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A look at the turbulent wake using scale-by-scale
energy budgets

F. Thiesset, L. Danaila and R.A. Antonia

Abstract It is now well established that coherent structures exist in the majority of
turbulent flows and can affect various aspects of the dynamics of these flows, such
as the way energy is transferred over a range of scales as well as the departure from
isotropy at the small scales. Reynolds and Hussain (1972) were first to derive one-
point energy budgets for the coherent and random motions respectively. However, at
least two points must be considered to define a scale and allow a description of the
mechanisms involved in the energy budget at that scale. A transport equation for the
second-order velocity structure function, equivalent to the Karman-Howarth (1938)
equation for the two-point velocity correlation function, was written by Danaila,
Anselmet, Zhou & Antonia (1999) and tested in grid turbulence, which represents
a reasonable approximation to (structureless) homogeneous isotropic turbulence.
The equation has since been extended to more complicated flows, for example the
centreline of a fully developed channel flow and the axis of a self-preserving circu-
lar jet. More recently, we have turned our attention to the intermediate wake of a
circular cylinder in order to assess the effect of the coherent motion on the scale-by-
scale energy distribution. In particular, energy budget equations, based on phase-
conditioned structure functions, have revealed additional forcing terms, the most
important of which highlights an additional cascade mechanism associated with the
coherent motion. In the intermediate wake, the magnitude of the maximum energy
transfer clearly depends on the nature of the coherent motion.
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1 Introduction

Turbulent flows give rise to a wide and continuous range of scales. The largest eddies
reflect the way the kinetic energy is injected in the system and therefore depend on
the type of flow. In contrast, one frequently asserts that the anisotropic and non-
universal influence of the largest scales diminishes during the first non-linear local
interactions and is thus expected to decline at the smallest scales. Consequently, it
is often postulated that the smallest scales have the best prospect of being universal
or quasi-universal ([19]), this paradigm being usually related to its initiator [14].

Recently, [12] argued that neither the original derivation of the Kolmogorov 2/3
and 4/5 laws, nor all the subsequent derivations of the 4/5 law use the assumption of
locality of interactions and the existence of a cascade. Another analysis is provided
by [10] who demonstrated that the 4/5 law implies the statistical dependence of the
difference and sum of velocities at two points separated by a distance r, the sum
being a measure of the large scale motion ([10, 15]). This analytical treatment was
then accurately confirmed by the experiments of [12] in different high Reynolds
number flows. Hence, we now dispose of very strong theoretical and experimental
evidences that the way energy is distributed between different scales results from
direct and bidirectional non-local interactions. The key argument in favour of the
statistical universality of the smallest scales is thus worth investigating even at very
high Reynolds number flows.

Moreover, the Reynolds number needed for the Kolmogorov theory to hold is
usually beyond the reach of laboratory experiments. Consequently, large and small
scales interact within a common range of scales, and remain correlated one with
each other.

Because of the pioneering work of [23] and of many other researchers, it is now
well known that most shear flows give rise to so-called coherent structures. These are
energy containing eddies at rather large scales, but in contrast with classical large-
scale turbulence, coherent structures strongly persist in time and/or in space. Their
topology depends on initial conditions and their related statistics are not universal
([2, 22]). The information enclosed within coherent structures persists till the far
field ([3, 26, 22]) and may thus influence small-scale statistics due to non-local
interactions and finite Reynolds numbers effects.

Therefore, some new statistical tools must be developed to quantify the interac-
tions between large (and in particular the CM) and small scales. To this end, one
possible way is to consider velocity increments, which represent motions at scales
≤ r (not only at the particular scale r [15, 8]), conditioned by another parameter
characterizing motions at scales ≥ r ([15]).

The first study based on conditional structure functions is that of [17]. The lat-
ter reported structure functions conditioned by the instantaneous velocity in two
different high Reynolds number shear flows. They pointed out a strong correlation
between large and inertial subrange scales. These authors [17] finally concluded that
these findings are in contradiction with the random sweeping decorrelation which
was first stated ([21]) by supposing statistical independence between eddies.
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Subsequently, measured structure functions were conditioned by the instanta-
neous velocity in the atmospheric boundary layer [20]. In spite of the very high
Reynolds number, a strong correlation between large and small scales also emerged.
According to [20], this result may highlight the persisting influence of the mean
shear on the smallest scales.

