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Dispersal heterogeneity in the spatial
Λ-Fleming-Viot process

Raphaël Forien∗

October 23, 2017

Abstract

We study the evolution of gene frequencies in a spatially distributed
population when the dispersal of individuals is not uniform in space. We
adapt the spatial Λ-Fleming-Viot process to this setting and consider
that individuals spread their offspring farther from themselves at each
generation in one halfspace than in the other. We study the large
scale behaviour of this process and show that the motion of ancestral
lineages is asymptotically close to a family of skew Brownian motions
which coalesce upon meeting in one dimension, but never meet in higher
dimension. This leads to a generalization of a result due to Nagylaki
on the scaling limits of the gene frequencies: the non-uniform dispersal
causes a discontinuity in the slope of the gene frequencies but the gene
frequencies themselves are continuous across the interface.

Résumé

Cet article étudie l’évolution de la fréquence de certains gènes au
sein d’une population structurée spatialement lorsque la dispersion
des individus n’est pas uniforme dans l’espace. Nous adaptons le
processus Λ-Fleming-Viot spatial à cette situation en considérant que
la progéniture d’un individu donné se déplace en moyenne plus loin de
son ascendant dans un demi espace que dans l’autre. Nous étudions le
comportement à grande échelle (spatialle et temporelle) de ce processus
et nous montrons que le processus des lignées ancestrales converge
vers un système de skew mouvements Browniens qui coalescent dès
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qu’ils se rencontrent en dimension 1 et qui ne se rencontrent jamais en
dimension plus grande. Cela conduit à une généralisation d’un résultat
sur le comportement à grande échelle des fréquences génétiques dû à
Nagylaki : la dispersion inhomogène se traduit par une discontinuité
de la pente des fréquences génétiques mais ces dernières sont continues
à l’interface entre les deux domaines.

AMS 2010 subject classifications. Primary: 60J70, 60G57, 60F99,
92D10 ; Secondary: 60J25, 60J55.

Keywords: population genetics, generalised Fleming-Viot process, skew
Brownian motion, duality.

Introduction

Landscape genetics studies the influence of geographical features of the
environment on evolutionary processes and on the genetic composition of
populations. Habitat fragmentation and ecological interfaces play a significant
role in this field [MH13]. Scientists strive to detect, map and quantify the
long term effects on genetic diversity of spatial heterogeneities by observing
the genetic patterns that they have produced through evolution [Sla87]. For
example, genetic differentiation between two subpopulations separated by a
physical obstacle can be used to measure the reduction in gene flow caused
by the obstacle [SQH+03, RPS+06, GCR+07].

Our focus in this work is the special case in which individuals spread their
offspring farther from themselves in some parts of space than in others. By
comparing the genomes of individuals and the frequencies of different genetic
types (called alleles) at different locations, one tries to infer the strength
of dispersal (or gene flow) in these regions and to measure the effect of the
interface.

Simple models for the evolution of gene frequencies are then required
which can be fitted to field data with reasonable computational power. That
is why mathematicians in the field of population genetics establish large
scale approximations of microscopic models which take into account the
interaction between geographical features and evolutionary forces [Mal48,
KW64, BDE02].

Nagylaki [Nag76] studied the effect of a discontinuity in the migration
rate in the linear stepping stone model. He considered colonies located at
the points k/

√
n, k ∈ Z, which evolve in discrete generations spanning 1/n

units of time. At each generation, adjacent colonies to the left of the origin
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exchange a proportion m/2 of migrants while adjacent colonies to the right
exchange a proportion v2m/2, as depicted in Figure 1.
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Figure 1: Discrete model with a discontinuity in the migration rate

Letting n→∞ and considering that the number of individuals in each
colony is so large that genetic drift (i.e. fluctuations due to random sampling
of individuals at each generation) can be ignored, Nagylaki showed that the
proportion of individuals of a given type at location x ∈ R at time t ≥ 0,
denoted by p(t, x), is well approximated by the solution to the following
equation 

∂p

∂t
(t, x) =

m

2

∂2p

∂x2
(t, x) if x < 0

∂p

∂t
(t, x) =

v2m

2

∂2p

∂x2
(t, x) if x > 0

and, for t > 0,

p(t, 0+) = p(t, 0−),
∂p

∂x
(t, 0−) = v2 ∂p

∂x
(t, 0+).

In words, allele frequencies must be continuous at zero but their first spatial
derivative has a discontinuity which is given as a simple function of the ratio
of the migration rates on each side of the habitat (see Figure 3). He extended
this result [NB88] to the probability of identity by descent, i.e. the probability
that two uniformly sampled individuals have inherited the same allele from a
common ancestor without mutation as a function of the distance between the
sampling locations. Nagylaki found similar conditions for the first derivative
of the probability of identity as for the allele frequencies. Along with Ayati
and Dupont [ADN99], he further investigated the qualitative properties of the
probability of identity in this setting and provided numerical approximations.

In parallel to these developments, a diffusion process has been introduced
[IM63, Wal78, HS81] and used to study diffusion in physical systems pre-
senting an interface between different media [ABT+11]. The so-called skew
Brownian motion with parameter α ∈ [0, 1] can be described as an R-valued
stochastic process which performs Brownian excursions from the origin, on
the positive half line with probability α and on the negative half line with
probability 1− α. See [Lej06] for a review of the definition and properties of
skew Brownian motion.
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In this paper, we study the genealogy of a sample of individuals in the
presence of heterogeneous dispersal. This genealogy is described by a system
of ancestral lineages which at time t correspond to the positions of the
ancestors of the sample t generations in the past. We find that, in the
diffusion limit, those ancestral lineages follow skew Brownian motions with
different diffusion coefficients on each side of the interface (Proposition 3.3
below). The genealogy of a sample of individuals is then given by a system of
skew Brownian motions which coalesce upon meeting in one dimension but
never coalesce in higher dimensions (Theorem 2). As a consequence, allele
frequencies follow a deterministic partial differential equation in dimensions
two and higher while in one dimension, patches of different types form
and evolve randomly (Theorem 1). Our method allows for more general
assumptions on the microscopic model than [Nag76, Nag88] (e.g. continuous
spatial structure and non-nearest neighbour migration).

Figure 2: Size of reproduction events
The size of the region affected by a repro-
duction event depends on the halfspace in
which its centre falls (x1 > 0 or x1 < 0).

We use the spatial Λ-Fleming-
Viot process framework introduced
in [BEV10] and [Eth08] to model the
evolution of allele frequencies in a
continuous space (see [BEV13a] for
a review on this process). In this
model, reproduction events occur ac-
cording to a Poisson point process
on R+×Rd which specifies their time
and location. During these reproduc-
tion events, a proportion u - called
the impact parameter - of individu-
als in a ball of radius r is replaced by
the offspring of a uniformly sampled
individual in this ball. To model het-
erogeneous dispersal, we assume that
the radius of the reproduction event
depends on the halfspace in which

its centre falls, as illustrated in Figure 2. We study the large scale behaviour
of the spatial Λ-Fleming-Viot process (SLFV) under a diffusive rescaling
similar to the one considered in the homogeneous setting in [BEV13b]. In
particular, the impact parameter is kept constant as we rescale space and
time.

