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Abstract

We study the evolution of gene frequencies in a population living in Rd, modelled
by the spatial Λ-Fleming-Viot process with natural selection. We suppose that the
population is divided into two genetic types, a and A, and consider the proportion of
the population which is of type a at each spatial location. If we let both the selection
intensity and the fraction of individuals replaced during reproduction events tend
to zero, the process can be rescaled so as to converge to the solution to a reaction-
diffusion equation (typically the Fisher-KPP equation). We show that the rescaled
fluctuations converge in distribution to the solution to a linear stochastic partial
differential equation. Depending on whether offspring dispersal is only local or if large
scale extinction-recolonization events are allowed to take place, the limiting equation
is either the stochastic heat equation with a linear drift term driven by space-time
white noise or the corresponding fractional heat equation driven by a coloured noise
which is white in time. If individuals are diploid (i.e. either AA, Aa or aa) and if
natural selection favours heterozygous (Aa) individuals, a stable intermediate gene
frequency is maintained in the population. We give estimates for the asymptotic effect
of random fluctuations around the equilibrium frequency on the local average fitness
in the population. In particular, we find that the size of this effect - known as the
drift load - depends crucially on the dimension d of the space in which the population
evolves, and is reduced relative to the case without spatial structure.
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A central limit theorem for the SLFV with selection

Introduction

Consider a population distributed across a geographical space (typically of dimension
one or two). Suppose that each individual carries one of several possible versions (or
alleles) of a gene. How do the different allele frequencies evolve with time and how are
they shaped by the main evolutionary forces, such as natural selection and migration?
To answer this question, early models from population genetics were adapted by G.
Malécot [Mal48], S. Wright [Wri43] and M. Kimura [Kim53] to include spatial structure.
These spatial models either considered subdivided populations reproducing locally and
exchanging migrants at each generation or made inconsistent assumptions about the
distribution of individuals across space.

In this work, we focus on a mathematical model for populations evolving in a spatial
continuum, the spatial Λ-Fleming-Viot process (SLFV for short), originally proposed
in [Eth08]. The main feature of this model is that instead of each individual carrying
exponential clocks determining its reproduction and death times, reproduction times
are specified by a Poisson point process of extinction-recolonization events. At each of
these events, some proportion - often denoted u - of the individuals present in the region
affected by the event is replaced by the offspring of an individual (the parent) chosen
within this region. (The proportion u which is replaced is called the impact parameter.)
We shall only consider cases where the region affected is a (d-dimensional) ball, and
the Poisson point process specifies the time, centre and radius of reproduction events.
(Since we consider scaling limits, minor changes to this assumption would not change
our results.)

We suppose that each individual in the population has a type taken from a compact
space K. The state of the SLFV process at time t is then given by a map ρt : Rd →M(K)

defined Lebesgue almost everywhere, where M(K) is the set of probability measures
on the type space K. We think of ρt(x) as the distribution of the type of an individual
sampled from location x at time t. More precisely, the spatial Λ-Fleming-Viot process
can be obtained as the high population density limit of an individual based model (see
[BEV13a]) where the sequence of empirical measures of the individuals’ location and
type converges to the measure ρt(x)dx. We thus sometimes use heuristics based on
the behaviour of individuals in the prelimiting model even though one cannot speak of
individuals in the SLFV.

Natural selection can be included in the SLFV by introducing an independent Poisson
point process of selective events which give an advantage to a particular type. Multiple
potential parents are sampled in the region affected by the event and one is chosen to
be the parent and have offspring in a biased way depending on their types. The selection
parameter determines the rate of this Poisson point process.

A comprehensive survey of recent developments related to the SLFV can be found in
[BEV13a]. Several works have focussed on characterising the behaviour of this model
over large space and time scales, in the special case where only two types (or two alleles)
a and A are present in the population. In this case the state of the process is given
by a map qt : Rd → [0, 1] defined Lebesgue almost everywhere, where qt(x) denotes
the probability that a randomly chosen individual at location x and time t is of type a,
or in other words the proportion of type a at location x and at time t. We shall first
consider the simplest form of selection when individuals are haploid, i.e. each individual
has one copy of the gene, and type A is favoured. At selective events, two potential
parents are chosen and if their types are different, the parent is the one which has
type A. In [EVY14], rescaling limits of this form of the spatial Λ-Fleming-Viot process
with selection (SLFVS) have been obtained when both the impact parameter and the
selection parameter tend to zero. Earlier results on the large scale behaviour of the SLFV
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had already been established in [BEV13b] in the neutral case (i.e. without selection),
but keeping the impact parameter macroscopic. The behaviour of the SLFVS in the
corresponding regime is studied in [EFS15] and [EFPS15].

The limiting process obtained by [EVY14] turns out to be deterministic as soon as
d ≥ 2, and, when the reproduction events have bounded radius, it is given by the
celebrated Fisher-KPP equation,

∂ft
∂t

=
1

2
∆ft − sft(1− ft). (0.1)

This result fits the original interpretation of this equation proposed by R. A. Fisher as a
model for the spread of advantageous genes in a spatially distributed population [Fis37].
The spatial Λ-Fleming-Viot process with selection (SLFVS) can thus be thought of as
a refinement of the Fisher-KPP equation, combining spatial structure and a random
sampling effect at each generation - what biologists call genetic drift.

In the present work we prove a slightly stronger form of convergence to this deter-
ministic rescaling limit. We also study the fluctuations of the allele frequency about
(an approximation of) (ft)t≥0. We find that if the impact parameter is sufficiently small
compared to the selection parameter and the fluctuations are rescaled in the right way
then in the limit they solve the following stochastic partial differential equation,

dzt =

[
1

2
∆zt − s(1− 2ft)zt

]
dt+

√
ft(1− ft) dWt, (0.2)

where W is space-time white noise, and f is the solution of (0.1). More detailed state-
ments with the precise conditions on the parameters of the SLFVS are given in Section 2.

A very similar result was proved by F. Norman in the non-spatial setting [Nor75a]
(see also [Nor74a], [Nor77] and [Nor75b]). Norman considered the Wright-Fisher model
for a population of size N under natural selection (see [Eth11] for an introduction to
such models). Let pNn denote the proportion of individuals not carrying the favoured
allele at generation n, and suppose that the selection parameter is given by sN = εNs,
with εN → 0 and εNN →∞ as N →∞. (At each generation, individuals choose a parent

of the favoured type with probability (1+sN )(1−pNn )
1+sN (1−pNn )

.) Norman showed that, as N → ∞,

pNbt/εNc converges to gt, which satisfies

dgt
dt

= −sgt(1− gt).

(In the weak selection regime - i.e. when NsN = O (1) - one recovers the classical
Wright-Fisher diffusion, see [Eth11].) Furthermore, the fluctuations of pNt/εN around gt

are of order (NεN )−1/2. More precisely, for t = nεN , n ∈ N, set

ZN (t) = (NεN )1/2
(
pNt/εN − gt

)
,

and define ZN (t) for all t ≥ 0 by linear interpolation. Theorem 2 in [Nor75a] states that,
as N →∞,

(
ZN (t)

)
t≥0

converges to the solution of the following stochastic differential
equation,

dzt = −s(1− 2gt)ztdt+
√
gt(1− gt)dBt,

where (Bt)t≥0 is a standard Brownian motion; note that (zt)t≥0 is a Gaussian diffusion.
A similar regime in the case of a neutral model with mutations was already studied by
W. Feller in [Fel51, Section 9], who identified the limiting diffusion for the fluctuations
around the equilibrium frequency.
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Norman’s result can be extended to other classical models from population genetics,
and in particular to continuous-time processes such as the Moran model and the (non-
spatial) Λ-Fleming-Viot process (introduced in [BLG03]). The necessary tools can be
found mainly in [EK86, Chapter 11] (see also Chapter 6 of the same book) and in [Kur71].
In this paper we adapt these methods to the setting of the spatial Λ-Fleming-Viot process,
with the necessary tools for stochastic partial differential equations taken from [Wal86]
(see also [MT95] and [DMFL86]).

We also consider a second regime for the SLFVS to allow large scale extinction-
recolonization events; we let the radius of reproduction events follow an α-stable distri-
bution truncated at zero. For this regime, as in [EVY14], we find the Fisher-KPP equation
with non-local diffusion as a rescaling limit (i.e. with a fractional Laplacian instead of
the usual Laplacian). The Laplacian is also replaced by a fractional Laplacian in (0.2),
the equation satisfied by the limiting fluctuations, and the noise W becomes a coloured
noise with spatial correlations of order |x− y|−α (see Subsection 2.2).

These results are valid for a general class of selection mechanisms, with modified
versions of (0.1) and (0.2) (and our proof will cover the general case). As an application
of our results on the fluctuations, we turn to a particular kind of selection mechanism.
Suppose a given gene is present in two different forms - denoted A1 and A2 - within
a population. Suppose also that each individual carries two copies of this gene (each
inherited from one of two parents). We say that individuals are diploid, and homozygous
individuals are those who carry two copies of the same type (A1A1 or A2A2) while
heterozygous individuals carry one copy of each type (A1A2). Overdominance occurs
when the relative fitnesses of the three possible genotypes are as follows,

A1A1 A1A2 A2A2

1− s1 1 1− s2,

where s1, s2 > 0. In words, heterozygous individuals produce more offspring than
both types of homozygous individuals. In this setting, in an infinite population a stable
intermediate allele frequency is expected to be maintained, preventing either type from
disappearing. If q is the frequency of type A1 and p = 1− q that of type A2 and if mating
is random, the respective proportions of the three genotypes will be q2, 2qp, p2, hence
the population cannot remain composed exclusively of heterozygous individuals. As
a consequence, even when the stable equilibrium is reached, the mean fitness of the
population will not be as high as the highest possible individual fitness (i.e. that of
heterozygous individuals). This fitness reduction is referred to as the segregation load.

In finite populations, because of finite sample size, the allele frequency is never
exactly at its optimum. This was the subject of a work by A. Robertson [Rob70] who
considered this specific configuration of the relative fitnesses. He argued that the mean
fitness in a panmictic population (i.e. one with no spatial structure) with finite but
relatively large size N is reduced by a term of order (4N)−1, irrespective of the strength
of selection. This is due to a trade-off between genetic drift and natural selection. The
stronger selection is, the quicker the allele frequency is pushed back to the equilibrium,
but at the same time even a small step away from the optimal frequency is very costly
in terms of mean fitness. On the other hand, if natural selection is relatively weak,
the allele frequency can wander off more easily, but the mean fitness of the population
decreases more slowly. This reduction in the mean fitness due to genetic drift - which is
added to the reduction from the segregation load - is called the drift load.

Robertson’s result can be made rigorous using tools found in [Nor74a] and [Nor74b].
We adapt these to our setting and study the same effect in spatially structured popu-
lations. We find that the spatial structure significantly reduces the drift load, in a way
that depends crucially on dimension. It turns out that migration prevents the allele
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frequencies from straying too far away from the equilibrium frequency, because incoming
migrants are on average close to this equilibrium.

The paper is laid out as follows. We define the spatial Λ-Fleming-Viot process for a
haploid model with general frequency dependent selection and for a diploid model of
overdominance in Section 1. In Section 2 we state the main convergence results for the
SLFVS in the bounded radius and stable radius regimes and we present our estimate
of the drift load in spatially structured populations. In Section 3, we present the main
ingredient of the proof: a martingale problem satisfied by the SLFVS. At the end of
Subsections 3.2 and 3.3, we state more general results on solutions to these martingale
problems which imply our convergence results for the SLFVS. Most of the remainder
of the paper is dedicated to the proofs of these results. The central limit theorem in
the bounded radius case is proved in Section 4, while the stable regime is dealt with
in Section 5 (the two proofs share the same structure, but differ in the details of the
estimates). Finally, the asymptotics of the drift load are derived in Section 6.
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1 Definition of the model

1.1 The state space of the spatial Λ-Fleming-Viot process with selection

We now turn to a precise definition of the underlying model, the spatial Λ-Fleming-
Viot process with selection on Rd, starting with the state space of the process. At each
time t ≥ 0, {qt(x) : x ∈ Rd} is a random function such that

qt(x) := proportion of type a alleles at spatial position x at time t, (1.1)

which is in fact defined up to a Lebesgue null set of Rd. More precisely, let Ξ be the
quotient of the space of Lebesgue-measurable maps f : Rd → [0, 1] by the equivalence
relation

f ∼ f ′ ⇐⇒ Leb({x ∈ Rd : f(x) 6= f ′(x)}) = 0.

We endow Ξ with the topology of vague convergence: letting 〈f, φ〉 =
∫
Rd
f(x)φ(x)dx,

a sequence (fn)n converges vaguely to f ∈ Ξ if and only if 〈fn, φ〉 −→
n→∞

〈f, φ〉 for any

continuous and compactly supported function φ : Rd → R. A convenient metric for
this topology is given by choosing a separating family (φn)n≥1 of smooth, compactly
supported functions which are uniformly bounded in L1(Rd). Then for f, g ∈ Ξ,

dΞ(f, g) =
∑
n≥1

1

2n
|〈f, φn〉 − 〈g, φn〉| (1.2)

defines a metric for the topology of vague convergence on Ξ. The SLFVS up to time T is
then going to be a D ([0, T ],Ξ)-valued random variable: a Ξ-valued process with càdlàg
paths.

Definition 1.1. For T > 0, let f, g ∈ D ([0, T ],Ξ) be a pair of càdlàg maps (ft)0≤t≤T ,
(gt)0≤t≤T from [0, T ] to Ξ. Then

d (f, g) = sup
t∈[0,T ]

dΞ(ft, gt)

is a metric for the topology of uniform convergence on D ([0, T ],Ξ).
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For more details, see Section 2.2 of [VW15].

1.2 The spatial Λ-Fleming-Viot process with selection

Let us now define the dynamics of the process. Let u ∈ (0, 1] and s ∈ [0, 1], and let
µ(dr) be a finite measure on (0,∞) satisfying∫ ∞

0

rdµ(dr) <∞. (1.3)

For m ∈ N and w ∈ [0, 1], let ~Bmw be a vector of m independent random variables taking
the value a with probability w and A otherwise. Then let F : [0, 1]→ R be a polynomial
such that for some m ∈ N and p : {a,A}m → [0, 1], for each w ∈ [0, 1],

w − F (w) = E
[
p( ~Bmw )

]
. (1.4)

(The choice of p and m is not unique, but this will not matter.)

Definition 1.2 (SLFVS, haploid case with general frequency dependent selection). Let Π

and ΠS be two independent Poisson point processes on R+ ×Rd × (0,∞) with intensity
measures (1− s) dt⊗ dx⊗µ(dr) and s dt⊗ dx⊗µ(dr) respectively. The spatial Λ-Fleming-
Viot process with selection for a haploid population inRd with impact parameter u, radius
of reproduction events given by µ(dr), selection parameter s and selection function F is
defined as follows. If (t, x, r) ∈ Π, a neutral event occurs at time t within the ball B(x, r):

1. Choose a location y uniformly at random in B(x, r) and sample a parental type
k ∈ {a,A} according to qt−(y) (i.e. k = a with probability qt−(y)).

2. Update q as follows:

∀z ∈ Rd, qt(z) = qt−(z) + u1|x−z|<r(1k=a − qt−(z)). (1.5)

Similarly, if (t, x, r) ∈ ΠS , a selective event occurs at time t inside B(x, r):

1. Choosem locations y1, . . . , ym independently uniformly at random in B(x, r), sample
a type ki at each location yi according to qt−(yi) and then let k = a with probability
p(k1, . . . , km) and k = A otherwise.

2. Update q as in (1.5).

Note that if we let w = |B(x, r)|−1
∫
B(x,r)

qt−(z) dz, then at a neutral reproduction

event, P (k = a) = w and at a selective event, P (k = a) = w − F (w). This justifies the
definition in terms of the selection function F (and the terminology for F ), since the law
of the process depends only on F , and not on the specific choice of p and m in (1.4).

Remark 1.3. The existence of a unique Ξ-valued process following these dynamics under
condition (1.3) is proved in [EVY14, Theorem 1.2] in the special case F (w) = w(1− w)

(in the neutral case s = 0, this was done in [BEV10]). In our general case, the condition
on w − F (w) in (1.4) allows one to define a branching and coalescing dual process and
hence prove existence and uniqueness in the same way as in [EVY14].

We shall consider two different distributions µ for the radii of events,

i) the fixed radius case : µ(dr) = δR(dr) for some R > 0,

ii) the stable radius case : µ(dr) =
1r≥1

rd+α+1 dr for a fixed α ∈ (0, 2 ∧ d).
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In each case, (1.3) is clearly satisfied.
We give two variants of this definition corresponding to the two selection mechanisms

discussed in the introduction. We begin with a model for a selective advantage for A
alleles in haploid reproduction.

Definition 1.4 (SLFVS, haploid model, genic selection). The spatial Λ-Fleming-Viot pro-
cess with genic selection with impact parameter u, radius of reproduction events given
by µ(dr) and selection parameter s is defined as in Definition 1.2 with F (w) = w(1− w).
In this case, m = 2 and the function p equals simply

p(k1, k2) = 1k1=k2=a.

In other words, during selective reproduction events, two types are sampled in B(x, r)

and k = a if and only if both types are a.

1.3 The SLFVS with overdominance

We now define a variant of the SLFVS to model overdominance. Individuals are
diploid and we study a gene which is present in two different forms within the population,
denoted A1 and A2. For t ≥ 0 and x ∈ Rd, let

qt(x) := the proportion of the allele type A1 at location x at time t.

(If p1 is the proportion of A1A1 indiduals and pH is the proportion of A1A2 heterozygous
individuals, then q = p1 + 1

2pH .) We assume that the relative fitnesses of the different
genotypes are as follows:

A1A1 A1A2 A2A2

1− s1 1 1− s2.

In other words, for an event (t, x, r) in the SLFVS with w = |B(x, r)|−1
∫
B(x,r)

qt−(z) dz,

we want to choose parental types (k1, k2) ∈ {A1, A2}2 at random with

P ({k1, k2} = {A1, A1}) = P11 := (1−s1)w2

1−s1w2−s2(1−w)2 ,

P ({k1, k2} = {A1, A2}) = P12 := 2w(1−w)
1−s1w2−s2(1−w)2 ,

P ({k1, k2} = {A2, A2}) = P22 := (1−s2)(1−w)2

1−s1w2−s2(1−w)2 .

We also suppose that, with probability ν1, the type A1 alleles produced mutate to type A2,
and that, with probability ν2, the type A2 mutate to type A1 (this is a technical assumption
to ensure that qt(x) /∈ {0, 1}; we shall assume that ν1 and ν2 are small compared to s1

and s2). This gives us the following modified probabilities for the parental types:

P ({k1, k2} = {A1, A1}) = (1− ν1)P11 + ν2(1− P11),

P ({k1, k2} = {A1, A2}) = (1− ν1 − ν2)P12,

P ({k1, k2} = {A2, A2}) = (1− ν2)P22 + ν1(1− P22).

We are going to be interested in small values of si and νi, so we expand:

P ({k1, k2} = {A1, A1})
= (1− ν1)(w2(1− s1 + s1w

2 + s2(1− w)2) +O
(
s2
)
) + ν2(1− w2 +O (s))

= (1− s1 − s2 − ν1 − ν2)w2 + s1w
4 + s2w

2(1 + (1− w)2) + ν2 +O
(
s2 + νs

)
,

(1.6)
where s = s1 + s2 and ν = ν1 + ν2. Similarly, we have

P ({k1, k2} = {A1, A2}) = (1− s1 − s2 − ν1 − ν2)2w(1− w) + s12w(1− w)(1 + w2)

+ s22w(1− w)(1 + (1− w)2) +O
(
s2 + νs

)
,

P ({k1, k2} = {A2, A2}) = (1− s1 − s2 − ν1 − ν2)(1− w)2 + s1(1− w)2(1 + w2)

+ s2(1− w)4 + ν1 +O
(
s2 + νs

)
.

(1.7)
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The following model results in the parental type probabilities given in (1.6) and (1.7),
neglecting the O

(
s2 + νs

)
terms.

Definition 1.5 (SLFVS, overdominance). Suppose that ν1 + ν2 + s1 + s2 < 1. Let Π, ΠSi

and Πνi , i = 1, 2 be five independent Poisson point processes on R+ ×Rd × (0,∞) with
respective intensity measures (1− s1− s2− ν1− ν2) dt⊗ dx⊗µ(dr), si dt⊗ dx⊗µ(dr) and
νi dt⊗ dx⊗ µ(dr). The spatial Λ-Fleming-Viot process with overdominance with impact
parameter u, radius of reproduction events given by µ, selection parameters s1, s2 and
mutation parameters ν1, ν2 is defined as follows. If (t, x, r) ∈ Π, a neutral event occurs at
time t in B(x, r):

1. Pick two locations y1 and y2 uniformly at random within B(x, r) and sample one
parental type ki ∈ {A1, A2} at each location according to qt−(yi), independently of
each other.

2. Update q as follows:

∀z ∈ Rd, qt(z) = qt−(z) + u1|x−z|<r
(

1
2 (1k1=A1 + 1k2=A1)− qt−(z)

)
. (1.8)

If (t, x, r) ∈ ΠSi , a selective event occurs at time t in B(x, r):

1. Pick four locations uniformly at random within B(x, r) and sample one type at each
location, forming two pairs of types. If one pair is {Ai, Ai}, let {k1, k2} be the other
pair; otherwise pick one pair at random, each with probability 1/2. (If the two
sampled pairs are {Ai, Ai}, then {k1, k2} = {Ai, Ai}.)

2. Update q as in (1.8).

If (t, x, r) ∈ Πνi , a mutation event occurs at time t in B(x, r):

1. Set {k1, k2} = {A3−i, A3−i}, irrespective of the state of qt− . (In other words we
suppose that the Ai genes of the offspring mutate to type A3−i.)

2. Update q as in (1.8).

Remark 1.6. Similarly to the haploid case, existence and uniqueness for this process
can be proved as in [EVY14] using a dual process.

We shall see in Section 3 that this process satisfies essentially the same martingale
problem as the general haploid process in Definition 1.2 with

F (w) = w(1− w)(w − s2

s1 + s2
) +

ν1

s1 + s2
w − ν2

s1 + s2
(1− w).

2 Statement of the results

In this section, we present our main results. We consider the SLFVS as in Defi-
nitions 1.2 and 1.5, and we let the impact parameter and the selection and mutation
parameters tend to zero. On a suitable space and time scale (depending on the regime of
the radii of reproduction events) the process

(
qNt
)
t≥0

converges to a deterministic pro-

cess. We also characterise the limiting fluctuations of
(
qNt
)
t≥0

about an approximation
to this deterministic process as the solution to a stochastic partial differential equation.

2.1 Fixed radius of reproduction events

We begin by considering the regime in which the radii of the regions affected by
reproduction events are bounded. We shall only give the proof in the case of fixed
radius events; the proof for bounded radius events is the same but notationally awkward.
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Fix u, s ∈ (0, 1] and R > 0, and choose w0 : Rd → [0, 1] with uniformly bounded spatial
derivatives of up to the fourth order. Take two sequences (εN )N≥1, (δN )N≥1 of positive
real numbers in (0, 1] decreasing to zero, and set

sN = δ2
Ns, uN = εNu, rN = δNR, qN0 (x) = w0(δNx).

Let µ(dr) = δR, and let F : R → R be a smooth, bounded function with bounded
derivatives of order up to four such that F |[0,1] satisfies (1.4) for some m ∈ N and
p : {a,A}m → [0, 1]. Then for N ≥ 1, let

(
qNt
)
t≥0

be the spatial Λ-Fleming-Viot process in

Rd with selection following the dynamics of Definition 1.2 with impact parameter uN ,
radius of reproduction events R, selection parameter sN and selection function F started
from the initial condition qN0 .

Define the rescaled process
(
qNt
)
t≥0

by setting:

∀x ∈ Rd, t ≥ 0, qNt (x) = qNt/(εNδ2N )(x/δN ). (2.1)

We justify this scaling as follows. Recall from (1.1) that we think of qNt (x) as denoting
the proportion of the population at location x and time t which is of type a. Consider an
individual randomly chosen from the population at location x at time t. It finds itself
within a region affected by a reproduction event at rate |B(0, R)|. The probability that
it dies and is replaced by a new individual is uN = εNu, so, if we rescale time by 1/εN ,
this will happen at rate O (1). Also, we are going to see later (see Section 3.2) that the
reproduction events act like a discrete heat flow on the allele frequencies. We rescale
time further by 1/δ2

N and space by 1/δN , which corresponds to the diffusive scaling of
this discrete heat flow. Since selective events also take place at rate O

(
δ2
N

)
, this is the

right scaling to consider in order to observe the effects of both migration and selection
in the limit. (Due to this diffusive scaling we shall refer to this regime as the Brownian
case.)

We need to introduce some notation. Let L1,∞(Rd) denote the space of bounded and
integrable real-valued functions on Rd. For r > 0, we set Vr = |B(0, r)| and, for x, y ∈ Rd,

Vr(x, y) = |B(x, r) ∩B(y, r)| . (2.2)

For φ : Rd → R and x ∈ Rd, set

φ(x, r) =
1

Vr

∫
B(x,r)

φ(y)dy.

When there is no ambiguity, we shall not specify the radius r and simply write φ(x). This
notation will be used throughout this paper and formulae will routinely involve averages
of averages, etc. For example we also write

φ(x, r) =
1

V 2
r

∫
B(x,r)

∫
B(y,r)

φ(z)dzdy. (2.3)

Let us define a linear operator L(r) by setting

L(r)φ(x) =
d+ 2

2r2

(
φ(x, r)− φ(x)

)
. (2.4)

Finally let S(Rd) denote the Schwartz space of rapidly decreasing smooth functions on
Rd, whose derivatives of all orders are also rapidly decreasing. Accordingly, let S ′(Rd)
denote the space of tempered distributions.
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Lemma 2.1. If w0 : Rd → [0, 1] has uniformly bounded spatial derivatives of order up to
four, then 

∂fNt
∂t

= uVR

[
2R2

d+ 2
L(rN )fNt − sF (fNt )(rN )

]
,

fN0 = w0.

(2.5)

defines a unique (deterministic) function fN in L∞([0, T ] × Rd). In addition, it admits
spatial derivatives of order up to four which are all in L∞([0, T ]×Rd).