More recently, [5, 4] measured structure functions conditioned by the average of
the velocity at points x and x+ r in different shearless flows. These authors pointed
out that small scales were perturbed by the large scales at very different levels de-
pending on the flow type. They concluded that conditional structure functions pro-
vide a reference tool for comparing large-scale effects in different flows.

Investigating the nature of the interactions between the coherent motion (CM)
and the small scale motion is the principal motivation of the present work. A better
understanding of the effect of the large-scale coherent motion on the smallest scales
is of major practical interest, for example for designing new efficient sub-grid scale
models ([16, 11]). The present study addresses two specific issues: (i) Does the
kinetic energy at a scale r depend on the dynamics of the CM? (ii) What are the
energy budget equations based on phase-conditioned structure functions?

To unravel these issues, the way we condition structure functions is somewhat
different to that presented previously. Based on the approach of e.g. [18], we propose
to condition structure functions by a particular value of the phase φ arising from the
phase-averaging operation.

This study focuses entirely on a circular cylinder wake flow, which is investigated
by means of hot wire experiments. The wake flow is renowned for its coherent mo-
tion which persists far downstream from the obstacle (see e.g. [3]). Different stream-
wise locations were studied, from x = 10D to x = 40D (D is the cylinder diameter)
leading to a decreasing amplitude of velocity coherent fluctuations. Investigations
are mostly oriented on the wake centerline, for which the mean shear is absent. This
allows us to focus only on the influence of the coherent motion, thus avoiding the
additive effect of the mean shear ([20]).

The paper is organized as follows. First, measurements are described. Then, one-
point statistics are presented, with particular emphasis on the typical topology of the
wake flow. Afterwards, the interactions between the coherent and the random fluc-
tuating fields are highlighted by means of second-order phase-conditioned structure
functions. Finally, energy budget equations which concern both the random and co-
herent motions are derived and tested against experimental data.

2 Experiments

The reader can refer to [25] for more detailed information. We recall briefly the most
important features of the experimental set-up and measurement technique.

Measurements were carried out in an open-circuit wind tunnel with a working
section of 0.35× 0.35m2 and 2.4m long. The cylinder of diameter D = 12.7mm is
placed horizontally, spanning the full width of the working section. The upstream
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velocity U0 is 3ms−1 corresponding to a Reynolds number ReD = U0D
ν

= 2540 (ν
is the kinematic viscosity). Measurements were made at different downstream loca-
tions: x = 10,20,40D, and different transverse positions, from y = 0 to y = 3D. The

Taylor micro-scale Reynolds number Rλ =

√
u2λ

ν
≈ 70 at 40D. u2 is the streamwise

velocity variance, λ is the Taylor micro-scale λ 2 = 15νu2/ε and ε the mean dissi-
pation rate (see [25] for the values and the procedure employed for measuring ε). A
hot-wire probe, consisting of four cross-wires was used to measure simultaneously
all three vorticity components (see [25] for more details about the probe).

Phase-averaged statistics are obtained as follows. The transverse velocity compo-
nent v is first digitally band-pass filtered at the Strouhal frequency, using an eighth-
order Butterworth filter. The filtering operation is next applied to the magnitude
of the Fourier transform of v in order to avoid any phase shift. Then, the Hilbert
transform h of the filtered signal v f is obtained and the phase φ inferred from the

relation φ = arctan
(

h
v f

)
. Finally, the phase is divided into 41 segments and phase-

averaged statistics are calculated for each segment. The convergence of statistics
was checked, by reducing the number of segments, and found to be satisfactory.
By means of our method, phase-averaged quantities are calculated over the period
[−π,π]. As was done by [16], the phase is doubled up to [−2π,2π] thanks to the
periodicity, in order to enhance the visual display.

In [9], the geometrical space (location x in the flow) and the separation space
(turbulent scales r) are made independent by considering the geometrical location
specified by the midpoint X = 1

2 (x+x+) with x+ = x+r. The same idea is applied
here to phase-conditioned structure functions for which the phase φ is defined as
the phase at the midpoint φ = φ(X). Therefore, each velocity component is decom-
posed into a triple contribution from the mean temporal average, the phase-averaged
fluctuation and the random/turbulent fluctuation.

