2}}}{e^{-i\pi/4}} \sum_{m \in \mathbb{Z}} \frac{\theta_m}{m^s} e^{-2i\pi \frac{m^2}{q^2 h}} \eta^k \left(\frac{m}{2Nhq} \right)
$$

(3.12)

$$
= \frac{\theta_0 N^{1-s}}{\sqrt{q}} \int_{\mathbb{R}} \frac{e^{2i\pi N^2 h t^2}}{t^s} \eta^k(t) dt + G_{s,N}^{\eta^k}(h) + L_N^k,
$$

where by Lemmas [3.7](#page-8-4) and [3.8](#page-9-0) one has

$$
L_N^k = \mathcal{O}_{\widetilde{\eta^k}}\left(\sum_{m \in J_N^k \cap \mathbb{Z}^*} \frac{2^{-k} N^{1-s} / \sqrt{q}}{\sqrt{2^{-2k} N^2 h}} + \sum_{m \in \mathbb{Z}^*} \frac{2^{-k} N^{1-s} / \sqrt{q}}{(1 + 2^{-k} |\frac{Nm}{q} - 2N^2 h| + N^2 h 2^{-2k})^{3/2}} \right),
$$

with $J_N^k = [(2 + 2^{-k-1})Nqh, (2 + 2^{-k+1})Nqh].$

First, as specified in Lemma [3.4,](#page-6-2) the constants involved in the $\mathcal{O}_{\widetilde{\eta^k}}$ depend on upper bounds for some derivatives of $\widetilde{\eta^k}$, and then by the definition of $\widetilde{\eta^k}$ we can assume they are fixed and independent on both k and s .

Let $\{x\}$ stand for the distance from the real number x to the nearest integer. The first sum in L_N^k is bounded above by:

- $\sqrt{q}N^{-s} + N^{1/2-s}$ when $2^{-k} \in \left[\frac{\{2Nhq\}}{\{4Nhq\}} \frac{\{2Nhq\}}{\{Nhq\}} \right]$,
- $\sqrt{q}N^{-s}$ otherwise.

In particular, x being fixed, the term $N^{1/2-s}$ may appear only a finite number of times when k ranges in $\mathbb N$.

In the second sum, there is at most one integer m for which $|Nm/q - 2N^2h|$ $N/2q$, and the corresponding term is bounded above by

$$
2^{-k}N^{1-s}q^{-1/2}(1+N/q2^{-k}+|N^2h|^{-2k})^{-3/2}
$$

\n
$$
\leq 2^{-k}N^{1-s}q^{-1/2}(1+N/q2^{-2k})^{-3/2}
$$

\n
$$
= N^{1/2-s}\frac{N^{1/2}q^{-1/2}2^{-k}}{(1+N/q2^{-2k})^{-3/2}}
$$

\n
$$
\leq N^{1/2-s}\gamma_k,
$$

where $\gamma_k = \sqrt{\frac{u_k}{(1+u_k)^3}}$ and $u_k = 2^{-2k}N/q$. The sum over k of this upper bound is finite, and this sum can be bounded above independently on N and q .

The rest of the sum is bounded, up to a multiplicative constant, by

$$
\int_{u=0}^{+\infty} \frac{\sqrt{q}N^{-s} (2^{-k}N/q)du}{(1+N^2h2^{-2k}+2^{-k}|\frac{Nu}{q}-2N^2h|)^{3/2}} \ll \frac{\sqrt{q}N^{-s}}{(1+N^2h2^{-2k})^{1/2}} \ll \sqrt{q}N^{-s},
$$

hence the result.

Now we are ready to prove Proposition [3.6.](#page-7-0)

Recall that $N \ge q$ and $0 \le h \le q^{-1}$. Let K be the unique integer such that $2^{-K} \leq \frac{\sqrt{q}}{N}$ $\frac{\sqrt{q}}{N}$ < 2^{-(K+1)}. We need to bound by above the sum of the errors L_N^k .

• when $k \geq K$: we use Lemma [3.8](#page-9-0) to get

$$
\sum_{k\geq K} |L_N^k| \ll N^{1-s} 2^K \ll N^{1-s} \frac{\sqrt{q}}{N} = \frac{\sqrt{q}}{N^s} \leq \frac{1}{N^{s-1/2}}.
$$

• the remaining terms are simply bounded using Lemma [3.9](#page-9-1) by

$$
\sum_{k=2}^K |L_N^k| \ll K \frac{\sqrt{q}}{N^s} + N^{1/2-s} \ll \log N \frac{\sqrt{q}}{N^s} + N^{1/2-s} \ll \log q \frac{\sqrt{N}}{N^s} = \frac{\log q}{N^{s-1/2}},
$$

where we use that the mapping $x \mapsto$ \sqrt{x} $\frac{\sqrt{x}}{\log x}$ is increasing for large x.