Our results and their proofs are similar in spirit to those in [BEV13b].
We use the fact that the SLFV has a dual in the form of a system of
coalescing particles moving in Rd (interpreted as the locations in the past
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of the ancestors of a random sample of individuals). We show (Theorem 2)
that the rescaled dual converges to a system of skew Brownian motions
which evolve independently of each other until they meet, and then coalesce
instantaneously upon meeting. In particular, when d ≥ 2, the particles
never meet and evolve independently of each other. Our approach improves
on [BEV13b] as our proof covers any configuration where ancetral lineages
converge to Markov processes with continuous paths.

As a consequence, we obtain a scaling limit of the process describing
the evolution of allele frequencies across space (Theorem 1). The limit is
deterministic as soon as d ≥ 2 and solves a heat equation on each halfspace.
The fact that ancestral lineages follow skew Brownian motions translates into
a discontinuity of the first spatial derivative along the normal of the interface,
in agreement with Nagylaki’s result. When d = 1, each site is occupied by
only one type of individuals at any positive time, and the boundaries between
patches of different types evolve according to a system of annihilating skew
Brownian motions.

The proof of the convergence of the motion of lineages to skew Brownian
motion is adapted from the work of A. Iksanov and A. Pilipenko [IP16], where
skew Brownian motion is obtained as a scaling limit of a Markov chain on
Z which behaves like simple random walk outside a bounded region around
the origin. The difficulty in proving convergence to skew Brownian motion
comes from the fact that martingale problem characterizations of the limiting
process are ill suited to this setting. (In particular, scale functions of the
limiting process do not turn the random walk into a martingale.) Following
[IP16], we circumvent this by studying the positive and negative parts of the
process separately, and then linking the two by their respective local times at
the origin. This method turns out to be readily applicable to more general
migration patterns than originally studied in [Nag76], as we show here by
dealing with a continuous spatial structure.

The paper is laid out as follows. We define the SLFV with heterogeneous
dispersal in Section 1 and we state our main result (Theorem 1) in Section 2.
Section 3 gives a description of the dual of the SLFV and states its con-
vergence under the diffusive rescaling (Theorem 2). The latter is proved in
Section 4 and implies Theorem 1. Finally, the convergence of the motion of
an ancestral lineage to skew Brownian motion is proved in Section 5, following
the arguments of [IP16].
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1 Definition of the model

Consider a model where individuals are scattered in a continuous space of
dimension d and can be of two types, denoted by 0 or 1. We suppose that the
density of individuals is constant in space. The population is represented by a
random function {w(t, x), t ≥ 0, x ∈ Rd}, where w(t, x) ∈ [0, 1] is interpreted
as the proportion of type 1 individuals at location x at time t. Define the
two halfspaces H+, H− by

H± =
{
x ∈ Rd : ±x1 > 0

}
.

Take u ∈ (0, 1] and 0 < r− ≤ r+ < +∞. We denote the volume of the ball of
radius r in Rd by Vr. The SLFV with heterogeneous dispersal is defined as
follows.

Definition 1.1 (SLFV with heterogeneous dispersal). Let Π± be a Poisson
point process on H± × R+ with intensity 1

Vr±
dxdt. For each point (x, t) in

Π±, a reproduction event takes place in B(x, r±) at time t:

1) Pick a location y uniformly at random in B(x, r±) and sample a type
k ∈ {0, 1} from the types present at y (i.e. k = 1 with probability

1
Vr±

∫
B(x,r±)w(t−, y)dy).

2) Update w(t, z) for z ∈ B(x, r±) as follows:

w(t, z) = (1− u)w(t−, z) + u1{k=1}.

In other words, a proportion u of individuals in the ball of centre x and
radius r± dies and is replaced by the offspring of an individual sampled
uniformly from this ball.

Remark. The factor 1
Vr±

in the rate of the Poisson point process ensures
that the mean lifetime of individuals is the same in both halfspaces (far enough
from the interface).
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Theorem 4.2 in [BEV10] can be adapted without difficulty to show that
there exists a unique càdlàg Markov process (w(t, ·))t≥0 satisfying this defini-
tion and taking values in the quotient space Ξ of Lebesgue-measurable maps
from Rd to [0, 1] that are identified when they coincide up to a Lebesgue-null
set. This space can be identified with (a subset of) the space of measures
on Rd that are absolutely continuous with respect to Lebesgue measure.
It is endowed with the following metric d which induces the topology of
vague convergence of measures on Rd. Let (fn)n≥1 be a separating family of
uniformly bounded and compactly supported real-valued functions on Rd,
then

d(w,w′) =

∞∑
n=1

1

2n
∣∣〈w, fn〉 − 〈w′, fn〉∣∣ , w, w′ ∈ Ξ.

2 Large scale behaviour of the SLFV with hetero-
geneous dispersal

Fix w0 : Rd → [0, 1]. For n ≥ 1, set wn(t, x) = w(nt,
√
nx) and assume that

wn(0, x) = w0(x) for all n ≥ 1. For β ∈ (−1, 1), let Dβ denote the set of all
continuous functions φ : Rd → R, twice continuously differentiable on each
halfspace H±, such that

(1 + β)
∂φ

∂x1

∣∣∣∣
x1=0+

= (1− β)
∂φ

∂x1

∣∣∣∣
x1=0−

.

Theorem 1. As n→∞, the sequence of Ξ-valued processes {wn(t, ·), t ≥ 0}
converges in the sense of finite dimensional distributions in the vague topology
to a process {p(t, ·), t ≥ 0}. In dimension one, p(t, x) is a Bernoulli random
variable with parameter ρ(t, x) and the correlations between the values of
p(t, ·) at distinct sites are non trivial and are given in (8) (see also Figure 4).
In dimensions two and higher, p(t, x) is deterministic and equals ρ(t, x). In
both cases, there exists β ∈ (0, 1) such that ρ(t, ·) is the solution in Dβ to the
following equation

∂ρ

∂t
(t, x) =

ur2
±

d+ 2
∆ρ(t, x) if x ∈ H±,

ρ(0, x) = w0(x) x ∈ Rd.
(1)

Finding solutions to (1) in Dβ can be reduced to finding classical solutions
to the heat equation with discontinuous coefficients by a change of variables
as shown in [Nag76]. Existence and uniqueness of the solution in Dβ to (1)
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was also proved in [Por79a] and [Por79b], see also Proposition 1 in [Lej06].
We prove Theorem 1 by studying the dual of the SLFV with heterogeneous
dispersal.

The fact that the solution to (1) has to be found in Dβ with β ≥ 0 agrees
with the findings of Nagylaki [Nag76] (equations 8 and 9). This transmission
condition reflects the fact that individuals living near the frontier between
the two halfspaces are more likely to have ancestors coming from H+ than
from H− (recall that we take r− ≤ r+), see Figure 3.
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Figure 3: Diffusion of an allele with heterogeneous dispersal
Graphical representation of x 7→ ρ(t, x) started from a Heavyside initial condition
1{x<0} at time t = 12 with parameters: σ+ = 0.5, σ− = 1, β = −0.6. Note the
discontinuity in the first spatial derivative at x = 0.

As already noted by Nagylaki [Nag76], β depends on the microscopic
model in a rather intricate way. We give an expression for β in (26) when the
microscopic model is the SLFV. This dependence on the choice of the model
is a potential issue when trying to infer demographic parameters from genetic
data. Inferring β as an independent parameter would reduce the power of
such an inference scheme, so one would like to choose a particular model and
make β a function of the other parameters in the model. However it isn’t
clear how one should choose among the great variety of possible microscopic
models.