3 Flow Topology

Let us first briefly discuss the overall features of the coherent motion pertaining to
the wake flow.

One of the main advantages of using phase averaging is that the temporal dynam-
ics associated with the presence of the CM is highlighted. As far as the wake flow is
concerned, one generally displays statistics in the (φ ,y) plane ([26, 3]) to relate the
spatial organization of the kinetic energy to that of the coherent structures. Here, we
focus particularly on the coherent strain which is generally enrolled in the creation
of turbulent kinetic energy.

Iso-values of the coherent strain S̃ =
(

∂ ũ
∂y +

∂ ṽ
∂x

)
are reported in Figs. 1(a), 1(b),

1(c). Note that φ = π/2±kπ and y = 0 corresponds to the location of the maximum
(absolute values) of the coherent strain. Its amplitude decreases further downstream
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Fig. 1 Coherent strain S̃ =
(

∂ ũ
∂y +

∂ ṽ
∂x

)
normalized by D/U0 in the (φ ,y) plane. (a) x = 10D, (b)

x = 20D, (c) x = 40D

from the obstacle. For example, the extrema of S̃ at 40D are one order of magnitude
smaller than at 10D.

In the light of the previous remarks, in the remaining part of this study, we will
focus entirely on the wake centerline, where the contribution of the coherent motion
is maximum. In addition, this allows the effect of the coherent motion to be sepa-
rated from that of the mean shear. The latter is known to influence the behaviour of
the smallest scales even at large Reynolds numbers ([17, 20, 12]).

4 Phase-conditioned structure functions

The phase-averaging operation is now applied to the n−th order structure functions.
Structure functions are as usual functions of r, but specific to our methodology, they
are also functions of the phase φ . In the following, we assign brackets to phase-
conditioned structure functions, viz.

〈(∆uα)
n〉(r,φ) = 〈(uα (x+ r)−uα (x))n〉(r,φ) (1)

which represent the ensemble average of the n− th order increment ∆uα = uα(x+
r)−uα(x) of the velocity component uα , for a particular value of φ . Then, the con-
ventional time-averaged structure functions are calculated by integrating 〈(∆u)n〉
over all values of φ ∈ [−π;π] (periodicity is invoked), and are denoted by a hori-
zontal bar, i.e. 〈(∆uα)n〉. An important remark is that for n = 1,

〈∆uα〉= ∆ ũα 6= 0. (2)

Therefore, in contrast to classical structure functions, first-order phase-conditioned
structure functions are non-zero for r 6= 0. However, 〈∆uα〉 = 0. Another result
relates to the second-order structure functions,

〈
(∆uα)

2〉= (∆ ũα)
2 +
〈
(∆u′α)

2〉 , (3)
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Fig. 2 Phase-conditioned second-order structure function of the transverse velocity component
v (using log10 scale). (a ,b, c) :

〈
(∆v)2

〉
/v2. (d, e, f) : (∆ ṽ)2/ṽ2. (g, h, i) :

〈
(∆v′)2

〉
/v′2. (a, d, g)

x= 10D, (b, e, h) x= 20D, (c, f, i) x= 40D. Vertical solid lines delineate phase references φ =± 3π

2
and φ = 0.

i.e. the sum of the second-order structure functions of the random and coherent
motions. The influence of the phase, on the total, organized or random fluctuating
fields, can be thus assessed separately.
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4.1 Focus on the transverse velocity component

We present the phase-conditioned structure functions of the total transverse veloc-
ity fluctuations (Figs. 2(a), 2(b), 2(c)), of the coherent component (Figs. 2(d), 2(e),
2(f)), and of the randomly fluctuating field (Figs. 2(g), 2(h), 2(i)) for three down-
stream distances.

In homogeneous turbulence, the second-order structure function should be equal
to twice the velocity variance at large scales. In Figs. 2(a), 2(b), 2(c), the values of
the phase-conditioned second-order structure functions progressively increase as r
keeps increasing, and reach a maximum for r = Lv/2 (Lv is the distance between
two successive vortices) which overshoots 2v2. Then, one notes a slight decrease of
energy up to r = Lv and this pattern is repeated with a period equal to Lv.