Gathering all the informations, and recalling that $\sum_{k=2}^{+\infty} \eta^k(t) = \psi(t-1)$, we have that

$$
F_{s,N}^{\psi(\cdot-1)}\left(\frac{p}{q}+h\right)=\frac{N^{1-s}\theta_0}{\sqrt{q}}\int_{\mathbb{R}}\frac{e^{2i\pi N^2ht^2}}{t^s}\psi(t-1)dt+G_{s,N}^{\psi(\cdot-1)}(h)+\mathcal{O}_\eta\left(\frac{\log q}{N^{s-1/2}}\right).
$$

The same inequalities remain true if we use the functions $\eta^k = \eta((2-t)/2^{-k}),$ so the last inequality also holds for $\psi(2-\cdot)$

Finally, recalling the decomposition [\(3.6\)](#page-8-0) expressing $\mathbf{1}_{[1,2]}$ in terms of smooth functions, we get

$$
(3.13) \quad F_{s,N}^{\mathbf{1}_{[1,2]}}\left(\frac{p}{q}+h\right) = \frac{N^{1-s}\theta_0}{\sqrt{q}} \int_1^2 \frac{e^{2i\pi N^2 h t^2}}{t^s} dt + G_{s,N}^{\mathbf{1}_{[1,2]}}(h) + \mathcal{O}_\eta\left(\frac{\log q}{N^{s-1/2}}\right),
$$

and the result follows. \Box

4. Proof of the convergence theorem [1.4](#page-2-2)

4.1. Convergence part: item (i). Let x be such that (1.4) holds true.

Recall the definition (1.2) of the convergents of x. We begin by bounding $F_{s,M}(x) - F_{s,N}(x)$ for any

$$
q_j/4 \le N < M < q_{j+1}/4.
$$

We apply Proposition [3.6](#page-7-0) with $p/q = p_j/q_j$ and $h = h_j$, so that $x = p/q + h$. Due to [\(3.1\)](#page-5-3), we can assume that $h_j > 0$. It is known that for $\frac{1}{2q_j q_{j+1}} \leq h_j =$ $|x-p_j/q_j| < \frac{1}{q_jq_j}$ $\frac{1}{q_j q_{j+1}}$.

First, since $4Nh_jq_j < 4N/q_{j+1} < 1$, the sums [\(3.5\)](#page-7-1) appearing in $G_{s,2N}(h_j)$ and $G_{s,N}(h_j)$ have no terms, hence are equal to zero. This yields

$$
F_{s,2N}(x) - F_{s,N}(x) = \frac{\theta_0}{\sqrt{q_j}} \int_N^{2N} \frac{e^{2i\pi h_j t^2}}{t^s} dt + O(N^{\frac{1}{2}-s} \log q_j).
$$

It is immediate to check that $\int_a^{2a} t^{-s} e^{2i\pi t^2} dt \ll \min(a^{-s-1}, a^{-s+1})$, thus

$$
\left| \int_{N}^{2N} \frac{e^{2i\pi h_j t^2}}{t^s} dt \right| \ll |h_j|^{s/2 - 1/2} \left| \int_{N\sqrt{h_j}}^{2N\sqrt{h_j}} \frac{e^{2i\pi u^2}}{u^s} du \right|
$$

$$
\ll |h_j|^{-1/2} N^{-s} \min(|N\sqrt{h_j}|^{-1}, |N\sqrt{h_j}|).
$$

One deduces (using that $q_j h_j$ is equivalent to q_{j+1}^{-1}) that

$$
|F_{s,2N}(x)-F_{s,N}(x)| \ll |\theta_0|\frac{\sqrt{q_{j+1}}}{N^s}\min(\frac{N}{\sqrt{q_jq_{j+1}}},\frac{\sqrt{q_jq_{j+1}}}{N})+N^{\frac{1}{2}-s}\log q_j.
$$

Thus, by writing $F_{s,M}(x) - F_{s,N}(x)$ as a dyadic sum we have

$$
|F_{s,M}(x) - F_{s,N}(x)| \ll |\theta_0|\delta_j \frac{\sqrt{q_{j+1}}}{(\sqrt{q_j q_{j+1}})^s} + \frac{\log q_j}{q_j^{s-1/2}}.
$$

Recalling that θ_0 is equal to zero when $q_j \neq 2 \times \text{odd}$, fixing an integer $j_0 \geq 1$, for any $M > N > q_{j_0}$, one has

$$
|F_{s,M}(x) - F_{s,N}(x)| \ll \sum_{j \ge j_0, q_j \ne 2 \text{*odd}} \delta_j \frac{\sqrt{q_{j+1}}}{(\sqrt{q_j q_{j+1}})^s} + \sum_{j \ge j_0} \frac{\log q_j}{q_j^{s-1/2}} + \sum_{j \ge j_0} \frac{1}{q_{j+1}^{s-1/2}}.
$$

The second and third series always converge when $j_0 \to \infty$, and the first does when $\Sigma_s(x) < \infty$.