We prove this lemma in Appendix B with a Picard iteration.
As stated in the introduction, the spatial Λ-Fleming-Viot process with genic selection

with fixed radius of reproduction events converges, under what can be considered a
diffusive scaling, to the solution of the Fisher-KPP equation (as in [EVY14] for d ≥ 2)
while the limiting fluctuations are given by the solution to a stochastic partial differential
equation which generalises the result obtained in [Nor75a]. We can now give a precise
statement of this result for general frequency dependent selection. The same result
holds for radius distributions given by a finite measure µ on a bounded interval.

Theorem 2.2 (Central Limit Theorem for the SLFVS in Rd with fixed radius of reproduction
events). Let

(
qNt
)
t≥0

be defined as in (2.1). Suppose that εN = o
(
δd+2
N

)
, then the process(

qNt
)
t≥0

converges in L1 and in probability (for the metric d of Definition 1.1) to the

deterministic solution f : R+ ×Rd → R of the following PDE,
∂ft
∂t

= uVR

[
R2

d+ 2
∆ft − sF (ft)

]
,

f0 = w0.

In addition,
ZNt = (εNδ

d−2
N )−1/2(qNt − fNt )

defines a sequence of distribution-valued processes converging in distribution in D([0, T ],
S ′(Rd)) to the solution of the following stochastic partial differential equation,dzt = uVR

[
R2

d+ 2
∆zt − sF ′(ft)zt

]
dt+ uVR

√
ft(1− ft)dWt,

z0 = 0,

where W is a space-time white noise.

Remark 2.3. The impact parameter uN is inversely proportional to the neighbourhood
size - i.e. the probability that two individuals have a common parent in the previous
generation (see Section 3.6 of [BEV13a] for details). Hence, letting uN tend to zero
corresponds to letting the neighbourhood size grow to infinity.

We shall show in Section 3 that Theorem 2.2 is a consequence of Theorem 3.7. The
latter is a result on sequences of solutions to a martingale problem and is proved in
Section 4. In [EVY14], the authors already showed that in the special case of genic
selection (as in Definition 1.4), for d ≥ 2, the sequence of averages of

(
qNt
)
t≥0

over balls

of radius rN converges in distribution in D([0,∞),Ξ) to the solution of the Fisher-KPP
equation.

Remark 2.4. It would have been more natural to consider the fluctuations directly
around the deterministic limit (ft)t≥0, but in fact the difference between fN and f is

too large (of order δ2
N , see Proposition 4.7). We have that |ZNt − (εNδ

d−2
N )−1/2(qNt −

ft)| = O(δ2
N (εNδ

d−2
N )−1/2) but if εN = o

(
δd+2
N

)
then (εNδ

d−2
N )1/2δ−2

N = o(δd−2
N ) and so

(εNδ
d−2
N )−1/2δ2

N →∞ as N →∞ as soon as d ≥ 2.
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2.2 Stable radii of reproduction events

In the previous subsection, we assumed that the radius of dispersion of the offspring
produced at reproduction events was small. We now wish to allow large scale extinction-
recolonization events to take place to illustrate the fact that "catastrophic" extinction
events can occur, followed by a quick replacement of the dead individuals by the offspring
of a small subset (here only one individual) of the survivors. To do so, we suppose that
the intensity measure for the radius of reproduction events µ(dr) has a power law
behaviour, following the work in [EVY14]. The corresponding limiting behaviour is
described by reaction-diffusion equations with non-local diffusion, studied for example in
[Chm13, AK15]. Suppose that the measure µ(dr) for the radius of reproduction events is
given by

µ(dr) =
1r≥1

rd+α+1
dr, (2.6)

for some α ∈ (0, 2 ∧ d). Fix u, s ∈ (0, 1] and choose w0 : Rd → [0, 1] with uniformly
bounded spatial derivatives of up to the second order. Again, take (εN )N≥1 and (δN )N≥1

two sequences in (0, 1] decreasing to zero, and set

sN = δαNs, uN = εNu, qN0 (x) = w0(δNx).

Let F : R→ R be a smooth, bounded function with bounded first and second derivatives
such that F |[0,1] satisfies (1.4) for some m ∈ N and p : {a,A}m → [0, 1]. Then for N ≥ 1,
let
(
qNt
)
t≥0

be the spatial Λ-Fleming-Viot process with selection following the dynamics
of Definition 1.2 with impact parameter uN , radius of reproduction events given by
µ(dr) in (2.6), selection parameter sN and selection function F started from the initial
condition qN0 .

The main difference with the setting of Subsection 2.1 is that the flow resulting from
the reproduction events is the α-stable version of the heat flow (see Section 3.3). Thus
we apply a stable scaling of time by 1/δαN and space by 1/δN (after rescaling time by
1/εN as previously). Since we have chosen sN = δαNs, this is the right scaling to consider
in order to observe both selection and migration in the limit. For all x ∈ Rd and t ≥ 0, set

qNt (x) = qNt/(εNδαN )(x/δN ). (2.7)

We need some more notation; recall the notation for double averages in (2.3). The
following will take up the role played by F (w) in the fixed radius case. For H : [0, 1]→ R,
δ > 0, and f ∈ Ξ, set

H(δ)(f) : x 7→ α

∫ ∞
1

H(f)(x, δr)
dr

rα+1
. (2.8)

Recalling the notation in (2.2), set, for x, y ∈ Rd,

Φ(|x− y|) =

∫ ∞
|x−y|

2

Vr(x, y)

Vr

dr

rd+α+1
, Φ(δ)(|x− y|) =

∫ ∞
|x−y|

2 ∨δ

Vr(x, y)

Vr

dr

rd+α+1
.

For φ : Rd → R which admits uniformly bounded spatial derivatives of order up to two
and ψ ∈ L1,∞(Rd),

Dαφ(x) =

∫
Rd

Φ(|x− y|)(φ(y)− φ(x))dy, Dα,δψ(x) =

∫
Rd

Φ(δ)(|x− y|)(ψ(y)− ψ(x))dy.

(2.9)

Remark 2.5. Up to a multiplicative constant, depending on d and α, Dα is the fractional
Laplacian (this can be seen via the Fourier transform, see [SKM93]).
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We can now formulate our result for the stable radii regime. The main difference
from Theorem 2.2 is that the Laplacian has to be replaced by the operator Dα and that
the noise driving the fluctuations is replaced by a coloured noise which is white in time
and has spatial correlations which decay like Kα(z1, z2) as |z1 − z2| → ∞, where

Kα(z1, z2) =

∫ ∞
|z1−z2|

2

Vr(z1, z2)
dr

rd+α+1
=

Cd,α
|z1 − z2|α

. (2.10)

We also set the following notation: for f ∈ Ξ,

[f ]α(z1, z2) =

∫∞
|z1−z2|

2

dr
rd+α+1

∫
B(z1,r)∩B(z2,r)

f(x, r)dx∫∞
|z1−z2|

2
Vr(z1, z2) dr

rd+α+1

. (2.11)

Note that if f denotes the frequency of type a in qNt immediately before a (neutral)
reproduction event which hits both z1 and z2 with |z1 − z2| ≥ 2δN , then [f ]α(z1, z2) is the
probability that the offspring produced in this event are of type a.

The following lemma provides a deterministic centering term fN around which we
consider the fluctuations of qN .

Lemma 2.6. If w0 : Rd → [0, 1] has uniformly bounded spatial derivatives of order up to
two, then 

∂fNt
∂t

= u

[
Dα,δN fNt −

V1s

α
F (δN )(fNt )

]
,

fN0 = w0

(2.12)

defines a unique (deterministic) function fN in L∞([0, T ] × Rd). In addition, it admits
spatial derivatives of order up to two which are all in L∞([0, T ]×Rd).

This lemma is proved in Appendix B.

Theorem 2.7 (Central Limit Theorem for the SLFVS in Rd with stable radii of reproduction
events). Let

(
qNt
)
t≥0

be defined as in (2.7). Suppose that εN = o
(
δ2α
N

)
; then

(
qNt
)
t≥0

converges in L1 and in probability (for the metric d of Definition 1.1) to the deterministic
solution f : R+ ×Rd → R of the following PDE,

∂ft
∂t

= u

[
Dαft −

sV1

α
F (ft)

]
,

f0 = w0.

(2.13)

In addition,

ZNt = ε
−1/2
N (qNt − fNt )

defines a sequence of distribution-valued processes, converging in distribution in
D
(
[0, T ],S ′(Rd)

)
to the solution of the following stochastic partial differential equa-

tion, dzt = u

[
Dαzt −

sV1

α
F ′(ft)zt

]
dt+ udWα

t

z0 = 0,

where Wα is a coloured noise with covariation measure given by

Qα(dz1dz2ds) = Kα(z1, z2) ([fs]α(z1, z2)(1− fs(z1))(1− fs(z2))

+(1− [fs]α(z1, z2))fs(z1)fs(z2)) dz1dz2ds. (2.14)
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Remark 2.8. The fact that the correlations in the noise decay as |z1 − z2|−α can be
expected from the results in [BEK06] (see also [BEK10]). The authors prove that, if N
is a Poisson point process on Rd ×R+ whose intensity measure is of the form dxf(r)dr

with f(r) ∼ C
r1+α+d , one can define a generalized random field X on the space of signed

measures on Rd with finite total variation by

〈X,µ〉 =

∫
Rd×R+

µ(B(x, r))N(dx, dr).

Under a suitable scaling of the radius and of the intensity measure, it is shown that the
fluctuations of X converge (in the sense of finite dimensional distributions) to a centred
Gaussian random linear functional Wα with

E [Wα(µ)Wα(ν)] =

∫
Rd

∫
Rd
|z1 − z2|−α µ(dz1)ν(dz2).

(The notation has been changed so as to fit that of our setting; in [BEK06], β = α+d.) The
second factor in (2.14) (besides Kα(z1, z2)) comes from the expression for the covariation
between the jump in the allele frequency during a reproduction event at the two locations
z1 and z2 (see (3.6) and the definition of [f ]α in (2.11)).

We show in Section 3 that Theorem 2.7 is a consequence of Theorem 3.10. The
latter is a result on sequences of solutions to a martingale problem and is proved in
Section 5. In [EVY14], the authors showed that in the special case of genic selection
(as in Definition 1.4), for d ≥ 2, a sequence of spatially averaged versions of

(
qNt
)
t≥0

converges in distribution in D([0,∞),Ξ) to the solution of (2.13).

2.3 Drift load for a spatially structured population

We shall illustrate the application of our results by studying the drift load in the
SLFVS with overdominance as in Definition 1.5, in the case of bounded radii.

As in Section 2.1, fix u, s1, s2, ν1, ν2 in (0, 1] and R > 0 such that s1 + s2 + ν1 + ν2 < 1,
take two sequences (εN )N≥1, (δN )N≥1 of positive real numbers in (0, 1] decreasing to
zero, and set

uN = εNu, rN = δNR si,N = δ2
Nsi, νi,N = δ2

Nνi (2.15)

for i = 1, 2. Then for N ≥ 1, let
(
qNt
)
t≥0

be the SLFVS following the dynamics of
Definition 1.5 with impact parameter uN , radius of reproduction events R, selection
parameters si,N and mutation parameters νi,N , started from some initial condition qN0 .

One thing to note is that for our results to hold, we need to make sure that the allele
frequencies do not get "stuck" - even locally - at the boundaries (i.e. upon reaching 0 or
1), which could significantly slow down the convergence to the equilibrium frequency.
For this reason we choose to assume that during some mutation reproduction events the
type of the offspring can differ from that of its parent. This will not affect the results in
any other way provided that the mutation parameters are negligible compared to the
selection parameters.

Now let

F (w) = w(1− w)(w − s2

s1 + s2
) +

ν1

s1 + s2
w − ν2

s1 + s2
(1− w). (2.16)

We shall see in Section 3 that this function plays the same role as in the haploid case.
Note that F satisfies the following conditions:

∃λ ∈ [0, 1] : F (λ) = 0; (2.17)
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furthermore there is only one such λ and it satisfies

0 < λ < 1 and F ′(λ) > 0. (2.18)

For the function F given in (2.16), λ is given by

λ =
s2

s1 + s2
+O

(
ν1 + ν2

s1 + s2

)
(2.19)

(since the first term is a solution of w(1− w)(w − s2
s1+s2

) = 0).

Let us define KN (t, x), the local mean fitness at a point x ∈ Rd, as the expected fitness
of an individual formed by fusing two gametes chosen uniformly at random from B(x,R)

at time t ≥ 0. In other words, its two copies of the gene are sampled independently by
selecting two parental locations y1 and y2 uniformly at random in B(x,R) and then types
according to qt(y1) and qt(y2). Then (see [Rob70]),

KN (t, x) = E
[
(1− s1,N )qNt (x,R)2 + 2qNt (x,R)(1− qNt (x,R)) + (1− s2,N )(1− qNt (x,R))2

]
= 1− E

[
s1,NqNt (x,R)2 + s2,N (1− qNt (x,R))2

]
= 1− s1,Ns2,N

s1,N + s2,N
− (s1,N + s2,N )E

[(
qNt (x,R)− s2

s1 + s2

)2
]

= 1− s1,Ns2,N

s1,N + s2,N
− (s1,N + s2,N )E

[(
qNt (x,R)− λ

)2
]

− (s1,N + s2,N )

(
λ− s2

s1 + s2

)(
2E
[
qNt (x,R)

]
− λ− s2

s1 + s2

)
.

The first term s1,Ns2,N
s1,N+s2,N

is the segregation load mentioned in the introduction, and it is

of order δ2
N . The second term is then the local drift load, which we aim to estimate at

large times for large N . The last term is an error due to the mutation events; by (2.19),
it is O

(
δ2
N (ν1 + ν2)

)
, and so negligible compared to the segregation load if ν1+ν2

s1+s2
is small.

Let us set

∆N (t, x) = (s1,N + s2,N )E

[(
qNt (x,R)− λ

)2
]
. (2.20)

The following theorem is proved in Section 6 using some of the intermediate results used
to prove Theorem 2.2.

Theorem 2.9. Suppose that qN0 (x) = λ for all x and assume that εN = o
(
δ4
N

)
. There

exists a constant C > 0, depending only on the dimension d, such that, for all x ∈ Rd, as
N, t→∞, if t grows fast enough that εN t→∞ if d ≥ 3 and εNδ2

N t→∞ if d ≤ 2,

∆N (t, x) ∼
N,t→∞

CεNδ
2
NcN ,

where

cN =


1 if d ≥ 3,∣∣log δ2

N

∣∣ if d = 2,

δ−1
N if d = 1.

(2.21)

Assumption (2.17)-(2.18) is crucial in [Nor74a], which serves as a basis for this result.
In fact this condition ensures that λ is the only equilibrium point for the allele frequency,
and that it is stable.

Remark 2.10. We chose to start the process from the equilibrium frequency λ - i.e. very
near stationarity - but we need not do so. The same result can be obtained starting from
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an arbitrary initial condition, provided we let t grow sufficiently fast that the process
reaches stationarity quickly enough. The corresponding centering term fN is then
defined as in (2.5), and (2.17)-(2.18) ensures that it converges to λ exponentially quickly.
Starting from λ simplifies the proof as in this case, for all t ≥ 0, fNt = λ.

In the non-spatial setting of the Λ-Fleming Viot process, a simplified version of the
proof of Theorem 2.9 shows that the drift load is asymptotically proportional to uN . We
can see uN as being inversely proportional to the neighbourhood size, in other words
the probability that two individuals had a common parent in the previous generation
(see [BEV13a] for details). This agrees with Robertson’s estimate [Rob70] of (4N)−1,
where N is the total population size in a panmictic population. Note that this estimate is
independent of the strength of selection. This can be seen as the result of a trade off
between selection and genetic drift: if selection is weak, the allele frequency can be far
from the equilibrium whereas if selection is stronger, the allele frequency stays nearer
to the equilibrium and in both cases the mean fitness of the population is the same.

For spatially structured populations, however, Theorem 2.9 shows that the local
drift load is significantly smaller than in the non-spatial setting and does depend on the
strength of natural selection. For example, if a population lives in a geographical space
of dimension 2, the corresponding drift load will be of order εNδ2

N

∣∣log δ2
N

∣∣, and since
uN = uεN and sN := s1,N + s2,N = δ2

N (s1 + s2), it is of order uNsN |log sN |. Moreover, we
see a strong effect of dimension on this estimate. Populations living in a space with a
higher dimension have a reduced drift load compared to populations evolving in smaller
dimensions. This result illustrates the fact that, in a higher dimension, migration is more
efficient at preventing the allele frequencies from being locally far from the equilibrium
frequency. It turns out from the proof that this is linked to the recurrence properties of
Brownian motion.

Remark 2.11 (Drift load in the stable case). If one considers instead the SLFVS with
stable radii of reproduction events, under similar conditions to those in Theorem 2.7,
one finds that for all d ≥ 1 and α ∈ (0, 2 ∧ d), ∆N (t, x) is asymptotically equivalent to a
constant times uNsN |log sN |.

3 Martingale problems for the SLFVS

This section provides the basic ingredients for the proofs of Theorems 2.2 and 2.7.
In Subsection 3.1, we prove that the SLFVS satisfies a martingale problem. In Sub-
sections 3.2 and 3.3, we study the martingale problem for the rescaled version of this
process, in the fixed radius case and in the stable radii case, and state general conver-
gence results for processes satisfying these martingale problems. Theorems 2.2 and 2.7
are direct consequences of these results.

3.1 The martingale problem for the SLFVS

Let
(
qNt
)
t≥0

be defined (as in Sections 2.1 and 2.2) as the SLFVS as in Definition 1.2

with impact parameter uN , distribution of reproduction event radii given by µ(dr),
selection parameter sN and selection function F . Let (Ft)t≥0 denote the natural filtration
of this process.

For p > 0 and φ : Rd → R, let ‖φ‖p = (
∫
Rd
|φ(x)|pdx)1/p.

Proposition 3.1. Suppose that
∫∞

0
V 2
r µ(dr) <∞. For any φ : Rd → R in L1,∞(Rd),

〈
qNt , φ

〉
−
〈
qN0 , φ

〉
−
∫ t

0

∫ ∞
0

uNVr

{〈
qNs , φ(r)− φ

〉
− sN

〈
F (qNs )(r), φ

〉}
µ(dr)ds (3.1)

defines a (mean zero) square integrable Ft-martingale with (predictable) variation
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A central limit theorem for the SLFV with selection

process∫ t

0

∫ ∞
0

u2
NV

2
r

∫
(Rd)2

φ(z1)φ(z2)σ(r)
z1,z2(qNs )dz1dz2µ(dr)ds+O

(
tu2
NsN ‖φ‖

2
2

)
, (3.2)

where

σ(r)
z1,z2(q) =

1

V 2
r

∫
B(z1,r)∩B(z2,r)

[q(x, r)(1− q(z1))(1− q(z2)) + (1− q(x, r))q(z1)q(z2)]dx.

(3.3)

Proposition 3.1 can be seen as a way to write qt as the sum of the effects of the

different evolutionary forces at play in this model. The term φ− φ represents migration,
while the term involving the function F in (3.1) accounts for the bias introduced during
selective events. As for the martingale term, it corresponds to the stochasticity at each
reproduction event, which is called genetic drift.

Proof of Proposition 3.1. We drop the superscript N from qN in this proof. Let Pt,x,r
(resp. PSt,x,r) denote the distribution of the parental type k at a reproduction event
(t, x, r) ∈ Π (resp. in ΠS). Then, from the definition of (qt)t≥0,

lim
δt↓0

1

δt
E [ 〈qt+δt, φ〉 − 〈qt, φ〉 | qt = q] =∫
Rd

dx

∫ ∞
0

µ(dr)

∫
Rd
φ(z)uN1|x−z|<r

{
(1− sN )Et,x,r [1k=a − qt(z) | qt = q]

+ sN E
S
t,x,r [1k=a − qt(z) | qt = q]

}
dz. (3.4)

Recall from Definition 1.2 that Pt,x,r (k = a | qt = q) = q(x, r) and

PSt,x,r (k = a | qt = q) = q(x, r)− F (q(x, r)).

Integrating with respect to the variable x over B(z, r) then yields

lim
δt↓0

1

δt
E [ 〈qt+δt, φ〉 − 〈qt, φ〉 | qt = q]

=

∫ ∞
0

µ(dr)uNVr

∫
Rd
φ(z)

{
(q(z, r)− q(z))− sNF (q)(z, r)

}
dz.

Thus (3.1) indeed defines a martingale - see for example [EK86, Proposition 4.1.7] (we
can change the order of integration to do the averaging on φ instead of q in the first
term). To compute its variation process, write

lim
δt↓0

1

δt
E
[

(〈qt+δt, φ〉 − 〈qt, φ〉)2
∣∣∣ qt = q

]
=

∫
Rd

∫ ∞
0

∫
(Rd)2

φ(z1)φ(z2)u2
N1|z1−x|<r
|z2−x|<r{

(1− sN )Et,x,r [ (1k=a − qt(z1))(1k=a − qt(z2)) | qt = q]

+ sN E
S
t,x,r [ (1k=a − qt(z1))(1k=a − qt(z2)) | qt = q]

}
dz1dz2µ(dr)dx. (3.5)

But

Et,x,r [ (1k=a − qt(z1))(1k=a − qt(z2)) | qt = q]

= q(x, r)(1− q(z1))(1− q(z2)) + (1− q(x, r))q(z1)q(z2), (3.6)
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and the other term within the curly brackets is O (sN ). Thus, integrating with respect to
x and using (3.3), we recover

lim
δt↓0

1

δt
E
[

(〈qt+δt, φ〉 − 〈qt, φ〉)2
∣∣∣ qt = q

]
=

∫ ∞
0

µ(dr)u2
NV

2
r

∫
(Rd)2

φ(z1)φ(z2)σ(r)
z1,z2(q)dz1dz2

+O (sN )

∫ ∞
0

µ(dr)u2
NV

2
r

∫
Rd

(
1

Vr

∫
B(x,r)

φ(z)dz

)2

dx. (3.7)

By Jensen’s inequality,
∫
Rd

(
1
Vr

∫
B(x,r)

φ(z)dz
)2

dx ≤ ‖φ‖22 and the result follows from the

assumption that
∫∞

0
V 2
r µ(dr) <∞.

Now let
(
qNt
)
t≥0

denote the SLFVS with overdominance as defined in Definition 1.5
with impact parameter uN , radius of reproduction events R, selection parameters si,N
and mutation parameters νi,N defined in (2.15). Recall the definition of F in (2.16) and
let (Ft)t≥0 denote the natural filtration of this process.

Proposition 3.2. Let s = s1 +s2 (and sN = s1,N +s2,N ). For any φ : Rd → R in L1,∞(Rd),〈
qNt , φ

〉
−
〈
qN0 , φ

〉
−
∫ t

0

uNVr

{〈
qNs , φ(R)− φ

〉
− sN

〈
F (qNs )(R), φ

〉}
ds (3.8)

defines a (mean zero) square integrable Ft-martingale with (predictable) variation
process ∫ t

0

u2
NV

2
R

∫
(Rd)2

φ(z1)φ(z2)ρ(R)
z1,z2(qNs )dz1dz2ds+O

(
tu2
Nδ

2
N ‖φ‖

2
2

)
, (3.9)

where

ρ(r)
z1,z2(q) =

1

V 2
r

∫
B(z1,r)∩B(z2,r)

[q(x, r)2(1− q(z1))(1− q(z2))

+ 2q(x, r)(1− q(x, r))( 1
2 − q(z1))( 1

2 − q(z2)) + (1− q(x, r))2q(z1)q(z2)]dx. (3.10)

Proof. Suppose a reproduction event hits the ball B(x, r) at time t, and let w = qNt−(x, r).
Then,

P ({k1, k2} = {A1, A1}) = (1− s1,N − s2,N − ν1,N − ν2,N )w2 + s1,Nw
4

+ s2,Nw
2(1 + (1− w)2) + ν2,N ,

P ({k1, k2} = {A1, A2}) = (1− s1,N − s2,N − ν1,N − ν2,N )2w(1− w)

+ s1,N2w(1− w)(1 + w2) + s2,N2w(1− w)(1 + (1− w)2),

P ({k1, k2} = {A2, A2}) = (1− s1,N − s2,N − ν1,N − ν2,N )(1− w)2 + s1,N (1− w)2(1 + w2)

+ s2,N (1− w)4 + ν1,N .

Hence

E
[

1
2 (1k1=A1 + 1k2=A1)

∣∣ qt−(x, r) = w
]

= w + w(1− w)(−s1,Nw + s2,N (1− w))− ν1,Nw + ν2,N (1− w)

= w − sNF (w),

recalling the definition of F in (2.16) and si,N , νi,N in (2.15) and that sN = s1,N + s2,N .
Therefore

Et,x,r
[

1
2 (1k1=A1

+ 1k2=A1
)− qNt−(z)

∣∣ qNt− = q
]

= q(x, r)− q(z)− sNF (q(x, r)).
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A central limit theorem for the SLFV with selection

It follows as in the proof of Proposition 3.1 that (3.8) is a martingale. The result for the
variation process also follows as in the proof of Proposition 3.1 (all terms containing
either si,N or νi,N are collected in the error term in (3.9)). Note that σ(r) is replaced by
ρ(r) in order to account for the fact that (1.5) is replaced by (1.8).

Remark 3.3. If q were continuous then as r → 0, σ(r)
z1,z2(q)→ δz1=z2q(z1)(1− q(z1)) and

ρ
(r)
z1,z2(q)→ 1

2δz1=z2q(z1)(1− q(z1)). The factor of 1/2 represents the doubling of effective
population size for a diploid population compared to a haploid one.

3.2 The rescaled martingale problem - Fixed radius case

As at the start of Subsection 2.1, let (εN )N≥1, (δN )N≥1 be sequences in (0, 1] decreas-
ing towards zero, and let F : R→ R.

Definition 3.4 (Martingale Problem (M1)). Given (εN )N≥1, (δN )N≥1 and F , let ηN =

εNδ
2
N , τN = ε2

Nδ
d
N and rN = δNR. Then for N ≥ 1, we say that a Ξ-valued process

(wNt )t≥0 satisfies the martingale problem (M1) if for all φ in L1,∞(Rd),

〈
wNt , φ

〉
− 〈w0, φ〉 − ηNuVR

∫ t

0

{
2R2

d+ 2

〈
wNs ,L(rN )φ

〉
− s

〈
F (wNs )(rN ), φ

〉}
ds (3.11)

defines a (mean zero) square-integrable martingale with (predictable) variation process

τNu
2V 2
R

∫ t

0

∫
(Rd)2

φ(z1)φ(z2)σ(rN )
z1,z2(wNs )dz1dz2ds+O

(
tτNδ

2
N ‖φ‖

2
2

)
. (3.12)

Remark 3.5. Of course, one cannot expect uniqueness to hold for this martingale
problem, due to the unspecified error term in (3.12). In the limit when N →∞, however,
the error terms will vanish.