3 Duality

3.1 The dual of the SLFV with heterogeneous dispersal

We now define a system of coalescing particles whose displacements are driven
by the same Poisson point process of reproduction events as the SLFV. The
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particles at time t describe the positions of the set of ancestors at time −t of
a sample of individuals alive at time 0. Since the Poisson point processes Π±

are reversible with respect to time, the reproduction events which took place
in the past have the same distribution as those which occur forwards in time.

Definition 3.1 (Dual of the SLFV with heterogeneous dispersal). Let Π± be
Poisson point processes in H± × R+ with intensity 1

Vr±
dxdt. Let (At)t≥0 be

a system of finitely many particles whose dynamics are as follows. For each
point (x, t) in Π±, a reproduction event takes place in B(x, r±) at time t:

1) Pick a location y uniformly at random in B(x, r±).

2) Each particle sitting inside B(x, r±) at time t− is marked with probability
u, independently of each other.

3) All marked particles coalesce and move to y.

We denote the number of particles present at time t by Nt and their
spatial locations by ξ1

t , . . . , ξ
Nt
t , so that At = {ξ1

t , . . . , ξ
Nt
t }.

Let B±(x, r) denote the intersection of B(x, r) and H±. The motion of
one particle is a Markov process on Rd with infinitesimal generator

Lf(x) = u

∫
Rd

Φ(x, y)(f(y)− f(x))dy (2)

with

Φ(x, y) =
|B+(x, r+) ∩B+(y, r+)|

V 2
r+

+
|B−(x, r−) ∩B−(y, r−)|

V 2
r−

. (3)

This is seen by noting that a particle located at x finds itself in the region of
a reproduction event of Π± at rate

|B±(x, r±)|
Vr±

.

It is further affected by such an event with probability u and moves to a
location y chosen uniformly in the ball of radius r± affected by the event. See
[BEV13a] (paragraph 3.5) for a more detailed justification in the homogeneous
case. The law of (At)t≥0 started from j lineages at locations x = (x1, . . . , xj)
is denoted by Px (·).

Let us now give the (weak) duality relation between (wt)t≥0 and (At)t≥0.
Let Cc(Rd) be the space of compactly supported real valued functions on Rd.
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For ψ : (Rd)j → R+ in Cc((Rd)j) and w ∈ Ξ, set

I(w,ψ) =

∫
(Rd)

j

j∏
i=1

w(xi)ψ(x1, . . . , xj)dx1 . . . dxj .

Also set

〈w,At〉 =

Nt∏
i=1

w(ξit).

Then, for any j ∈ N, for ψ ∈ Cc((Rd)j), [BEV10]

Ew0 [I(wt, ψ)] =

∫
(Rd)

j
Ex [〈w0,At〉]ψ(x)dx. (4)

Since the linear span of functions of the form I(·, ψ) and constant functions
is dense in C(Ξ) (Lemma 4.1 in [BEV10]), one can prove Theorem 1 by
showing that, for any 0 ≤ t1 < . . . < tk and ψ1, . . . , ψk in Cc((Rd)j),

lim
n→∞

E

[
k∏
i=1

I(wnti , ψi)

]
= E

[
k∏
i=1

I(pti , ψi)

]
. (5)

We shall do this using the duality relation (4) above. For n ≥ 1, define the
rescaled dual process (Ant )t≥0 by

Ex [f(Ant )] = E√nx
[
f
(

1√
n
ξ1
nt, . . . ,

1√
n
ξNnt
nt

)]
.

Then (Ant )t≥0 is dual to (wnt )t≥0 in the sense that

Ew0 [I(wnt , ψ)] =

∫
(Rd)

j
Ex [〈w0,Ant 〉]ψ(x)dx.

In Section 4, we prove the convergence of (Ant )t≥0 to a system of coalescing
skew Brownian motions. Note that in dimensions two and higher, skew
Brownian motions never meet and the dual of the SLFV with heterogeneous
dispersal thus converges to a system of independent skew Brownian motions.
This is the reason why the SLFV converges to a deterministic process when
d ≥ 2 in Theorem 1.
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3.2 Skew Brownian motion

In [HS81] (see also [Wal78], [LG84] and [Lej06]) it is shown that for β ∈ [−1, 1],
there exists a unique solution to the equation

Xt = Bt + βL0
t (X),

where B is standard Brownian motion and L0
t (X) is the local time at 0 of X.

This process is called skew Brownian motion with parameter α = β+1
2 . (For

β = 1, (Xt)t≥0 is reflected Brownian motion.) This result can be extended to
the d-dimensional case where the first coordinate of the process follows skew
Brownian motion.

Proposition 3.2. Let B =
(
B1
t , . . . , B

d
t

)
t≥0

be standard (d dimensional)
Brownian motion. Let σ : Rd → (0,∞) be defined by σ2(x) = σ2

±1{x∈H±}
with σ2

± > 0 and take x0 = (x1
0, . . . , x

d
0) ∈ Rd. Then, for β ∈ [−1, 1], there

exists a unique Rd-valued Markov process (Xt)t≥0 satisfying

X1
t = x1

0 +

∫ t

0
σ(Xs)dB

1
s + βL0

t (X
1)

Xi
t = xi0 +

∫ t

0
σ(Xs)dB

i
s for 2 ≤ i ≤ d.

(6)

Furthermore, the law of (Xt)t≥0 is the unique solution to the (hence well
posed) martingale problem associated with the generator L, defined on the
domain Dβ by

Lφ(x) =
1

2
σ2(x)∆φ(x), ∀φ ∈ Dβ.

This result is proved in [Lej06] (Proposition 10) in the case d = 1 and
σ+ = σ−. The extension to higher dimensions is straightforward and the case
σ+ 6= σ− can be treated with the help of [BP87]. In [Por79a], [Por79b], it
is proved that L generates a Feller semigroup. Part of the work in showing
Theorem 1 is the proof that the motion of particles in An converges to a
solution to (6), as stated in the following Proposition. Its proof is given in
Section 5.

Proposition 3.3 (Convergence to skew Brownian motion). Let (ξt)t≥0 be
an Rd-valued Markov process with infinitesimal generator L given in (2). For
n ≥ 1, set ξnt = 1√

n
ξnt and suppose ξn0 is deterministic and converges to

x0 ∈ R as n → ∞. Fix T > 0. Then, as n → ∞, (Xn
t )t∈[0,T ] converges in

distribution in the Skorokhod space D
(
[0, T ],Rd

)
to (Xt)t∈[0,T ], a solution to

(6) with σ2
± = u

2r2
±

d+2 , and β ∈ (0, 1).
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The parameter β is given as a (complicated) function of the law of (ξt)t≥0

in (26). Note however that β ≥ 0 as soon as r+ ≥ r−.

3.3 Large scale behaviour of the dual process

Let (A∞t )t≥0 be a system of particles moving in Rd according to independent

skew Brownian motions (i.e. solutions to (6)) with σ2
± = u

2r2
±

d+2 and with
the same parameter β which coalesce instantaneously upon meeting. In
particular, in dimension 2 and higher, the particles never meet and (A∞t )t≥0

is a system of independent skew Brownian motions. We denote the locations
of the particles at time t by {X1

t , . . . , X
Nt
t }.