4.2. Divergence part: item (ii). Let $0 < \varepsilon < 1/2$ a small constant. Let $N_j = \varepsilon q_j$ and $M_j = 2\varepsilon \sqrt{q_j q_{j+1}}$. Proceeding exactly as in the previous proof we get

$$
F_{s,M_j}(x) - F_{s,N_j}(x) = \frac{\theta_0}{\sqrt{q_j}} \int_{N_j}^{M_j} \frac{e^{2i\pi h_j t^2}}{t^s} dt + \mathcal{O}\left(q_j^{\frac{1}{2}-s} \log q_j\right).
$$

Since $e^{2i\pi h_j t^2} = 1 + \mathcal{O}(\varepsilon)$ inside the integral, as soon as $q_j \neq 2 * \text{odd}$, one has

$$
|F_{s,M_j}(x)-F_{s,N_j}(x)| \geq \frac{|\theta_0|}{\sqrt{q_j}} \frac{M_j-N_j}{2 \cdot M_j^s} \geq |\theta_0| \varepsilon \frac{2\sqrt{q_{j+1}}-\sqrt{q_j}}{2^{1+s} \cdot \varepsilon^s \cdot (q_j q_{j+1})^{s/2}} \gg \sqrt{\frac{q_{j+1}}{(q_j q_{j+1})^s}},
$$

which is infinitely often large by our assumption. Hence the divergence of the series.

5. LOCAL L^2 bounds for the function F_s

Further intermediary results are needed to study the local regularity of F_s .

Proposition 5.1. Let $h > 0$, $1/2 < s < 3/2$ and $q^2h \ll 1$. We have

(5.1)
$$
F_{s,N}\left(\frac{p}{q}+2h\right) - F_{s,N}\left(\frac{p}{q}+h\right) = \frac{\theta_0}{\sqrt{q}} \int_0^N \frac{e^{2i\pi 2ht^2} - e^{2i\pi ht^2}}{t^s} dt + G_{s,N}(2h) - G_{s,N}(h) + \mathcal{O}\left(|qh|^{s-1/2}\right).
$$

Proof. First, one writes

(5.2)
$$
F_{s,N}(x) = F_{s,N}^{\mathbf{1}_{[0,1]}}(x) = \sum_{m \ge 1} F_{s,N/2^m}^{\mathbf{1}_{[1,2]}}(x).
$$

Observe that when N is divisible by 2, there may be some terms appearing twice in the preceding sum, so there is not exactly equality. Nevertheless, in this case, only a few terms are added and they do not change our estimates. This is left to the reader.

We are going to estimate [\(5.1\)](#page-13-0) but with $F_{s,N}^{\mathbf{1}_{[1,2]}}$ and $G_{s,N}^{\mathbf{1}_{[1,2]}}$ instead of $F_{s,N}$ and $G_{s,N}$, with an error term suitably bounded by above. Then, using this result with N substituted by $N/2^m$, and then summing over $m = 1, ..., \lfloor \log_2 N \rfloor$ will give the result (for $m > \lfloor \log_2 N \rfloor$, the sum $F_{s, N/2^m}^{\mathbf{1}_{[1,2]}}$ is empty).

We start from equation (3.10) applied with h and $2h$, and then we apply Lemma [3.4,](#page-6-2) but this time equation [\(3.4\)](#page-6-1) instead of [\(3.3\)](#page-6-0). Let us introduce for all integers k the quantity

(5.3)
$$
E_N^k := F_{s,N}^{\eta^k} \left(\frac{p}{q} + 2h\right) - F_{s,N}^{\eta^k} \left(\frac{p}{q} + h\right) + \frac{\theta_0 N^{1-s}}{\sqrt{q}} \int_{\mathbb{R}} \frac{e^{2i\pi N^2 2ht^2} - e^{2i\pi N^2 ht^2}}{t^s} \eta^k(t) dt + G_{s,N}^{\eta^k}(2h) - G_{s,N}^{\eta^k}(h),
$$

with η^k defined as in Proposition [3.6.](#page-7-0) By the exact same computations as in Lemma [3.9,](#page-9-1) one obtains the upper bound

$$
|E_N^k| \ll \beta_N^k \sum_{m \in J_k \cap \mathbb{Z}^*} \frac{2^{-k} N^{1-s} / \sqrt{q}}{(2^{-2k} N^2 h)^{-1/2}} + \sum_{m \in \mathbb{Z}^*} \frac{(2^{-k} N^{1-s} / \sqrt{q}) N^2 h 2^{-2k}}{(1 + N^2 h 2^{-2k} + 2^{-k} |\frac{Nm}{q} - 2N^2 h|)^{5/2}},
$$

with $J_N^k = [(2 + 2^{-k-1}) N q h, (2 + 2^{-k+1}) N q h]$ and
 $\beta_N^k = \begin{cases} 1 & \text{if } 2^{-2k} N^2 h \le 1, \\ 0 & \text{otherwise.} \end{cases}$

Then, as at the end of the proof of Lemma [3.9,](#page-9-1) since $h \ll q^{-2}$, we can bound the sums by

$$
|E_N^k| \ll \beta_N^k 2^{-2k} N^{2-s} \frac{\sqrt{h}}{\sqrt{q}} + \frac{(N^{1/2-s})\sqrt{(N/q)2^{-2k}}N^2h2^{-2k}}{(1+N^2h2^{-2k}+(N/q)2^{-2k})^{5/2}} + \frac{(\sqrt{q}N^{-s})N^2h2^{-2k}}{(1+N^2h2^{-2k})^{3/2}}
$$

and then adding up in $k \geq 1$ we get

$$
\sum_{k=1}^{\infty} |E_N^k| \ll \widetilde{E}_N = \frac{\sqrt{1/hq}}{N^s} \min(1, Nqh) + \frac{\sqrt{N}}{N^s} \min(1, Nqh) + \frac{\sqrt{q}}{N^s} \min(1, N^2h).
$$