Let
(
qNt
)
t≥0

be defined as at the start of Section 2.1. Set wNt (x) = qNt (x/δN ).

Proposition 3.6. For each N , the process
(
wNt
)
t≥0

satisfies the martingale problem
(M1).

Proof. From Proposition 3.1, we know that, for φ ∈ L1,∞(Rd),

〈
qNt , φ

〉
=
〈
qN0 , φ

〉
+ uNVR

∫ t

0

{〈
qNs , φ(R)− φ

〉
− sN

〈
F (qNs )(R), φ

〉}
ds+MN

t (φ),

whereMN
t (φ) is a martingale. By a change of variables,〈

wNt , φ
〉

= δdN

〈
qNt , φ

(δN )
〉
, (3.13)

with φ(δ)(x) = φ(δx). Also,

δdN

〈
qNs , φ

(δN )(R)
〉

=
〈
wNs , φ(δNR)

〉
and δdN

〈
F (qNs )(R), φ(δN )

〉
=
〈
F (wNs )(δNR), φ

〉
.

(3.14)

Thus, recalling the definition of the operator L(r) in (2.4) and the initial condition
qN0 (x) = w0(δNx), we have

〈
wNt , φ

〉
= 〈w0, φ〉+ εNδ

2
NuVR

∫ t

0

{
2R2

d+ 2

〈
wNs ,L(δNR)φ

〉
− s

〈
F (wNs )(δNR), φ

〉}
ds

+ δdNMN
t (φ(δN )).
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Moreover, by a change of variables in the variation process given in (3.2),

δ2d
N

〈
MN (φ(δN ))

〉
t

= ε2
Nu

2V 2
R

∫ t

0

∫
(Rd)2

φ(z1)φ(z2)σ
(R)
z1/δN ,z2/δN

(qNs )dz1dz2ds

+O
(
tε2
Nδ

2
Nδ

d
N ‖φ‖

2
2

)
, (3.15)

and
σ

(R)
z1/δN ,z2/δN

(qNs ) = δdNσ
(δNR)
z1,z2 (wNs ).

Hence wN satisfies the martingale problem (M1).

Proposition 3.6 is the main ingredient in the proof of Theorem 2.2. In fact we shall
now see that under suitable conditions on the parameters (εN )N≥1 and (δN )N≥1, the

function F and the initial condition w0, any sequence of processes
(
wNt
)
t≥0

satisfying the
martingale problem (M1) in Definition 3.4 will also satisfy a result analogous to Theorem
2.2. If τN is of a smaller order than ηN , wN can be expected to be asymptotically
deterministic (on a suitable time-scale), and we can study its fluctuations around a
deterministic centering term. Define fN : R+ ×Rd → R as in (2.5). Quite naturally, this
corresponds to equating (3.11) to zero and making its time-scale fit that of the limiting
process.

Since the operator L(r) approximates the Laplacian as r → 0 (see Proposition A.2 in
the appendix), fNt converges to f : R+ ×Rd → R as N →∞, where ft is the solution of
the following equation, 

∂ft
∂t

= uVR

(
R2

d+ 2
∆ft − sF (ft)

)
,

f0 = w0.

(3.16)

(See Proposition 4.7 for a precise statement.) The following result is proved in Section 4.

Theorem 3.7. Suppose that
(
wNt
)
t≥0

is a Ξ-valued process which satisfies the martingale
problem (M1) in Definition 3.4 for some smooth, bounded F : R → R with bounded
derivatives of order up to four and (δN )N , (εN )N converging to zero asN →∞. Moreover,
suppose

τN/ηN = o
(
δ2d
N

)
. (3.17)

Suppose also that w0 has uniformly bounded derivatives of up to the fourth order and
that there exists αN such that the jumps of

(
wNt
)
t≥0

are (almost surely) dominated by

sup
t≥0

∣∣〈wNt , φ〉− 〈wNt− , φ〉∣∣ ≤ αN ‖φ‖1 (3.18)

for every φ ∈ L1,∞(Rd), with α2
N = o (τN/ηN ). Then(
wNt/ηN

)
t≥0

L1, P−→
N→∞

(ft)t≥0 (3.19)

in (D ([0, T ],Ξ) , d) for every T > 0 with d given by Definition 1.1. In addition,

ZNt = (ηN/τN )1/2(wNt/ηN − f
N
t )

defines a sequence of distribution-valued processes which converges in distribution in
D
(
[0, T ],S ′(Rd)

)
to the solution of the following stochastic partial differential equation,dzt = uVR[

R2

d+ 2
∆zt − sF ′(ft)zt]dt+ uVR

√
ft(1− ft) · dWt,

z0 = 0,

(3.20)

W being a space-time white noise.
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Theorem 2.2 is now a direct consequence.

Proof of Theorem 2.2. Recall that (qNt )t≥0 is defined in (2.1) as a rescaling of
(
qNt
)
t≥0

,

and that by Proposition 3.6, letting wNt (x) = qNt (x/δN ),
(
wNt
)
t≥0

satisfies the martingale

problem (M1). Also τN/ηN = o
(
δ2d
N

)
follows from εN = o(δd+2

N ), and the bound on the
jumps (3.18) holds with αN = εNu by (1.5). Hence Theorem 3.7 applies and the result
follows by noting that wNt/ηN = qNt .

The proof of Theorem 3.7 can be found in full detail in Section 4, but, in order to
shed some light on the limiting equations that we obtain and to identify the difficulties
in proving this result, let us outline the first calculations involved in the proof. As in

[Kur71], we use bounds on the martingale (3.11) to show the convergence of
(
wNt/ηN

)
t≥0

.

When properly rescaled, this martingale converges to a continuous Gaussian martingale,
implying the convergence of the fluctuation process

(
ZNt
)
t≥0

.

For ease of notation, we shall set the constants uVR, 2R2/(d + 2) and s to 1 in the

definition of (M1). Let MN
t (φ) denote τ

−1/2
N times the martingale defined in (3.11).

Formally, we can then write (M1) as

dwNt = ηN

[
L(rN )wNt − F (wNt )(rN )

]
dt+ τ

1/2
N dMN

t .

Now set

MN
t (φ) = η

1/2
N MN

t/ηN
(φ).

(This Brownian scaling is not surprising since in the SLFVS case MN is essentially an
integral against a compensated Poisson point process, and we expect MN to converge
to an integral against white noise.) Replacing t by t/ηN above, we have

dwNt/ηN =
[
L(rN )wNt/ηN − F (wNt/ηN )(rN )

]
dt+ (τN/ηN )1/2dMN

t .

Subtracting the equation

dfNt =
[
L(rN )fNt − F (fNt )(rN )

]
dt,

and multiplying by (ηN/τN )1/2 on both sides, we obtain

dZNt =

[
L(rN )ZNt − (ηN/τN )1/2

(
F (wNt/ηN )− F (fNt )

)
(rN )

]
dt+ dMN

t . (3.21)

Since the function F : R→ R is smooth, for k ∈ {1, 2} and x, y ∈ [0, 1], we can define the
following:

Rk(x, y) =

∫ 1

0

tk−1

(k − 1)!
F (k)(x+ t(y − x))dt. (3.22)

Then Rk is continuous and bounded by 1
k!

∥∥F (k)
∥∥
∞. In addition, by Taylor’s formula,

F (x) = F (y) + (x− y)R1(x, y), (3.23)

F (x) = F (y) + (x− y)F ′(y) + (x− y)2R2(x, y). (3.24)

Substituting the second relation into (3.21) yields

dZNt =
[
L(rN )ZNt − ZNt F ′(fNt )(rN )− (τN/ηN )1/2(ZNt )2R2(wNt/ηN , f

N
t )(rN )

]
dt+ dMN

t .
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In fact, this equality holds in mild form,

〈
ZNt , φ

〉
=

∫ t

0

〈
ZNs ,L(rN )φ− F ′(fNs )φ(rN )

〉
ds

− (τN/ηN )1/2

∫ t

0

〈
(ZNs )2, R2(wNs/ηN , f

N
s )φ(rN )

〉
ds+MN

t (φ). (3.25)

(In other words, every step above can be done using the integral form, yielding (3.25).)
We can see MN as a martingale measure and, from a change of variables in (3.12), its
covariation measure is given by

QN (dz1dz2ds) = σ(rN )
z1,z2(wNs/ηN )dz1dz2ds+O

(
δ2
N

)
δz1=z2(dz1dz2)ds. (3.26)

Accordingly, we will sometimes write MN
t (φ) as a stochastic integral (as defined in

[Wal86, Chapter 2]),

MN
t (φ) =

∫ t

0

∫
Rd
φ(x)MN (dxds).

Note that we have linearised the drift term in (3.11) around the deterministic cen-
tering term, and that the remaining term (where R2 appears) is the error due to this
linearisation. The main difficulty in proving the convergence of ZN is to control this
error. At first sight, it would seem that the factor (τN/ηN )1/2 in front of it is enough to
make it vanish in the limit. However, some care is needed in dealing with the quadratic
term in the spatial integral. Since ZN is going to converge as a distribution-valued
process, its square does not make sense in the limit. The control of this term is achieved
through Lemma 4.6, where we bound the square of the average of ZNt over a ball of
radius rN . It is for this purpose that we require that τN/ηN = o

(
r2d
N

)
.

Once this is done, we will be in a good position to prove the convergence of ZN .

Indeed, as rN tends to zero, L(rN )φ−F ′(fNs )φ(rN ) is well approximated by 1
2∆φ−F ′(fs)φ

(see Proposition A.2). We also prove that MN converges to
√
ft(1− ft) ·Wt (as defined

in [Wal86, Chapter 2]) using the expression (3.26) for its covariance.
The proof of convergence of ZN follows the classical strategy of proving that the

sequence is tight before uniquely characterising its possible limit points. We are outside
the safe borders of real-valued processes, but the theory presented in [Wal86] provides
the main tools needed for the proof of our result. In particular, the argument relies
heavily on Mitoma’s Theorem (Theorem 6.13 in [Wal86]), which states that a sequence
of processes (Xn

t )t≥0, n ≥ 1 with sample paths in D
(
[0, T ],S ′(Rd)

)
a.s. is tight if and

only if, for each φ ∈ S(Rd), the sequence of real-valued processes (〈Xn, φ〉)n≥1 is tight in
D ([0, T ],R) (see also Theorem 4.1).

3.3 The rescaled martingale problem - Stable radii case

For φ ∈ L1,∞(Rd), and α ∈ (0, d ∧ 2), define the following norm

‖φ‖2(α) =

∫
(Rd)2

φ(z1)φ(z2) |z1 − z2|−α dz1dz2. (3.27)

Let (εN )N≥1, (δN )N≥1 be sequences in (0, 1] decreasing towards zero, and let F : R→
R.

Definition 3.8 (Martingale Problem (M2)). Given (εN )N≥1, (δN )N≥1 and F , let ηN = εNδ
α
N

and τN = ε2
Nδ

α
N . Then for N ≥ 1, we say that a Ξ-valued process (wNt )t≥0 satisfies the

martingale problem (M2) if for all φ in L1,∞(Rd),〈
wNt , φ

〉
− 〈w0, φ〉 − ηNu

∫ t

0

{〈
wNs ,Dα,δNφ

〉
− sV1

α

〈
F (δN )(wNs ), φ

〉}
ds (3.28)
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defines a (mean zero) square-integrable martingale with (predictable) variation process

τNu
2

∫ t

0

∫
(Rd)2

φ(z1)φ(z2)σ(α,δN )
z1,z2 (wNs )dz1dz2ds+O

(
tτNδ

α
N ‖φ‖

2
(α)

)
, (3.29)

where, for σ(r) defined as in (3.3),

σ(α,δ)
z1,z2 (w) =

∫ ∞
|z1−z2|

2 ∨δ
V 2
r σ

(r)
z1,z2(w)

dr

rd+α+1
. (3.30)

(Note that the remark about uniqueness made after Definition 3.4 also applies to the
martingale problem (M2).)

Let
(
qNt
)
t≥0

be defined as at the start of Section 2.2. Set wNt (x) = qNt (x/δN ).

Proposition 3.9. For each N ≥ 1 the process
(
wNt
)
t≥0

satisfies the martingale problem
(M2).

Proof. This is proved in a similar way to Proposition 3.6. Note that we cannot apply
Proposition 3.1 directly, since in the stable case,

∫∞
0
V 2
r µ(dr) = ∞ (recall that Vr =

|B(0, r)|). However, its proof carries over with small adjustments.
For any φ ∈ L1,∞(Rd),

〈
qNt , φ

〉
=
〈
qN0 , φ

〉
+

∫ t

0

∫ ∞
1

uNVr

{〈
qNs , φ(r)− φ

〉
− sN

〈
F (qNs )(r), φ

〉} dr

rd+α+1
ds

+MN
t (φ),

whereMN
t (φ) is a martingale. Using (3.13) and (3.14), it follows that〈

wNt , φ
〉

= 〈w0, φ〉

+ εNu

∫ t

0

∫ ∞
1

Vr

{〈
wNs , φ(δNr)− φ

〉
− sN

〈
F (wNs )(δNr), φ

〉} dr

rd+α+1
ds

+ δdNMN
t (φ(δN )).

By the definition of Dα,δ in (2.9) and Vr(x, y) in (2.2),∫ ∞
1

Vr(φ(x, δNr)− φ(x))
dr

rd+α+1
= δαN

∫ ∞
δN

∫
Rd

Vr(x, y)

Vr
(φ(y)− φ(x))dy

dr

rd+α+1

= δαNDα,δNφ(x).

Further, by (2.8), ∫ ∞
1

VrF (wNs )(δNr)
dr

rd+α+1
=
V1

α
F (δN )(wNs ).

As a result,〈
wNt , φ

〉
= 〈w0, φ〉+εNδαNu

∫ t

0

{〈
wNs ,Dα,δNφ

〉
− sV1

α

〈
F (δN )(wNs ), φ

〉}
ds+δdNMN

t (φ(δN )).

For the predictable variation process, the term from the second line of (3.5) in the proof
of Proposition 3.1 can be bounded by

O (sN )u2
N

∫
(Rd)2

∫ ∞
0

φ(z1)φ(z2)Vr(z1, z2)
dr

r1+d+α
dz1dz2.

We recover the error term in (3.29) since Vr(z1, z2) ≤ rd1r≥ 1
2 |z1−z2|

. The first term in

(3.29) follows from the definition of σ(α,r) in (3.30).
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As in Subsection 3.2, we can now state a general result for a sequence of processes
satisfying (M2) which implies Theorem 2.7. Let fN be defined as in (2.12) and define f
as the solution to 

∂ft
∂t

= u(Dαft − sV1

α F (ft)),

f0 = w0.
(3.31)

The following result is proved in Section 5.

Theorem 3.10. Suppose that
(
wNt
)
t≥0

satisfies the martingale problem (M2) in Defini-
tion 3.8 for some smooth, bounded function F : R→ R with bounded first and second
derivatives and (δN )N , (εN )N converging to zero as N →∞. Moreover, suppose

τN/ηN = o
(
δ2α
N

)
. (3.32)

Suppose also that w0 has uniformly bounded derivatives of up to the second order and
that there exists αN such that the jumps of

(
wNt
)
t≥0

are dominated by

sup
t≥0

∣∣〈wNt , φ〉− 〈wNt− , φ〉∣∣ ≤ αN ‖φ‖1
for every φ ∈ L1,∞(Rd), with α2

N = o (τN/ηN ). Then(
wNt/ηN

)
t≥0

L1, P−→
N→∞

(ft)t≥0

in (D ([0, T ],Ξ) , d). In addition,

ZNt = (ηN/τN )1/2(wNt/ηN − f
N
t )

defines a sequence of distribution-valued processes which converges in distribution in
D
(
[0, T ],S ′(Rd)

)
to the solution of the following stochastic partial differential equation,{

dzt = u[Dαzt − sV1

α F ′(ft)zt]dt+ u · dWα
t

z0 = 0,
(3.33)

where Wα is a coloured noise with covariation measure given by (2.14).

Theorem 2.7 is now a direct consequence.

Proof of Theorem 2.7. Recall that (qNt )t≥0 is defined in (2.7) as a rescaling of
(
qNt
)
t≥0

,

and that by Proposition 3.9, letting wNt (x) = qNt (x/δN ),
(
wNt
)
t≥0

satisfies the martingale

problem (M2). Also τN/ηN = o
(
δ2α
N

)
follows from εN = o(δ2α

N ), and the bound on the
jumps (3.18) holds with αN = εNu by (1.5). We conclude by applying Theorem 3.10 to
wNt/ηN = qNt .

The proof of Theorem 3.10 will make use of the same ideas as in the proof of Theorem
3.7 and, to improve readability, the steps of the proof which are most similar to those in
the Brownian case will be dealt with more quickly, going into details only when the two
arguments differ.

4 The Brownian case - proof of Theorem 3.7

As in the sketch of the proof in Subsection 3.2, for ease of notation, we shall set the
constants uVR, 2R2/(d+ 2) and s to 1 in the definition of (M1). Recall the expression for〈
ZNt , φ

〉
in (3.25); the next subsection shows how time-dependent test functions can be

used to write
〈
ZNt , φ

〉
as the sum of a stochastic integral against a martingale measure
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and a non-linear term. Subsection 4.2 will provide a bound on this quadratic term using

a Gronwall estimate. We can then prove the convergence of the process
(
wNt/ηN

)
t≥0

to

(ft)t≥0 in Subsection 4.3.
The following result is used to reduce the convergence of distribution-valued pro-

cesses to the convergence of a family of real-valued processes; it is a direct corollary of
Mitoma’s theorem [Wal86, Theorem 6.13].

Theorem 4.1 ([Wal86, Theorem 6.15]). Let (Xn)n≥1 be a sequence of processes with

sample paths in D
(
[0, T ],S ′(Rd)

)
. Suppose

i) for each φ ∈ S(Rd), (〈Xn, φ〉)n≥1 is tight,

ii) for each φ1, . . . , φk in S(Rd) and t1, . . . , tk in [0, T ], the distribution of (
〈
Xn
t1 , φ1

〉
,

. . . ,
〈
Xn
tk
, φk
〉
) converges weakly on Rk.

Then there exists a process (Xt)t≥0 with sample paths in D
(
[0, T ],S ′(Rd)

)
such that Xn

converges in distribution to X.

In order to apply this result to the sequence of distribution-valued processes
(
ZN
)
N≥1

,
we need to check that the two conditions (i ) and (ii ) are satisfied. The first one is proved
in Subsection 4.4, thus implying the tightness of the sequence by Mitoma’s theorem.
Subsection 4.5 deals with the convergence of the martingale measure MN (again as a
distribution valued process, so this subsection will use Theorem 4.1). Finally condition
(ii ) is checked in Subsection 4.6.

In this section, in order to simplify the notation we often drop the sub- and super-
scripts N when there is no ambiguity; for instance, L should always be read L(r), with
r = rN , and wNt/η should be read wNt/ηN .

4.1 Time dependent test functions

Fix φ ∈ S(Rd). We consider time dependent test functions

ϕ : Rd × {(s, t) : 0 ≤ s ≤ t ≤ T} → R

such that (with a slight abuse of notation) ϕ(s, t) ∈ L∞(Rd) for all 0 ≤ s ≤ t and ϕ is
continuously differentiable with respect to the time variables. Let us recall equation
(3.25):

〈
ZNt , φ

〉
=

∫ t

0

〈
ZNs ,L(rN )φ− F ′(fNs )φ(rN )

〉
ds

− (τN/ηN )1/2

∫ t

0

〈
(ZNs )2, R2(wNs/ηN , f

N
s )φ(rN )

〉
ds+MN

t (φ).

Adapting Exercise 5.1 of [Wal86], we obtain that for any time dependent test function ϕ,

〈
ZNt , ϕ(t, t)

〉
=

∫ t

0

〈
ZNs , ∂sϕ(s, t) + L(rN )ϕ(s, t)− F ′(fNs )ϕ(s, t)(rN )

〉
ds

− (τN/ηN )1/2

∫ t

0

〈
(ZNs )2, R2(wNs/ηN , f

N
s )ϕ(s, t)(rN )

〉
ds+

∫ t

0

∫
Rd
ϕ(x, s, t)MN (dxds).

(4.1)

(To see this, use (3.25) to get an expression for
〈
ZNs , ∂sϕ(s, t)

〉
and integrate over s,

using Fubini’s theorem, then apply (3.25) again with φ = ϕ(t, t); see also Theorem 2.6 in
[Wal86].) Suppose then that ϕN solves{

∂sϕ
N (x, s, t) + L(rN )ϕN (x, s, t)− F ′(fNs )ϕN (s, t)(x, rN ) = 0,

ϕN (x, t, t) = φ(x).
(4.2)
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Equations (4.1) and (3.25) then yield

〈
ZNt , φ

〉
= −(τN/ηN )1/2

∫ t

0

〈
(ZNs )2, R2(wNs/η, f

N
s )ϕN (s, t)

〉
ds

+

∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds). (4.3)

Here we see that in the special case where F is linear, R2 = 0 and it remains to prove
the convergence of the stochastic integral of ϕN against the martingale measure MN .
Define ϕ as the solution to ∂sϕ(x, s, t) +

1

2
∆ϕ(x, s, t)− F ′(fs(x))ϕ(x, s, t) = 0,

ϕ(x, t, t) = φ(x).
(4.4)

For a multi-index β = (β1, . . . , βd) ∈ Nd0, let |β| = β1 + . . .+ βd and for g : Rd → R, let the

derivative with respect to β be given by ∂βg(x) = ∂|β|

∂x
β1
1 ...∂x

βd
d

g(x1, . . . , xd).

Lemma 4.2. Fix T > 0 and take φ ∈ S(Rd). There exists a unique solution ϕN to (4.2)
in L∞(Rd × {(s, t) : 0 ≤ s ≤ t ≤ T}) which admits spatial derivatives of order up to four.
Moreover, for any multi-index β with 0 ≤ |β| ≤ 4,

sup
0≤s≤t≤T

∥∥∂βϕN (s, t)
∥∥
q
<∞ and sup

0≤s≤t≤T
‖ϕ(s, t)‖q <∞ (4.5)

for all q ∈ [1,∞].

A proof of this lemma is given in Appendix C. The following lemma, whose proof is
also given in Appendix C, shows that ϕN converges to ϕ as N →∞ and provides uniform
bounds on ∂βϕN .

Lemma 4.3. For T > 0, φ ∈ S(Rd), there exists a constant K1 such that, for all N ≥ 1

and for q ∈ {1, 2},
sup

0≤s≤t≤T

∥∥ϕN (s, t)− ϕ(s, t)
∥∥
q
≤ K1r

2
N .

In addition, there exist constants K2 and K3 such that, for any multi-index β with
0 < |β| ≤ 4, for all N ≥ 1,

sup
0≤s≤t≤T

∥∥ϕN (s, t)
∥∥
q
≤ K2 ‖φ‖q , and sup

0≤s≤t≤T

∥∥∂βϕN (s, t)
∥∥
q
≤ K3.

and K2 does not depend on φ.

We shall see in Subsection 4.5 that MN converges weakly in D
(
[0, T ],S ′(Rd)

)
, and

hence in Subsection 4.6 (using results of [Wal86]) that the second term in (4.3) converges.
However, in the general case where F is not linear, the first term in (4.3) has to be
controlled.

Remark 4.4. Recall the definition of R1 in (3.23); coming back to equation (3.25), and
using (3.23) instead of (3.24), we write〈

ZNt , φ
〉

=

∫ t

0

{〈
L(rN )ZNs , φ

〉
−
〈
ZNs R1(wNs/η, f

N
s ), φ

〉}
ds+

∫ t

0

∫
Rd
φ(y)MN (dyds).

Then by the same argument as for (4.1), for a time dependent test function ϕ,

〈
ZNt , ϕ(t, t)

〉
=

∫ t

0

〈
ZNs , ∂sϕ(s, t) + L(rN )ϕ(s, t)−R1(wNs/η, f

N
s )ϕ(s, t)(rN )

〉
ds

+

∫ t

0

∫
Rd
ϕ(x, s, t)MN (dxds). (4.6)
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It is tempting to try to define ϕN as the solution to ∂sϕ
N (x, s, t) + L(rN )ϕN (x, s, t)−R1(wNs/η, f

N
s )ϕN (s, t)(x, rN ) = 0,

ϕN (x, t, t) = φ(x).

In this way, we would get rid of the first integral in (4.6). However, in this case,
s 7→ ϕN (·, s, ·) is not adapted to the canonical filtration of our process and the stochastic
integral with respect to the martingale measure MN is not well defined.

4.2 Regularity estimate

The following result is an easy consequence of the definition of MN .

Lemma 4.5. There exists a constant K4 such that if for all 0 ≤ t ≤ T , φt : Rd → R is in
L2(Rd), then

E

[(∫ t

0

∫
Rd
φs(x)MN (dxds)

)2
]
≤ K4

∫ t

0

‖φs‖22 ds.

Proof. From the definition of QN in (3.26) and the definition of σ(r)
z1,z2 in (3.3), letting

r = rN ,

E

[(∫ t

0

∫
Rd
φs(x)MN (dxds)

)2
]

= E

[∫ t

0

∫
(Rd)2

φs(z1)φs(z2)σz1,z2(wNs/η)dz1dz2ds

]
+O

(
δ2
N

∫ t

0

‖φs‖22 ds
)

≤
∫ t

0

∫
(Rd)3

1

V 2
r

1|x−z1|<r
|x−z2|<r

|φs(z1)| |φs(z2)|dxdz1dz2ds+O
(
δ2
N

∫ t

0

‖φs‖22 ds
)

=

∫ t

0

∫
Rd

(
1

Vr

∫
B(x,r)

|φs(z)|dz

)2

dxds+O
(
δ2
N

∫ t

0

‖φs‖22 ds
)

≤ K4

∫ t

0

‖φs‖22 ds.

(We have used Jensen’s inequality in the last line.)

For t > 0 and x ∈ Rd, let

Gt(x) = (2πt)−d/2 exp

(
−|x|

2

2t

)

be the fundamental solution to the heat equation on Rd; φ 7→ Gt ∗φ is then the semigroup
of standard Brownian motion. Then ft as defined in (3.16) satisfies

ft(x) = Gt ∗ w0(x)−
∫ t

0

Gt−s ∗ F (fs)(x)ds.