From [Eva97], we know that there exists a Ξ-valued process {p(t, x), t ≥
0, x ∈ Rd} which is dual to A∞ in the sense that, for ψ ∈ Cc((Rd)j),

Ew0 [I(pt, ψ)] =

∫
(Rd)

j
Ex [〈A∞t , w0〉]ψ(x)dx. (7)

Furthermore, by Lemma 3.2 in [BEV13b], in dimension one, p(t, x) is a
Bernoulli random variable with parameter ρ(t, x) = Ex [w0(Zt)] while in
dimensions two and higher, p(t, x) is deterministic and equals ρ(t, x). The
fact that ρ can be characterized as the solution to (1) is a direct consequence
of operator semigroup theory (see [EK86] and recall that L generates a Feller
semigroup). In [BEV13b], it is shown that the following theorem implies (5)
and hence Theorem 1 (see their proof of Theorem 1.1).

Theorem 2. As n→∞, (Ant )t≥0 converges in the sense of finite dimensional
distributions to (A∞t )t≥0.

Moreover, for k ∈ N and 0 ≤ t1 < . . . < tk, suppose that we start An
with j0 particles at locations x0, let the process evolve until time t1, add j1
lineages at locations x1, let the process evolve until time t2 and so on. Call
the resulting process Ân and define Â∞ analogously. Then for any t ≥ 0, Ânt
converges in distribution to Â∞t as n→∞.

From (7), we obtain that for Lebesgue almost every (x1, . . . , xj) ∈ (Rd)j ,

Ew0

[
j∏
i=1

p(t, xi)

]
= Ex1,...,xj

[
Nt∏
i=1

w0(Xi
t)

]
(8)

yielding the correlations between the values of p(t, ·) at different sites.
In dimensions two and higher, lineages never coalesce and evolve indepen-

dently of each other. As a result, one can show (see [BEV13b])

Ew0

[
p(t, x)2

]
= Ex [w0(Xt)]

2 = Ew0 [p(t, x)]2 ,
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which is only possible if p is deterministic.
In dimension one, since lineages coalesce when they meet, at any positive

time each location is occupied by only one type of individuals. Small patches
of type 1 and type 0 individuals then form, whose borders can be shown to
follow anihilating skew Brownian motions. Neighbouring patches of the same
type thus merge whenever their borders meet, as illustrated in Figure 4.
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Figure 4: The limiting process in dimension one
Numerical simulation of (p(t, ·))t≥0 in a one dimensional space of length 220 with
σ2
− = 0.2, σ2

+ = 0.06 and β = 7/13, started from the initial condition w0(x) ≡ 0.5,
shown at time t = 10, t = 100 and t = 250. Notice how the number of patches
decreases with time as their interfaces meet and annihilate each other. Patches on
the right are smaller and more numerous than patches on the left because diffusion
is stronger on the left than on the right of the origin.

Remark. Lineages coalesce instantaneously upon meeting because the impact
parameter u (which should be interpreted as the inverse of the effective
population size) is kept constant as we rescale time and space. Other scalings
would result in different limiting behaviours. If u is of order 1/

√
n, then we

expect that, in the limit, lineages coalesce when they accumulate a local time
together equal to an independent exponential random variable, as in [DR08].
The evolution of allele frequencies is then described by a stochastic partial
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differential equation in one spatial dimension (but remains deterministic in
higher dimensions as skew Brownian motions never meet), as in [EVY14].
Moreover, if u = o (1/

√
n), lineages never coalesce in the limit, even in one

dimension, and the evolution of allele frequencies is deterministic (and equal
to ρ).

4 Proof of Theorem 2

Proposition 3.3 gives the convergence of the law of the motion of each particle
in An to skew Brownian motion. To show Theorem 2, we thus need to control
the coalescence of the particles. The following proposition helps fulfill this
goal.

Proposition 4.1. Let O ⊂ Rd be an open set and let F ⊂ Rd be a closed set.
Suppose that a sequence of functions (or processes) fn : R+ → Rd converges
uniformly on every compact interval to a continuous function f : R+ → Rd.
Define TnO = inf{t ≥ 0 : fn(t) ∈ O} and TnF , TO and TF accordingly. Then

TF ≤ lim inf
n→∞

TnF , lim sup
n→∞

TnO ≤ TO.

This Proposition is proved in Appendix A. An immediate consequence
is that if a sequence of processes {(Xn

t )t≥0 , n ≥ 1} converges in distribution
in D

(
[0, T ],Rd

)
to a continuous process (Xt)t≥0, and if TO = TF a.s. when

F is the closure of O (defining TF , TO, TnF and TnO as the hitting times of
these sets by the processes (Xt)t≥0 and (Xn

t )t≥0 respectively), then, by the
Skorokhod representation theorem, both TnO and TnF converge in distribution
to TO = TF .

Proof of Theorem 2. We prove the first part of the result when starting from
two particles; the proof is easily extended to a larger sample (see [BEV13b]).
The two particles in An evolve independently of each other until they come
within a distance 2r+/

√
n of each other (since r− ≤ r+). Let us then define

Tn as the first time at which the two particles come close to each other in
the rescaled setting

Tn = inf

{
t ≥ 0 :

∣∣∣ξn,1t − ξn,2t

∣∣∣ ≤ 2r+√
n

}
. (9)

When d ≥ 2, we show that Px1,x2 (Tn ≤ t)→ 0 as n→∞ for all t > 0. For
ε > 0, define

T εn = inf
{
t ≥ 0 :

∣∣∣ξn,1t − ξn,2t

∣∣∣ ≤ 2r+ε
}
.

14



This is the hitting time of the closed set {(x, y) : |x− y| ≤ 2r+ε} by the
process (ξn,1t , ξn,2t )t≥0. Since ξn,1 and ξn,2 are independent up to time Tn
and, for n large enough, Tn ≥ T εn, by Proposition 3.3 and Proposition 4.1,
T εn converges in distribution to T ε, defined as the hitting time of {(x, y) :
|x− y| ≤ 2r+ε} by two independent solutions to (6) started from x1 and x2.
As a result, since Tn ≥ T εn a.s. for n large enough,

lim sup
n→∞

Px1,x2 (Tn ≤ t) ≤ Px1,x2 (T ε ≤ t) .

The right-hand-side vanishes as ε ↓ 0 when d ≥ 2, yielding the result in this
case.

We treat the case d = 1 in two steps. First we prove that the trajectory
of the two particles up to time Tn converges in distribution to the motion
of two independent skew Brownian motions up to their meeting time. Then
we argue that the coalescence happens soon enough once the two particles
are close to each other that the delay between Tn and the coalescence time
(denoted by T cn) vanishes in the limit.

By the Skorokhod representation theorem and by Proposition 3.3, there
exist sequences of processes (ξ̃n,1t , ξ̃n,2t )t≥0 and (X̃1

t , X̃
2
t )t≥0 defined on some

probability space such that

i) (ξ̃n,1t )t≥0 and (ξ̃n,2t )t≥0 are independent Markov processes with infinitesi-
mal generator L,

ii) (X̃1
t )t≥0 and (X̃2

t )t≥0 are independent solutions to (6),

iii) (ξ̃n,it )t≥0 converges uniformly on compact time intervals to (X̃i
t)t≥0 almost

surely for i ∈ {1, 2}.

Defining T̃n analogously to (9), (ξ̃n,1t , ξ̃n,2t )t≤T̃n has the same distribution as
(ξn,1t , ξn,2t )t≤Tn . Suppose that X̃1

0 > X̃2
0 and define the hitting time of the

diagonal by (X̃1
t , X̃

2
t )t≥0 as

T̃∆ = inf{t ≥ 0 : X̃1
t ≤ X̃2

t }.