The same holds true for the functions $\eta^k = \eta((2-t)/2^{-k})$, and for $\tilde{\psi}$ since it is similar to η^1 , so by [\(3.6\)](#page-8-0) we finally obtain that

$$
(5.4) \tF_{s,N}^{\mathbf{1}_{[1,2]}}\left(\frac{p}{q}+2h\right)-F_{s,N}^{\mathbf{1}_{[1,2]}}\left(\frac{p}{q}+h\right) = \frac{\theta_0}{\sqrt{q}}\int_0^N \frac{e^{2i\pi 2ht^2}-e^{2i\pi ht^2}}{t^s}dt
$$

$$
+G_{s,N}^{\mathbf{1}_{[1,2]}}(2h)-G_{s,N}^{\mathbf{1}_{[1,2]}}(h)
$$

$$
+\mathcal{O}\left(\widetilde{E}_N\right).
$$

The same holds true with $N/2^m$ instead of N. To get the result, using (5.2) , it is now enough to sum the last inequality over $m = 1, ..., \lfloor \log_2 N \rfloor$. Let us treat the first term. One has

$$
\sum_{m=1}^{\lfloor \log_2 N \rfloor} \frac{\sqrt{1/hq}}{N^s} \min(1, Nqh) = \sum_{m=1}^{\lfloor \log_2 N \rfloor} \frac{\sqrt{1/hq}}{(N2^m)^s} \min(1, N2^m qh)
$$

$$
= \frac{\sqrt{1/hq}}{N^s} \sum_{m=1}^{\lfloor \log_2 N \rfloor} \min(2^{ms}, N2^{m(1-s)} qh)
$$

$$
\leq \frac{\sqrt{1/hq}}{N^s} \sum_{m=1}^{\lfloor \log_2 N \rfloor} \min(2^{ms}, N2^{m(1-s)} qh)
$$

$$
\leq \frac{\sqrt{1/hq}}{N^s} 2^{Ms},
$$

where M is the integer part of the solution of the equation $2^{Ms} = N2^{m(1-s)}qh$, i.e. $2^M \approx Nqh$. Hence the first sum is bounded above by $\frac{\sqrt{1/qh^{s}}}{(1/qh)^s}$ $\frac{\sqrt{1/qh}}{(1/qh)^s}$. The other terms are treated similarly, and finally [\(5.1\)](#page-13-0) is true with an error term bounded by above by

$$
\mathcal{O}\left(\frac{\sqrt{1/qh}}{(1/qh)^s} + \frac{\sqrt{q}}{(h^{-1/2})^{-s}}\right)
$$

\$\ll q^{-2}\$.

which is $\mathcal{O}((qh)^{s-1/2})$ on $h \ll q^{-2}$

We also need to control the L^2 norm of the main term.

Lemma 5.2. Let $0 < s \le 1$ and fix $0 < H < 1$. Let

$$
f_{s,N}(\cdot) = \int_0^N \frac{e^{2i\pi t^2(\delta+2\cdot)} - e^{2i\pi t^2(\delta+\cdot)}}{t^s} dt.
$$

0. $|| f_{s,N}(\cdot) ||_{s,s,\infty} \ll \min(H^{(s-1)/2} H^{|\delta| (s-3))}$

Then for any $N > 0$, $||f_{s,N}(\cdot)||_{L^2(\widetilde{\mu}_H)} \ll \min\left(H^{(s-1)/2}, H|\delta|\right)$ $\frac{(s-3)}{2}$.

Proof. • Let us treat first the case $|\delta|$ < H/4. Using a change of variable, one has

$$
f_{s,N}(h) = H^{(s-1)/2} \int_0^{N\sqrt{H}} \frac{e^{2i\pi t^2 \frac{\delta + 2h}{H}} - e^{2i\pi t^2 \frac{\delta + h}{H}}}{t^s} dt.
$$

We are interested in the range $H < h < 2H$, and in this case the ratios $\frac{\delta + 2h}{H}$, $\delta + h$ $\frac{+h}{H}$ are bounded, so that the integral is bounded by a constant independent of N. One deduces that $||f_{s,N}(\cdot)||_{L^2(\widetilde{\mu}_H)} \ll H^{(s-1)/2}$.

• Assume then that $|\delta| > 4H$. Assume that $\delta > 0$ (the same holds true with negative δ 's). Using a change of variable, one has

$$
f_{s,N}(h) = |\delta|^{(s-1)/2} \int_0^{N\sqrt{|\delta|}} \frac{e^{2i\pi t^2(1+\frac{2h}{\delta})} - e^{2i\pi t^2(1+\frac{h}{\delta})}}{t^s} dt.
$$

The integral between 0 and 1 is clearly $\mathcal{O}(h/|\delta|)$. For the other part, one has (after integration by parts)

$$
\int_1^{N\sqrt{\delta}} \frac{e^{2i\pi t^2(1+\frac{2h}{\delta})}-e^{2i\pi t^2(1+\frac{h}{\delta})}}{t^s} dt = \mathcal{O}(h/|\delta|),
$$

so that $|f_{s,N}(h)| \ll H|\delta|^{(s-3)/2}$ for any $H < h < 2H$. Hence $||f_{s,N}(\cdot)||_{L^2(\tilde{\mu}_H)} \ll$ $H|\delta|^{(s-3)/2}.$