Likewise, for r > 0, recall the definition of L(r) in (2.4) and let
(
ξ

(r)
t

)
t≥0

be a symmetric

Lévy process on Rd with generator φ 7→ L(r)φ. Let φ 7→ G
(r)
t ∗ φ be the corresponding

semigroup. Note that since ξ(r)
t = 0 with positive probability, G(r)

t is not a well-defined

function, but we do have x 7→ G
(r)
t (x, r) ∈ L1,∞. Then fN as defined in (2.5) satisfies

fNt (x) = G
(rN )
t ∗ w0(x)−

∫ t

0

G
(rN )
t−s ∗ F (fNs )(x)ds. (4.7)
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The following provides a bound on the second moment of ZNt , which allows us to

control the quadratic term in (4.3). Note that x 7→ ZNt (x, rN ) is a well defined function
(despite the fact that wNt/η is only defined up to a Lebesgue-null set).

Lemma 4.6. For T > 0, there exists a constant K5 > 0, independent of N , such that for
0 ≤ t ≤ T,

sup
x∈Rd

E
[
ZNt (x, rN )2

]
≤ K5

VrN
.

The proof of this result mirrors that of Theorem 1 in [Nor75a], although it is more
technical because of the Laplacian and the various spatial averages.

Proof. We take r = rN , η = ηN and L = L(rN ) throughout the proof. Use equation (4.6)
with the time-dependent test function ϕ(s, t) = G

(r)
t−s ∗ φ, yielding

〈
ZNt , φ

〉
= −

∫ t

0

〈
G

(r)
t−s ∗

(
ZNs R1(wNs/η, f

N
s )
)
, φ
〉

ds+

∫ t

0

∫
Rd
G

(r)
t−s ∗ φ(y)MN (dyds).

Now take φ(y) = 1
Vr
1|x−y|<r, and use Proposition A.1 in Appendix A to obtain

ZNt (x) = −
∫ t

0

G
(r)
t−s ∗

(
ZNs R1(wNs/η, f

N
s )

)
(x)ds+

∫ t

0

∫
Rd
G

(r)
t−s(x− y)MN (dyds)

= −
∫ t

0

∫
Rd
G

(r)
t−s(x− y)ZNs (y)R1(wNs/η(y), fNs (y))dyds

+

∫ t

0

∫
Rd
G

(r)
t−s(x− y)MN (dyds).

We now want to apply Gronwall’s lemma, but the last term must be controlled carefully.
Taking the square of both sides and using (a+ b)2 ≤ 2(a2 + b2), we have

ZNt (x)2 ≤ 2

(∫ t

0

∫
Rd
G

(r)
t−s(x− y)ZNs (y)R1(wNs/η(y), fNs (y))dyds

)2

+ 2

(∫ t

0

∫
Rd
G

(r)
t−s(x− y)MN (dyds)

)2

.

By Jensen’s inequality (and noting that
∫
Rd
G

(r)
t (x)dx = 1) and the bound ‖Rk‖∞ ≤

1
k!

∥∥F (k)
∥∥
∞ from (3.22), we have

ZNt (x)2 ≤ 2t

∫ t

0

∫
Rd
G

(r)
t−s(x− y) ‖F ′‖2∞ ZNs (y)2dyds

+ 2

(∫ t

0

∫
Rd
G

(r)
t−s(x− y)MN (dyds)

)2

.

Taking expectations on both sides and using Fubini’s theorem, we obtain

E
[
ZNt (x)2

]
≤ 2t ‖F ′‖2∞

∫ t

0

∫
Rd
G

(r)
t−s(x− y)E

[
ZNs (y)2

]
dyds

+ 2E

[(∫ t

0

∫
Rd
G

(r)
t−s(x− y)MN (dyds)

)2
]
.
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From Lemma 4.5, we have

E

[(∫ t

0

∫
Rd
G

(r)
t−s(x− y)MN (dyds)

)2
]
≤ K4

∫ t

0

∥∥∥G(r)
t−s(x− ·)

∥∥∥2

2
ds

= K4

∫ t

0

∫
Rd
E0

[
1

Vr
1∣∣∣ξ(r)t−s−(x−y)

∣∣∣<r
]2

dyds

≤ K4

∫ t

0

E0

[∫
Rd

(
1

Vr
1∣∣∣ξ(r)t−s−(x−y)

∣∣∣<r
)2

dy

]
ds

=
K4

Vr
t. (4.8)

(E0 [·] denotes the expectation with respect to the law of
(
ξ

(r)
t

)
t≥0

started from the

origin.) In addition, we note that E
[
ZNs (y)2

]
≤ supx∈Rd E

[
ZNs (x)2

]
and, combined with

the fact that
∫
Rd
G

(r)
t (x)dx = 1, this yields

E
[
ZNt (x)2

]
≤ 2t ‖F ′‖2∞

∫ t

0

sup
y∈Rd

E
[
ZNs (y)2

]
ds+ 2

K4

Vr
t.

The right hand side does not depend on x, so we can take the supremum over x ∈ Rd on
the left and write for 0 ≤ t ≤ T

sup
x∈Rd

E
[
ZNt (x)2

]
≤ 2T ‖F ′‖2∞

∫ t

0

sup
x∈Rd

E
[
ZNs (x)2

]
ds+ 2

K4

Vr
T.

For each N ≥ 1, for any t ∈ [0, T ] and x ∈ Rd, by Lemma 2.1,

ZNt (x) ≤ (ηN/τN )1/2

(
1 + sup

t∈[0,T ]

∥∥fNt ∥∥∞
)
<∞.

As a result, t 7→ supx∈Rd E
[
ZNt (x)2

]
is bounded on [0, T ]. Hence we can apply Gronwall’s

lemma (see e.g. Theorem 5.1 in [EK86]) to deduce that

sup
x∈Rd

E
[
ZNt (x)2

]
≤ 2

K4

Vr
Te2Tt‖F ′‖2 ≤ K5

Vr
.

4.3 Convergence to the deterministic limit

The following result, proved in Appendix B, shows that fN converges to f .

Proposition 4.7. For T > 0, there exist constants K6 and K7 such that, for all N ≥ 1,

sup
0≤t≤T

∥∥fNt − ft∥∥∞ ≤ K6r
2
N ,

and for all multi-indices β ∈ Nd0 with 0 ≤ |β| ≤ 4,

sup
0≤t≤T

∥∥∂βfNt ∥∥∞ ≤ K7.

We are now in a position to prove the first statement of Theorem 3.7, namely the
convergence of the process (wNt/ηN )t≥0. We are going to prove the following lemma.
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Lemma 4.8. For T > 0, there exists a constant K8 such that for all N ≥ 1 and for any
function φ satisfying ‖φ‖q ≤ 1 and max|β|=2 ‖∂βφ‖q ≤ 1 for q ∈ {1, 2},

E

[
sup

0≤t≤T

∣∣〈ZNt , φ〉∣∣] ≤ K8. (4.9)

Before we prove Lemma 4.8, we show that it implies the convergence of
(
wNt/η

)
t≥0

.

We can choose a separating family (φn)n≥1 of compactly supported smooth functions
satisfying ‖φn‖q ≤ 1 and max|β|=2 ‖∂βφn‖q ≤ 1 for q ∈ {1, 2}, and define d as in (1.2)
using this family. Then

E

[
sup

0≤t≤T
d(wNt/η, ft)

]
≤
∑
n≥1

1

2n

{
E

[
sup

0≤t≤T

∣∣∣〈wNt/η, φn〉− 〈fNt , φn〉∣∣∣]+ sup
0≤t≤T

∣∣〈fNt , φn〉− 〈ft, φn〉∣∣}

≤
∑
n≥1

1

2n

{
(τN/ηN )1/2E

[
sup

0≤t≤T

∣∣〈ZNt , φn〉∣∣]+ sup
0≤t≤T

∥∥fNt − ft∥∥∞ ‖φn‖1}
≤
∑
n≥1

1

2n

{
K8(τN/ηN )1/2 +K6r

2
N

}
= K8(τN/ηN )1/2 +K6r

2
N ,

where the last line follows by Proposition 4.7 and Lemma 4.8. The right-hand-side
converges to zero as N → ∞, yielding the uniform convergence (on compact time
intervals) of (wNt/ηN )t≥0 to (ft)t≥0, the solution of equation (3.16). Note that, as soon as

d ≥ 2, r2
N is the leading order on the right-hand-side (see (3.17)).

Proof of Lemma 4.8. We are going to make use of (3.25) and apply Doob’s maximal
inequality to the martingale part. Let us first show that there exist two constants K and
K ′ such that, for t ∈ [0, T ],

E
[∣∣〈ZNt , φ〉∣∣] ≤ K ‖φ‖2 +K ′

(τN/ηN )1/2

VrN
‖φ‖1 . (4.10)

(From now on we shall write τ = τN , η = ηN and r = rN ). Indeed, taking the expectation
of the absolute value of both sides of (4.3) and using Lemma 4.5, we have

E
[∣∣〈ZNt , φ〉∣∣] ≤ (τ/η)1/2 1

2
‖F ′′‖∞

∫ t

0

〈
E
[
(ZNs )2

]
,
∣∣∣ϕN (s, t)

∣∣∣〉 ds

+

(
K4

∫ t

0

∥∥ϕN (s, t)
∥∥2

2
ds

)1/2

≤ 1

2
‖F ′′‖∞K5T

(τ/η)1/2

Vr
K2 ‖φ‖1 +K

1/2
4 T 1/2K2 ‖φ‖2 ,

where we used Lemmas 4.6 and 4.3 in the last line. We have thus proved (4.10). Recalling
(3.25) and the notation MN

t (φ) =
∫ t

0

∫
Rd
φ(x)MN (dxds), we write

sup
t∈[0,T ]

∣∣〈ZNt , φ〉∣∣ ≤ ∫ T

0

∣∣∣〈ZNs ,Lφ− F ′(fNs )φ
〉∣∣∣ds

+
1

2
‖F ′′‖∞ (τ/η)1/2

∫ T

0

〈
(ZNs )2,

∣∣φ∣∣〉 ds+ sup
t∈[0,T ]

∣∣MN
t (φ)

∣∣ .
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Taking expectations on both sides, we use Lemma 4.6 and apply (4.10) with φ replaced

by Lφ− F ′(fNs )φ to write

E

[
sup
t∈[0,T ]

∣∣〈ZNt , φ〉∣∣
]

≤
∫ T

0

{
K(‖Lφ‖2 + ‖F ′‖∞ ‖φ‖2) +K ′

(τ/η)1/2

Vr
(‖Lφ‖1 + ‖F ′‖∞ ‖φ‖1)

}
ds

+
1

2
‖F ′′‖∞K5T

(τ/η)1/2

Vr
‖φ‖1 + E

[
sup
t∈[0,T ]

∣∣MN
t (φ)

∣∣2]1/2

. (4.11)

By Doob’s inequality and Lemma 4.5,

E

[
sup
t∈[0,T ]

∣∣MN
t (φ)

∣∣2] ≤ 4K4T ‖φ‖22 .

Furthermore, ‖Lφ‖q ≤
d(d+2)

2 max|β|=2 ‖∂βφ‖q by Proposition A.2.i in Appendix A, and
(τ/η)1/2

Vr
tends to zero as N → ∞ due to assumption (3.17). Hence, if ‖φ‖q ≤ 1 and

max|β|=2 ‖∂βφ‖q ≤ 1 for q ∈ {1, 2}, the right-hand-side of (4.11) is bounded by some
constant independent of N and φ.

4.4 Tightness

To prove that the sequence
(
ZN
)
N≥1

is tight in D
(
[0, T ],S ′(Rd)

)
, we adapt the

argument from the proof of Theorem 7.13 in [Wal86].

Proposition 4.9. For any φ ∈ S(Rd), for any arbitrary sequence (TN , ρN )N≥1 such that

TN is a stopping time (with respect to the natural filtration of the process
(
ZNt
)
t≥0

)

with values in [0, T ] for all N and ρN is a deterministic sequence of positive numbers
decreasing to zero as N →∞,〈

ZNTN+ρN , φ
〉
−
〈
ZNTN , φ

〉
→ 0 (4.12)

in probability as N →∞.

By Aldous’ criterion ([Ald78] and [Wal86, Theorem 6.8]), Proposition 4.9 together
with Lemma 4.8 imply that the sequence of real-valued processes

(〈
ZN , φ

〉)
N≥1

is tight

in D ([0, T ],R) for any φ ∈ S(Rd). In turn, Mitoma’s theorem [Wal86, Theorem 6.13]
implies the tightness of

(
ZN
)
N≥1

in D
(
[0, T ],S ′(Rd)

)
.

The proof of Proposition 4.9 requires the three following lemmas (the first two are
proved in Appendix C). Extend ϕN to Rd × [0, T ]2 by setting, for s, t ∈ [0, T ],

ϕN (x, s, t) := ϕN (x, s ∧ t, t). (4.13)

In other words, for s > t, ϕN (s, t) equals φ.

Lemma 4.10. For T > 0, there exists a constant K9 such that, for all N ≥ 1 and for
q ∈ {1, 2},

∀s, t, t′ ∈ [0, T ],
∥∥ϕN (s, t′)− ϕN (s, t)

∥∥
q
≤ K9 |t′ − t| .

Lemma 4.11. For T > 0, there exists a constant K10 such that, for all s ∈ [0, T ],∥∥∥∥∥ sup
t∈[s,T ]

∣∣ϕN (s, t)
∣∣∥∥∥∥∥

1

≤ K10.

EJP 22 (2017), paper 5.
Page 30/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP20
http://www.imstat.org/ejp/


A central limit theorem for the SLFV with selection

Define

V Nt =

∫ T

0

∫
Rd
ϕN (x, s, t)MN (dxds).

Lemma 4.12. For T > 0 and for any 0 < β < 1/2, there exists a random variable YN
such that

∀t, t′ ∈ [0, T ],
∣∣V Nt′ − V Nt ∣∣ ≤ YN |t′ − t|β , (4.14)

almost surely, and E
[
Y 2
N

]
≤ C ′ for all N ≥ 1.

Proof. By Lemma 4.5 and then Lemma 4.10,

E
[∣∣V Nt′ − V Nt ∣∣2] = E

(∫ T

0

∫
Rd

(ϕN (x, s, t′)− ϕN (x, s, t))MN (dxds)

)2
 .

≤ K4

∫ T

0

∥∥ϕN (s, t′)− ϕN (s, t)
∥∥2

2
ds

≤ (K9)2TK4 |t′ − t|
2
.

The result follows by Kolmogorov’s continuity theorem [Wal86, Corollary 1.2].

Proof of Proposition 4.9. We are going to treat each term in (4.3) separately. The first
one converges to zero in L1, uniformly on [0, T ], as a consequence of Lemma 4.6. The
second one is dealt with as in [Wal86, Theorem 7.13]. From (4.3), write

〈
ZNTN+ρN , φ

〉
−
〈
ZNTN , φ

〉
= (τN/ηN )1/2

∫ TN

0

〈
(ZNs )2, R2(wNs/η, f

N
s )ϕN (s, TN )

〉
ds

− (τN/ηN )1/2

∫ TN+ρN

0

〈
(ZNs )2, R2(wNs/η, f

N
s )ϕN (s, TN + ρN )

〉
ds

+
(
V NTN+ρN − V

N
TN

)
+

∫ TN+ρN

TN

∫
Rd
φ(x)MN (dxds). (4.15)

Let us deal with each term separately. The first two are similar so we need only consider
the first one. Since inside the integral s ≤ TN ≤ T ,

∣∣ϕN (s, TN )
∣∣ ≤ supt∈[s,T ]

∣∣ϕN (s, t)
∣∣ and

we have∣∣∣∣∣
∫ TN

0

〈
(ZNs )2, R2(wNs/η, f

N
s )ϕN (s, TN )

〉
ds

∣∣∣∣∣ ≤ 1

2
‖F ′′‖∞

∫ T

0

〈
(ZNs )2, sup

t∈[s,T ]

|ϕN (s, t)|

〉
ds.

Taking the expectation on both sides, we get

E

[∣∣∣∣∣
∫ TN

0

〈
(ZNs )2, R2(wNs/η, f

N
s )ϕN (s, TN )

〉
ds

∣∣∣∣∣
]

≤ 1

2
‖F ′′‖∞

∫ T

0

〈
E
[
(ZNs )2

]
, sup
t∈[s,T ]

|ϕN (s, t)|

〉
ds

≤ 1

2
‖F ′′‖∞

K5

VrN

∫ T

0

∥∥∥∥∥ sup
t∈[s,T ]

∣∣ϕN (s, t)
∣∣∥∥∥∥∥

1

ds

≤ 1

2
‖F ′′‖∞

K5

VrN
TK10.

(4.16)

where the second line follows by Lemma 4.6 and the third line follows by Lemma 4.11.
Recall that we assumed in (3.17) that τN/ηN = o

(
r2d
N

)
; hence the first term on the

EJP 22 (2017), paper 5.
Page 31/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP20
http://www.imstat.org/ejp/


A central limit theorem for the SLFV with selection

right-hand-side of (4.15) converges to zero in L1. By Lemma 4.12, we have, almost
surely, ∣∣V NTN+ρN − V

N
TN

∣∣ ≤ YNρ1/4
N .

Taking the expectation of the square of both sides, we write

E
[∣∣V NTN+ρN − V

N
TN

∣∣2] ≤ C ′ρ1/2
N .

Hence the third term converges to zero in L2 and in probability as N →∞. Finally, since
TN is a stopping time, we can apply Lemma 4.5 to the fourth term,

E

(∫ TN+ρN

TN

∫
Rd
φ(x)MN (dxds)

)2
 ≤ K4E

[∫ TN+ρN

TN

‖φ‖22 ds

]
≤ K4 ‖φ‖22 ρN .

This concludes the proof of Proposition 4.9.

4.5 Convergence of the martingale measure MN

The next step is to show that the martingale measure MN converges weakly in
D
(
[0, T ],S ′(Rd)

)
as N →∞ to M , where Mt =

√
ft(1− ft) ·Wt is a stochastic integral

(as defined in [Wal86, Chapter 2]) against the space-time white noise W and f is the
solution of (3.16). We will naturally use Theorem 4.1, along with the following result on
convergence to Gaussian martingales (which is a consequence of Lévy’s characterisation
of Brownian motion).

For any Rd-valued càdlàg process (Yt)t≥0, define ∆Yt = Yt − Yt− .

Theorem 4.13 ([JS03, Theorem VIII 3.11]). Fix T > 0 and suppose (Xt)t≥0 = (X1
t ,

. . ., Xd
t )t≥0 is a continuous d-dimensional Gaussian martingale and for each n ≥ 1,

(Xn
t )t≥0 = (Xn,1

t , . . . , Xn,d
t )t≥0 is a càdlàg, locally square-integrable martingale such that

(i) |∆Xn
t | is bounded uniformly in n for all t, and supt≤T |∆Xn

t |
P−→

n→∞
0.

(ii) For each t ∈ Q ∩ [0, T ],
〈
Xn,i, Xn,j

〉
t

P−→
n→∞

〈
Xi, Xj

〉
t
.

Then Xn converges in distribution to X in D([0, T ],Rd).

In our setting, the limiting process (Mt(φ))t≥0 is a continuous martingale with
quadratic variation

〈M(φ)〉t =

∫ t

0

∫
Rd
φ(x)2fs(x)(1− fs(x))dxds.

(See [Wal86, Theorem 2.5].) Since this quantity is deterministic, (Mt(φ))t≥0 is Gaussian,
and we can apply the result above. The following lemma is then enough to conclude that
MN converges to M .

Lemma 4.14. For any φ ∈ S(Rd),

i) For all t ≥ 0,
∣∣∆MN

t (φ)
∣∣ ≤ K for some constant K, and sup0≤t≤T

∣∣∆MN
t (φ)

∣∣ P−→
N→∞

0.

ii) For each t ∈ [0, T ],
〈
MN (φ)

〉
t

P−→
N→∞

〈M(φ)〉t.
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Indeed, by polarisation, we can recover
〈
MN (φi),M

N (φj)
〉
t

from
〈
MN (φi + φj)

〉
t

and
〈MN (φi −φj)〉t, and (ii) of Theorem 4.13 is satisfied by vectors of the form (MN

t (φ1),
. . ., MN

t (φp))t≥0. As a result, for any φ1, . . . , φp in S(Rd),
(
MN
t (φ1), . . . ,MN

t (φp)
)
t≥0

converges in distribution to (Mt(φ1), . . . ,Mt(φp))t≥0 in D
(
[0, T ],Rd

)
. In particular, for

any φ ∈ S(Rd),
(
MN (φ)

)
N≥1

is tight, and MN satisfies the assumptions of Theorem 4.1,

hence MN converges in distribution to M as N →∞ in D
(
[0, T ],S ′(Rd)

)
.

Proof of Lemma 4.14. By the definition of MN (φ),

MN
t (φ)−MN

t−(φ) =
〈
ZNt , φ

〉
−
〈
ZNt− , φ

〉
= (ηN/τN )1/2

(〈
wNt/η, φ

〉
−
〈
wNt−/η, φ

〉)
.

The bound on the jumps of 〈wt, φ〉 in (3.18) implies

sup
t≥0

∣∣∆MN
t (φ)

∣∣ ≤ (ηN/τN )1/2 sup
t≥0

∣∣〈wNt − wNt− , φ〉∣∣
≤ αN (ηN/τN )1/2 ‖φ‖1 .

But we have assumed that α2
N = o (τN/ηN ), so (i) is satisfied. To prove (ii), recall from

(3.26) that〈
MN (φ)

〉
t

=

∫ t

0

∫
(Rd)2

φ(z1)φ(z2)σ(rN )
z1,z2(wNs/η)dz1dz2ds+O

(
δ2
N t ‖φ‖

2
2

)
.

The rationale here is to show that the main contribution to this term comes from the
diagonal {(z1, z2) : z1 = z2} when rN → 0. From the definition of σ(rN ) in (3.3), letting
r = rN ,∫

(Rd)2
φ(z1)φ(z2)σ(r)

z1,z2(wNs/η)dz1dz2

=
1

V 2
r

∫
(Rd)3

φ(z1)φ(z2)[wNs/η(x)(1− wNs/η(z1))(1− wNs/η(z2))

+ (1− wNs/η(x))wNs/η(z1)wNs/η(z2)]1|z1−x|<r
|z2−x|<r

dxdz1dz2.

Changing the order of integration gives∫
(Rd)2

φ(z1)φ(z2)σ(r)
z1,z2(wNs/η)dz1dz2 =

〈
wNs/η,

(
φ(1− wNs/η)

)2
〉

+

〈
1− wNs/η,

(
φwNs/η

)2
〉
.

(4.17)
We are left with showing that the right-hand-side of (4.17) converges in probability to〈

fs, (φ(1− fs))2
〉

+
〈
1− fs, (φfs)2

〉
=
〈
fs(1− fs), φ2

〉
.

To do this, we first justify that φ can be let out of the average, we use Lemma 4.6 to
argue that we can replace wNs/η by fNs , then the regularity of fN allows us to remove the

averages and finally we know from Proposition 4.7 that fN converges to f . First note
that

φw(x)− φ(x)w(x) =
1

Vr

∫
B(x,r)

w(y)(φ(y)− φ(x))dy.

Since 0 ≤ w(y) ≤ 1 a.e., we have

∣∣φw(x)− φ(x)w(x)
∣∣ ≤ 1

Vr

∫
B(x,r)

|φ(y)− φ(x)|dy ≤ 1

Vr

∫
B(x,r)

d∑
i=1

‖∂iφ‖∞ |y − x|i dy.
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Hence ∥∥φw − φw∥∥∞ ≤ d rN max
i
‖∂iφ‖∞ .

As a consequence,〈
1− w, (φw)2

〉
−
〈
1− w, φ2w2

〉
=
〈
1− w, (φw − φw)(φw + φw)

〉∣∣〈1− w, (φw)2
〉
−
〈
1− w, φ2w2

〉∣∣ ≤ 2 ‖φ‖1
∥∥φw − φw∥∥∞

≤ 2d ‖φ‖1 rN max
i
‖∂iφ‖∞ .

By the same argument (replacing w by 1 − w), we can also let φ out of the average in
the first term on the right-hand-side of (4.17), and the problem reduces to showing the
convergence of〈

wNs/η, φ
2(1− wNs/η)2

〉
+
〈

1− wNs/η, φ
2wNs/η

2〉
=
〈
wNs/η(1− wNs/η), φ2

〉
.

We now see that it is enough to show that uniformly for s ∈ [0, T ],

sup
x∈Rd

E
[∣∣∣wNs/η(x)− fs(x)

∣∣∣] −→
N→∞

0.

But, by the triangle inequality,

E
[∣∣∣wNs/η(x)− fs(x)

∣∣∣] ≤ (τN/ηN )1/2E
[
ZNs (x)2

]1/2
+
∥∥∥fNs − fNs ∥∥∥∞ +

∥∥fNs − fs∥∥∞
≤ (τN/ηN )1/2

V
1/2
rN

K
1/2
5 +

d

2
r2
NK7 +K6r

2
N .

(We have used Lemma 4.6, Proposition A.2 in Appendix A and Proposition 4.7.) Note that
this bound is uniform for s ∈ [0, T ]. The right-hand-side converges to zero as N → ∞
(due to assumption (3.17)), providing the desired result. From all this we conclude∫

(Rd)2
φ(z1)φ(z2)σ(rN )

z1,z2(wNs/η)dz1dz2
L1

−→
N→∞

∫
Rd
φ(x)2fs(x)(1− fs(x))dx,

uniformly for s ∈ [0, T ], which gives us (ii).

4.6 Conclusion of the proof

We are almost done. We have proved that the sequence of processes
(
ZN
)
N≥1

is tight,
and we need only characterise its potential limit points. Recall the following expression
for

〈
ZNt , φ

〉
from (4.3):

〈
ZNt , φ

〉
= −(τN/ηN )1/2

∫ t

0

〈
(ZNs )2, R2(wNs/η, f

N
s )ϕN (s, t)

〉
ds

+

∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds).

The first term converges to zero in L1 from (4.16). Also,∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds)−

∫ t

0

∫
Rd
ϕ(x, s, t)MN (dxds)

L2

−→
N→∞

0,

since, from Lemma 4.5 and Lemma 4.3,

E

[(∫ t

0

∫
Rd

(ϕN (x, s, t)− ϕ(x, s, t))MN (dxds)

)2
]
≤ K4

∫ t

0

∥∥ϕN (s, t)− ϕ(s, t)
∥∥2

2
ds

≤ K2
1TK4r

4
N .
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For φ1, . . . , φp in S(Rd), let ϕ1, . . . , ϕp be the corresponding solutions of (4.4) with φ = φi.
Since we showed in Section 4.5 that MN converges weakly to M , by [Wal86, Proposition
7.12], for t1, . . . , tp ∈ [0, T ],(∫ t1

0

∫
Rd
ϕ1(x, s, t1)MN (dxds), . . . ,

∫ tk

0

∫
Rd
ϕk(x, s, tk)MN (dxds)

)
d−→

N→∞

(∫ t1

0

∫
Rd
ϕ1(x, s, t1)M(dxds), . . . ,

∫ tk

0

∫
Rd
ϕk(x, s, tk)M(dxds)

)
.