The influence of the phase (hereafter called phase-correlation) is clearly visible
in Figs. 2(a), 2(b), 2(c). The energy of the transverse velocity component v is largest
at phases φ = π

2 ±kπ with a periodicity of π . These phase locations and periodicity
are strongly linked to the maxima of the coherent shear (Fig.1). Note finally that at
x=40D the phase-correlation strongly diminishes at smallest scales, although it is
still perceptible for scales larger than r = 0.2Lv ≈ 2λ .

The phase-conditioned structure function of v exhibits a topology analogous to
that of ṽ (Figs. 2(d), 2(e), 2(f)). For example, the phase π-periodicity and the separa-
tion Lv-periodicity are recovered. Further, the local maxima or minima corresponds
to that of the coherent motion. Therefore, as for one-point statistics, the energy
distribution among scales of the total fluctuating field hides a non negligible contri-
bution due to the presence of the coherent motion, which tends to decrease as we
move away from the obstacle.

Using Eq.(3), we can calculate the structure function of the random velocity
component v′ (Figs. 2(g), 2(h), 2(i)). At x=40D, the phase-conditioned structure
functions have similar shapes to the usual time-average structure functions, and the
phase-correlation is lost. However, at x=10D and 20D, there is still a strong influ-
ence of the phase, even at very small scales.

5 Energy budget equations

In flows where a phase-correlation at a given scale is strongly discernible, it might be
interesting to derive an energy budget equation for second-order phase-conditioned
structure function. One advantage of using the phase-average operation is that it
allows writing transport equations for the two distinct energy contributions: that of
the coherent motion and that of the purely random/turbulent part of the fluctuating
field. The next section aims at deriving such kinds of budget equations.
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5.1 General formulation

The starting point is the Navier-Stokes equation

∂Ui

∂ t
+U j

∂Ui

∂x j
=− ∂P

∂xi
+ν

∂ 2Ui

∂x j∂x j
, (4)

where P is the the kinematic pressure and ν the kinematic viscosity. In contrast to
[6], [7], we invoke the triple decomposition ([18])

Ui =U i + ũi +u′i, P = P+ p̃+ p′ (5)
ui = ũi +u′i, p = p̃+ p,〈

u′i
〉
= 0,

〈
p′
〉
= 0.

By further using Eq. 5, [18] obtained the dynamical equations of the coherent and
random components, which are respectively

Dũi

Dt
+ ũ j

∂U i

∂x j
+

∂

∂x j

(
ũiũ j− ũiũ j

)
+

∂

∂x j

(〈
u′iu
′
j
〉
−u′iu

′
j

)
=− ∂ p̃

∂xi
+ν

∂ 2ũi

∂x j∂x j
,(6)

Du′i
Dt

+ ũ j
∂u′i
∂x j

+u′j
∂U i

∂x j
+u′j

∂ ũi

∂x j
+

∂

∂x j

(
u′iu
′
j−
〈
u′iu
′
j
〉)

=−∂ p′

∂xi
+ν

∂ 2u′i
∂x j∂x j

.(7)

D
Dt =

∂

∂ t +U j
∂

∂x j
is the material derivative. Eqs. 6 and 7 are written at points x and

x+ = x+ r separated by a distance r. Then, the equation at point x is subtracted to
that at point x+, so that

∂∆ ũi

∂ t
+∆

(
U j

∂ ũi

∂x j

)
+∆

(
ũ j

∂U i

∂x j

)
+∆

(
∂

∂x j

(
ũiũ j− ũiũ j

))

+∆

(
∂

∂x j

(〈
u′iu
′
j
〉
−u′iu

′
j

))
=−∆

(
∂ p̃
∂xi

)
+ν∆

(
∂ 2ũi

∂x2
j

)
, (8)

is the dynamical equation of coherent velocity increments, and

∂∆u′i
∂ t

+∆

(
U j

∂u′i
∂x j

)
+∆

(
ũ j

∂u′i
∂x j

)
+∆

(
u′j

∂U i

∂x j

)
+∆

(
u′j

∂ ũi

∂x j

)