• It remains us to deal with the case $H/4 < \delta \leq 4H$. One observes that

$$
f_{s,N}(h) = D(\delta + 2h) - D(\delta + h) + \mathcal{O}(H), \quad \text{where} \quad D(v) = \int_1^N t^{-s} e^{2i\pi vt^2} dt.
$$

It is enough to get the bound

$$
\int_0^H |D(v)|^2 dv \ll H^s,
$$

which follows from the fact that $|D(v)| \ll |v|^{(s-1)/2}$ when $s < 1$ and $|D(v)| \ll$ $1 + \log(1/|v|)$ when $s = 1$.

 \Box

Finally, the oscillating behavior of $G_{s,N}(h)$ gives us the following.

Proposition 5.3. Let $0 < H \leq q^{-2}$ and $|\delta| \leq \sqrt{H/q}$. Let

$$
g_{s,N}(\cdot) = F_{s,N}\left(\frac{p}{q} + \delta + 2\cdot\right) - F_{s,N}\left(\frac{p}{q} + \delta + \cdot\right) - \frac{\theta_0}{\sqrt{q}}f_{s,N}(\cdot).
$$

One has $||g_{s,N}||_{L^2(\widetilde{\mu}_H)} \ll H^{\frac{s-1/2}{2}}$.

Proof. We consider $\mu_H = (\tilde{\mu}_H)_{\mathbb{R}^+}$. By [\(3.1\)](#page-5-3), it is enough to treat the case $\delta + h > 0$ and $\delta + 2h > 0$. Proposition [5.1,](#page-13-2) applied successively with $h_n := 2^{-n}(\delta + h)$ and $\widetilde{h}_n := 2^{-n}(\delta + h/2)$, and summing over $n \geq 0$, we get that

(5.5)
$$
g_{s,N}(h) = G_{s,N}(\delta + 2h) - G_{s,N}(\delta + h) + O((q(|\delta| + |h))^{s-1/2}).
$$

Thus, since $q(|\delta|+|h|) \ll$ H , it is enough to show that

(5.6)
$$
||G_{s,N}(\delta+\cdot)||_{L^2(\mu_H)} \ll H^{\frac{s-1/2}{2}}.
$$

Assume first that $|\delta| \geq 3H$. By expanding the square and changing the order of summation, and using that $\delta + 2H \leq 2|\delta|$, we have for some $c_{n,m} \geq 0$

$$
||G_{s,N}(\delta + \cdot)||_{L^{2}(\mu_{H})}^{2} \ll (q|\delta|)^{2s-1} \sum_{n,m=1}^{2\lfloor 2N|\delta|q \rfloor} \frac{|\theta_{m}|}{m^{s}} \frac{|\theta_{n}|}{n^{s}} \left| \int_{\delta + H + c_{n,m}}^{\delta + 2H} e^{2i\pi \frac{n^{2} - m^{2}}{q^{2}h}} \frac{dh}{H} \right|
$$

$$
\ll (q|\delta|)^{2s-1} \sum_{n,m=1}^{2\lfloor 2N|\delta|q \rfloor} \frac{|\theta_{m}|}{m^{s}} \frac{|\theta_{n}|}{n^{s}} \left| \int_{\delta + H}^{\delta + 2H} e^{2i\pi \frac{n^{2} - m^{2}}{q^{2}h}} \frac{dh}{H} \right|.
$$

Since for $|M| \geq 1$ and $0 < \varepsilon \ll 1$

$$
\int_{1}^{1+\varepsilon} e^{2i\pi \frac{M}{t}} dt \ll \frac{1}{|M|},
$$

the previous sum is bounded above by

$$
(q|\delta|)^{2s-1} \left[\sum_{m\geq 1} \frac{1}{m^{2s}} + \frac{|\delta|}{H} q^2 |\delta| \sum_{m\geq 1} \frac{1}{m^{1+s}} \sum_{j\geq 1} \frac{1}{j^{1+s}} \right],
$$

with $j = |n - m|$. The term between brackets is bounded by a universal constant (since $q^2\delta^2/H \leq 1$), hence [\(5.6\)](#page-16-0) holds true. It is immediate that the same holds true with $(\widetilde{\mu}_H)_{|\mathbb{R}^-}$.