This uniquely characterises the potential limit points of
(
ZN
)
N≥1

. By Theorem 4.1,(
ZNt
)
t≥0

converges in distribution to a distribution-valued process (zt)t≥0 given by

〈zt, φ〉 =

∫ t

0

∫
Rd
ϕ(x, s, t)M(dxds), (4.18)

where ϕ satisfies the backwards heat equation (4.4) with terminal condition φ, ∂sϕ(x, s, t) +
1

2
∆ϕ(x, s, t)− F ′(fs(x))ϕ(x, s, t) = 0,

ϕ(x, t, t) = φ(x).

It is an easy exercise to prove that zt satisfies

〈zt, φ〉 =

∫ t

0

〈
zs,

1

2
∆φ− F ′(fs)φ

〉
ds+

∫ t

0

∫
Rd
φ(x)M(dxds). (4.19)

(See the proof of [Wal86, Theorem 5.2].) In other words, (zt)t≥0 is the (mild) solution of

(3.20) (recall that Mt =
√
ft(1− ft) ·Wt) and Theorem 3.7 is proved.

5 The stable case - proof of Theorem 3.10

Turning to the proof of the central limit theorem in the stable case, we warn that its
overall structure is the same as that in the Brownian case. Whenever the details of the
argument are exactly the same as previously, we simply mention intermediate results
without detailing their proof. Some steps need a different treatment however, and we
explain those in more detail. To simplify our formulas, we use the following notation:

an . bn ⇔ ∃K > 0 : ∀n ≥ 1, 0 ≤ an ≤ K bn. (5.1)

The specific constants can always be retrieved from Section 4 or from a trivial calculation.
Also as in Section 4 we set the constants u and (sV1)/α to 1 in the martingale problem
(M2) defined in Definition 3.8. Let us write (M2) as

dwNt = ηN

[
Dα,δNwNt − F (δN )(wNt )

]
dt+ τ

1/2
N dMN

t .

Recall that ZNt = (ηN/τN )1/2(wNt/η − f
N
t ). Setting MN

t (φ) = η
1/2
N MN

t/ηN
(φ) and using the

definition of F (δN ) in (2.8), we have, by the same argument as for (3.21),

dZNt =

[
Dα,δNZNt − α(ηN/τN )1/2

∫ ∞
1

(
F (wNt/η)− F (fNt )

)
(δNr)

dr

r1+α

]
dt+ dMN

t . (5.2)

Using the definition of R2 in (3.24) as for (3.25), one obtains (in mild form)

〈
ZNt , φ

〉
=

∫ t

0

〈
ZNs ,Dα,δNφ− α

∫ ∞
1

F ′(fNs )φ(δNr)
dr

rα+1

〉
ds

−
(
τN
ηN

) 1
2
α

∫ t

0

∫ ∞
1

〈
(ZNs (δNr))

2, R2(wNs/η, f
N
s )φ(δNr)

〉 dr

rα+1
ds+MN

t (φ), (5.3)
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and the covariation measure of MN is given by

QN (dz1dz2ds) = (σ(α,δN )
z1,z2 (wNs/η) + |z1 − z2|−αO (δαN ))dz1dz2ds. (5.4)

5.1 Time dependent test functions

Note that the analogue of (4.1) holds in the stable setting, that is, for any time
dependent test function ϕ, by (5.3) and the same argument as for (4.1),

〈
ZNt , ϕ(t, t)

〉
=

∫ t

0

〈
ZNs , ∂sϕ(s, t) +Dα,δNϕ(s, t)− α

∫ ∞
1

F ′(fNs )ϕ(s, t)(δNr)
dr

rα+1

〉
ds

−
(
τN
ηN

) 1
2
α

∫ t

0

∫ ∞
1

〈
(ZNs (δNr))

2, R2(wNs/η, f
N
s )ϕ(s, t)(δNr)

〉 dr

rα+1
ds

+

∫ t

0

∫
Rd
ϕ(x, s, t)MN (dxds). (5.5)

For φ ∈ S(Rd), suppose ϕN solves ∂sϕ
N (x, s, t) +Dα,δNϕN (x, s, t)− α

∫ ∞
1

F ′(fNs )ϕN (s, t)(x, δNr)
dr

rα+1
= 0

ϕN (x, t, t) = φ(x).

(5.6)

By (5.5), we have

〈
ZNt , φ

〉
= −

(
τN
ηN

)1/2

α

∫ t

0

∫ ∞
1

〈
(ZNs (δNr))

2, R2(wNs/η, f
N
s )ϕN (s, t)(δNr)

〉 dr

rα+1
ds

+

∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds). (5.7)

We are thus left with finding a suitable way to bound the first term above and showing the
convergence of the stochastic integral against MN . The convergence of the martingale
measure MN is going to involve slightly different calculations compared to the previous
case as the limiting noise is not a space-time white noise. The convergence of ϕN ,
however, is proved in a similar way to before. For φ ∈ S(Rd), define ϕ as the solution to
the following {

∂sϕ(x, s, t) +Dαϕ(x, s, t)− F ′(fs(x))ϕ(x, s, t) = 0

ϕ(x, t, t) = φ(x).
(5.8)

Lemma 5.1. Fix T > 0 and take φ ∈ S(Rd). There exists a unique solution ϕN to (5.6)
in L∞(Rd × {(s, t) : 0 ≤ s ≤ t ≤ T}) which admits spatial derivatives of order up to two.
Moreover, for any multi-index β with 0 ≤ |β| ≤ 2,

sup
0≤s≤t≤T

∥∥∂βϕN (s, t)
∥∥
q
<∞ and sup

0≤s≤t≤T
‖ϕ(s, t)‖q <∞ (5.9)

for q ∈ {1,∞}.
The proof of Lemma 5.1 is a straightforward adaptation of that of Lemma 4.2. The

following lemma, whose proof is given in Appendix C, provides the convergence of ϕN to
ϕ.

Lemma 5.2. For T > 0, φ ∈ S(Rd) and for q ∈ {1,∞} ,

sup
0≤s≤t≤T

∥∥ϕN (s, t)− ϕ(s, t)
∥∥
q
. δ

α∧(2−α)
N .

In addition, for 0 < |β| ≤ 2,

sup
0≤s≤t≤T

∥∥ϕN (s, t)
∥∥
q
. ‖φ‖q and sup

0≤s≤t≤T

∥∥∂βϕN (s, t)
∥∥
q
. 1.
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5.2 Regularity estimate

Let us first state the following L2 bound for the stochastic integral.

Lemma 5.3. For 0 ≤ t ≤ T and α < d, suppose φt : Rd → R is in L1,∞(Rd); then

E

[(∫ t

0

∫
Rd
φs(x)MN (dxds)

)2
]
.
∫ t

0

∫
(Rd)2

|φs(z1)| |φs(z2)| (δN ∨ |z1−z2|2 )−αdz1dz2ds

(5.10)

.
∫ t

0

‖φs‖1(‖φs‖∞ + ‖φs‖1)ds. (5.11)

The proof uses the following lemma, which is proved in Appendix C.

Lemma 5.4. For α < d, then for f, g ∈ L1,∞(Rd)∣∣∣∣∣
∫

(Rd)2
f(z1)g(z2) |z1 − z2|−α dz1dz2

∣∣∣∣∣ ≤ ‖f‖1 (
dV1

d− α
‖g‖∞ + ‖g‖1).

Proof of Lemma 5.3. From the expression for the covariation measure in (5.4),

E

[(∫ t

0

∫
Rd
φs(x)MN (dxds)

)2
]

= E

[∫ t

0

∫
(Rd)2

φs(z1)φs(z2)σα,δNz1,z2 (wNs/η)dz1dz2ds

]

+O (δαN )

∫ t

0

∫
(Rd)2

φs(z1)φs(z2)|z1 − z2|−αdz1dz2ds.

But, by the definition of σ(α,δ) in (3.30),∣∣σα,δz1,z2(w)
∣∣ ≤ ∫ ∞

δ∨
|z1−z2|

2

Vr(z1, z2)
dr

rd+α+1

. V1

∫ ∞
δ∨
|z1−z2|

2

dr

rα+1

.

(
δ ∨ |z1 − z2|

2

)−α
,

yielding (5.10). Since (δN ∨ |z1−z2|2 )−α ≤ ( |z1−z2|2 )−α, inequality (5.11) is obtained from
(5.10) and Lemma 5.4.

Let G(α) (resp. G(α,δ)) denote the fundamental solution to the fractional heat equation
with the operator Dα (resp. the fractional heat equation with the truncated operator
Dα,δ). Then the centering term fN as defined in (2.12) can be written as

fNt (x) = G(α,δN )
t ∗ w0(x)−

∫ t

0

G(α,δN )
t−s ∗ F (δN )(fNs )(x)ds. (5.12)

Likewise, using the definition of ft in (3.31),

ft(x) = G(α)
t ∗ w0(x)−

∫ t

0

G(α)
t−s ∗ F (fs)(x)ds.

We now prove the following counterpart of the regularity estimate (Lemma 4.6),
which allows us to bound the quadratic error term in (5.7).

Lemma 5.5. Fix T > 0; for 0 ≤ t ≤ T ,∫ ∞
1

sup
x∈Rd

E
[
ZNt (x, δNr)

2
] dr

rα+1
.

1

δαN
.
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Proof. From (5.2) and the definition of R1 in (3.23), we have

〈
ZNt , φ

〉
=

∫ t

0

〈
ZNs ,Dα,δNφ− α

∫ ∞
1

R1(wNs/η, f
N
s )φ(δNr)

dr

rα+1

〉
ds

+

∫ t

0

∫
Rd
φ(y)MN (dyds).

By the same argument as for (4.1), for a time dependent test function ϕ,〈
ZNt , ϕ(t, t)

〉
=

∫ t

0

〈
ZNs , ∂sϕ(s, t) +Dα,δNϕ(s, t)− α

∫ ∞
1

R1(wNs/η, f
N
s )ϕ(s, t)(δNr)

dr

rα+1

〉
ds

+

∫ t

0

∫
Rd
ϕ(x, s, t)MN (dxds).

Applying this with ϕ(x, s, t) = G(α,δN )
t−s ∗ φ(x) yields

〈
ZNt , φ

〉
= −α

∫ t

0

∫ ∞
1

〈
G(α,δN )
t−s ∗ ZNs R1(wNs/η, f

N
s )(δNr), φ

〉 dr

rα+1
ds

+

∫ t

0

∫
Rd
G(α,δN )
t−s ∗ φ(y)MN (dyds).

Now we take φ(y) = 1
VR
1|x−y|<R to obtain

ZNt (x,R) = −α
∫ t

0

∫ ∞
1

(
G(α,δN )
t−s (R) ∗ ZNs R1(wNs/η, f

N
s )(δNr)

)
(x)

dr

rα+1
ds

+

∫ t

0

∫
Rd
G(α,δN )
t−s (x− y,R)MN (dyds).

Repeating the same steps as in the proof of Lemma 4.6 and using Jensen’s inequality, we
get(

ZNt (x,R)
)2

. α

∫ t

0

∫ ∞
1

∫
Rd
G(α,δN )
t−s (x− y,R, δNr)

(
ZNs (y, δNr)

)2

dy
dr

rα+1
ds

+

(∫ t

0

∫
Rd
G(α,δN )
t−s (x− y,R)MN (dyds)

)2

.

Using the first inequality of Lemma 5.3 and bounding
(
δN ∨ |z1−z2|2

)−α
by δ−αN , we have,

for 0 ≤ t ≤ T ,

E

[(∫ t

0

∫
Rd
G(α,δN )
t−s (x− y,R)MN (dyds)

)2
]
. δ−αN

∫ t

0

(∫
Rd
G(α,δN )
t−s (x− y,R)dy

)2

ds

. δ−αN .

As a result

E

[(
ZNt (x,R)

)2
]
.
∫ t

0

∫ ∞
1

∫
Rd
G(α,δN )
t−s (x−y,R, δNr)E

[(
ZNs (y, δNr)

)2
]

dy
dr

rα+1
ds+ δ−αN .

Taking the supremum of E
[
ZNs (y, δNr)

2
]

over y inside the integral on the right-hand-side,

the function G(α,δ) integrates to 1, yielding

sup
x∈Rd

E

[(
ZNt (x,R)

)2
]
.
∫ t

0

∫ ∞
1

sup
x∈Rd

E

[(
ZNs (x, δNr)

)2
]

dr

rα+1
ds+ δ−αN .
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Integrating over R, we get∫ ∞
1

sup
x∈Rd

E

[(
ZNt (x, δNr)

)2
]

dr

rα+1
.
∫ t

0

∫ ∞
1

sup
x∈Rd

E

[(
ZNs (x, δNr)

)2
]

dr

rα+1
ds+ δ−αN .

Moreover, for each N ≥ 1 and for all t ∈ [0, T ],∫ ∞
1

sup
x∈Rd

E

[(
ZNt (x, δNr)

)2
]

dr

rα+1
≤ ηN
ατN

(1 + sup
t∈[0,T ]

∥∥fNt ∥∥∞)2

which is bounded on [0, T ] by Lemma 2.6. Hence, by Gronwall’s inequality, for 0 ≤ t ≤ T ,∫ ∞
1

sup
x∈Rd

E

[(
ZNt (x, δNr)

)2
]

dr

rα+1
. δ−αN .

5.3 Convergence to the deterministic limit

The following result is proved in Appendix B.

Proposition 5.6. For T > 0,

sup
0≤t≤T

∥∥fNt − ft∥∥∞ . δ
α∧(2−α)
N ,

and for 0 ≤ |β| ≤ 2,
sup

0≤t≤T

∥∥∂βfNt ∥∥∞ . 1.

By the same argument as in Section 4.3, choosing a separating family (φn)n≥1 of
compactly supported smooth functions satisfying ‖φn‖q ≤ 1 and max|β|=2 ‖∂βφn‖q ≤ 1

for q ∈ {1,∞} and using the corresponding metric d on Ξ,

E

[
sup

0≤t≤T
d(wNt/η, f

N
t )

]
≤
∑
n≥1

1

2n

{
(τN/ηN )1/2E

[
sup

0≤t≤T

∣∣〈ZNt , φn〉∣∣]+ sup
0≤t≤T

∥∥fNt − ft∥∥∞ ‖φn‖1} .
The convergence of wNt/η to ft in L1 follows from Proposition 5.6 and Lemma 5.7 below.

Lemma 5.7. For any function φ satisfying ‖φ‖q ≤ 1 and max|β|=2 ‖∂βφ‖q ≤ 1 for q ∈
{1,∞},

E

[
sup

0≤t≤T

∣∣〈ZNt , φ〉∣∣] . 1.

As a result,

E

[
sup

0≤t≤T
d(wNt/η, f

N
t )

]
. (τN/ηN )1/2 + δ

α∧(2−α)
N .

From (3.32), it can be seen that the leading term on the right-hand-side is δα∧(2−α)
N ,

which goes to zero as N → ∞, yielding the convergence of
(
wNt/η

)
t≥0

. The following

lemma is needed for the proof of Lemma 5.7 and is proved in the same manner as (4.10)
in Section 4.3.

Lemma 5.8. For φ ∈ L1,∞(Rd) and t ∈ [0, T ],

E
[∣∣〈ZNt , φ〉∣∣] . ‖φ‖1 + ‖φ‖∞ .
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Proof. Taking expectations on both sides of (5.7),

E
[∣∣〈ZNt , φ〉∣∣] . (τN/ηN )1/2

∫ t

0

∫ ∞
1

〈
E

[(
ZNs (δNr)

)2
]
, |ϕN (s, t)|(δNr)

〉
dr

rα+1
ds

+ E

[(∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds)

)2
]1/2

. (5.13)

In the first integral, we have〈
E

[(
ZNs (δNr)

)2
]
, |ϕN (s, t)|(δNr)

〉
≤
∥∥ϕN (s, t)

∥∥
1

sup
x∈Rd

E

[(
ZNs (x, δNr)

)2
]
.

Hence, applying Lemma 5.5 to the first term and Lemma 5.3 to the second term on the
right-hand-side of (5.13) yields

E
[∣∣〈ZNt , φ〉∣∣] . (τN/ηN )1/2

δαN

∫ t

0

∥∥ϕN (s, t)
∥∥

1
ds

+

(∫ t

0

∥∥ϕN (s, t)
∥∥

1
(
∥∥ϕN (s, t)

∥∥
∞ +

∥∥ϕN (s, t)
∥∥

1
)ds

)1/2

.
(τN/ηN )1/2

δαN
‖φ‖1 + (‖φ‖1 (‖φ‖∞ + ‖φ‖1))

1/2

. ‖φ‖1 + ‖φ‖∞ .

We have used the fact that (by Lemma 5.2)
∥∥ϕN (s, t)

∥∥
q
. ‖φ‖q to pass from the first line

to the second. The third line follows since τN/ηN = o
(
δ2α
N

)
by (3.32).

Proof of Lemma 5.7. The proof of Lemma 5.7 is similar to the proof of Lemma 4.8.

Setting ψs = Dα,δNφ− α
∫∞

1
F ′(fNs )φ(δNr)

dr
rα+1 and using (5.3),

sup
0≤t≤T

∣∣〈ZNt , φ〉∣∣ . ∫ T

0

∣∣〈ZNs , ψs〉∣∣ds
+ (τN/ηN )1/2 ‖F ′′‖∞

∫ T

0

∫ ∞
1

〈(
ZNs (δNr)

)2

, |φ|(δNr)
〉

dr

rα+1
ds

+ sup
0≤t≤T

∣∣MN
t (φ)

∣∣ .
Taking the expectation on both sides, Lemma 5.8 can be used in the first term, and
Lemma 5.5 in the second one, to yield

E

[
sup

0≤t≤T

∣∣〈ZNt , φ〉∣∣] . ∫ T

0

(‖ψs‖1 + ‖ψs‖∞)ds+
(τN/ηN )1/2

δαN
‖F ′′‖∞ ‖φ‖1

+ E

[
sup

0≤t≤T

∣∣MN
t (φ)

∣∣2]1/2

.

But ‖ψs‖q .
∥∥Dα,δφ∥∥

q
+ ‖F ′‖∞ ‖φ‖q and, by Proposition A.3.i in Appendix A,

∥∥Dα,δφ∥∥
q
.

‖φ‖q + max|β|=2 ‖∂βφ‖q. In addition, by Doob’s inequality, and using Lemma 5.3,

E

[
sup

0≤t≤T

∣∣MN
t (φ)

∣∣2] . E [MN
T (φ)2

]
. ‖φ‖1 (‖φ‖1 + ‖φ‖∞).
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As a result, if ‖φ‖q ≤ 1 and max|β|=2 ‖∂βφ‖q ≤ 1 for q ∈ {1,∞},

E

[
sup

0≤t≤T

∣∣〈ZNt , φ〉∣∣] . 1.

5.4 Tightness

The overall argument for the tightness of the sequence
(
ZNt
)
t≥0

is the same as in
Section 4.4.

Proposition 5.9. For any φ ∈ S(Rd) and for any sequence (TN , ρN )N≥1 such that TN is
a stopping time with values in [0, T ] for every N ≥ 1 and ρN ↓ 0 as N →∞,〈

ZNTN+ρN , φ
〉
−
〈
ZNTN , φ

〉 P−→
N→∞

0. (5.14)

Tightness of
(
ZN
)
N≥1

in D
(
[0, T ],S ′(Rd)

)
then follows from Aldous’ criterion [Ald78]

and Mitoma’s theorem [Wal86, Theorem 6.13].

Extend ϕN to Rd × [0, T ]2 as in (4.13); we need estimates on ϕN as in Lemmas 4.10
and 4.11. The proof of the following lemma is in Appendix C.

Lemma 5.10. For T > 0, q ∈ {1,∞} and for all s, t, t′ ∈ [0, T ],∥∥ϕN (s, t′)− ϕN (s, t)
∥∥
q
. |t− t′| .

In addition, for all s ∈ [0, T ], ∥∥∥∥∥ sup
t∈[s,T ]

∣∣ϕN (s, t)
∣∣∥∥∥∥∥

1

. 1.

Proof of Proposition 5.9. We only detail how the quadratic part of (5.7) can be bounded
using Lemma 5.5, and refer to Section 4.4 for the rest of the proof of Proposition 5.9.
For TN a stopping time with values in [0, T ], write∣∣∣∣∣
∫ TN

0

∫ ∞
1

〈
(ZNs (δNr))

2, R2(wNs/η, f
N
s )ϕN (s, TN )(δNr)

〉 dr

rα+1
ds

∣∣∣∣∣
. ‖F ′′‖∞

∫ T

0

∫ ∞
1

〈
(ZNs (δNr))

2, sup
t∈[s,T ]

|ϕN (s, t)|(δNr)

〉
dr

rα+1
ds.

Taking the expectation on both sides and the supremum inside the spatial integral
against ϕN , we get

E

[∣∣∣∣∣
∫ TN

0

∫ ∞
1

〈
(ZNs (δNr))

2, R2(wNs/η, f
N
s )ϕN (s, TN )(δNr)

〉 dr

rα+1
ds

∣∣∣∣∣
]

. ‖F ′′‖∞
∫ T

0

∫ ∞
1

sup
x∈Rd

E
[
ZNs (x, δNr)

2
] ∥∥∥∥∥ sup

t∈[s,T ]

∣∣ϕN (s, t)
∣∣∥∥∥∥∥

1

dr

rα+1
ds

. δ−αN ,

by Lemma 5.5 and Lemma 5.10. The other terms in (5.14) are bounded as in the proof of
Proposition 4.9 in Section 4.4, using Lemmas 5.10 and 5.3.
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5.5 Convergence of the martingale measure MN

The convergence of MN relies on applying Theorem 4.13 to vectors of the form(
MN
t (φ1), . . . , MN

t (φp)
)
t≥0

, although the details differ from the proof in the Brownian

case (in Section 4.5). Indeed, MN no longer converges to a stochastic integral against a
space-time white noise, but to Wα, a coloured Gaussian noise such that

〈Wα(φ)〉t =

∫ t

0

∫
(Rd)2

φ(z1)φ(z2)σαz1,z2(fs)dz1dz2ds

with

σαz1,z2(f) =

∫ ∞
|z1−z2|

2

dr

rd+α+1

∫
B(z1,r)∩B(z2,r)

[
f(x, r)(1− f(z1)− f(z2)) + f(z1)f(z2)

]
dx.

Hence the weak convergence of MN to Wα in D
(
[0, T ],S ′(Rd)

)
will follow (as in Section

4.5) from the following lemma.

Lemma 5.11. For any φ ∈ S(Rd),

i) For all t ≥ 0,
∣∣∆MN

t (φ)
∣∣ . 1, and sup0≤t≤T

∣∣∆MN
t (φ)

∣∣ P−→
N→∞

0.

ii) For each t ∈ [0, T ],
〈
MN (φ)

〉
t

P−→
N→∞

〈Wα(φ)〉t.

Proof. The proof of the first part is the same as for Lemma 4.14:

sup
t≥0

∣∣∆MN
t (φ)

∣∣ ≤ αN (ηN/τN )1/2 ‖φ‖1 ,

which tends to zero since α2
N = o (τN/ηN ). For the second part of the statement, we first

show that∣∣∣∣∣
∫

(Rd)2
φ(z1)φ(z2)σ(α,δN )

z1,z2 (wNs/η)dz1dz2 −
∫

(Rd)2
φ(z1)φ(z2)σ(α,δN )

z1,z2 (fNs )dz1dz2

∣∣∣∣∣ L1

−→
N→∞

0.

(5.15)
From the definition of σ(α,δN )

z1,z2 in (3.30),

σ(α,δN )
z1,z2 (w) =

∫ ∞
δN∨ |z1−z2|2

{
(1− w(z1)− w(z2))

∫
B(z1,r)∩B(z2,r)

w(x, r)dx

+ Vr(z1, z2)w(z1)w(z2)
} dr

rd+α+1
.

Subtracting the corresponding expressions with wNs/η and fNs and reordering terms, we
write

σ(α,δN )
z1,z2 (wNs/η)− σ(α,δN )

z1,z2 (fNs )

=

∫ ∞
δN∨ |z1−z2|2

{
(1− wNs/η(z1)− wNs/η(z2))

∫
B(z1,r)∩B(z2,r)

(
wNs/η(x, r)− fNs (x, r)

)
dx

+ (fNs (z1)− wNs/η(z1) + fNs (z2)− wNs/η(z2))

∫
B(z1,r)∩B(z2,r)

fNs (x, r)dx

+ Vr(z1, z2)
(
wNs/η(z1)(wNs/η(z2)− fNs (z2)) + fNs (z2)(wNs/η(z1)− fNs (z1))

)} dr

rd+α+1
.

(5.16)

We shall deal with the terms from each of the three lines separately, so let us call them
A(z1, z2), B(z1, z2) and C(z1, z2) (they are in fact defined for a.e. z1 and z2, and so is all

EJP 22 (2017), paper 5.
Page 42/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP20
http://www.imstat.org/ejp/


A central limit theorem for the SLFV with selection

that follows, but this is not a problem since what we really show is (5.15)). For the first
term write

E [|A(z1, z2)|]

≤ (τN/ηN )1/2

∫ ∞
δN∨ |z1−z2|2

∫
B(z1,r)∩B(z2,r)

E
[∣∣∣ZNs (x, r)

∣∣∣] dx
dr

rd+α+1

≤ (τN/ηN )1/2

∫ ∞
δN∨ |z1−z2|2

Vr(z1, z2) sup
x∈Rd

E
[∣∣∣ZNs (x, r)

∣∣∣] dr

rd+α+1

≤ (τN/ηN )1/2V1

∫ ∞
δN

12r>|z1−z2| sup
x∈Rd

E

[∣∣∣ZNs (x, r)
∣∣∣2]1/2

dr

rα+1

≤ (τN/ηN )1/2 V1

α1/2

(
δN ∨

|z1 − z2|
2

)−α/2(∫ ∞
δN

sup
x∈Rd

E

[∣∣∣ZNs (x, r)
∣∣∣2] dr

rα+1

)1/2

.