+∆

(
∂

∂x j

(
u′iu
′
j−
〈
u′iu
′
j
〉))

=−∆

(
∂ p′

∂xi

)
+ν∆

(
∂ 2u′i
∂x2

j

)
, (9)

is the dynamical equation of random velocity increments.
As proposed by [9], [6], [7], we use derivatives with respect to the midpoint X

defined by X = (x+x+)
/

2, such as ∂
/

∂x j =− ∂
/

∂ r j + ∂
/

2∂X j and ∂
/

∂x+j =

∂
/

∂ r j + ∂
/

2∂X j. We further assume the two points x and x+ are independent ([9],
[6], [7]), viz. ∂ui

/
x+j = ∂u+i

/
x j = 0. After multiplying Eq. 8 by 2∆ ũi and Eq. 9 by
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2∆u′i, applying phase averaging followed by time averaging, and finally noting that
〈
∆u′j∆u′i

〉
=
〈
∆ui∆u j

〉
−∆ ũi∆ ũ j (10)

〈
∆u j∆q2〉 = ∆ ũ j∆ q̃2 +∆ ũ j

〈
∆q′2

〉
+
〈
∆u′j∆q′2

〉
+2∆ ũi

〈
∆u′j∆u′i

〉
, (11)

we finally obtain the scale-by-scale energy budget of the coherent motion

D
Dt

∆ q̃2 +
1
2

∂

∂X j

[
Σ ũ j∆ q̃2 +2

〈
Σu′j∆u′i

〉
∆ ũi +2∆ ũi∆ p̃

]
+2∆ ũi∆ ũ j

∂U i

∂x j

−
〈

Σu′j∆u′i
〉

∂

∂X j
∆ ũi +

∂

∂ r j
∆ ũ j∆ q̃2 +2∆ ũi

∂

∂ r j

〈
∆u′i∆u′j

〉

−ν

[(
2

∂ 2

∂ r2
j
+

1
2

∂ 2

∂X2
j

)
∆ q̃2 +2Σ

(
∂ ũi

∂x j

∂ ũ j

∂xi

)]
=−2Σε̃ (12)

For the random motion, the corresponding energy budget equation is

D
Dt

∆q′2 +
1
2

∂

∂X j

[
Σu′j∆q′2 +Σ ũ j 〈∆q′2〉+2∆u′i∆ p′

]
+2∆u′i∆u′j

∂U i

∂x j

+
〈

Σu′j∆u′i
〉

∂

∂X j
∆ ũi +

∂

∂ r j

(〈
∆u j∆q2

〉
−∆ ũ j∆ q̃2

)
−2∆ ũi

∂

∂ r j

〈
∆u′i∆u′j

〉

−ν

[(
2

∂ 2

∂ r2
j
+

1
2

∂ 2

∂X2
j

)
∆q′2 +2Σ

(
∂u′i
∂x j

∂u′j
∂xi

)]
=−2Σε ′ (13)

∆ q̃2 = ∆ ũi∆ ũi and ∆q′2 = ∆u′i∆u′i (the summation convention applies to repeated
Latin indices) are the coherent and random kinetic energies at a given scale respec-
tively. Σ• = •(x + r) + •(x) is the sum at two points separated by a distance r.

The quantities ε̃ = ν

2

(
∂ ũi
∂x j

+
∂ ũ j
∂xi

)2
and ε ′ = ν

2

(
∂u′i
∂x j

+
∂u′j
∂xi

)2

are the mean energy

dissipation rates of the coherent and the random motions, respectively.
For the sake of clarity, these equations are formally rewritten as

Ic +Acm +Dcc +D1
rc +Dcp +Pcm−Prc +Tc +Fc +Vc =−2Σε̃ (14)

Ir +Arm +Drr +D2
rc +Drp +Prm +Prc +T −Tc−Fc +Vr =−2Σε ′ (15)

where I , A , D , P , T , F et V denote respectively the non stationarity, ad-
vection, diffusion, production, transfer, forcing and viscous terms. The subscripts
m, c, r correspond to the mean, coherent and random motions, and Dp indicates the
pressure diffusion.