Let us show that T̃n −→
n→∞

T̃∆ almost surely. Set

T̃∆
n = inf{t ≥ 0 : ξ̃n,1t ≤ ξ̃n,2t }

and note that since the jumps of ξ̃n,i are of size at most 2r+/
√
n, the two

lineages cannot jump over one another without coming within a distance
2r+/

√
n of each other, i.e. T̃n ≤ T̃∆

n almost surely. Moreover, define T̃ εn
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and T̃ ε as the hitting times of {(x, y) : |x− y| ≤ 2r+ε} by (ξ̃n,1t , ξ̃n,2t )t≥0

and (X̃1
t , X̃

2
t )t≥0 respectively. By Proposition 4.1, T̃∆

n −→
n→∞

T̃∆ a.s. and

T̃ εn −→n→∞ T̃ ε a.s. As a result, for all ε > 0,

T̃ ε ≤ lim inf
n→∞

T̃n ≤ lim sup
n→∞

T̃n ≤ T̃∆ a.s.

By the continuity of t 7→ (X̃1
t , X̃

2
t ), T̃ ε → T̃∆ almost surely as ε ↓ 0,

yielding the almost sure convergence of T̃n to T̃∆. As a result, (ξ̃n,1t , ξ̃n,2t )t≤T̃n
converges almost surely to (X̃1

t , X̃
2
t )t≤T̃∆ . In other words, (ξn,1t , ξn,2t )t≤Tn

converges in distribution to (X1
t , X

2
t )t≤T∆ , the trajectory of two independent

skew Brownian motions stopped at the time when they hit each other.
We now show that the two particles coalesce quickly once they come within

a distance 2r+/
√
n of each other. This is a consequence of the following

result, which is proved as in [BEV10], Proposition 6.4.

Lemma 4.2. Let T c denote the coalescence time of the two particles ξ1
t , ξ2

t

in (At)t≥0 (i.e. in the original time scale). Then

lim
t→∞

sup
|y1−y2|≤2r+

Py1,y2 (T c > t) = 0.

By the strong Markov property,

Px1,x2 (T cn − Tn > t) = Ex1,x2

[
P√

nξn,1
Tn

,
√
nξn,2

Tn

(T c > nt)
]
. (10)

The term inside the expectation on the right-hand-side is bounded by
sup|y1−y2|≤2r+ Py1,y2 (T c > nt), which converges to zero as n→∞ by Lemma 4.2.
In addition, the distance covered by ξn,i between Tn and T cn is of the order
of 1√

n
. Indeed, in Section 5, we prove the following.

Lemma 4.3. For any ε > 0 and T > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup

s,t∈[0,nT ]
|s−t|≤δn

|ξs − ξt| > ε
√
n

)
= 0.

Write

P
(∣∣∣ξn,iT c

n
− ξn,iTn

∣∣∣ > ε
)
≤ P

(
sup

s,t∈[0,nT ]
|s−t|≤δn

|ξs − ξt| > ε
√
n

)

+ P (|T cn − Tn| > δ) + P (Tn > nT ) + P (T cn > nT ) .
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Letting n→∞, the second term on the right-hand-side converges to zero by
(10). So do the last two terms since both Tn and T cn converge in distribution
as n→∞. Then letting δ ↓ 0, the first term vanishes by Lemma 4.3. As a
consequence, (ξn,1T c

n
, T cn) converges in distribution (and even in probability) to

(X1
T∆ , T

∆). Since the remaining particle after the coalescence event follows a
Markov process with infinitesimal generator L, we know by Proposition 3.3
that (ξn,1T c

n+t)t≥0 converges in distribution to skew Brownian motion started at
X1
T∆ .
This proves the convergence in distribution of Ant to A∞t when started

from two particles. For larger samples, it is enough to note that three particles
(or more) almost never simultaneously come within a distance 2r+/

√
n of each

other. The proof of the convergence of the finite dimensional distributions
and that of the second part of the statement follow the same lines, using the
Markov property at suitable times. Details can be found in [BEV13b].

5 Convergence to skew Brownian motion

We now give the proof of Proposition 3.3. The arguments are adapted from
the work of Iksanov and Pilipenko [IP16]. We limit ourselves to the one
dimensional case for the proof, but the generalisation to higher dimensions
is straightforward. Iksanov and Pilipenko treat the case of a discrete time
Markov chain on Z which behaves like a simple random walk outside a
bounded region centered at the origin. We extend their proof to continuous
time jump Markov processes with continuous state space.

5.1 Proof of Proposition 3.3

Recall that (ξt)t≥0 is a Markov process with generator L given by (2) and
ξn(t) = 1√

n
ξnt.

As announced above, we restrict ourselves to d = 1 and we follow the
lines of [IP16]. Set

X̃±(t) = ±ξt 1{±ξt>r+}
and

τ±0 = inf{t > 0 : |ξt| ≤ r+},
σ±k = inf

{
t > τ±k : ±ξt > r+

}
, k ≥ 0,

τ±k+1 = inf
{
t > σ±k : ±ξt ≤ r+

}
, k ≥ 0.
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One can then write the decomposition (see formula 2.1 in [IP16])

X̃±(t) = X̃±(0) +M±(t) + L±(t)∓
∑
i≥0

ξ(τ±i )1{τ±i ≤t<σ±i } (11)

with

M±(t) = ±
∫ t

0
1{±ξ(s−)>r+}dξs,

L±(t) = ±
∑
i≥0

(
ξ(σ±i )− ξ(τ±i )

)
1{σ±i ≤t}.

Also set

M±n (t) =
1√
n
M±(nt), L±n (t) =

1√
n
L±(nt).

Let ξ+
t = ξt ∨ 0 and ξ−t = (−ξt) ∨ 0. The following now holds.

Lemma 5.1. For any fixed T > 0, the sequence of random variables (ξ±n ,
M±n , L±n )n≥1 is tight in D

(
[0, T ],R6

)
. Furthermore, any limit point (X±∞,

M±∞, L±∞) of the sequence is a continuous process satisfying∫ T

0
1{X±∞(t)=0}dt = 0, a.s. (12)

Lemma 5.2. Let (X±∞,M
±
∞, L

±
∞) be the limit point of a converging subse-

quence of (ξ±n ,M
±
n , L

±
n ) in D

(
[0, T ],R6

)
. Then

i) the processes L±∞ are non-decreasing almost surely and satisfy∫ T

0
1{X±∞(t)>0}dL

±
∞(t) = 0 a.s.

ii) the processes M±∞ are continuous Ft-martingales with Ft = σ(X±∞(s),
L±∞(s), M±∞(s), s ∈ [0, t]) with predictable quadratic variation

〈
M±∞

〉
t

= σ2
±

∫ t

0
1{X±∞(s)>0}ds

where σ2
± = u

2r2
±

d+2 .
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Lemma 5.3. There exists β ∈ [−1, 1] such that, for t ≥ 0,

L+
∞(t) =

1 + β

1− βL
−
∞(t)

almost surely.

Proposition 3.3 follows from the above lemmas and Proposition 2.1 in
[IP16]. Lemma 5.1 is proved in Subsection 5.3. The proof of Lemma 5.2 does
not differ from the one given for Lemma 2.2 in [IP16] and we omit the details.
The proof of Lemma 5.3 is given in Subsection 5.4.

5.2 Occupation time of the boundary

We begin with the following result controlling the time spent by (ξt)t≥0 in
the region [−r+, r+].

Lemma 5.4. For t ≥ 0, define ν(t) =
∫ t

0 1{|ξs|≤r+}ds. Then

i) limt→∞ ν(t) = +∞ almost surely,

ii) supx∈R Ex [ν(t)] = O
(√
t
)
a.s. as t→∞.