(We have used the Cauchy-Schwartz inequality in the last line.) In addition, by Lemma 5.5,∫ ∞
δN

sup
x∈Rd

E

[∣∣∣ZNs (x, r)
∣∣∣2] dr

rα+1
= δ−αN

∫ ∞
1

sup
x∈Rd

E

[∣∣∣ZNs (x, δNr)
∣∣∣2] dr

rα+1

. δ−2α
N .

Hence
E [|A(z1, z2)|] . (τN/ηN )1/2δ−αN |z1 − z2|−α/2 ,

and, using Lemma 5.4 and (3.32),∫
(Rd)2

φ(z1)φ(z2)A(z1, z2)dz1dz2
L1

−→
N→∞

0. (5.17)

For the second term, by symmetry,∣∣∣∣∣
∫

(Rd)2
φ(z1)φ(z2)B(z1, z2)dz1dz2

∣∣∣∣∣ ≤ 2(τN/ηN )1/2

∫
Rd
|φ(z2)|

∣∣〈ZNs , ψNz2〉∣∣dz2,

where

ψNz2(z1) = φ(z1)

∫ ∞
δN∨ |z1−z2|2

∫
B(z1,r)∩B(z2,r)

fNs (x, r)dx
dr

rd+α+1
.

In particular, by Proposition 5.6
∥∥ψNz2∥∥q . δ−αN ‖φ‖q for q ∈ {1,∞} and, since ψNz2 is

deterministic, by Lemma 5.8

E

[∣∣∣∣∣
∫

(Rd)2
φ(z1)φ(z2)B(z1, z2)dz1dz2

∣∣∣∣∣
]
. (τN/ηN )1/2δ−αN ‖φ‖1 (‖φ‖1 + ‖φ‖∞).

Hence, by (3.32), ∫
(Rd)2

φ(z1)φ(z2)B(z1, z2)dz1dz2
L1

−→
N→∞

0. (5.18)

The third term is controlled in a similar way, this time setting

ψNz2(z1) = φ(z1)

∫ ∞
δN∨ |z1−z2|2

Vr(z1, z2)
dr

rd+α+1
,

which satisfies the same inequalities as the previous ψNz2 . The bound on
∥∥fNs ∥∥∞ from

Proposition 5.6 yields ∫
(Rd)2

φ(z1)φ(z2)C(z1, z2)dz1dz2
L1

−→
N→∞

0. (5.19)
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The convergence (5.15) follows from (5.17), (5.18), (5.19) and (5.16).
Recall the definition of σ(α,δ) in (3.30) and write∣∣∣σ(α,δN )

z1,z2 (fNs )− σαz1,z2(fNs )
∣∣∣ . 1|z1−z2|≤2δN

∫ δN

|z1−z2|
2

Vr(z1, z2)
dr

rd+α+1

. 1|z1−z2|≤2δN |z1 − z2|−α .

Hence∣∣∣∣∣
∫

(Rd)2
φ(z1)φ(z2)(σ(α,δN )

z1,z2 (fNs )− σαz1,z2(fNs ))dz1dz2

∣∣∣∣∣
.
∫

(Rd)2
|φ(z1)| |φ(z2)|1|z1−z2|≤2δN |z1 − z2|−α dz1dz2

. ‖φ‖∞
∫
Rd
|φ(z1)|

∫ 2δN

0

r−α+d−1drdz1

. ‖φ‖∞ ‖φ‖1 δ
d−α
N −→

N→∞
0.

(5.20)

Finally, proceeding as in (5.16) with fs instead of wNs/η and σα instead of σ(α,δN ), we write

σαz1,z2(fs)− σαz1,z2(fNs )

=

∫ ∞
|z1−z2|

2

{
(1− fs(z1)− fs(z2))

∫
B(z1,r)∩B(z2,r)

(
fs(x, r)− fNs (x, r)

)
dx

+ (fNs (z1)− fs(z1) + fNs (z2)− fs(z2))

∫
B(z1,r)∩B(z2,r)

fNs (x, r)dx

+ Vr(z1, z2)
(
fs(z1)(fs(z2)− fNs (z2)) + fNs (z2)(fs(z1)− fNs (z1))

)} dr

rd+α+1
.

Therefore∣∣σαz1,z2(fNs )− σαz1,z2(fs)
∣∣ ≤ (4 + 3 sup

s∈[0,T ]

∥∥fNs ∥∥∞)
∥∥fNs − fs∥∥∞ ∫ ∞|z1−z2|

2

Vr(z1, z2)
dr

r1+d+α

. |z1 − z2|−α δα∧(2−α)
N

by Proposition 5.6. It follows from Lemma 5.4 that∣∣∣∣∣
∫

(Rd)2
φ(z1)φ(z2)(σαz1,z2(fNs )− σαz1,z2(fs))dz1dz2

∣∣∣∣∣ −→N→∞
0. (5.21)

By (5.15), (5.20) and (5.21), we have shown that for all t ∈ [0, T ],〈
MN (φ)

〉
t

L1,P−→
N→∞

〈Wα(φ)〉t .

5.6 Conclusion of the proof

We can now conclude the proof of Theorem 3.10. We have proved that the sequence(
ZN
)
N≥1

is tight and we can characterise its potential limit points using the convergence

of MN . Recall the following expression for
〈
ZNt , φ

〉
from (5.7) :

〈
ZNt , φ

〉
= −

(
τN
ηN

)1/2

α

∫ t

0

∫ ∞
1

〈
(ZNs (δNr))

2, R2(wNs/η, f
N
s )ϕN (s, t)(δNr)

〉 dr

rα+1
ds

+

∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds).
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In Section 5.4, we showed that the first term converges to zero in L1. In addition, by
Lemmas 5.2 and 5.3,∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds)−

∫ t

0

∫
Rd
ϕ(x, s, t)MN (dxds)

L2

−→
N→∞

0.

For φ1, . . . , φp in S(Rd), let ϕ1, . . . , ϕp be the corresponding solutions of (5.8) with φ = φi.
Since MN converges weakly to Wα, by [Wal86, Proposition 7.12], for t1, . . . , tp ∈ [0, T ](∫ t1

0

∫
Rd
ϕ1(x, s, t1)MN (dxds), . . . ,

∫ tk

0

∫
Rd
ϕk(x, s, tk)MN (dxds)

)
d−→

N→∞

(∫ t1

0

∫
Rd
ϕ1(x, s, t1)Wα(dxds), . . . ,

∫ tk

0

∫
Rd
ϕk(x, s, tk)Wα(dxds)

)
.

Hence the same convergence holds (in distribution) for
(〈
ZNt1 , φ1

〉
, . . . ,

〈
ZNtp , φp

〉)
and

this characterises the potential limit points of
(
ZN
)
N≥1

. By Theorem 4.1,
(
ZNt
)
t≥0

converges in distribution to a distribution-valued process (zt)t≥0 which satisfies

〈zt, φ〉 =

∫ t

0

∫
Rd
ϕ(x, s, t)Wα(dxds).

By the same argument as in Section 4.6, (zt)t≥0 solves the stochastic PDE (3.33), which
concludes the proof.

6 Drift load - proof of Theorem 2.9

Recall the definition of F and ρ(rN )
z1,z2 in (2.16) and (3.10) respectively.

Definition 6.1 (Martingale Problem (M3)). Given (εN )N≥1, (δN )N≥1 and F : R→ R, let

ηN = εNδ
2
N , τN = ε2

Nδ
d
N and rN = δNR. Then for N ≥ 1, we say that a Ξ-valued process

(wNt )t≥0 satisfies the martingale problem (M3) if for all φ in L1,∞(Rd),

〈
wNt , φ

〉
− 〈w0, φ〉 − ηNuVR

∫ t

0

{
2R2

d+ 2

〈
wNs ,L(rN )φ

〉
− s

〈
F (wNs )(rN ), φ

〉}
ds (6.1)

defines a (mean zero) square-integrable martingale with (predictable) variation process

τNu
2V 2
R

∫ t

0

∫
(Rd)2

φ(z1)φ(z2)ρ(rN )
z1,z2(wNs )dz1dz2ds+O

(
tτNδ

2
N ‖φ‖

2
2

)
. (6.2)

(Again, uniqueness does not hold for this martingale problem, but we will not require
it.)

Let qNt denote the SLFVS with overdominance defined in Definition 1.5 with parame-
ters as defined in (2.15) in Section 2.3. As in Subsection 3.2, we consider the rescaled
process wNt (x) = qNt (x/δN ). By Proposition 3.2, using the same rescaling argument as in
Proposition 3.6, we have the following result.

Proposition 6.2. The process
(
wNt
)
t≥0

satisfies the martingale problem (M3).

As in Theorem 2.2, we define the process of rescaled fluctuations by

ZNt = (ηN/τN )
1/2
(
wNt/η − λ

)
. (6.3)

(Recall that since w0 = λ, the centering term is constant and equals λ.) Then by the
definition of ∆N in (2.20),

∆N (t, x) = δ2
N (s1 + s2)εNδ

d−2
N E

[
ZNηN t(δNx, rN )2

]
.
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Let us define the following notation for any φ ∈ L1,∞(Rd),

φr(x) =
1

rd
φ(x/r). (6.4)

Theorem 2.9 is then a direct consequence of the following theorem.

Theorem 6.3. Suppose that τN/ηN = o
(
rd+2
N

)
. Then for all φ ∈ L1,∞(Rd), there exists a

constant C > 0 - depending on the dimension d - such that, as N →∞ with t→∞ for
d ≤ 2 and tδ−2

N →∞ for d ≥ 3,

E
[〈
ZNt , φrN

〉2] ∼
N,t→∞

Cδ2−d
N cN .

Proof of Theorem 2.9. Setting φ = 1|x|≤1 gives the result for ∆N (t, 0); the general result
follows by translation invariance.

Note that the only difference between the martingale problems (M1) and (M3) in
Definitions 3.4 and 6.1 is that σ(rN )

z1,z2 is replaced by ρ(rN )
z1,z2 . Hence it is easy to see that

Lemma 4.5 and Lemma 4.6 also hold in this case (with different constants). It is also
possible to adapt the proofs in Section 4.5 to show that on compact time intervals,(
ZNt
)
t≥0

converges to the solution of the following SPDE,

dzt =

[
1

2
∆zt − F ′(λ)zt

]
dt+

√
1

2
λ(1− λ)dWt.

This process admits a stationary distribution, under which 〈zt, φ〉 is a Gaussian random
variable with variance

1

2
λ(1− λ)

∫ ∞
0

∫
Rd
e−2F ′(λ)tGt ∗ φ(x)2dxdt.

We can thus hope to extend the convergence of
(
ZNt
)
t≥0

to the whole real line (as in

[Nor77]), and use the above expression to estimate the second moment of
〈
ZNt , φrN

〉
for large times. Some care is needed though, as we are letting the support of the test
function vanish as N →∞.

Proof of Theorem 6.3. Since qN0 = λ, by the same argument as for (3.25),

dZNt =

[
L(rN )ZNt − (ηN/τN )1/2

(
F (wNt/η)− F (λ)

)
(rN )

]
dt+ dMN

t (6.5)

=
[
L(rN )ZNt − F ′(λ)ZNt (rN )− (τN/ηN )

1/2
(ZNt )2R2(wNt/η, λ)(rN )

]
dt+ dMN

t , (6.6)

where MN is a martingale measure with covariation measure QN given by

QN (dz1dz2ds) = ρ(rN )
z1,z2(wNs/η)dz1dz2ds+O

(
δ2
N

)
δz1=z2(dz1dz2)ds. (6.7)

Consider a time dependent test function ϕN which solves{
∂sϕ

N (x, s, t) + L(rN )ϕN (x, s, t)− F ′(λ)ϕN (s, t)(x, rN ) = 0,

ϕN (x, t, t) = φ(x).
(6.8)

Then, by (6.6), by the same argument as for (4.1),

〈
ZNt , φ

〉
= − (τN/ηN )

1/2
∫ t

0

〈
(ZNs )2, R2(wNs/η, λ)ϕN (s, t)(rN )

〉
ds

+

∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds). (6.9)
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The remainder of the proof now consists of proving that the main contribution to the
variance of

〈
ZNt , φrN

〉
is made by the last term on the right-hand-side and then estimating

this contribution. Note that ϕN is given explicitly by

ϕN (x, s, t) = e−F
′(λ)(t−s)G

(rN )
DN (t−s) ∗ φ(x), (6.10)

with DN = 1− F ′(λ)
2r2N
d+2 . To see this, differentiate with respect to s and write

∂sϕ
N (x, s, t) = F ′(λ)ϕN (x, s, t)−

(
1− F ′(λ)

2r2
N

d+ 2

)
L(rN )ϕN (x, s, t).

Since by (2.4), 2r2N
d+2L

(rN )ϕN = ϕN (rN )− ϕN , we have a solution to (6.8). In particular,∥∥ϕN (s, t)
∥∥
q
≤ ‖φ‖q e

−F ′(λ)(t−s). (6.11)

The following lemma extends the result of Lemma 4.6 to arbitrarily large times, and will
be proved in Subsection 6.1.

Lemma 6.4. There exist constants K ′1 and K ′2 such that, for all x ∈ Rd and all t ≥ 0,

E
[
ZNt (x, rN )2

]
≤ K ′1
rdN

, and E
[
ZNt (x, rN )4

]
≤ K ′2
r2d
N

.

Using the expression for ϕN in (6.10) and then the Cauchy-Schwartz inequality,

E

[(∫ t

0

〈
(ZNs )2, R2(wNs/η, λ)ϕN (s, t)

〉
ds

)2
]

≤ 1

4
‖F ′′‖2∞E

[(∫ t

0

e−F
′(λ)(t−s)/2

(
e−F

′(λ)(t−s)/2
〈

(ZNs )2,
∣∣∣G(rN )

DN (t−s) ∗ φ
∣∣∣〉)ds

)2
]

≤ 1

4
‖F ′′‖2∞

1− e−F ′(λ)t

F ′(λ)
E

[∫ t

0

e−F
′(λ)(t−s)

〈
(ZNs )2,

∣∣∣G(rN )
DN (t−s) ∗ φ

∣∣∣〉2

ds

]
.

Another use of the Cauchy-Schwartz inequality yields〈
(ZNs )2,

∣∣∣G(rN )
DN (t−s) ∗ φ

∣∣∣〉2

≤
∥∥∥G(rN )

DN (t−s) ∗ φ
∥∥∥

1

〈
(ZNs )4,

∣∣∣G(rN )
DN (t−s) ∗ φ

∣∣∣〉 .
Hence, using Lemma 6.4 and the fact that

∥∥∥G(r)
t ∗ φ

∥∥∥
1
≤ ‖φ‖1,

E

[〈
(ZNs )2,

∣∣∣G(rN )
DN (t−s) ∗ φ

∣∣∣〉2
]
≤ ‖φ‖21

K ′2
r2d
N

.

As a result,

E

[(∫ t

0

〈
(ZNs )2, R2(wNs/η, λ)ϕN (s, t)

〉
ds

)2
]
. ‖φ‖21 r

−2d
N , (6.12)

uniformly in t ∈ R+. We now move on to estimating the contribution of the second term
in (6.9). The following lemma will be proved in Subsection 6.1.

Lemma 6.5. As N →∞,

E

[(∫ t

0

∫
Rd
ϕN (x, s, t)MN (dxds)

)2
]

=
1

2
λ(1− λ)

∫ t

0

∥∥∥ϕN (s, t)(rN )
∥∥∥2

2
ds

+ o (rN )

∫ t

0

∥∥ϕN (s, t)
∥∥2

2
ds.
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As we shall see in Subsection 6.1, this is a consequence of the fact that in the
expression for QN in (6.7), wN can be replaced by λ. As a result, using (6.10) and (6.12)
in (6.9) and since τN/ηN = o

(
rd+2
N

)
, we have

E
[〈
ZNt , φrN

〉2]
=

1

2
λ(1− λ)

∫ t

0

e−2F ′(λ)s
∥∥∥G(rN )

DNs
∗ φrN (rN )

∥∥∥2

2
ds

+ o (rN )

∫ t

0

e−2F ′(λ)s
∥∥∥G(rN )

DNs
∗ φrN

∥∥∥2

2
ds+ o

(
r2−d
N

)
. (6.13)

To study the asymptotic behaviour of the first integral, we use the scaling properties of

the function G(r). Recall that
(
ξ

(r)
t

)
t≥0

is a Lévy process with infinitesimal generator

L(r); it is not difficult to show that it satisfies the following scaling property:

∀c > 0, Ex

[
φ(ξ

(r)
t )
]

= Ex/c

[
φ(c ξ

(r/c)
t/c2 )

]
. (6.14)

(Simply look at the infinitesimal generator of both processes.) Hence

G
(rN )
t ∗ φrN (x) = r−dN G

(1)

t/r2N
∗ φ1(x/rN ).

Set f(t) =
∥∥∥G(1)

t ∗ φ(1)
∥∥∥2

2
; it follows that

∥∥∥G(rN )
DNs
∗ φrN (rN )

∥∥∥2

2
= r−dN f(DNs/r

2
N ). (6.15)

We shall show that, as N, t→∞, there is a constant C̃ > 0 such that∫ t

0

e−2F ′(λ)sf(DNs/r
2
N )ds ∼ C̃r2

NcN . (6.16)

Theorem 6.3 then follows from (6.16) and (6.13). To prove (6.16) we need the following
estimate of f(t) when t→∞.

Lemma 6.6. For φ ≥ 0, as t→∞,

f(t) ∼ (4πt)−d/2 ‖φ‖21 . (6.17)

For the proof of this estimate we will use the following properties of the semigroup
G(r), which will be proved in Appendix D.

Lemma 6.7. For any r > 0 and t > 0, the law of ξ(r)
t takes the form

G
(r)
t (dx) = e−

(d+2)

2r2
tδ0(dx) + g

(r)
t (x)dx.

Furthermore, g(r)
t is continuous on Rd, is invariant under rotations which fix the origin

and g(r)
t (y) is a decreasing function of |y|.

Proof of Lemma 6.6. By the semigroup property of φ 7→ G
(r)
t ∗ φ, f(t) can also be written〈

G
(1)
2t ∗ φ(1), φ(1)

〉
. In addition, by the scaling property of

(
ξ

(r)
t

)
t≥0

in (6.14) and using

Lemma 6.7,

G
(1)
2t ∗ φ(x) = E0

[
φ(x+

√
tξ

(1/
√
t)

2 )
]

= φ(x)e−(d+2)t +

∫
Rd
φ(x+

√
ty)g

(1/
√
t)

2 (y)dy

= φ(x)e−(d+2)t + t−d/2
∫
Rd
φ(x+ y)g

(1/
√
t)

2 (y/
√
t)dy.
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By Proposition A.2.ii and Theorem 4.8.2 in [EK86], the finite dimensional distributions

of
(
ξ

(r)
t

)
t≥0

converge to those of standard Brownian motion as r → 0. In particular,

ξ
(r)
2

d−→
r→0
N (0, 2), and g

(r)
2 (x) → G2(x) as r → 0 for almost every x ∈ Rd (the probability

that ξ(r)
t = 0 vanishes as r → 0 for any t > 0). Since G2 is continuous on Rd and g

(r)
2

is decreasing as a function of the modulus, this convergence takes place uniformly on
compact sets by Dini’s second theorem. So, fixing ε > 0, for any R > 0, for r small
enough,

sup
|x|<R

∣∣∣g(r)
2 (x)−G2(x)

∣∣∣ ≤ ε.
As a result, using the continuity of G2, for any y, for t large enough,∣∣∣g(1/

√
t)

2 (y/
√
t)−G2(0)

∣∣∣ ≤ 2ε.

Hence, since g(r)
t (y) ≤ g(r)

t (0), by dominated convergence,∫
Rd
φ(x+ y)g

(1/
√
t)

2 (y/
√
t)dy −→

t→∞
(4π)−d/2

∫
Rd
φ(y)dy. (6.18)

From the above expression for f ,

f(t) = e−(d+2)t

∫
Rd
φ(x, 1)2dx+ t−d/2

∫
(Rd)2

g
(1/
√
t)

2 (y/
√
t)φ(x+ y, 1)φ(x, 1)dydx.

Replacing φ with φ(1) in (6.18) and letting t→∞ yields the result.

Furthermore, 0 ≤ f(t) ≤ ‖φ‖22 for all t ≥ 0, and thus f is integrable on (0,∞) if and
only if d ≥ 3.

Remark 6.8. This is in fact a consequence of the fact that
(
ξ

(1)
t

)
t≥0

is transient if and

only if d ≥ 3 (as with Brownian motion). The function f can be expressed in terms of the
probability of ξ(1)

2t being in a ball of radius 1, which is integrable on (0,∞) if and only if(
ξ

(1)
t

)
t≥0

is transient.

We now prove (6.16) separately for each regime.

High dimension If d ≥ 3, change the variable of integration to write∫ t

0

e−2F ′(λ)sf(DNs/r
2
N )ds = r2

N

∫ DN t/r
2
N

0

e−2F ′(λ)D−1
N r2Nsf(s)ds.

Since f is integrable, by dominated convergence, and since tδ−2
N →∞,∫ DN t/r

2
N

0

e−2F ′(λ)D−1
N r2Nsf(s)ds −→

N,t→∞

∫ ∞
0

f(s)ds.

(Also recall that DN = 1 +O
(
r2
N

)
.)

Dimension 1 If d = 1, however, from (6.17), we see that, as N → ∞, 1
rN
f(s/r2

N ) →
(4πs)−1/2 ‖φ‖21, so, by dominated convergence,∫ t

0

e−2F ′(λ)sf(DNs/r
2
N )ds ∼

N,t→∞
rN ‖φ‖21 Ĉ,

for some constant Ĉ > 0.
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Dimension 2 If d = 2, let T1 and T2 be two positive constants. For t ≥ T2 and N large
enough such that r2

NT1 ≤ T2, we split the integral as follows :

∫ t

0

e−2F ′(λ)sf(DNs/r
2
N )ds =

∫ r2NT1

0

e−2F ′(λ)sf(DNs/r
2
N )ds

+

∫ T2

r2NT1

e−2F ′(λ)sf(DNs/r
2
N )ds+

∫ t

T2

e−2F ′(λ)sf(DNs/r
2
N )ds.

We first show that the first and last terms are of order r2
N . Since 0 ≤ f(t) ≤ ‖φ‖22 for all

t ≥ 0, ∣∣∣∣∣
∫ r2NT1

0

e−2F ′(λ)sf(DNs/r
2
N )ds

∣∣∣∣∣ ≤ r2
NT1 ‖φ‖22 ,

and by (6.17) ∣∣∣∣∫ t

T2

e−2F ′(λ)sf(DNs/r
2
N )ds

∣∣∣∣ . r2
N

∫ ∞
T2

e−2F ′(λ)s ds

s
.

For the middle term, by (6.17), 1
r2N
f(s/r2

N ) −→
N→∞

(4πs)−1 ‖φ‖21, and DN = 1 +O
(
r2
N

)
so

as N →∞, by dominated convergence,∫ T2

r2NT1

e−2F ′(λ)sf(DNs/r
2
N )ds ∼ r2

N (4π)−1 ‖φ‖21
∫ T2

r2NT1

e−2F ′(λ)s ds

s
.

Further ∣∣∣∣∣
∫ T2

T1r2N

e−2F ′(λ)s ds

s
−
∫ T2

T1r2N

ds

s

∣∣∣∣∣ ≤ 2F ′(λ)

∫ T2

T1r2N

s
ds

s
≤ 2F ′(λ)T2,

and ∫ T2

T1r2N

ds

s
= log

(
T2

T1r2
N

)
∼
∣∣log r2

N

∣∣ .
As a result ∫ t

0

e−2F ′(λ)sf(DNs/r
2
N )ds ∼

‖φ‖21
4π

r2
N

∣∣log r2
N

∣∣ ,
as N, t→∞. We have thus proved (6.16), and the result.

6.1 Proofs of Lemmas 6.4 and 6.5

The proof of Lemma 6.4 requires the following two technical lemmas, which are
proved in Appendix D.

Lemma 6.9. Let φ : Rd → R, r > 0 and suppose that g : Rd → R satisfies 0 < γ ≤ g(x) ≤
1 for all x ∈ Rd. Then

2φ(x)L(r)φ(x)− 2φ(x)φ g(x, r) ≤ L(r)φ2(x)− 2

(
γ − r2

d+ 2

)
φ(x)2.

Further, for some constant c > 0, for r small enough,

4φ(x)3L(r)φ(x)− 4φ(x)3φ g(x, r) ≤ L(r)φ4(x)− 4(γ − c r2)φ(x)4.

Lemma 6.10. Suppose h : R+ ×Rd → R is a function that is continuously differentiable
with respect to the time variable t and which satisfies the following differential inequality
for some positive α :

∂tht(x) ≤ Lht(x)− αht(x) + gt(x).
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Then for all 0 ≤ s ≤ t and for any 1 ≤ q ≤ ∞,

‖ht‖q ≤ e
−α(t−s) ‖hs‖q +

1

α
sup
u∈[s,t]

‖gu‖q .

Proof of Lemma 6.4. Set
h(t, x) = E

[
ZNt (x, rN )2

]
.

We are going to make use of Lemma 6.10, so we want to obtain a differential inequality
for h. To this end, average (6.5) on B(x, rN ) and use the expression for R1 in (3.23) to
get

dZNs (x, rN ) =

[
L(rN )ZNs (x, rN )− ZNs R1(wNs/η, λ)(x, rN )

]
ds+

1

VrN
dMN

s (B(x, rN )).

(From now on all averages will be over radius rN .) By the generalised Itô formula, noting
∆Ys = Ys − Ys− ,

d
(
ZNs (x)

)2

= 2ZNs (x)dZNs (x) + d
[
ZN· (x)

]
s

+
(
ZNs−(x) + ∆ZNs (x)

)2

−
(
ZNs−(x)

)2

− 2ZNs−(x)∆ZNs (x)−
(

∆ZNs (x)
)2

.

Expanding the brackets, the terms on the second line cancel and, integrating for s ∈ [0, t],
we have

ZNt (x)2 = 2

∫ t

0

ZNs (x)

[
L(rN )ZNs (x)− ZNs R1(wNs/η, λ)(x)

]
ds

+
2

VrN

∫ t

0

ZNs (x)dMN
s (B(x, rN )) +

1

V 2
rN

[
MN (B(x, rN ))

]
t
.

