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Abstract – This paper describes an original statistical 

approach for the lifespan modeling of electric machine 

insulation materials. The presented models aim to study the 

effect of three main stress factors (voltage, frequency and 

temperature) and their interactions on the insulation 

lifespan. The proposed methodology is applied to two 

different insulation materials tested in partial discharge 

regime. Accelerated ageing tests are organized according to 

experimental optimization methods in order to minimize the 

experimental cost while ensuring the best model accuracy. In 

addition to classical parametric models, the life-stress 

relationship is expressed through original non-parametric 

and hybrid models that have never been investigated in 

insulation aging studies before. These two models present the 

original contribution of this paper. For each material, models 

are computed from organized sets of experiments and 

applied on a randomly configured test set for validity 

checking. The different models are evaluated and compared 

in order to define their optimal use.   

Index Terms--accelerated aging, design optimization, 

electric machines, lifetime estimation, insulation, model 

checking, modeling, partial discharges, regression analysis, 

stress 

I. INTRODUCTION 

Reliability has become an important issue in the 

electrical engineering field since the most critical 

industries, such as urban transports, aeronautics, or space, 

are moving towards the design of more electrical based 

systems that will replace heavy mechanical and pneumatic 

based ones. Such design offers significant benefits in terms 

of performance, impact on environment, and operating 

costs [1]. However, more electrical power has to be 

generated in these systems, requiring higher voltages and 

operating frequencies [2]. These new operating conditions 

increase the risk of Partial Discharges (PD) in the 

electrical machine insulation systems [3], [4]. Given that 

around 40% of electrical machine failures result from 

insulation winding failures [4], [5], the lifespan of 

insulation materials becomes crucial for reliability 

assessment. In addition to electrical stress, insulation 

materials are subject to thermal, mechanical and 

environmental stresses that act simultaneously [6], [7] and 

can interact. Several models have been derived to describe 

the effects of these different stresses on the insulation 

lifespan [6], [8], [9]. However, these models take into 

account a single stress factor or two factors (mainly the 

electrothermal stress) at a time and their validity is 

assessed only for particular materials and in restricted 

factor ranges. Moreover, they do not include the synergetic 

effects due to interactions between factors.  

In this paper, an original, general and comprehensive 

statistical approach for the insulation lifespan modeling is 

introduced. The considered aging phenomenon is mainly 

due to PD occurring in electrical machine windings. The 

objective is to provide a reliable lifespan model with a 

minimum experimental cost for economic purposes. To 

comply with both the economical and the accuracy 

constraints, the number of experiments and their 

configuration were specified in previous work according to 

two experimental optimization methods: the Design of 

Experiments (DoE) [9]-[13] and the Response Surface 

(RS) [9], [11], [12], [14]. The proposed insulation lifespan 

models included three different stress factors: voltage, 

frequency and temperature, as they were identified as the 

predominant factors causing PD [3], [4]. Two different 

types of insulating materials were tested in two different 

stress domains, both in PD regime. The experiments have 

to be organized at some specific points corresponding to 

some normalized and standardized levels.  

In this paper, the effects of the same three stress factors 

and their different interactions are studied with the 

classical method that consists in adding all interaction 

terms to the main factor terms, thus leading to classical 

full parametric models. Alternatively, these effects are 

examined with two original methods: piecewise constant 

(non-parametric) and piecewise linear (hybrid) models. 

These models result from the classification of the 

experiments in different ranges of the stress factors 

according to their individual and combined effects on the 

lifespan. Non-parametric and hybrid models, that 

originally relate the insulation lifespan to stress factors, 

have never been investigated in insulation aging studies 

before. In this case, experiments could be randomly 

configured, which differs from the modelling methods 

previously developed and provides more flexibility. 

II. EXPERIMENTAL SETUP

A.   Materials 

Two test campaigns were carried out on two insulating 

materials widely used in electric machine wiring 

insulation: a 200°C (Insulation Material 1, IM1) and a 

220°C (Insulation Material 2, IM2) thermal class 

insulating materials. IM1 is composed of two insulating 

layers of Poly-Ether-Imide (PEI) and Poly-Amide-Imide 



(PAI), IM2 is composed of PAI only. Test samples are 

twisted pairs of 0.5mm diameter copper wires covered with 

IM1 or IM2. They were manufactured according to a 

standardized procedure [15], cf Fig. 1a, ensuring the 

quality of the process and the homogeneity of samples. A 

typical twisted pair is shown in Fig. 1b. Their upper parts 

are cut in the middle to prevent from short circuits. 