Proof. The fact that ν(t)→∞ as t→∞ is well known. Set ζ0 = 0 and

ςi = inf {t > ζi−1 : |ξt| ≤ r+} , i ≥ 1,

ζi = inf {t > ςi : |ξt| > r+} , i ≥ 1.

Then ν(t) can be written as the sum of the lengths of the excursions inside
[−r+, r+] up to time t,

ν(t) =
∑
i≥1

(ζi ∧ t− ςi ∧ t) .

Hence

Ex [ν(t)] ≤ Ex

∑
i≥1

E [ζi − ςi | Fςi ]1{ςi≤t}

 .
Noting that there exists ε > 0 such that P ( |ξ(t+ dt)| > r+ | ξt = x) ≥ εdt for
all |x| ≤ r+, we see that ζi − ςi is stochastically dominated by an exponential
random variable with parameter ε. Hence

Ex [ν(t)] ≤ 1

ε
Ex

∑
i≥1

1{ςi≤t}

 .
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In addition, the number of visits to [−r+, r+] before time t is less than the
number of visits to this set before the first excursion longer than t, i.e.∑

i≥1

1{ςi≤t} ≤ m(t) := inf{i ≥ 1 : ςi+1 − ζi > t}.

Let (Wt)t≥0 be a continuous time random walk on R with jump rate u and
independent increments distributed according to

|B(0, 1) ∩B(y, 1)|
V 2

1

dy.

Then for any x > r+,

P±x (ς1 − ζ0 > t) ≥ P0

(
inf

0≤s≤t
Ws ≥ 0

)
.

(Notice that the right-hand-side isn’t changed if W is replaced by r±W .) As
a result m(t) is stochastically dominated by a geometric random variable
with parameter

p(t) = P0

(
inf

0≤s≤t
Ws ≥ 0

)
.

Furthermore, there exists η > 0 such that, for all t ≥ 0, p(t) ≥ η√
t
, (see pp.

381-382 in [BGT89] or equations (3.4) and (3.5) in [IP16]). As a result,

Ex [ν(t)] ≤ 1

εp(t)
≤
√
t

εη
.

5.3 Tightness of (ξ±n , M±
n , L±n )n≥1

Let us now give the proof of Lemma 5.1. To prove that the sequence (ξ±n ,
M±n , L±n )n≥1 is tight in D

(
[0, T ],R6

)
, we use the following criterion proved

by Aldous [Ald78].

Theorem 3 (Aldous [Ald78]). Suppose (Xn, n ≥ 0) is a sequence of random
variables taking values in D ([0, T ],R) such that

i) (Xn(0), n ≥ 0) and
(
supt≥0 |Xn(t)−Xn(t−)| , n ≥ 0

)
are tight in R,
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ii) for any sequence {τn, δn} such that τn is a stopping time with respect to
the natural filtration of Xn and δn ∈ [0, 1] is a constant such that δn → 0
as n→∞,

Xn(τn + δn)−Xn(τn)
P−→

n→∞
0.

Then (Xn, n ≥ 0) is tight in D ([0, T ],R).

Proof of Lemma 5.1. From (11), and the fact that∣∣∣∣∣∣
∑
i≥0

ξ(τ±i )1{τ±i ≤t<σ±i }

∣∣∣∣∣∣ ≤ r+,

it is enough to prove the tightness of ξ±n and M±n . We use Aldous’ criterion
to prove that M±n is tight and then we use the fact that the increments of
ξ are bounded by those of M := M+ −M− (equation (13) below) to show
that ξn is tight.

From the definition of ξ, we have M±n (0) = 0 and

sup
t≥0

∣∣M±n (t)−M±n (t−)
∣∣ ≤ 2r+√

n
.

Moreover, for any stopping time T and δ > 0, since outside [−r+, r+], ξ
behaves as a simple random walk,

E
[(
M±n (T + δ)−M±n (T )

)2] ≤ σ2
±δ.

The assumptions of Theorem 3 are thus satisfied, proving the tightness of
(M±n )n.

Now take 0 ≤ s ≤ t. If ξ does not visit [−r+, r+] between time s and
time t, then ξt − ξs = M(t) −M(s). If it does visit this set, then let α be
the first time ξ enters [−r+, r+] after time s and θ the last time ξ leaves this
set before time t. Then

|ξt − ξs| ≤ |ξt − ξθ|+ |ξθ − ξα|+ |ξα − ξs|
≤ 4r+ + |M(t)−M(θ)|+ |M(α)−M(s)| .

As a result, for δ > 0,

sup
|s−t|≤δn

|ξs − ξt| ≤ 4r+ + 2 sup
|s−t|≤δn

|M(s)−M(t)| . (13)

This bound is proved in [IP16] (equation (3.10)).
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The tightness of (ξn)n then follows from that of (M±n )n by writing

lim
δ↓0

lim sup
n→∞

P
(

sup
|s−t|≤δn
s,t∈[0,nT ]

|ξs − ξt| > ε
√
n
)

≤ lim
δ↓0

lim sup
n→∞

P
(

4r+ + 2 sup
|s−t|≤δn
s,t∈[0,nT ]

|M(s)−M(t)| > ε
√
n
)

= 0. (14)

It remains to prove (12). Note that any limit point (X±∞, M±∞, L±∞) satisfies

X∞(t) = X+
∞(t)−X−∞(t) = M+

∞(t)−M−∞(t)+L+
∞(t)−L−∞(t) = M∞(t)+L∞(t).

From the definition of M±n and Lemma 5.4, one shows, as in [IP16], that M∞
is a stochastic integral with respect to standard Brownian motion (Bt)t≥0

M∞(t) =

∫ t

0
σ(X∞(s))dBs.

In addition, L±∞ is a continuous process with locally bounded variation.
As a result 〈X∞〉t = 〈M∞〉t and (12) follows from the occupation density
formula.

Note that (14) proves Lemma 4.3.

5.4 The left and right local time at zero of (ξt)t≥0

The proof of Lemma 5.3 is adapted from that of Lemma 2.3 in [IP16]. Recall
the expression for the left and right local time of (ξt)t≥0,

L±(t) = ±
∑
i≥0

(ξ(σ±i )− ξ(τ±i ))1{σ±i ≤t}.

For any particular visit of ξ to [−r+, r+], the value of ξ(σ±i )− ξ(τ±i ) depends
on the value of ξ when it enters this set. However, over many visits to
[−r+, r+], L±(t) only records an average of these values. The "typical" value
of ξ(σ±i ) − ξ(τ±i ) can thus be expressed with the help of the stationary
distribution of the process describing the visits of ξ to [−r+, r+] (Y below).
The left and right local time of ξ then become asymptotically proportional to
the occupation time of the boundary ν(t), with different coefficients whose
expressions can be found below.

Recall from Lemma 5.4 that ν(t) =
∫ t

0 1{|ξs|≤r+}ds and set, for t ≥ 0,

α(t) = inf{α > 0 : ν(α) > t}.
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Define Y (t) = ξ(α(t)) for t ≥ 0. The process (Y (t))t≥0 is a jump Markov
process taking values in [−r+, r+], describing the values taken by ξ inside
this region. Let ᾱ denote the left-continuous version of α, i.e. for t ≥ 0,

ᾱ(t) = sup{α ≥ 0 : ν(α) < t}.
If t ≥ 0 is such that ᾱ(t) 6= α(t), then ξ makes an excursion outside [−r+, r+]
between time ᾱ(t) and time α(t).