Further, assume that $|\delta| < 3H$. Setting $H_k = 2^{-k}H$, one has

$$
||G_{s,N}(\delta+\cdot)||_{L^2(\widetilde{\mu}_H)}^2 \leq \int_0^{5H} |G_{s,N}(h)|^2 \frac{dh}{H} \leq \sum_{k \geq -2} 2^{-k} ||G_{s,N}(\cdot)||_{L^2(\mu_{H_k})}^2.
$$

Now, observing that $[H_k, H_{k-1}] \subset 3H_k + ([-2H_k, -H_k] \cup [H_k, 2H_k])$, one can apply [\(5.6\)](#page-16-0) with $H = H_k$ and $\delta = 3H_k$ to get

$$
\|G_{s,N}(\cdot)\|_{L^2(\mu_{H_k})}^2\leq \|G_{s,N}(\delta_k+\cdot)\|_{L^2(\mu_{H_k})}\leq H_k^{\frac{s-1/2}{2}}=H^{\frac{s-1/2}{2}}2^{-k\frac{s-1/2}{2}}.
$$

Summing over k yields the result. \square

6. Proof of Theorem [1.5](#page-2-0)

6.1. Lower bound for the local L^2 -exponent α_{F_s} . Assume that $\Sigma_s(x) < \infty$ (see equation [\(1.4\)](#page-2-3)), so that the series $F_{s,N}(x)$ converges to $F_s(x)$. Recall that p_j/q_j stands for the partial quotients of x.

Pick N such that $0 \leq |F_s(x) - F_{s,N}(x)| < H$ and $N^{\frac{1}{2} - s} \leq H^2$. Since

$$
||F_s(x + \cdot) - F_{s,N}(x + \cdot)||_{L^2(\tilde{\mu}_H)} \le \frac{||F_s(x + \cdot) - F_{s,N}(x + \cdot)||_{L^2([0,1])}}{H/2}
$$

$$
\ll \frac{N^{\frac{1}{2}-s}}{H} \le H,
$$

and since one has

 $F_s(x+) - F_s(x) = F_s(x+) - F_{s,N}(x+) + F_{s,N}(x+) - F_{s,N}(x) + F_{s,N}(x) - F_s(x),$ one deduces that

$$
||F_s(x + \cdot) - F_s(x)||_{L^2(\widetilde{\mu}_H)} = ||F_{s,N}(x + \cdot) - F_{s,N}(x)||_{L^2(\widetilde{\mu}_H)} + \mathcal{O}(H).
$$

Thus, it is enough to take care of the local L^2 -norm of $F_{s,N}(x+h)-F_{s,N}(x)$. One has

$$
||F_{s,N}(x+h) - F_{s,N}(x)||_{L^2(\widetilde{\mu}_H)} \leq \sum_{k \geq 1} ||F_{s,N}(x+2\frac{1}{2^k}) - F_{s,N}(x+\frac{1}{2^k})||_{L^2(\widetilde{\mu}_H)}
$$

(6.1)

$$
\leq \sum_{k \geq 1} ||F_{s,N}(x+2\cdot) - F_{s,N}(x+\cdot)||_{L^2(\widetilde{\mu}_H)},
$$

where $H_k = H2^{-k}$. Let us introduce the function $f(h) = F_{s,N}(x+2h) - F_{s,N}(x+2h)$ h).

Let j_H be the smallest integer such that $q_j^{-2} \leq H$. For every $k \geq 1$, and let j be the unique integer such that $q_{j+1}^{-2} \leq H_k < q_j^{-2}$ (necessarily $j \geq j_H - 1$). Using that $|x - p_j/q_j| = |h_j| \le q_j^{-2}$, one sees that

$$
||f||_{L^{2}(\widetilde{\mu}_{H_{k}})} = \left||F_{s,N}\left(\frac{p_{j}}{q_{j}} + h_{j} + 2\cdot\right) - F_{s,N}\left(\frac{p_{j}}{q_{j}} + h_{j} + \cdot\right)\right||_{L^{2}(\widetilde{\mu}_{H_{k}})}.
$$

Since $|h_j|$ < $1/q_jq_{j+1}$ \leq $\overline{H_k}/q_j$, we can apply Proposition [5.3](#page-16-1) and Lemma [5.2](#page-15-0) with H_k and $\delta = h_j$ to get

$$
||f||_{L^{2}(\widetilde{\mu}_{H_{k}})} \le H_{k}^{\frac{s-1/2}{2}} + \frac{|\theta_{0}|}{\sqrt{q_{j}}}\min\left(H_{k}^{(s-1)/2}, H_{k}|h_{j}|^{(s-3)/2}\right)
$$

$$
\le H_{k}^{\frac{s-1/2}{2}} + \frac{|\theta_{0}|}{\sqrt{q_{j}}}H_{k}^{(s-1)/2}\min\left(1, \left|\frac{h_{j}}{H_{k}}\right|^{(s-3)/2}\right).
$$

In order to finish the proof we are going to consider three different cases:

(1)
$$
s - 1 + 1/2r_{\text{odd}}(x) > 0
$$
: Since $h_j = q_j^{-r_j}$ we have

$$
||f||_{L^2(\widetilde{\mu}_{H_k})} \ll H_k^{\frac{s-1/2}{2}} + |\theta_0| H_k^{(s-1)/2} \min\left(|h_j|^{\frac{1}{2r_j}}, \frac{H_k^{(3-s)/2}}{|h_j|^{\frac{3-s}{2} - \frac{1}{2r_j}}}\right)
$$

and optimizing in $|h_i|$ we get

$$
\|f\|_{L^2(\widetilde{\mu}_{H_k})} \ll H_k^{\frac{s-1/2}{2}}+ |\theta_0| H_k^{\frac{s-1+1/2r_j}{2}} \ll H_k^{(s-1+1/2r_{\text{odd}}(x)+o(H_k))/2}
$$

by the definition of $r_{\text{odd}}(x)$. Adding up in k finishes the proof in this case.