Fig. 1a.  Manufacturing process of twisted 

pairs from copper wires Fig. 1b.  Twisted pair as a 

test sample 

B.   Stress Factors 

This study focusses on extrinsic insulation aging caused 

by PD. This phenomenon is ever more prevalent in 

electrical machines of embedded systems due to the 

required increase of the supply voltage. The authors of [3], 

[4] point out that electrical and thermal stresses are the 

predominant factors causing PD in electrical machines. 

Therefore, three aging factors are considered in our study: 

the applied voltage (the amplitude V of  a  square  wave

voltage), its frequency F and the ambient temperature T.  

C.   Accelerated Aging Tests 

In order to get achievable lifetime measurements, IM1 

and IM2 are tested under higher-than-nominal stress factor 

levels ensuring PD regime. Temperature covers a wide 

range of operating conditions for an embedded electrical 

machine but does not exceed the thermal classes of the two 

materials. Table I lists the factor domains for each tested 

material. Note that IM2 is tested in more restrictive stress 

ranges than IM1. Test samples are disposed in a climatic 

chamber where the temperature is set to the desired value. 

A power electronic system generates a square voltage 

controlled in amplitude and frequency. The lifespan of a 

test sample is the failure time at which a short circuit 

occurs in the pair. The experimental setup is in Fig. 2. 

Fig. 2.  Climatic chamber and power electronics as a test bench for the 

two types of insulation materials 

For IM1, 30 experiments were carried out. Among 

them, 18 were specified according to a classical design 

method described in section III, while the others have 

random values for V, F and T with 6 samples tested at each 

experiment. For IM2, 27 experiments were organized and 

24 were randomly configured, 8 twisted pairs were tested 

in each configuration. 

TABLE I 
STRESS FACTOR DOMAINS FOR INSULATION MATERIALS IM1 AND IM2 

IM1 IM2 

Factor Min. Value Max. Value Min. Value Max. Value 

V 1 kV 3 kV 0.7 kV 1.25 kV 

F 5 kHz 15 kHz 5.543 kHz 15 kHz 

T -55°C 180°C 40°C 180°C 

D.   Lifespan Expressions 

In the case of IM1, according to [9], the lifespan 

logarithm (Log(L)) follows an inverse power model 

depending on Log(10V), Log(F) and exp(-bT), with b = 

4.825 10-3. Indeed, the inverse power law has been widely

used and validated for electrical stress effect on insulation 

lifespan [6]-[8]. In the case of IM2, as proposed in [9], the 

form of a factor in the lifespan model has been inferred 

from tests where only this factor varies. Fig. 3 shows the 

results of three such tests performed on IM2. From these 

graphs, it can be deduced that the lifespan logarithm of 

IM2 is linear with respect to Log(V), to Log(F) (as in 

inverse  power  law)  and to  1/T where T is measured in K. 

Therefore, T influences IM1 and IM2 lifespan in two 

different ways.  

Fig. 3a.  L in function of V for fixed 

F and T (IM2) 

Fig. 3b.  L in function of F for fixed 

V and T (IM2) 

Fig. 3c.  L in function of T for fixed V and F (IM2) 

For IM1, the measured lifespans (L) range from 28s to 

62mn40s, while the measured L for IM2 range from 

3mn52s to 64mn18s. The values of Log(L) for some short 

measured lifespans of IM1 are very close to zero when L 

values are set in minutes (mn). This can artificially lead to 

high aberrant values when relative errors are derived for 

model performance assessment. Therefore, we suggest to 

compute Log(L) for IM1 from lifespans set in seconds (s) 



rather than in (mn). For IM2, the lifespans are longer and 

thus Log(L) can be computed with L taken in (mn). This 

scale modification does not affect the model results since it 

only shifts Log(L) by the constant Log(60). 

E.   Effect of the initial conditions 

Of course, the type of insulation material will affect the 

model coefficients but not the lifespan modeling ability of 

the selected methods. Indeed, it has been proven with 

different materials and different levels of the stress factors 

in [9], [11], [12], [13] that the methods based either on 

DoE or on RS lead to satisfying lifespan modeling results.  