Let V ± be defined by

V ±(t) = ±
∑

0<s≤t
(Y (s)− Y (s−))±

∑
0<s≤t

(ξ(ᾱ(s))− ξ(α(s)))1{±ξ(ᾱ(s))>r+}.

Lemma 5.5. There exist C > 0 and β ∈ [−1, 1] such that, as t→∞,
1

t
V ±(t)→ C(1± β)

almost surely.

To prove Lemma 5.5, we use the Nummelin splitting technique [Num78]
to turn Y into a renewal process. We can then build its stationary probability
distribution (see Subsection 5.5), following Chapter 6.8 in [Dur10]. Lemma 5.5
is then reduced to the strong law of large numbers for renewal processes. The
detailed argument is given in Subsection 5.6.

Proof of Lemma 5.3. We first show that V ±(ν(t)) provides a good approxi-
mation of L±(t) and then conclude with the help of Lemma 5.5. Note that
±ξ(ᾱ(s)) > r+ with s > 0 if and only if ᾱ(s) = σ±i for some i ≥ 1, and in this
case, α(s) = τ±i+1. In addition, s ≤ ν(t) if and only if ᾱ(s) ≤ t, as a result

V ±(ν(t)) = ±(Y (ν(t))− Y (0))±
∑
i≥1

(ξ(σ±i )− ξ(τ±i+1))1{σ±i ≤t}.

Hence∣∣V ±(ν(t))− L±(t)
∣∣ ≤ |Y (ν(t))|+ |Y (0)|+

∣∣ξ(σ±0 )
∣∣+
∣∣ξ(τ±0 )

∣∣+
∣∣ξ(τ±1 )

∣∣
+
∑
i≥2

∣∣ξ(τ±i )
∣∣1{σ±i−1≤t<σ

±
i }.

Since |Y (t)| ≤ r+,
∣∣ξ(τ±i )

∣∣ ≤ r+ and
∣∣ξ(σ±i )

∣∣ ≤ 3r+,∣∣V ±(ν(t))− L±(t)
∣∣ ≤ 8r+.

From this, Lemma 5.5, and using Lemma 5.4.i, we obtain

lim
t→∞

L+(t)

L−(t)
=

1 + β

1− β . (15)
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5.5 The Stationary distribution of Y

Let ΦY : [−r+, r+]2 → R+ be such that

LY f(x) = u

∫
[−r+,r+]

ΦY (x, y)(f(y)− f(x))dy

is the infinitesimal generator of (Y (t))t≥0. Clearly, from (3), for x, y ∈
[−r+, r+],

ΦY (x, y) ≥ Φ(x, y).

Note that Φ is continuous on the compact set [−r+, r+]2 and that it stays
strictly positive on sets of the form Ua,b = [−r+, r+]× [a, b] with −r+ < a <
b < −r+ + 2r−. Fix one such set Ua,b and set Φmin = infUa,b

Φ > 0. As a
result

Φε(x, y) := ΦY (x, y)− ε

b− a1{[a,b]}(y) ≥ 0

for ε = (b− a)Φmin > 0.
We now follow Chapter 6.8 of [Dur10] to build the (unique) stationary

probability measure of Y . Define an operator LZ on real-valued functions f
on [−r+, r+] ∪ {∂} by

LZf(x) =


u
∫

[−r+,r+] Φε(x, y)(f(y)− f(x))dy+uε(f(∂)− f(x))

if x ∈ [−r+, r+],
1

b− a
∫ b
a (f(y)− f(∂))dy if x = ∂,

(16)

and let (Z(t))t≥0 be a Markov process on [−r+, r+]∪ {∂} with generator LZ .
Let

λ(t) = inf

{
λ > 0 :

∫ λ

0
1{Z(s)6=∂}ds > t

}
, (17)

then
(Z(λ(t)), t ≥ 0)

d
= (Y (t), t ≥ 0) .

Set E0 = 0 and, for k ≥ 0,

Rk = inf{t ≥ Ek : Z(t) = ∂},
Ek+1 = inf{t ≥ Rk : Z(t) 6= ∂}.

Then Rk −Ek is an exponential random variable with parameter uε for all
k ≥ 1 and ∂ is a positive recurrent state for Z. We can then use this fact to
build a stationary probability measure for Y . Let E∂ denote the expectation
with respect to P ( · | Z(0) = ∂).
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Lemma 5.6. The measure π defined by∫
[−r+,r+]

f(x)π(dx) = uεE∂
[∫ R1

E1

f(Z(s))ds

]
(18)

is an invariant probability measure for (Y (t))t≥0.

Since Y is irreducible with respect to the Lebesgue measure on [−r+, r+],
i.e. any two sets of positive Lebesgue measure communicate with each other
(see [Dob40] or [Num04]), π is unique.

Proof. Let f : [−r+, r+] ∪ {∂} → R be bounded and measurable. Since LZ
is the generator of Z, by the optional stopping time theorem,

E∂
[
f(Z(R1))− f(Z(E1))−

∫ R1

E1

LZf(Z(s))ds

]
= 0.

By the definition of R1 and E1,

f(Z(R1)) = f(∂), E∂ [f(Z(E1))] =
1

b− a

∫ b

a
f(y)dy.

And by the definition of LZ in (16),

LZf(x) = LY f(x) + uε

(
f(∂)− 1

b− a

∫ b

a
f(y)dy

)
.

Combining these equalities with the fact that E∂ [R1 − E1] =
1

uε
, we obtain

∫
[−r+,r+]

LY f dπ = uεE∂
[∫ R1

E1

LY f(Z(s))ds

]
= 0.

Furthermore, using the fact that Φ(x, y) = Φ(y, x), we are able to identify
π.

Lemma 5.7. The measure π is the uniform probability distribution on
[−r+, r+].

Proof. For f and g two bounded and measurable functions on [−r+, r+], let

〈f, g〉π =

∫ r+

−r+
f(x)g(x)dx.
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We want to show 〈
LY f, g

〉
π

=
〈
f,LY g

〉
π
. (19)

For f : [−r+, r+]→ R and x ∈ R, let

Ef(x) := Ex [f(Y (0))] (20)

and note that LY f(x) = LEf(x). In addition, since Φ(x, y) = Φ(y, x), for
any f, g ∈ L2(R),

〈Lf, g〉R = 〈f,Lg〉R .
However, Ef /∈ L2(R). For n ≥ 1, define

T n = inf{t > 0 : |ξ(t)| ≤ r+ or |ξ(t)| ≥ n}

and, for f : [−r+, r+]→ R bounded,

Enf(x) = Ex
[
f(ξ(T n))1{|ξ(T n)|≤r+}

]
.

Then

Enf(x) =

{
f(x) if |x| ≤ r+

0 if |x| ≥ n,
(21)

LEnf(x) = 0 if r+ < |x| < n. (22)

In particular, Enf ∈ L2(R). As a result,

〈LEnf,Eng〉R = 〈Enf,LEng〉R . (23)

In addition, from (21) and (22),

〈LEnf,Eng〉R = 〈LEnf,Eng〉π
= 〈LEnf, g〉π .

Finally, for any x ∈ R, T n −→
n→∞

Y (0) = inf{t > 0 : |ξ(t)| ≤ r+} almost
surely. By dominated convergence, for x ∈ R, Enf(x) −→

n→∞
Ef(x) and, using

dominated convergence once more, we obtain

〈LEnf, g〉π −→n→∞ 〈LEf, g〉π .