 $\sum_{k\geq 1} ||f||_{L^2(\widetilde{\mu}_{H_k})} < \infty$. We have (2) $s - 1 + 1/2r_{odd}(x) = 0$ and $s = 1$: In this case it is enough to show that

$$
||f||_{L^{2}(\widetilde{\mu}_{H_{k}})} \ll H_{k}^{\frac{s-1/2}{2}} + \frac{|\theta_{0}|}{\sqrt{q_{j}}}
$$

which implies

$$
\sum_{q_{j+1}^{-2} \le H_k \le q_j^{-2}} \|f\|_{L^2(\widetilde{\mu}_{H_k})} \ll \sum_{q_{j+1}^{-2} \le H_k \le q_j^{-2}} H_k^{\frac{s-1/2}{2}} + \frac{|\theta_0|}{\sqrt{q_j}} \log(q_{j+1}/q_j).
$$

This yields

$$
\sum_{k\geq 1}||f||_{L^2(\widetilde{\mu}_{H_k})}\ll H^{\frac{s-1/2}{2}}+\sum_{j:\,q_j\neq 2*{\rm odd}}\frac{1}{\sqrt{q_j}}\log\frac{q_{j+1}}{q_j}\ll 1+\Sigma_s(x)<+\infty.
$$

(3) $s - 1 + 1/2r_{\text{odd}(x)} = 0$ and $s < 1$: Since $h_j \approx 1/q_jq_{j+1}$, we have

$$
||f||_{L^2(\widetilde{\mu}_{H_k})} \ll H_k^{\frac{s-1/2}{2}} + \frac{|\theta_0|}{\sqrt{q_j}} \min\left(H_k^{(s-1)/2}, \frac{H_k}{(q_j q_{j+1})^{(s-3)/2}}\right),
$$

so

$$
\sum_{q_{j+1}^{-2}\leq H_k\leq q_j^{-2}}\|f\|_{L^2(\widetilde{\mu}_{H_k})}\ll (\sum_{q_{j+1}^{-2}\leq H_k\leq q_j^{-2}}H_k^{\frac{s-1/2}{2}})+\frac{|\theta_0|}{\sqrt{q_j}}(\frac{1}{q_jq_{j+1}})^{(s-1)/2}.
$$

Finally,

$$
\sum_{k\geq 1} \|f\|_{L^2(\widetilde{\mu}_{H_k})} \ll H^{\frac{s-1/2}{2}} + \sum_{j,q_j\neq 2 \text{ * odd}} \sqrt{\frac{q_{j+1}}{(q_j q_{j+1})^s}} \ll 1 + \Sigma_s(x) < \infty.
$$

6.2. Upper bound for the local L^2 -exponent. Assume first that $s < 1$.

Let K be a large constant. Let $0 < H \leq (1/K)q^{-2}$, with $q \neq 2 *$ odd and $N > H^{-2}$. We apply Propositions [5.1](#page-13-2) and [5.3](#page-16-1) to get

$$
\left\| F_{s,N} \left(\frac{p}{q} + 2 \cdot \right) - F_{s,N} \left(\frac{p}{q} + \cdot \right) \right\|_{L^2(\widetilde{\mu}_H)} = \frac{|\theta_0|}{\sqrt{q}} \left\| \widetilde{F}_s(\cdot) \right\|_{L^2(\widetilde{\mu}_H)} + \mathcal{O}(H^{\frac{s-1/2}{2}})
$$

with

$$
\widetilde{F}_s(h) = \int_0^N \frac{e^{4i\pi ht^2} - e^{2i\pi ht^2}}{t^s} dt.
$$

,

Using a change of variable, and then after integrating by parts, one obtains

$$
\widetilde{F}_s(h) = h^{\frac{s-1}{2}} \int_0^{N\sqrt{h}} \frac{e^{4i\pi t^2} - e^{2i\pi t^2}}{t^s} dt
$$

= $h^{\frac{s-1}{2}} \left((2^s - 1) \int_0^{+\infty} \frac{e^{2i\pi t^2}}{t^s} dt + \mathcal{O}\left((N\sqrt{|h|})^{-s-1} \right) \right)$

It is easily checked that $\int_0^{+\infty}$ $e^{2i\pi t^2}$ $\frac{t^{n}t^{n}}{t^{s}}$ dt is not zero. This leads us to the estimate

.

$$
\left\|\widetilde{F}_s(\cdot)\right\|_{L^2(\widetilde{\mu}_H)} = C_s H^{\frac{s-1}{2}} \left(1 + \mathcal{O}(H)\right)
$$

for some non-zero constant C_s . Since $0 < H \leq q^{-2}/K$, we deduce that

(6.2)
$$
\left\| F_{s,N}\left(\frac{p}{q}+2\cdot\right) - F_{s,N}\left(\frac{p}{q}+\cdot\right) \right\|_{L^2(\widetilde{\mu}_H)} \ge \frac{H^{\frac{s-1}{2}}}{\sqrt{q}}
$$

when H becomes small enough.