This section will investigate the effect of the initial 

conditions of the insulation material on the results. A first 

set of experiments have been achieved with healthy twisted 

pairs covered with IM2 for V=1.25kV, F=9.1 kHz and 

T=40°C. Then, several twisted pairs have been tested with 

different wounds manually conducted on different 

locations on the wires and different levels of severity, 

between light, medium and heavy, which are shown in 

figures 4a to 4d. 

Fig. 4a.  Light wound on  the wire Fig. 4b.  Medium wound on the 

inner part of the wire 

Fig. 4c.  Medium wound on the outer 

part of the wire 

Fig. 4d.  Heavy wound on  the wire 

Table II gives the corresponding lifespans, from which 

several interesting conclusions can be derived. First, a 

light wound does not affect lifespan. Second, any of the 

medium wound reduces the insulation lifespan regardless 

their location and a high level of wound dramatically 

affects lifespans. Then, a bi-modal distribution of the 

lifespans should be observed when certain samples are 

wounded and others not, which will not be the case in our 

results. Consequently, it could be concluded that samples 

are all healthy since no-bimodal distribution was obtained 

in any of our test populations. 

TABLE II 
STRESS FACTORS LEVELS APPLIED ON INSULATION MATERIAL 1 

Wound 

Level 

Number of 

samples tested 

Average 

lifespan [mn] 

healthy 24 18 

light 8 18 

medium 8 2 

heavy 8 0 

III. PARAMETRIC MODELS

The basic approach to evaluate the effects of the factors 

and their interactions consists in computing a full 

parametric model where all these terms are included. 

Parametric lifespan models can be expressed as multi-

linear regression models: Y = X  where Y is the vector of

measured lifespan, X is experimental matrix composed of 

predictor variables and  is the vector of model coefficients

that can be estimated by the Ordinary Least Square (OLS) 

method [16].  

A.   Design Optimization Methods 

In the context of an electro-thermal aging study on 

insulation materials, experimental data sets required for 

lifespan model estimation are restricted due to various 

experimental constraints: cost of tested materials, 

availability of the test bench, limited experimental time, 

etc. Therefore, the number and the configuration of 

experiments must be optimized in a way to minimize 

experimental cost while ensuring the best model accuracy. 

In this paper, we aim to achieve orthogonal experimental 

designs. Orthogonality is one of the most interesting 

optimality criteria as it guarantees the best model accuracy 

with uncorrelated estimation of model coefficients [10]. A 

design is orthogonal if its experimental matrix X is 

orthogonal which requires that its information matrix (XX) 

and its dispersion matrix (XX)-1 are diagonal.    

The most efficient method to evaluate the effects of 

several factors and their interactions on a response variable 

is the basic DoE [10] that has been already validated for 

insulation lifespan models in [9], [11], [12], [13]. 

According to DoE [9], [10], 2 levels ( 1) are assigned to

each factor.   With  k  factors,  2k experiments are necessary 

such that each experiment involves one of the 2k 

combinations between the levels of each factor. The 

obtained design is called 2k Full Factorial Design (FFD2) 

having an orthogonal experimental matrix [10]. With 3 

factors, the DoE lifespan model can be written as (1): 

 Y = Log(L)DoE = M + EVXV + EFXF + ETXT + IVFXVXF 

+ IVTXVXT + IFTXFXT + IVFTXVXFXT (1) 

where L is  the  lifespan,  in  (s)  for  IM1,  in  (mn)  for  IM2,  

XV, XF and XT are the three factor levels corresponding to 

the values of Log(V), Log(F) and exp(-bT) for  IM1 or  1/T 

for IM2. M is the model constant, EV, EF and ET are the 

three factor effects, IVF, IVT, IFT and IVFT are the different 

interaction effects. However, it may be of interest, for a 

better approximation of the lifespan model, to include 

quadratic terms of the main factors. The appropriate 

optimization method for second order models with 

interactions is the Response Surface (RS) method [14]. RS 

lifespan model can be written as (2): 

Y = Log(L)RS = M + EVXV + EFXF + ETXT + IVV(XV)2 + 

IFF(XF)2 + ITT(XT)2 + IVFXVXF + IVTXVXT + IFTXFXT 
(2) 

where IVV, IFF and ITT are the factor quadratic effects 

. 