By comparison with [6],[7], there are additional terms which emerge in the
present equations, e.g. the terms Prc, Tc and Fc which can be identified as the
production of random fluctuations by the coherent motion, the coherent kinetic en-
ergy transfer and the forcing associated by the presence of a coherent motion. All
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three are present in equations 12 and 13, but with opposite signs. This means that
what represents a loss of energy for the coherent motion Eq. 12, constitutes a gain
of energy for randomly fluctuating motion (Eq. 13). Further, we can shed light on
D1

rc and D2
rc, the transport of random statistical quantities by the organized motion.

Equations (12) and (13) provide a general framework which allow the physics of
the interaction between coherent and random fields to be unravelled.

In a globally homogeneous context, the limit at the largest scales of Eqs. (12)
and (13) is twice the one-point energy budgets provided by [18]. At this stage, Eqs.
12 and 13 are functions of the time t, the reference point vector x and the separa-
tion vector r. This leads to a problem in 7 dimensions (8 before time-averaging). In
order to reduce the number of degrees of freedom, one generally invokes the local
isotropy assumption. The practical consequence is that these isotropic forms lead
themselves being tested experimentally, with the constraint that two-points statistics
are usually evaluated along one particular direction. Further, this allows us to com-
pare the present considerations to that already developed over the last half century
([13], [24], [1], [6], [7]).

5.2 Locally homogeneous and isotropic context

First, if homogeneity holds at the level of the viscous scales, then the viscous term
reduces to ([9])

−ν

[(
2

∂ 2

∂ r2
j
+

1
2

∂ 2

∂X2
j

)
∆q′2 +2Σ

(
∂u′i
∂x j

∂u′j
∂xi

)]
=−2ν

∂ 2

∂ r2
j
∆q′2, (16)

Then, in the context of local isotropy, the divergence and the Laplacian operators
are expressed in spherical coordinates ([6], [7]), and after multiplying (12) and (13)
by r2 = r jr j, integrating with respect to r and dividing by r2, we obtain

1
r2

∫ r

0
s2 (Acm +Dcc +D1

rc +Pcm +Prc +Dcp
)

ds

+∆ ũ‖∆ q̃2 +
2
r2

∫ r

0
∆ ũi

∂

∂ s
s2
〈

∆u′‖∆u′i
〉

ds−2ν
∂

∂ r
∆ q̃2 =−4

3
ε̃r;

(17)
1
r2

∫ r

0
s2 (Arm +Drr +D2

rc +Prm−Prc +Drp
)

ds

+
〈
∆u‖∆q2

〉
−∆ ũ‖∆ q̃2− 2

r2

∫ r

0
∆ ũi

∂

∂ s
s2
〈

∆u′‖∆u′i
〉

ds−2ν
∂

∂ r
∆q′2 =−4

3
ε ′r.

(18)

Eqs. (17) and (18) are the energy budget equations for the coherent and random com-
ponents in a locally isotropic context. Here, s is a dummy variable and the subscript
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‖ denotes the direction parallel to the separation vector. When the spatial separation
is inferred using Taylor hypothesis, this direction coincides with that of the mean
flow.

The first line of Eqs. (17) and (18) represents the energy contribution of the
largest scales ([6], [7]). The main difference with respect to the extended form of
Kolmogorov’s equation [1], is the appearance of several extra terms due to the pres-
ence of CM. The effective energy transfer of the random velocity component is
explicit and thus consists of the total energy transfer

〈
∆u‖∆q2

〉
(including the co-

herent and random contributions), from which are subtracted the coherent energy

transfer ∆ ũ‖∆ q̃2 and the forcing term 2
r2

∫ r
0 ∆ ũi

∂

∂ s s2
〈

∆u′‖∆u′i
〉

ds.

5.3 Comparison with experiments

On the wake centerline, the locally isotropic scale-by-scale budget of the random
motion is

− 1
r2

∫ r

0
s2Armds−

〈
∆u‖∆q2

〉

+∆ ũ‖∆ q̃2 +
2
r2

∫ r

0
∆ ũi

∂

∂ s
s2
〈

∆u′‖∆u′i
〉

ds+2ν
∂

∂ r
∆q′2 =

4
3

ε ′r, (19)

which means that in the limit of large scales, the advection term is almost entirely
compensated by the energy dissipation rate, other large scale terms such as longi-
tudinal production or turbulent diffusion are negligible compared to the advection
term.