Taking expectations on both sides, since the second term is a martingale,

h(t, x) = 2

∫ t

0

E

[
ZNs (x)L(rN )ZNs (x)− ZNs (x)ZNs R1(wNs/η, λ)(x)

]
ds

+
1

V 2
rN

E
[〈
MN (B(x, rN ))

〉
t

]
.

Differentiating yields

∂h

∂t
(t, x) = 2E

[
ZNt (x)L(rN )ZNt (x)− ZNt (x)ZNt R1(wNt/η, λ)(x)

]
+

1

V 2
rN

E

[∫
B(x,rN )2

ρ(rN )
z1,z2(wNt/η)dz1dz2

]
+O

(
δ2
N

VrN

)
.

The second term is bounded by 1
VrN

, and the first one has the same form as the left-hand-

side of the first statement of Lemma 6.9. In [Nor74b] (at the beginning of the proof of
Theorem 3.2), it is proved that the conditions on F in (2.17)-(2.18) imply

inf
x∈[0,1]

R1(x, λ) =: γ > 0. (6.19)

Then, taking φ = ZNt and g = R1(wNs/η, λ), Lemma 6.9 implies that, for all t ≥ 0,

∂h

∂t
(t, x) ≤ Lh(t, x)− αNh(t, x) +

1 +O
(
δ2
N

)
VrN

,

EJP 22 (2017), paper 5.
Page 51/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP20
http://www.imstat.org/ejp/


A central limit theorem for the SLFV with selection

with αN = γ + O
(
r2
N

)
. Using Lemma 6.10 (with s = 0 and q = ∞) we can now write,

since ZN0 = 0,

E
[
ZNt (x)2

]
≤

1 +O
(
δ2
N

)
αNVrN

.
1

rdN
. (6.20)

The second inequality is proved in essentially the same way, although the computations
become more involved. We compute the fourth moment of ZNt with Itô’s formula, as
before:

d
(
ZNt (x)

)4

= 4(ZNt (x))3dZNt (x) +
1

2
4× 3(ZNt (x))2d

[
ZN·

]
t

+
(
ZNt−(x) + ∆ZNt (x)

)4

−
(
ZNt−(x)

)4

−4(ZNt−(x))3∆ZNt (x)− 1

2
3×4(ZNt−(x))2(∆ZNt (x))2.

Hence, taking expectations, the martingale terms can be dropped and we write:

E

[(
ZNt (x)

)4
]

= 4

∫ t

0

E

[
ZNs (x)3L(rN )ZNs (x)− ZNs (x)3ZNs R1(wNs/η, λ)(x)

]
ds

+ 6
1

V 2
rN

∫ t

0

∫
B(x,rN )2

E
[
ZNs (x)2ρ(rN )

z1,z2(wNs/η)
]

dz1dz2ds+O
(
δ2
N

) 1

VrN

∫ t

0

E
[
ZNs (x)2

]
ds

+ E

∑
s≤t

{
4ZNs−(x)(∆ZNs (x))3 + (∆ZNs (x))4

} ,
where the sum is over jump times for the process (ZNt (x))t≥0. We can bound the size
of the jumps ∆ZNs (x) by a deterministic constant. By the definition of the SLFVS with
overdominance in Definition 1.5,

sup
t≥0

∣∣〈qNt , φ〉− 〈qNt− , φ〉∣∣ ≤ uεN ‖φ‖1 .
Hence

∣∣∣∆ZNs (x)
∣∣∣ ≤ uεN (ηN/τN )1/2 = uε

1/2
N δ

1−d/2
N . As a result

E

∑
s≤t

{
4ZNs−(x)(∆ZNs (x))3 + (∆ZNs (x))4

}
≤ E

∑
s≤t

{
4(uε

1/2
N δ

1−d/2
N )3

∣∣∣ZNs−(x)
∣∣∣+ (uε

1/2
N δ

1−d/2
N )4

} ,
where the sum is still over the jump times of ZNs (x). These jumps occur according to a

Poisson process with rate V2R η
−1
N , so, using (6.20) to bound E

[∣∣∣ZNs−(x)
∣∣∣], we obtain

E

∑
s≤t

{
4ZNs−(x)(∆ZNs (x))3 + (∆ZNs (x))4

}
≤ V2R η

−1
N

{
4(uε

1/2
N δ

1−d/2
N )3E

[∫ t

0

∣∣∣ZNs−(x)
∣∣∣ds]+ t(uε

1/2
N δ

1−d/2
N )4

}
= o

(
r−2d
N

)
.

Now note that∫
B(x,rN )2

E
[
ZNs (x)2ρ(r)

z1,z2(wNs/η)
]

dz1dz2 .
1

rdN

∫
B(x,rN )2

VrN (z1, z2)

V 2
rN

dz1dz2

. 1.
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Hence, setting h(t, x) = E
[
(ZNt (x))4

]
,

∂h

∂t
(t, x) = 4E

[
ZNt (x)3L(rN )ZNt (x)− ZNt (x)3ZNt R1(wNt/η, λ)

]
+
gt(x)

r2d
N

,

where |gt(x)| . 1. Now the second statement of Lemma 6.9 yields :

∂h

∂t
(t, x) ≤ Lh(t, x)− 4(γ − cr2

N )h(t, x) +
gt(x)

r2d
N

,

and by Lemma 6.10, we have

h(t, x) .
1

r2d
N

,

uniformly in t ≥ 0.

The following lemma is needed in the proof of Lemma 6.5.

Lemma 6.11. The following holds uniformly for all t ≥ 0:

E
[∣∣〈ZNt , φ〉∣∣] . r

1−d/2
N c

1/2
N (‖φ‖1 + r

d/2
N ‖φ‖2).

Proof. Recall the expression for
〈
ZNt , φ

〉
in (6.9) and the expression for ϕN in (6.10);

using Lemma 6.4 and Lemma 4.5, we can write

E
[∣∣〈ZNt , φ〉∣∣] . (τN/ηN )

1/2

rdN

∫ t

0

‖φ‖1 e
−F ′(λ)(t−s)ds

+

(∫ t

0

e−2F ′(λ)(t−s)
∥∥∥G(rN )

DN (t−s) ∗ φ
∥∥∥2

2
ds

)1/2

.

Replacing φ by (φ1/rN )rN - as defined in (6.4) - to use (6.15) and then looking at the proof
of (6.16) in the proof of Theorem 6.3, we see that∫ t

0

e−2F ′(λ)(t−s)
∥∥∥G(rN )

DN (t−s) ∗ φ
∥∥∥2

2
ds . r2−d

N cN (
∥∥φ1/rN

∥∥2

1
+
∥∥φ1/rN

∥∥2

2
).

But
∥∥φ1/rN

∥∥
1

= ‖φ‖1 and
∥∥φ1/rN

∥∥
2

= r
d/2
N ‖φ‖2, hence

E
[∣∣〈ZNt , φ〉∣∣] . ‖φ‖1 (τN/ηN )1/2

rdN
+ r

1−d/2
N c

1/2
N (‖φ‖1 + r

d/2
N ‖φ‖2),

and we have the required result since τN/ηN = o
(
rd+2
N

)
.

Proof of Lemma 6.5. We drop the superscript N from ϕN throughout the proof and take
averages over the radius r := rN . Recall from the expressions for QN in (6.7) and ρ(r) in
(3.10) that the variance of the stochastic integral

∫ t
0

∫
Rd
ϕ(x, s, t) MN (dxds) is given by

∫ t

0

∫
(Rd)3

1

V 2
r

1|x−z1|<r
|x−z2|<r

ϕ(z1, s, t)ϕ(z2, s, t)E
[
wNs/η(x, rN )2(1− wNs/η(z1))(1− wNs/η(z2))

+ 2wNs/η(x, rN )(1− wNs/η(x, rN ))( 1
2 − w

N
s/η(z1))( 1

2 − w
N
s/η(z2))

+ (1− wNs/η(x, rN ))2wNs/η(z1)wNs/η(z2)
]
dxdz1dz2ds+O

(
δ2
N

) ∫ t

0

‖ϕ(s, t)‖22 ds,
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which can also be written∫ t

0

E

[〈
(wNs/η)2,

(
(1− wNs/η)ϕ(s, t)

)2
〉

+

〈
2wNs/η(1− wNs/η),

(
( 1

2 − w
N
s/η)ϕ(s, t)

)2
〉

+

〈
(1− wNs/η)2,

(
wNs/ηϕ(s, t)

)2
〉

+O
(
δ2
N ‖ϕ(s, t)‖22

)]
ds.

(6.21)

We want to show that in this expression, wNs/η can (asymptotically) be replaced by λ,
hence we write〈

(wNt/η)2,
(

(1− wNt/η)ϕ
)2
〉
−
〈
λ2, (1− λ)2ϕ2

〉
=

〈
(wNt/η)2 − λ2,

(
(1− wNt/η)ϕ

)2
〉

+

〈
λ2,
(

(1− wNt/η)ϕ
)2

− (1− λ)2ϕ2

〉
.

Since (wNt/η)2 − λ2 = (τN/ηN )1/2ZNt (wNt/η + λ), using Lemma 6.4,

E

[∣∣∣∣〈(wNt/η)2 − λ2,
(

(1− wNt/η)ϕ
)2
〉∣∣∣∣] ≤ 2(τN/ηN )1/2

〈
E
[
(ZNt )2

]1/2
, |ϕ|

2
〉

.
(τN/ηN )1/2

r
d/2
N

‖ϕ‖22 = o
(
rN ‖ϕ‖22

)
.

In addition,〈
λ2,
(

(1− wNt/η)ϕ
)2

− (1− λ)2ϕ2

〉
= λ2

∫
(Rd)3

1

V 2
r

1|x−z1|<r
|x−z2|<r

ϕ(z1)ϕ(z2)
{

(1− wNt/η(z1))(1− wNt/η(z2))− (1− λ)2

+ (1− λ)(1− wNt/η(z1))− (1− λ)(1− wNt/η(z2))
}

dxdz1dz2

= λ2

∫
(Rd)3

1

V 2
r

1|x−z1|<r
|x−z2|<r

ϕ(z1)ϕ(z2)((1−wNt/η(z1))−(1−λ))(1−wNt/η(z2)+1−λ)dxdz1dz2.

(The last two terms inside the curly braces cancel out by permuting z1 and z2.) Thus,∣∣∣∣〈λ2,
(

(1− wNt/η)ϕ
)2

− (1− λ)2ϕ2

〉∣∣∣∣ ≤ 2λ2(τN/ηN )1/2

∫
Rd
|ϕ(z2)|

∣∣〈ZNt , ψNz2〉∣∣ dz2,

where ψNz2(z1) = Vr(z1,z2)
V 2
r

ϕ(z1). In particular,∥∥ψNz2∥∥1
= |ϕ|(z2, rN ), and

∥∥ψNz2∥∥2

2
≤ 1

VrN
|ϕ|2(z2, rN ). (6.22)

By Lemma 6.11, we get

E

[∫
Rd
|ϕ(z2)|

∣∣〈ZNt , ψz2〉∣∣dz2

]
. r

1−d/2
N c

1/2
N

∫
Rd
|ϕ(z2)|

(∥∥ψNz2∥∥1
+ r

d/2
N

∥∥ψNz2∥∥2

)
dz2

. r
1−d/2
N c

1/2
N ‖ϕ‖2

(∫
Rd

(
∥∥ψNz2∥∥2

1
+ rdN

∥∥ψNz2∥∥2

2
)dz2

)1/2

,

using the Cauchy-Schwartz inequality in the second line. By (6.22),(∫
Rd

(
∥∥ψNz2∥∥2

1
+ rdN

∥∥ψNz2∥∥2

2
)dz2

)1/2

≤
(∫

Rd

(
|φ|2(z2, rN ) +

1

V1
|φ|2(z2, rN )

)
dz2

)1/2

. ‖ϕ‖2 .
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Since τN/ηN = o
(
rd+2
N

)
,

E

[∣∣∣∣〈λ2,
(

(1− wNt/η)ϕ
)2

− (1− λ)2ϕ2

〉∣∣∣∣] = o
(
r2
Nc

1/2
N ‖ϕ‖22

)
.

We use a similar argument for the other terms in (6.21) to show that replacing wNs/η by λ

makes a difference of o
(
r2
Nc

1/2
N ‖ϕ‖22

)
. We have thus shown that, since rNc

1/2
N −→

N→∞
0,

E

[〈
(wNs/η)2,

(
(1− wNs/η)ϕ

)2
〉

+

〈
2wNs/η(1− wNs/η),

(
( 1

2 − w
N
s/η)ϕ

)2
〉

+

〈
(1− wNs/η)2,

(
wNs/ηϕ

)2
〉]

= 1
2λ(1− λ) ‖ϕ‖22 + o

(
rN ‖ϕ‖22

)
,

uniformly in s ≥ 0. The result follows from the bound on
∥∥ϕN∥∥

q
in (6.11).

A Approximating the (fractional) Laplacian

We start by stating some basic properties of averaged functions which are used
throughout the paper.

Proposition A.1. Let φ : Rd → R and ψ : Rd → R be in L1,∞(Rd). Then

i) φ ∗ ψ = φ ∗ ψ = φ ∗ ψ,

ii)
〈
φ, ψ

〉
=
〈
φ, ψ

〉
.

iii) If in addition φ ∈ Lq(Rd), by Jensen’s inequality,
∥∥φ∥∥

q
≤ ‖φ‖q.

iv) If β is a multi-index in Nd0, and φ is differentiable enough that ∂βφ is well defined
on Rd, then ∂βφ = ∂βφ.

v) Also, ∂β(ψ ∗ φ) = ψ ∗ ∂βφ.

We use here the notation . defined in (5.1).

Proposition A.2. Let φ : Rd → R be twice continuously differentiable and suppose that
‖∂βφ‖q <∞ for 0 ≤ |β| ≤ 2 and 1 ≤ q ≤ ∞. Then

i)
∥∥φ(r)− φ

∥∥
q
≤ d

2r
2 max|β|=2 ‖∂βφ‖q.

If in addition, φ admits ‖·‖q-bounded derivatives of up to the fourth order,

ii)
∥∥∥φ(r)− φ− r2

d+2∆φ
∥∥∥
q
≤ d3

3 r
4 max|β|=4 ‖∂βφ‖q.

Proof of Proposition A.2. By Taylor’s theorem,

φ(y) = φ(x) +

d∑
i=1

∂iφ(x)(y − x)i +
∑
i,j

Rij(y)(y − x)ij ,

where Rij(y) =
∫ 1

0
(1− t)∂ijφ(x+ t(y − x))dt (we use the notation xi1...ik = xi1 . . . xik ). By

symmetry, the average of the first sum over a ball of centre x and radius r vanishes, and∣∣φ(x, r)− φ(x)
∣∣ ≤∑

i,j

1

Vr

∫
B(x,r)

|Rij(y)| |y − x|ij dy. (A.1)
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If q =∞, then |Rij(y)| ≤ 1
2 ‖∂ijφ‖∞ and we write

∥∥φ(r)− φ
∥∥
∞ ≤

1

2
dmax
|β|=2

‖∂βφ‖∞
1

Vr

∫
B(0,r)

|y|2 dy =
d2

2(d+ 2)
r2 max
|β|=2

‖∂βφ‖∞ .

If instead 1 ≤ q <∞, write

∥∥φ(r)− φ
∥∥
q
≤
∑
i,j

(∫
Rd

(
1

Vr

∫
B(0,r)

|Rij(x+ y)| |y|ij dy

)q
dx

)1/q

≤
∑
i,j

∫
Rd

(
1

Vr

∫
B(0,r)

|y|ij dy

)q−1
1

Vr

∫
B(0,r)

|Rij(x+ y)|q |y|ij dydx

1/q

,

by Jensen’s inequality. But, by the definition of Rij∫
Rd
|Rij(x+ y)|q dx ≤ 1

2q−1

∫ 1

0

(1− t)
∫
Rd
|∂ijφ(x+ ty)|q dxdt

=
1

2q
‖∂ijφ‖qq .

Plugging this into the previous inequality, we get

∥∥φ(r)− φ
∥∥
q
≤
∑
i,j

1

2
‖∂ijφ‖q

( 1

Vr

∫
B(0,r)

|y|ij dy

)q−1
1

Vr

∫
B(0,r)

|y|ij dy

1/q

≤ 1

2
dmax
|β|=2

‖∂βφ‖q
1

Vr

∫
B(0,r)

|y|2 dy

≤ d

2
r2 max
|β|=2

‖∂βφ‖q .

The second inequality is proved in essentially the same way. We expand φ according
to Taylor’s theorem to the fourth order:

φ(y) = φ(x) +
∑
i

∂iφ(x)(y − x)i +
1

2

∑
i,j

∂ijφ(x)(y − x)ij

+
1

3!

∑
i,j,k

∂ijkφ(x)(y − x)ijk +
∑
ijkl

Rijkl(y)(y − x)ijkl,

where Rijkl(y) = 1
3!

∫ 1

0
(1 − t)3∂ijklφ(x + t(y − x))dt. Integrating, all the antisymmetric

terms vanish and we obtain

φ(x, r)− φ(x) =
1

2

∑
i

∂iiφ(x)
1

V 2
r

∫
(Rd)2

(y − x)ii1|x−z|<r
|y−z|<r

dzdy

+
∑
ijkl

1

V 2
r

∫
(Rd)2

Rijkl(y)(y − x)ijkl1|x−z|<r
|y−z|<r

dzdy.

We begin by calculating the first term before bounding the second one. Note that, by
symmetry, the integral of (y − x)ii does not depend on i, so the first sum above can be
written as

1

2
∆φ(x)

1

dV 2
r

∫
(Rd)2

|y − x|2 1|x−z|<r
|y−z|<r

dzdy.
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By the parallelogram identity, |y − x|2 = 2(|x− z|2+|y − z|2)−|2z − (x+ y)|2. Integrating,
we see that

1

V 2
r

∫
(Rd)2

|y − x|2 1|x−z|<r
|y−z|<r

dzdy = 4
1

Vr

∫
B(0,r)

|y|2 dy

− 1

V 2
r

∫
(Rd)2

|(2z − y)− x|2 1 |x−z|<r
|(2z−y)−z|<r

dzdy.

Setting y′ = 2z − y in the rightmost integral and moving this term to the left-hand side,
we obtain

1

V 2
r

∫
(Rd)2

|y − x|2 1|x−z|<r
|y−z|<r

dzdy =
2

Vr

∫
B(0,r)

|y|2 dy

=
2d

d+ 2
r2.

Replacing this term in the equation above, we can write∣∣∣∣φ(x, r)− φ(x)− r2

d+ 2
∆φ(x)

∣∣∣∣ ≤∑
ijkl

1

V 2
r

∫
(Rd)2

|Rijkl(y)| |y − x|ijkl 1|x−z|<r
|y−z|<r

dzdy.

Proceeding exactly as before and writing |y|ijkl ≤
1
4 (|yi|4 + |yj |4 + |yk|4 + |yl|4), one shows

that ∥∥∥∥φ(r)− φ− r2

d+ 2
∆φ

∥∥∥∥
q

≤ d3

4!
max
|β|=4

‖∂βφ‖q
∑
i

1

V 2
r

∫
(Rd)2

|yi|4 1 |−z|<r
|y−z|<r

dzdy.

Note that
∑
i |yi|

4 ≤ |y|4, and by the parallelogram identity, |y|4 + |2z − y|4 ≤ 8(|z|4 +

|z − y|4). As before, we can integrate on both sides:

1

V 2
r

∫
(Rd)2

|y|4 1 |−z|<r
|y−z|<r

dzdy +
1

V 2
r

∫
(Rd)2

|2z − y|4 1 |−z|<r
|(2z−y)−z|<r

dzdy ≤ 16
1

Vr

∫
B(0,r)

|y|4 dy.

Hence,
1

V 2
r

∫
(Rd)2

|y|4 1 |−z|<r
|y−z|<r

dzdy ≤ 8
1

Vr

∫
B(0,r)

|y|4 dy =
8d

d+ 4
r4.

Proposition A.3. Take φ : Rd → R to be twice continuously differentiable and suppose
that ‖∂βφ‖q <∞ for 0 ≤ |β| ≤ 2 and q ∈ {1,∞}. Then

i)
∥∥Dα,δφ∥∥

q
. ‖φ‖q + max|β|=2 ‖∂βφ‖q,

ii)
∥∥Dα,δφ−Dαφ∥∥

q
. δ2−α max|β|=2 ‖∂βφ‖q.

Further if 0 ≤ φ ≤ 1,

iii)
∥∥F (δ)(φ)− F (φ)

∥∥
∞ . δα

(
1 + max|β|=1 ‖∂βφ‖

2
∞ + max|β|=2 ‖∂βφ‖∞

)
.

Proof of Proposition A.3. From the definition of Dα,δ and Φ(δ) in (2.9), and then changing
the order of integration,

Dα,δφ(x) =

∫
Rd

∫ ∞
|x−y|

2 ∨δ

Vr(x, y)

Vr
(φ(y)− φ(x))

dr

rd+α+1
dy

=

∫ ∞
δ

∫
Rd
1|x−y|<2r

1

Vrrd

∫
Rd
1|z−x|<r
|z−y|<r

(φ(y)− φ(x))dzdy
dr

rα+1

= V1

∫ ∞
δ

(
φ(x, r)− φ(x)

) dr

rα+1
.
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The last line follows by noting that 1|x−y|<2r1|x−z|<r, |y−z|<r = 1|x−z|<r, |y−z|<r, and then
changing the order of integration again to integrate first with respect to y and then with
respect to z. Assume that δ < 1 (otherwise simply ignore the first term below). Then for
q ∈ {1,∞}, by Proposition A.1.iii,

∥∥Dα,δφ∥∥
q
≤ V1

∫ 1

δ

∥∥∥φ(r)− φ
∥∥∥
q

dr

rα+1
+ 2V1 ‖φ‖q

∫ ∞
1

dr

rα+1
.

By the triangular inequality and Proposition A.1.iii,∥∥∥φ− φ∥∥∥
q
≤
∥∥∥φ− φ∥∥∥

q
+
∥∥φ− φ∥∥

q

≤ 2
∥∥φ− φ∥∥

q
.

Hence by Proposition A.2,

∥∥Dα,δφ∥∥
q
. max
|β|=2

‖∂βφ‖q
∫ 1

δ

r2 dr

rα+1
+ ‖φ‖q

∫ ∞
1

dr

rα+1

. max
|β|=2

‖∂βφ‖q + ‖φ‖q .

Likewise, we have

Dαφ(x)−Dα,δφ(x) = V1

∫ δ

0

(
φ(x, r)− φ(x)

) dr

rα+1
.

By Proposition A.2, we then write

∥∥Dαφ−Dα,δφ∥∥
q
≤ V1

∫ δ

0

∥∥∥φ(r)− φ
∥∥∥
q

dr

rα+1

. max
|β|=2

‖∂βφ‖q
∫ δ

0

r2 dr

rα+1

. δ2−α max
|β|=2

‖∂βφ‖q .

The third statement is a rewording of the first one in a slightly different setting. Indeed
by (2.8),

F (δ)(φ)(x)− F (φ(x)) = αδα
∫ ∞
δ

(
F (φ)(x, r)− F (φ(x))

) dr

rα+1
.

Hence as in the proof of (i )∥∥∥F (δ)(φ)− F (φ)
∥∥∥
∞

. δα
(
‖F (φ)‖∞ + max

|β|=2

∥∥∂βF (φ)
∥∥
∞ + ‖F ′‖∞ max

|β|=2
‖∂βφ‖∞

)
.

The last term appears because there is an average inside the function F . The result then
follows from the fact that ∂ijF (φ) = ∂ijφF

′(φ) + ∂iφ∂jφF
′′(φ).

B The centering term

B.1 The Brownian case

Proof of Lemma 2.1. Fix N ≥ 1 and let r = rN . Define an operator S : L∞([0, T ]×Rd)→
L∞([0, T ]×Rd) by

S(g)(t, x) = G
(r)
t ∗ w0(x)−

∫ t

0

G
(r)
t−s ∗ F (g(s))(x, r)ds.

EJP 22 (2017), paper 5.
Page 58/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP20
http://www.imstat.org/ejp/


A central limit theorem for the SLFV with selection

Define the norm ‖g‖[0,T ] = supt∈[0,T ] supx∈Rd |g(t, x)|; then S is Lipschitz on L∞([0, T ]×Rd)

with respect to this norm, since (as
∥∥∥G(r)

t−s ∗ φ
∥∥∥
∞
≤ ‖φ‖∞ and by Proposition A.1.iii)

‖S(f)− S(g)‖|0,T ] ≤ T ‖F
′‖∞ ‖f − g‖[0,T ] . (B.1)

Let us choose for now T > 0 small enough that k = T ‖F ′‖∞ < 1. The results can be
extended to arbitrarily large time intervals by iterating the argument on [T, 2T ], [2T, 3T ]

and so on. The operator S is then a contraction in L∞([0, T ]×Rd) and admits a unique
fixed point in this space. This fixed point is precisely fN (see (4.7)). Define a sequence
(gn)n≥0 of functions in L∞([0, T ]×Rd) by{

gn+1 = S(gn),

g0(t, x) = w0(x).

Note that since w0 admits spatial derivatives of order up to four, so does gn for each n.
A Picard iteration argument then yields the convergence of gn to fN in L∞([0, T ]×Rd).
More precisely,∥∥gn − fN∥∥[0,T ]

≤ k
∥∥gn−1 − fN

∥∥
[0,T ]
≤ . . . ≤ kn

∥∥w0 − fN
∥∥

[0,T ]
. (B.2)

Fix 1 ≤ i ≤ d and set, for g, h in L∞([0, T ],Rd),

S1(g, h)(t, x) = G
(r)
t ∗ ∂iw0(x)−

∫ t

0

G
(r)
t−s ∗ F ′(g(s))h(s)(x)ds.