According to [14], it is impossible to achieve the 

orthogonal experimental matrix property for second order 

designs. However, orthogonality can be obtained if the 

experimental matrix X is excluded from its first line and 

its first column. The design is then called “almost 

orthogonal”. There are two popular almost orthogonal RS 

designs for the second order models [14]:   

1) 3k Full Factorial Designs (FFD3):
In this design, three levels (-1, 0 and +1) are required 

for each factor [14], 3k experiments are required.  

2) Central Composite Designs (CCD):
A CCD has the advantage of requiring less number of 

experimental points than a full 3k design. However, five 

levels of each factor are needed instead of three. A CCD is 

composed of [9], [12], [14]: 

- A complete 2k DoE design, 

- Two axial points on the axis of each factor at a distance 

 from the design center, i.e. two extra levels ( ),

- N0 central points at the design center. 

An almost orthogonal CCD is obtained if [14]: 

2k(2k + 2k + N0) = (2 2 + 2k)2 (3) 

Second order RS model have been also applied for the 

insulation lifespan modeling in [9], [11] and [12]. In this 

paper, a more detailed analysis of DoE and RS model 

performance and applicability is presented. Since the 

factor domain of IM1 allows more levels to be investigated 

than that of IM2, organized experiments were specified 

according to a CCD for IM1 and a 3k FFD3 for IM2. From 

these two designs, first and second order models with 

interaction terms can be computed. For IM1, the CCD is 

composed of the 8 experiments of the 23 FFD2,  4  central  

points and 6 axial points with  = 2 to satisfy (3). Factors

levels are given in Table III. 

 TABLE III 
STRESS FACTORS LEVELS APPLIED ON INSULATION MATERIAL 1 

Level Log(10V - kV) Log(F - kHz) exp(–bT - °C) 

– 2 Log(10*1) Log(5) exp(55b) 

–1 Log(10*1.174) Log(5.872) exp(34.82b) 

0 Log(10*1.73) Log(8.7) exp(–26.12b) 

+1 Log(10*2.554) Log(12.77) exp(–119.74b) 

+ 2 Log(10*3) Log(15) exp(–180b) 

For IM2, the design is composed of the 27 combinations 

between the levels –1, 0 and +1 of the three factors. These 

levels are given in Table IV. 

TABLE IV 
STRESS FACTORS LEVELS APPLIED ON INSULATION MATERIAL 2 

Level Log(10V - kV) Log(F - kHz) 1/(T - °K) 

–1 Log(10*0.7) Log(5.543) 1/(40+273.15) 

0 Log(10*0.93) Log(9.1184) 1/(97+273.15) 

+1 Log(10*1.25) Log(15) 1/(180+273.15) 

For both test campaigns, randomly configured 

experiments (test sets) are carried out in order to test the 

model validity. Organized (blue and red points) and 

random (green points) experiments are represented in Fig. 

5a and Fig. 5b for IM1 and IM2 respectively. 
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Fig. 5a.  3D representation of factor levels  in the 1st test campaign for IM1 
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Fig. 5b.  3D representation of factor levels in the 2nd test campaign for IM2 

B.   Model Prediction Performance 

The validity of parametric DoE and RS models in the 

factor  domains  given  in  Table  I  can  be  checked  by

applying them to their respective test sets. The prediction 

performance of the models can be evaluated by comparing 

the predicted and measured values of Y and L through 

relative errors. For each experiment, we have a set of 

repeated measurements for lifespan logarithms (Ymeas), and 

one value (Ypred) is predicted by the model. The set of Ymeas 

corresponding to the same experiment can be averaged 

leading to Yav and a 95% Confidence Interval (CI) of Yav 

can be computed by assuming a normal distribution of the 

set of repeated Ymeas.. The evaluation criteria of the model 

prediction performance on the test set are: 

- Relative errors between predicted and measured average 

Log(L): 

REY = 100 Yav – Ypred /Yav (4) 

- Relative errors between measured average L in the 

original scale (Lav) and predicted L (Lpred) obtained by 

applying the logarithmic back transformation on Ypred: 

REL = 100 Lav – Lpred /Lav (5) 

C.   Parametric Lifespan Models for IM1 

The first order lifespan model for IM1 is estimated from 

the 8 blue points of Fig. 5a and the second order model is 

estimated using the 18 points of the CCD of Fig. 5a (blue 

and red points with 4 replications of the center). The 

estimated coefficients of the two models are given by the 

diagrams of Fig. 6a and 6b.  
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Fig. 6a.  DoE model coefficients 