Now, pick a convergent p_j/q_j of x with $q_j \neq 2 *$ odd, and take $H_j = (1/K)|h_j|$. One can check that

$$
H_j \le (1/K)\frac{1}{q_j q_{j+1}} \le (1/K)\frac{1}{q_j^2}.
$$

Then, we apply [\(6.2\)](#page-19-0) to obtain that for every $N \ge H_j^{-2}$, one has

$$
\left\|F_{s,N}\left(\frac{p_j}{q_j}+2\cdot\right)-F_{s,N}\left(\frac{p_j}{q_j}+\cdot\right)\right\|_{L^2(\widetilde{\mu}_{H_j})} \ge \frac{H_j^{\frac{s-1}{2}}}{\sqrt{q_j}}=H_j^{\frac{s-1}{2}}h_j^{1/(2r_j)} \gg H_j^{\frac{s-1+1/r_j}{2}}.
$$

On the other hand, by the triangular inequality,

$$
\left| F_{s,N} \left(\frac{p_j}{q_j} + 2h \right) - F_{s,N} \left(\frac{p_j}{q_j} + h \right) \right| \leq \left| F_{s,N} \left(\frac{p_j}{q_j} + 2h \right) - F_{s,N}(x) \right| + \left| F_{s,N} \left(\frac{p_j}{q_j} + h \right) - F_{s,N}(x) \right|,
$$

which implies that for $\widetilde{H}_j = H_j$ or $\widetilde{H}_j = 2H_j,$ one has

$$
||F_{s,N}(x+\cdot)-F_{s,N}(x)||_{L^2(\widetilde{\mu}_{\widetilde{H}_j})} \geq \frac{1}{2} \left\|F_{s,N}\left(\frac{p_j}{q_j}+2\cdot\right)-F_{s,N}\left(\frac{p_j}{q_j}+\cdot\right)\right\|_{L^2(\widetilde{\mu}_{H_j})}
$$

$$
\gg H_j^{\frac{s-1+1/r_j}{2}}
$$

Now, we can choose N so large that

$$
||F_{s,N}(x+\cdot)-F_{s,N}(x)||_{L^2(\widetilde{\mu}_{\widetilde{H}_j})}=||F_s(x+\cdot)-F_s(x)||_{L^2(\widetilde{\mu}_{\widetilde{H}_j})}+\mathcal{O}(\widetilde{H}_j),
$$

and we finally obtain

$$
||F_s(x + \cdot) - F_s(x)||_{L^2(\widetilde{\mu}_{\widetilde{H}_j})} \gg \widetilde{H}_j^{\frac{s-1+1/r_j}{2}}.
$$

Since this occurs for an infinite number of j , i.e. for an infinite number of small real numbers H_i converging to zero, one concludes that

$$
\alpha_{F_s}(x) \le \liminf_{j \to +\infty} \frac{s - 1 + 1/r_j}{2} = \frac{s - 1 + 1/r_{odd}(x)}{2}.
$$

REFERENCES

- [1] A.P. Calderon, A. Zygmund, Local properties of solutions of ellipitc partial differential equations, Studia Math. 20, 171–227 (1961).
- [2] F. Chamizo and A. Ubis, Some Fourier Series with gaps, J. Anal. Math. 101 179–197 2007.
- [3] F. Chamizo and A. Ubis, Multifractal Behaviour of Polynomial Fourier Series, Preprint, 2012.
- [4] J.J. Duistermaat, Self-similarity of "Riemann's nondifferentiable function", Nieuw Arch. Wisk. 4(9) no. 3, 303-337, 1991
- [5] J. Gerver, The differentiability of the Riemann function at certain rational multiples of π . Amer. J. Math. 92 33-55, 1970.
- [6] G.H. Hardy, Weierstrass's non-differentiable function. Trans. Amer. Math. Soc. 17 301-325, 1916.
- [7] G.H. Hardy, J.E. Littlewood, Some problems of Diophantine approximation, Acta Math. 37 193-239, 1914.
- [8] S. Itatsu, Differentiability of Riemann's function, Proc. Japan Acad. Ser. A Math. Sci. 57 10, 492-495, 1981
- [9] H. Iwaniec, E. Kowalski, Analytic number theory, AMS Colloq. Pub. 53. AMS Providence, RI, 2004.
- [10] S. Jaffard, The spectrum of singularities of Riemann's function, Rev. Mat. Iberoamericana 12 (2) 441–460, 1996.
- [11] S. Jaffard, C. Melot, Wavelet analysis of fractal Boundaries, Part 1: Local regularity, Commun. Math. Phys. 258 (3) 513–539, 2005.
- [12] T. Rivoal and S. Seuret, Hardy-Littlewood Series and even continued fractions. To appear in J. Anal. Math, 2014.
- [13] E. M. Stein, Harmonic Analysis: Real-variable methods, Orthogonality and Oscillatory Integrals. Princeton Math. Series, 43. Monographs in Harm. Analysis, III. Princeton Univ. Press, Princeton, NJ, 1993.

STÉPHANE SEURET, UNIVERSITÉ PARIS-EST, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, F-94010, CRÉTEIL, FRANCE E-mail address: seuret@u-pec.fr

ADRIÁN UBIS, DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD AUTÓNOMA DE MADRID, 28049 MADRID, SPAIN

E-mail address: adrian.ubis@uam.es