Then by Proposition A.1.v, ∂ign+1 = S1(gn, ∂ign). In addition, for h1, h2, h3 in L∞([0, T ]×
Rd), ∥∥S1(h1, h2)− S1(h1, h3)

∥∥
[0,T ]
≤ T ‖F ′‖∞ ‖h2 − h3‖[0,T ] , (B.3)∥∥S1(h1, h2)− S1(h3, h2)

∥∥
[0,T ]
≤ T ‖F ′′‖∞ ‖h2‖[0,T ] ‖h1 − h3‖[0,T ] . (B.4)

Hence S1(g, ·) is a contraction in L∞([0, T ]×Rd) for any g in L∞([0, T ]×Rd). Let us call
g̃ the unique fixed point of S1(fN , ·) in this space. We shall now show that ∂ifN exists
and is equal to g̃ ∈ L∞([0, T ]×Rd). Adapting the argument of the Picard iteration and
using the inequalities (B.3) and (B.4) above, we write for n ≥ 1,

‖∂ign − g̃‖[0,T ] =
∥∥S1(gn−1, ∂ign−1)− S1(fN , g̃)

∥∥
[0,T ]

≤ T ‖F ′‖∞ ‖∂ign−1 − g̃‖[0,T ] + T ‖F ′′‖∞ ‖g̃‖[0,T ]

∥∥gn−1 − fN
∥∥

[0,T ]

≤ k ‖∂ign−1 − g̃‖[0,T ] + T ‖F ′′‖∞ ‖g̃‖[0,T ] k
n−1

∥∥w0 − fN
∥∥

[0,T ]
,

where k = T ‖F ′‖∞ < 1 and the last term is bounded using (B.2). Iterating yields

‖∂ign − g̃‖[0,T ] ≤ k
n ‖∂iw0 − g̃‖[0,T ] + nkn−1T ‖F ′′‖∞ ‖g̃‖[0,T ]

∥∥w0 − fN
∥∥

[0,T ]
.

Hence ∂ign converges to g̃ uniformly on [0, T ] × Rd (recall that we assumed ∂iw0 ∈
L∞(Rd)). Since we already showed in (B.2) that gn converges uniformly to fN , this
implies that ∂ifN = g̃ ∈ L∞([0, T ]×Rd). The proof for higher order derivatives of fN is
similar and we omit the details.

Proof of Proposition 4.7. Recall the following expression for fN from (4.7),

fNt (x) = G
(r)
t ∗ w0(x)−

∫ t

0

G
(r)
t−s ∗ F (fNs )(x)ds. (B.5)
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Since
∥∥∥G(r)

t ∗ φ
∥∥∥
∞
≤ ‖φ‖∞, it follows that

∥∥fNt ∥∥∞ ≤ ‖w0‖∞ + T ‖F‖∞ for t ≤ T . We

can now prove the second part of the statement by induction on |β|. (Recall that β is
a multi-index (β1, . . . , βd) in Nd0 and that |β| = β1 + . . . + βd.) Suppose that for every
β′ with 0 ≤ |β′| < k ≤ 4, there exists a constant Kβ′ < ∞ independent of N such
that sup0≤t≤T

∥∥∂β′fNt ∥∥∞ ≤ Kβ′ ; take β such that |β| = k. (From now on we omit the
superscript N in the induction proof.) Note that for some constants Cα1,...,αi ∈ N,

∂βF (f) =
∑
i≥1

F (i)(f)

( ∑
α1+...+αi=β

Cα1,...,αi∂α1
f . . . ∂αif

)

where the second sum is over all possible multisets with i elements of non-zero multi-
indices (α1, . . . , αi) in Nd \ {(0, . . . , 0)} such that α1 + . . . + αi = β (computing the sum
coordinate by coordinate). Also, w0 is assumed to have uniformly bounded derivatives
of up to the fourth order. Using Proposition A.1 (iv and v), we can differentiate on both
sides of (B.5) and we obtain

∂βft(x) = G
(r)
t ∗ ∂βw0(x)

−
∫ t

0

G
(r)
t−s ∗

(
CβF ′(fs)∂βfs +

∑
α1+...+αi=β

i≥2

Cα1,...,αiF
(i)(fs)∂α1

fs . . . ∂αifs

)
(x)ds.

The sum is uniformly bounded by a constant K by the induction hypothesis, and so, using

the fact that
∥∥∥G(r)

t ∗ φ
∥∥∥
∞
≤ ‖φ‖∞,

‖∂βft‖∞ ≤ ‖∂βw0‖∞ + TK + Cβ ‖F ′‖∞
∫ t

0

‖∂βfs‖∞ ds.

The function t 7→ ‖∂βft‖∞ is bounded on [0, T ] by Lemma 2.1. We can therefore apply
Gronwall’s inequality to conclude

‖∂βft‖∞ ≤
(
‖∂βw0‖∞ + TK

)
eCβ‖F

′‖T ,

where the right hand side is independent of both t ∈ [0, T ] and N ≥ 1. We can now prove
the first statement using Gronwall’s inequality again, together with Proposition A.2 and
the first part of the proof.

Recall that Gt denotes the fundamental solution to the heat equation. Recalling
that we set the constants uVR, 2R2/(d+ 2) and s to 1, equations (2.5) and (3.16) can be
written as

fNt (x) = Gt ∗ w0(x) +

∫ t

0

Gt−s ∗
(
LfNs −

1

2
∆fNs − F (fNs )

)
(x)ds,

and

ft(x) = Gt ∗ w0(x) +

∫ t

0

Gt−s ∗ F (fs)ds.

Recall the definition of L(r) in (2.4); by Proposition A.2,∥∥∥∥LfNs − 1

2
∆fNs

∥∥∥∥
∞
≤ d3(d+ 2)

6
r2
N max
|β|=4

∥∥∂βfNs ∥∥∞ . r2
N ,

since max|β|=4

∥∥∂βfNs ∥∥∞ is uniformly bounded from the previous argument. Also by
Proposition A.2,∥∥∥F (fNs )− F (fNs )

∥∥∥
∞
≤ d

2
r2
N

(
max
|β|=2

∥∥∥∂βF (fNs )
∥∥∥
∞

+ ‖F ′‖∞ max
|β|=2

∥∥∂βfNs ∥∥∞) . r2
N .
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(The term within brackets is uniformly bounded from the first part of the proof.) Finally,
we also have ∥∥F (fNs )− F (fs)

∥∥
∞ ≤ ‖F

′‖∞
∥∥fNs − fs∥∥∞ .

Hence, using the fact that ‖Gt ∗ φ‖∞ ≤ ‖φ‖∞, there exists a constant C > 0 such that,
for t ∈ [0, T ], ∥∥fNt − ft∥∥∞ ≤ Cr2

N + ‖F ′‖∞
∫ t

0

∥∥fNs − fs∥∥∞ ds.

Applying Gronwall’s inequality (the function t 7→
∥∥fNt − ft∥∥∞ is bounded on [0, T ] by

Lemma 2.1), ∥∥fNt − ft∥∥∞ ≤ Ce‖F ′‖T r2
N .

B.2 The stable case

Proof of Lemma 2.6. Lemma 2.6 is proved exactly as Lemma 2.1 in the Brownian case.
The corresponding operator S : L∞([0, T ]×Rd)→ L∞([0, T ]×Rd) is given by

S(g)(t, x) = G(α,δN )
t ∗ w0(x)−

∫ t

0

G(α,δN )
t−s ∗ F (δN )(fNs )(x)ds.

It satisfies the same contraction property as (B.1), yielding the existence of a solution
to (2.12) in L∞([0, T ] × Rd). The argument for the existence of spatial derivatives in
L∞([0, T ]×Rd) is the same as in the Brownian case, with S1 given by

S1(g, h)(t, x) = G(α,δN )
t ∗ ∂iw0(x)− α

∫ t

0

∫ ∞
1

G(α,δN )
t−s ∗ F ′(g(s))h(s)(x, δNr)

dr

r1+α
ds.

Proof of Proposition 5.6. The proof of the convergence of the centering term in the stable
case goes along the same lines as in the Brownian case of Proposition 4.7. Differentiating
(5.12) yields (dropping superscripts N )

∂βft(x) = G(α,δ)
t ∗ ∂βw0(x)− α

∫ t

0

∫ ∞
1

G(α,δ)
t−s ∗

(
CβF ′(fs)∂βfs(δr)

+
∑

α1+...+αk=β
k≥2

Cα1,...,αkF
(k)(fs)∂α1

fs . . . ∂αkfs(δr)

)
(x)

dr

rα+1
ds.

One can then proceed by induction as previously to show

‖∂βft‖∞ . ‖∂βw0‖∞ + T + ‖F ′‖∞
∫ t

0

‖∂βfs‖∞ ds,

and Gronwall’s inequality (using Lemma 2.6) yields the second part of the statement.
For the first part, the proof is identical to that in the Brownian case, one simply has to
replace the operators 1

2∆ and L(r) by Dα and Dα,δ, respectively, and likewise replace

F (ft) by F (δ)(ft). Proposition A.3 then yields the correct estimates on the corresponding
error terms.
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C Time dependent test functions

C.1 The Brownian case

Proof of Lemma 4.2. In the spirit of the proof of Lemma 2.1, we characterize ϕN as the
fixed point of a contraction in L∞(Rd × {(s, t) : 0 ≤ s ≤ t ≤ T}). By the definition of ϕN

in (4.2),

ϕN (x, s, t) = G
(rN )
t−s ∗ φ(x)−

∫ t

s

G
(rN )
u−s ∗ F ′(fNu )ϕN (u, t)(x)du. (C.1)

In other words, ϕN is a fixed point of the following operator,

S(g)(x, s, t) = G
(rN )
t−s ∗ φ(x)−

∫ t

s

G
(rN )
u−s ∗ F ′(fNu )g(u, t)(x)du.

For q ∈ [1,∞], define the norm ‖g‖q,[0,T ] = sup0≤s≤t≤T ‖g(s, t)‖q; then since G
(r)
u−s is a

contraction in Lq and by Proposition A.1.iii,

‖S(h)− S(g)‖q,[0,T ] ≤ T ‖F
′‖∞ ‖h− g‖q,[0,T ]

so for T small enough, S is a contraction. Note that the space of (equivalence classes of)
measurable functions g : {(s, t) : 0 ≤ s ≤ t ≤ T} → Lq(Rd) such that ‖g‖q,[0,T ] < ∞ is a
Bochner space (and therefore a Banach space). Hence for each q ∈ [1,∞], there exists a
unique fixed point of S which is uniformly bounded in Lq(Rd), obtained as the limit of
the sequence {

gn+1 = S(gn),

g0(x, s, t) = φ(x).

Since this sequence does not depend on q, the fixed point is the same for all q. This
fixed point is ϕN . Proceeding as in the proof of Lemma 2.1, one shows that the spatial
derivatives of gn (of order up to four) converge uniformly to some function which is
uniformly bounded in Lq(Rd) for all q ∈ [1,∞]. As a result ϕN admits spatial derivatives
of order up to four which are uniformly bounded in Lq(Rd) for q ∈ [1,∞].

Proof of Lemma 4.3. The proof of Lemma 4.3 is similar in spirit to that of Proposition 4.7.
We start by proving the bound on the derivatives of ϕN . Using the fact that G(r)

t is a
contraction in Lq, we have, using (C.1), for q = 1, 2,∥∥ϕN (s, t)

∥∥q
q
≤ 2q−1 ‖φ‖qq + (2(t− s))q−1

∫ t

s

∥∥∥F ′(fNu )ϕN (u, t)
∥∥∥q
q

du

≤ 2q−1 ‖φ‖qq + (2(t− s))q−1 ‖F ′‖q∞
∫ t

s

∥∥ϕN (u, t)
∥∥q
q

du,

by Proposition A.1.iii. In addition, by Lemma 4.2, the function s 7→
∥∥ϕN (s, t)

∥∥
q

is bounded

on [0, t]. By Gronwall’s inequality, we conclude that∥∥ϕN (s, t)
∥∥
q
≤ 2(q−1)/q ‖φ‖q e

2q−1

q T q‖F ′‖q .

Thus the statement holds for β = 0. We can then proceed by induction on |β| as in the
proof of Proposition 4.7 to show that the same holds for every 0 ≤ |β| ≤ 4 (making use of
the fact that by Proposition 4.7, fN has uniformly bounded derivatives). We omit the
details.

We are left with proving the convergence estimate for ϕN which is again a Gronwall
estimate. As in the proof of Proposition 4.7, write (4.2) and (4.4) as

ϕN (x, s, t) = Gt−s ∗ φ(x)

+

∫ t

s

Gu−s ∗
(
L(rN )ϕN (u, t)− 1

2
∆ϕN (u, t)− F ′(fNu )ϕN (u, t)

)
(x)du, (C.2)
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and

ϕ(x, s, t) = Gt−s ∗ φ(x)−
∫ t

s

Gu−s ∗ (F ′(fu)ϕ(u, t)) (x)du. (C.3)

By Proposition A.2 and the bound on the spatial derivatives of ϕN ,∥∥∥∥L(rN )ϕN (u, t)− 1

2
∆ϕN (u, t)

∥∥∥∥
q

. r2
N .

Still by Proposition A.2, (omitting superscripts N and time variables)∥∥∥F ′(f)ϕ− F ′(f)ϕ
∥∥∥
q

≤ d

2
r2
N

(
max
|β|=2

∥∥∂β(F ′(f)ϕ)
∥∥
q

+ ‖F ′‖∞ max
|β|=2

‖∂βϕ‖q + ‖ϕ‖q ‖F
′′‖∞ max

|β|=2
‖∂βf‖∞

)
.

The last term inside the brackets is uniformly bounded by Proposition 4.7 and the second
to last is bounded as a consequence of the first part of the proof. Also, ∂ij(F ′(f)ϕ) is
dominated by a linear combination of (averages of) derivatives of both f and ϕ. The
latter are bounded in Lq while the former are bounded in L∞, hence the first term within
the brackets is also uniformly bounded. To sum up,∥∥∥F ′(fNu )ϕN (u, t)− F ′(fNu )ϕN (u, t)

∥∥∥
q
. r2

N . (C.4)

Finally, by Proposition 4.7, ∥∥F ′(fNu )− F ′(fu)
∥∥
q
. r2

N .

Hence, subtracting (C.3) from (C.2) and using Jensen’s inequality as above with the
Lq-contraction property of Gt, we have, for t ∈ [0, T ],∥∥ϕN (s, t)− ϕ(s, t)

∥∥q
q
. r2q

N +

∫ t

s

∥∥ϕN (u, t)− ϕ(u, t)
∥∥q
q

du.

Also, by Lemma 4.2, the function s 7→
∥∥ϕN (s, t)− ϕ(s, t)

∥∥
q

is bounded on [0, t]. We
conclude with Gronwall’s inequality, yielding the first statement of Lemma 4.3.

Proof of Lemma 4.10. We can assume that t′ > t ≥ s (if t′ ≥ s ≥ t, then ϕN (s, t) = φ =

ϕN (s, s) and the problem reduces to bounding ϕN (s, t′)−ϕN (s, s)). Using (C.1), we write

ϕN (x, s, t′)−ϕN (x, s, t) = G
(rN )
t′−s ∗φ(x)−G(rN )

t−s ∗φ(x)−
∫ t′

t

G
(rN )
u−s ∗F ′(fNu )ϕN (u, t′)(x)du

−
∫ t

s

G
(rN )
u−s ∗

(
F ′(fNu )(ϕN (u, t′)− ϕN (u, t))

)
(x)du.

From the way we extended ϕN in (4.13), we see that for u ≥ t′, ϕN (u, t′)− ϕN (u, t) = 0

and for t ≤ u ≤ t′, ϕN (u, t′)− ϕN (u, t) = ϕN (u, t′)− φ, so (omitting superscripts N )

ϕ(x, s, t′)− ϕ(x, s, t) = G
(r)
t′−s ∗ φ(x)−G(r)

t−s ∗ φ(x)−
∫ t′

t

G
(r)
u−s ∗ F ′(fu)φ(x)du

−
∫ T

s

G
(r)
u−s ∗

(
F ′(fu)(ϕ(u, t′)− ϕ(u, t))

)
(x)du.

Again, we use the Lq-contraction property of G(r)
t to write

‖ϕ(s, t′)− ϕ(s, t)‖qq ≤ 3q−1
∥∥∥G(r)

t′−s ∗ φ−G
(r)
t−s ∗ φ

∥∥∥q
q

+ 3q−1 |t′ − t|q ‖F ′‖q∞ ‖φ‖
q
q

+ (3(T − s))q−1 ‖F ′‖q∞
∫ T

s

‖ϕ(u, t′)− ϕ(u, t)‖qq du. (C.5)
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We need a bound on the first term; recalling the definition of G(r) in Subsection 4.2, we
have

G
(r)
t′−s ∗ φ(x)−G(r)

t−s ∗ φ(x) =

∫ t′

t

G
(r)
u−s ∗ L(r)φ(x)du.

By Jensen’s inequality,∥∥∥G(r)
t′−s ∗ φ−G

(r)
t−s ∗ φ

∥∥∥q
q
≤ |t′ − t|q−1

∫ t′

t

∥∥∥L(r)φ
∥∥∥q
q

du

. |t′ − t|q ,

by Proposition A.2. Hence, returning to (C.5),

‖ϕ(s, t′)− ϕ(s, t)‖qq . |t
′ − t|q +

∫ T

s

‖ϕ(u, t′)− ϕ(u, t)‖qq du.

Noting that from Lemma 4.2, we know that s 7→ ‖ϕ(s, t′)− ϕ(s, t)‖q is bounded on [0, T ],
Gronwall’s inequality yields the result.

Proof of Lemma 4.11. By the definition of G(r),

G
(rN )
t−s ∗ φ(x) = φ(x) +

∫ t

s

G
(rN )
u−s ∗ L(rN )φ(x)du.

Hence∥∥∥∥∥ sup
t∈[s,T ]

G
(rN )
t−s ∗ φ

∥∥∥∥∥
1

≤ ‖φ‖1 + (T − s)
∥∥∥L(rN )φ

∥∥∥
1
≤ ‖φ‖1 + T

d(d+ 2)

2
max
|β|=2

‖∂βφ‖1 (C.6)

(we have used Proposition A.2.i to bound
∥∥L(rN )φ

∥∥
1

independently of N ). Recall from
(C.1) that

ϕN (x, s, t) = G
(rN )
t−s ∗ φ(x)−

∫ t

s

G
(rN )
u−s ∗ F ′(fNu )ϕN (u, t)(x)du.

Within the second integral, u ≤ t, so we can write
∣∣ϕN (u, t)

∣∣ ≤ supt′∈[u,T ]

∣∣ϕN (u, t′)
∣∣. Thus

(omitting superscripts and subscripts) by Proposition A.1.i,

sup
t∈[s,T ]

|ϕ(x, s, t)| ≤ sup
t∈[s,T ]

|G(r)
t−s ∗ φ(x)|+ ‖F ′‖∞

∫ T

s

G
(r)
u−s ∗ sup

t∈[u,T ]

|ϕ(u, t)| (x)du.

Integrating with respect to the variable x ∈ Rd yields∥∥∥∥∥ sup
t∈[s,T ]

|ϕ(s, t)|

∥∥∥∥∥
1

≤ ‖φ‖1 + T
d(d+ 2)

2
max
|β|=2

‖∂βφ‖1 + ‖F ′‖∞
∫ T

s

∥∥∥∥∥ sup
t∈[u,T ]

|ϕ(u, t)|

∥∥∥∥∥
1

du.

Consider the space X of functions g : Rd × [0, T ]2 → R such that g(x, s, t) = g(x, t, t)

for s ≥ t and the norm

sup
s∈[0,T ]

∥∥∥∥∥ sup
t∈[0,T ]

|g(s, t)|

∥∥∥∥∥
1

is finite. (As a closed subspace of a Bochner space, X is complete with respect to this
norm.) Looking at the proof of Lemma 4.2, extend S to an operator on X by setting
S(g)(x, s, t) = φ(x) for s ≥ t. Then S : X → X (using (C.6)) and by the same argument
as in the proof of Lemma 4.2, for T sufficiently small, S is a contraction on X. As a

result we obtain that s 7→
∥∥∥supt∈[s,T ] |ϕ(s, t)|

∥∥∥
1

is bounded on [0, T ]. Hence, by Gronwall’s

inequality, ∥∥∥∥∥ sup
t∈[s,T ]

|ϕ(s, t)|

∥∥∥∥∥
1

≤
(
‖φ‖1 + T

d(d+ 2)

2
max
|β|=2

‖∂βφ‖1

)
e‖F

′‖(T−s).
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C.2 The stable case

Proof of Lemma 5.2. By the definition of ϕN in (5.6),

ϕN (x, s, t) = G(α,δN )
t−s ∗ φ(x)− α

∫ t

s

∫ ∞
1

G(α,δN )
u−s ∗ F ′(fNu )ϕN (u, t)(δNr)(x)

dr

rα+1
du. (C.7)

Note that since we are only considering q ∈ {1,∞}, we have∥∥∥∥∫ ∞
1

f(·, r)dr
∥∥∥∥
q

≤
∫ ∞

1

‖f(·, r)‖q dr.

Hence the bound on the derivatives of ϕN can be proved following the same argument as
in the proof of Lemma 4.3 in the Brownian case, using Lemma 5.1 in place of Lemma 4.2.
By the definition of ϕ,

ϕ(x, s, t) = G(α)
t−s ∗ φ(x)−

∫ t

s

G(α)
u−s ∗ (F ′(fu)ϕ(u, t)) (x)du.

By Proposition A.3 and by the bound on the spatial derivatives of ϕN ,∥∥Dα,δNϕN (u, t)−DαϕN (u, t)
∥∥
q
. δ2−α

N .

Using (C.4) (which is still true in this case by the bound on the derivatives of ϕN ), we
have∫ ∞

1

∥∥∥F ′(fNu )ϕN (u, t)(δNr)− F ′(fNu )ϕN (u, t)
∥∥∥
q

dr

rα+1
. δ2

N

∫ δ−1

1

r2 dr

rα+1
+

∫ ∞
δ−1
N

dr

rα+1

. δαN .

Finally, by Proposition 5.6, ∥∥F ′(fNu )− F ′(fu)
∥∥
q
. δ

α∧(2−α)
N .

As a result, by the same argument as in the proof of Lemma 4.3, by Gronwall’s inequality,∥∥ϕN (s, t)− ϕ(s, t)
∥∥
q
. δ

α∧(2−α)
N .

Proof of Lemma 5.10. The argument for the continuity estimate is the same as in the
proof of Lemma 4.10, using Proposition A.3. For the second bound, we use the same
argument as in Lemma 4.11, again using Proposition A.3.

Proof of Lemma 5.4. Splitting the integral with respect to z2, we have∫
(Rd)2

|f(z1)| |g(z2)| |z1 − z2|−αdz1dz2 ≤ ‖g‖∞
∫
Rd
|f(z1)|

∫
B(z1,1)

|z1 − z2|−αdz2dz1

+

∫
Rd
|f(z1)|

∫
Rd\B(z1,1)

|g(z2)|dz2dz1

But
∫
B(0,1)

|y|−α dy = dV1

d−α and we have :∫
(Rd)2

|f(z1)| |g(z2)| |z1 − z2|−αdz1dz2 ≤ ‖g‖∞
dV1

d− α

∫
Rd
|f(z1)|dz1 + ‖g‖1

∫
Rd
|f(z1)|dz1.
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D Estimates for drift load proofs

Proof of Lemma 6.7. For all t > 0, ξ(r)
t can be written as ξ(r)

t =
∑Nt
k=1 Yk, where (Nt)t≥0

is a Poisson process with intensity (d+2)
2r2 and (Yk)k≥1 is a sequence of independent and

identically distributed random variables with density ψ(y) = Vr(0,y)
V 2
r

. As a result, the law

of ξ(r)
t can be written

G
(r)
t (dx) = e−

d+2

2r2
tδ0(dx) + e−

d+2

2r2
t
∑
n≥1

(
d+2
2r2 t

)n
n!

ψ∗n(x)dx.

Since ψ is continuous on Rd, so is ψ∗n for any n ≥ 1. In addition, ψ(y) is decreasing

as a function of |y|, and φ ∗ ψ(x) = φ(x, r) so, by induction it follows that ψ∗n(y) is
also decreasing as a function of |y|. Since the above sum converges uniformly, we can

conclude that g(r)
t is continuous on Rd and that g(r)

t (y) is rotation invariant and is a
decreasing function of |y|.

Proof of Lemma 6.9. By some elementary algebra,

φ(y)2 − φ(x)2 − 2φ(x)(φ(y)− φ(x)) + 2
2r2

d+ 2
φ(x)(φ(y)− φ(x))g(y)

=

(
φ(y)− φ(x) +

2r2

d+ 2
φ(x)g(y)

)2

−
(

2r2

d+ 2

)2

φ(x)2g(y)2

≥ −
(

2r2

d+ 2

)2

φ(x)2,

since g(y)2 ≤ 1. Averaging the above inequality in y twice around x and multiplying by
d+2
2r2 yields

L(r)φ2(x)− 2φ(x)L(r)φ(x) + 2φ(x)φ g(x, r)− 2φ(x)2g(x, r) ≥ − 2r2

d+ 2
φ(x)2.

The first result then follows from the fact that γ ≤ g. For the second inequality, set
a = φ(y), ε = 2r2

d+2g(y) and b = (1− ε)1/3φ(x); then

φ(y)4 − φ(x)4 − 4

(
1− 2r2

d+ 2
g(y)

)
φ(x)3(φ(y)− φ(x))

= a4 − b4 − 4b3(a− b) + b4 − φ(x)4 − 4b3(b− φ(x)).

By convexity of the function x 7→ x4, a4 − b4 − 4b3(a− b) ≥ 0, so the above expression is
greater than

φ(x)4
[
(1− ε)4/3 − 1− 4(1− ε)((1− ε)1/3 − 1)

]
∼
ε→0
−2

3
φ(x)4ε2.

Hence there exists c such that, for r small enough,

φ(y)4 − φ(x)4 − 4

(
1− 2r2

d+ 2
g(y)

)
φ(x)3(φ(y)− φ(x)) ≥ −4c r4φ(x)4.

Averaging in y twice around x as above yields the second statement.

Proof of Lemma 6.10. We define the following :

H(x, u, t) = e−α(t−u)G
(r)
t−u ∗ hu(x).
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Differentiating with respect to u yields

∂H
∂u

(x, u, t) = e−α(t−u)G
(r)
t−u ∗ (∂uhu − Lhu + αhu) (x)

≤ e−α(t−u)G
(r)
t−u ∗ gu(x). (D.1)

Integrating (D.1) over u ∈ [s, t], we have

ht(x) ≤ e−α(t−s)G
(r)
t−s ∗ hs(x) +

∫ t

s

e−α(t−u)G
(r)
t−u ∗ gu(x)du. (D.2)

By Jensen’s inequality,(∫ t

s

e−α(t−u)G
(r)
t−u ∗ gu(x)du

)q
≤
(∫ t

s

e−α(t−u)du

)q−1 ∫ t

s

e−α(t−u)
(
G

(r)
t−u ∗ gu(x)

)q
du

≤ 1

αq−1

∫ t

s

e−α(t−u)G
(r)
t−u ∗ gqu(x)du.

The result follows by taking ‖·‖q norms on each side of (D.2).
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