(IM1) 
Fig. 6b.  RS model coefficients (IM1) 

From  these  diagrams,  we  can  observe  that  voltage  has  

the highest effect on the lifespan. The least important 

interactions are those between the least important factors 

(IFT) and between the three factors (IVFT). RS model shows 

in addition that the temperature has the most important 

quadratic effect (ITT). These models are then applied on the 

test  set  points  (green  points  of  Fig.  6a).  Fig.  7  shows,  for  

these points, the predicted lifespan logarithms with respect 

to the corresponding measured Yav and their 95% CI. Table 

V summarizes model prediction performance on the test 

set according to the criteria defined in section III.B 
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Fig. 7.  Test set measured and predicted Log(L) (IM1) 

TABLE V 
TEST SET PREDICTION PERFORMANCE OF DOE MODEL (IM1) 

Model Max (REY) Mean (REY) Max (REL) Mean (REL) 

DoE 9.7% 3.1% 35.0% 14.0% 

RS 11.5% 5.7% 45.1% 27.2% 

Therefore, DoE model shows good prediction 

performance on its test set with an average error of 3% for 

predicted Y and of 14% for predicted L. However, the RS 

model presents higher errors on the test set with respect to 

DoE model. Therefore, the addition of 3 levels, 3 quadratic 

terms and 10 experimental points to the training set of 

DoE model over-fits the data and thus does not improve its 

prediction quality. Indeed, the oversizing of the model 

surely leads to an extremely accurate modelling of the 

training data. However, the counterpart is a decrease of the 

model flexibility and thus of its capacity to adapt to 

different experiment scenarios as those of the test set [16]. 

D.   Parametric Lifespan Models for IM2 

The first order model for IM2 is estimated from the 8 

blue points of the extreme 23 FFD2 of Fig. 5b where each 

factor has the extreme levels –1 and +1. The second order 

model is estimated using the 27 points of the 33 FFD3 of 

Fig. 5b (all blue points). The estimated coefficients of DoE 

and RS models are given in Fig. 8. These diagrams show 

that, for IM2, and in the domain given by Table I, the 

frequency and the temperature have the highest effects, 

individually and in interaction. 
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As in IM1 parametric models, the least important 

interactions are those between the least important factors 

(IVT) and between the three factors (IVFT). RS model shows 

a high quadratic effect for IVV rather than ITT in the case of 

IM1 RS model. These models are applied on the green 

points of Fig. 5b to evaluate their prediction performance. 

Results are summarized in Fig. 9 and Table VI. 
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Fig. 9.  Test set measured and predicted Log(L) (IM2) 

TABLE VI 
TEST SET PREDICTION PERFORMANCE OF DOE MODEL (IM2) 

Model Max (REY) Mean (REY) Max (REL) Mean (REL) 

DoE 7.2% 2.9% 17.8% 7.3% 

RS 9.5% 3.7% 20.2% 9.4% 

Therefore, as in the case of IM1 parametric models, RS 

model does not improve the DoE model prediction quality 

regarding the test set points. From these two test 

campaigns, we can deduce that a first order parametric 

model estimated only with the 8 experiments of a 2-level 

FFD2 is sufficient for a good prediction of lifespan data. 

Second order models with additional factor levels, 

quadratic terms and training set points can over-fit the 

data and lead to higher errors.  

IV.  NON-PARAMETRIC MODELS

Previous models assume a multi-linear relationship 

between Log(L) and the three main factors, their quadratic 

forms and their interactions, allowing to quantify their 

respective effects. However, the interactions are introduced 

as independent explanatory variables through the product 

of the corresponding factors. This choice has no physical 

justification. Therefore, the interpretation of the resulting 

coefficients is not evident. Thus, it may be of interest to 



define another lifespan-stress relationship using the RS 

training set that could be more easily interpreted and could 

fit better the data than a second order model. Non-

parametric Regression Trees (RT) present a first 

alternative approach to linear regression models which are 

especially appropriate when interactions exist between 

factors. To date, RT which have never been applied in 

insulation aging studies, will be used as a new method for 

the lifespan modeling of the two insulation materials.  