Applying the same argument to the right-hand-side of (23), we obtain (19).
As a result the uniform measure on [−r+, r+] is invariant for Y . Since Y is
irreducible with respect to the Lebesgue measure and π defined in (18) is
absolutely continuous with respect to the Lebesgue measure, π is the uniform
probability measure on [−r+, r+].
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5.6 Proof of Lemma 5.5

Now that we have built the stationary probability measure for Y , we can
prove Lemma 5.5, adapting the arguments of [IP16, Lemma 2.3]. The proof
is an application of the law of large numbers to the renewal process (Z(t))t≥0.

Recall that Y (t) = Z(λ(t)) with λ defined in (17). From the definition of
λ, for t ≥ 0,

λ−1(t) =

∫ t

0
1{Zs 6=∂}ds.

For k ≥ 0, set
R̃k = λ−1(Rk) = λ−1(Ek+1),

and
V ±k = V ±(R̃k+1)− V ±(R̃k).

Then V ±0 , V ±1 , . . . are independent and for all k ≥ 1, V ±k is distributed as V ±1
under E∂ . Recall the definition of the operator E in (20) and set ι(x) = x
for x ∈ R. We prove the following lemma at the end of this subsection.

Lemma 5.8.

E∂
[
V ±1
]

=
1

2r+ε

∫ r+

−r+

∫
R

Φ(x, y)(y − Eι(y))±dydx,

where (·)+ (resp (·)−) denotes the positive (resp. negative) part.

Proof of Lemma 5.5. Setting N(t) = max{k ≥ 0 : R̃k+1 ≤ t}, by the strong
law of large numbers for renewal processes, we have

lim
t→∞

1

t

N(t)∑
k=1

V ±k = lim
t→∞

N(t)

t

1

N(t)

N(t)∑
k=1

V ±k = uεE∂
[
V ±1
]

a.s. (24)

Moreover,

V ±(t)−
N(t)∑
k=0

V ±k = V ±(t)− V ±(R̃N(t)+1)

= ±(Y (t)− Y (R̃N(t)+1))

±
∑

R̃N(t)+1≤s<t

(ξ(ᾱ(s))− ξ(α(s)))1{±ξ(ᾱ(s))>r+}.
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Taking absolute values on both sides, we have∣∣∣∣∣∣V ±(t)−
N(t)∑
k=0

V ±k

∣∣∣∣∣∣ ≤
∣∣∣Y (t) + Y (R̃N(t)+1)

∣∣∣
+

∑
R̃N(t)+1≤s<t

|ξ(ᾱ(s))− ξ(α(s))|1{±ξ(ᾱ(s))>r+}

Since when ±ξ(ᾱ(s)) > r+, ±(ξ(ᾱ(s))− ξ(α(s))) ≥ 0, we can add the terms
for which t ≤ s < R̃N(t)+2 on the right-hand-side,∣∣∣∣∣∣V ±(t)−

N(t)∑
k=0

V ±k

∣∣∣∣∣∣ ≤
∣∣∣Y (t) + Y (R̃N(t)+1)

∣∣∣
+

∣∣∣∣∣∣∣
∑

R̃N(t)+1≤s<R̃N(t)+2

(ξ(ᾱ(s))− ξ(α(s)))1{±ξ(ᾱ(s))>r+}

∣∣∣∣∣∣∣
Adding and subtracting Y (R̃N(t)+2)− Y (R̃N(t)+1) inside the absolute value,
we obtain, ∣∣∣∣∣∣V ±(t)−

N(t)∑
k=0

V ±k

∣∣∣∣∣∣ ≤ 4r+ +
∣∣∣V ±N(t)+1

∣∣∣ .
Hence, since the V ±k are identically distributed for k ≥ 1,∣∣∣∣∣∣1t V ±(t)− 1

t

N(t)∑
k=0

V ±k

∣∣∣∣∣∣ ≤ 4r+

t
+

1

t

∣∣∣V ±N(t)+1

∣∣∣ .
The right-hand-side converges to zero almost surely as t→∞ since the V ±k
are identically distributed for k ≥ 1. As a result, from (24)

lim
t→∞

1

t
V ±(t) = uεE∂

[
V ±1
]
. (25)

The statement of Lemma 5.5 now follows from Lemma 5.8 by taking

β =

∫ r+
−r+

∫
R Φ(x, y)(y − Eι(y))dydx∫ r+

−r+

∫
R Φ(x, y) |y − Eι(y)| dydx. (26)
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We now prove Lemma 5.8.

Proof of Lemma 5.8. Define

h±(x) = ±u
∫
R

Φ(x, y)1{±y≤r+}(Eι(y)− x)dy

± u
∫
R

Φ(x, y)1{±y>r+}(y − x)dy. (27)

Writing

V ±(t) = ±
∑

0<s≤t
(Y (s)− Y (s−))1{±ξ(ᾱ(s))≤r+}

±
∑

0<s≤t
(ξ(ᾱ(s))− Y (s−))1{±ξ(ᾱ(s))>r+},

it follows that

V ±(t)−
∫ t

0
h±(Y (s))ds

is a martingale with respect to the filtration associated with (Y (t))t≥0. As a
result,

uεE∂
[
V ±1
]

= uεE∂

[∫ λ−1(R1)

λ−1(E1)
h±(Y (s))ds

]

= uεE∂
[∫ R1

E1

h±(Z(s))ds

]
=
〈
h±, π

〉
, (28)

by (18). Note that since Eι(y) = y when |y| ≤ r+, h± can be written as

h±(x) = ±u
∫
R

Φ(x, y)(Eι(y)− Eι(x))dy

± u
∫
R

Φ(x, y)1{±y>r+}(y − Eι(y))dy

= ±LEι(x) + u

∫
R

Φ(x, y)(y − Eι(y))±dy,

Besides, we noted above that LEf = LY f , hence 〈LEι, π〉 = 0. Furthermore,
from Lemma 5.7,〈

h±, π
〉

=
u

2r+

∫ r+

−r+

∫
R

Φ(x, y)(y − Eι(y))±dydx.

This, together with (28) concludes the proof of Lemma 5.8.
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A Inequalities for hitting times

Proof of Proposition 4.1. We first prove the inequality for TnO. Suppose that
lim supTnO > TO and fix ε > 0 such that TO + ε ≤ lim supTnO. There exists a
subsequence (nk)k such that for all k ∈ N, Tnk

O ≥ TO + ε. By the definition
of TO, there exists t ∈ [TO, TO + ε) such that f(t) ∈ O. By the convergence
of fn to f , fnk

(t) converges to f(t) as k →∞. Since f(t) ∈ O which is open,
for k large enough, fnk

(t) ∈ O and Tnk
O ≤ t, leading to a contradiction.

For the second inequality, suppose that lim inf TnF < TF and take ε > 0
such that lim inf TnF ≤ TF−2ε. There exists a subsequence (nk)k such that for
all k ∈ N, Tnk

F ≤ TF − 2ε. Since f is continuous, the image of [0, TF − ε] by f
is a compact set which does not intersect F , hence there exists η > 0 such that
its η-neighbourhood is in Rd \F . By the locally uniform convergence of fn to
f , sup{|fnk

(t)− f(t)| : t ∈ [0, TF − ε]} converges to zero as k →∞. Taking
k large enough that this quantity is smaller that η, we have that fnk

(t) /∈ F
for t ∈ [0, TF − ε]. Hence Tnk

F ≥ TF − ε, which is a contradiction.
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