Fig. 3(a) reports the total non linear transfer−
〈
∆u‖∆q2

〉
, the additional coherent

transfer and forcing due to the coherent motion ∆ ũ‖∆ q̃2+ 2
r2

∫ r
0 ∆ ũi

∂

∂ s s2
〈

∆u′‖∆u′i
〉

ds

and the effective transfer inferred from their sum, in function of the separation r/Lv.
For weakly turbulent flows the non linear transfer term is smaller than 4

3 εr, be-
cause of the cross-over between viscous and large-scale effects ([6], [7]). Here,
−
〈
∆u‖∆q2

〉
/εr≈ 0.63. The additional energy transfer associated with the coherent

motion is negative, its value being quite small, although non negligible. Its contri-
bution is non zero for all separations, with a maximum contribution at about 2λ .
Finally, the maximum effective transfer of the random motion is smaller than the
total transfer by about 12%.

Even though the difference of 12% between the total energy transfer and the ef-
fective energy transfer is quite weak, its influence may persist far from the injection
of energy ([22]) and thus remains a key point to provide some insight into the energy
transfer along the cascade in the wake flow, for which the CM is discernible.

The extra-transfer term is non zero over a large range of scales. However, one
cannot claim that this quantifies the non local interactions between coherent and
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Fig. 3 (a) Non linear transfer term divided by ε ′r. —— total transfer term−
〈
∆u‖∆q2

〉
, — ·— co-

herent transfer and forcing term ∆ ũ‖∆ q̃2+ 2
r2

∫ r
0 ∆ ũi

∂

∂ s s2
〈

∆u′‖∆u′i
〉

ds, - - - - Sum−
〈
∆u‖∆q2

〉
+

∆ ũ‖∆ q̃2 + 2
r2

∫ r
0 ∆ ũi

∂

∂ s s2
〈

∆u′‖∆u′i
〉

ds. (c) Scale-by-scale budget of the random motion Eq. (19)

divided by ε ′. —— : 4
3 ε ′r, × : − 1

r2

∫ r
0 s2Armds, ut −

〈
∆u‖∆q2

〉
, ◦ : −

〈
∆u‖∆q2

〉
+∆ ũ‖∆ q̃2 +

2
r2

∫ r
0 ∆ ũi

∂

∂ s s2
〈

∆u′‖∆u′i
〉

ds, + : 2ν
∂

∂ r ∆q′2,4 Left hand side of Eq. (19).

random fields because of the loss of localization in physical space as mentioned
previously.

The balance between the right-and left-hand sides of (19) is reasonably satisfied
at all scales. The weak imbalance at rather large scales appears to reflect that local
isotropy no more holds or that another production and/or diffusion terms must taken
into account in Eq. 19.

To conclude, the experimental investigation in the cylinder intermediate wake
supports the analytical considerations provided by this study.

6 Conclusions

The connection between the temporal dynamics of the coherent motion and the
energy distribution across all scales is highlighted by means of phase-conditioned
structure functions. This original statistical tool allows us to assess what range of
scales is affected by the CM dynamics. Moreover, we are able to separate the energy
contributions of the coherent and random fluctuations. Phase-averaging the structure
functions measured in a cylinder wake yields two main outcomes.

First, it is shown that, as the downstream location behind the cylinder increases,
i) the scale at which the forcing associated with the CM is perceptible continually
increases; ii) phase-scale structure functions reveal also that a scale r is correlated
with that of the coherent shear, the effect of the latter being to locally enhance the
energy at any scale r.
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Second, energy budget equations which account for the organized motion are
derived. Both general and isotropic formulations are obtained. They highlight a few
additional terms. One of these may be interpreted as an additional forcing exerted
by the CM on the random motion. At x=40D, this term represents only about 12% of
the total transfer term, but its influence may persist far downstream. The isotropic
formulation is tested against experimental data at the wake centreline. The weak
imbalance between the analytical formulation and the measurements at rather large
scales appears to underline the inadequacy of local isotropy at these scales.
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