A.   Overview 

Classification and regression trees were introduced by 

Breiman in 1984 [17]. They allow to explain the 

relationship between a single response variable (output) 

and a set of predictor variables (inputs). The principle of 

RT is to recursively split the training data set into smaller 

and more homogeneous groups. At each node, the splitting 

explanatory variable and its corresponding threshold value 

are selected so that the homogeneity of the two resulting 

groups is maximized. At the end, each leaf is characterized 

by the mean value of the response in the corresponding 

final  group [17].  For  a  new observation,  the  response  can  

be easily predicted by following the appropriate path 

throughout the tree. The order of variable appearance in 

the tree allows to compare their relative importance.  

For both materials, RT will be constructed using the RS 

training sets (blue and red points in Fig. 5a and 5b) with 

factor levels XV, XF and XT as inputs and Log(L) as an 

output. For a better readability, factors will be represented 

in  the  tree  by  V, F and T instead of XV, XF and XT. RT 

performance will be evaluated on test sets (green points of 

Fig. 5a and Fig. 5b) with criteria defined in section III.B. 

B.   RT for the Lifespan Modeling of IM1 

1) Classification of the Training Set Data:
The RT constructed from the 18 experimental points of 

the CCD of Fig. 5a is shown in Fig. 10a. This RT is first 

split by the voltage at its root and includes three voltage 

zones: 

- Low Voltage (LV) where XV < -0.5 (V < 1.43 kV), 

- High Voltage (HV) where XV > 0.5 (V > 2.10 kV), 

- Medium Voltage (MV) where -0.5 < XV < 0.5. 

As in parametric IM1 RS model, with RT, the voltage is 

the most important variable that first split the data. The 

temperature is the next splitting variable in both LV and 

MV zones and finally comes the frequency. This order is 

coherent with factor effects estimated by RS model in Fig. 

6b. However, frequency and temperature order of influence 

is inverted in HV zone. This fact reveals that the lifespan 

model is different in this voltage zone and that two 

different models exist depending on the voltage range: one 

corresponding to HV and the other to LV and MV zones 

that can be combined in one zone called MV&LV. 

2) Prediction Performance:
When used to predict the test set lifespan logarithms (Y) 

of this campaign (green points of Fig. 5a), the RT 

displayed on Fig. 10a is less accurate than RS parametric 

model, with relative errors (ERY) up to 33%. Intrinsically, 

RT are piecewise constant models and thus have lower 

prediction accuracy than parametric continuous models. 

To illustrate this, Fig. 10b compares the measured Yav of 

the test set points, their values predicted by the RT of Fig. 

10a and by a linear model computed from the same 

training set and including only the three main factor terms 

(XV, XF and XT). It is clear from Fig. 10b that the linear 

model better fits the test set points than the RT. 

C.   RT for the Lifespan Modeling of IM2 

1) Classification of the Training Set Data:

The RT constructed  from the  27  points  of  the  33 FFD3 

of Fig. 5b is shown in Fig. 11. It is first split by the 

frequency at XF =  0.5  (F = 11.695 kHz) that divides the 

experiments into 2 zones: Low Frequency (LF) / High 

Frequency (HF). As in parametric IM2 RS model, with 

RT, the frequency is the most important variable that first 

splits the data. After the frequency split, temperature is the 

next splitting variable and voltage appears last, after these 

two  factors,  in  both  LF  and  HF  zones.  This  is  coherent  

with the three factor effects estimated by parametric 

models in Fig. 8b. However, there are two different 

classifications in LF and HF zones.  In LF zone, there are 

three temperature zones with the same order of 

classification in each (frequency then voltage). However, 

in HF zone, the voltage appears just after the first 

temperature splitting and there are no nodes with the 

frequency as a splitting variable. Therefore, two different 

models exist depending on the frequency range. 

Fig. 10a.  Regression tree constructed from IM1 RS training set
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Fig. 10b.  Comparison of test set prediction 

accuracy between the RT and a linear model 

including only the main factors (IM1)



Fig. 11 Regression tree (RT) constructed from IM2 RS training set

2) Prediction performance

RT of Fig. 11 is used to predict the lifespan logarithms 

(Y) of the test set points (green points of Fig. 5b). As for 

IM1, predictions are less accurate than those computed by 

RS model with relative errors (ERY) up to 24% with RT. 

Fig. 12 shows that a linear model computed from the same 

training set and including only the three terms (XV, XF and 

XT) better fits the test set points than the RT of Fig. 11.  
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Fig. 12.  Comparison of test set prediction accuracy between the RT and a 

linear model including only the main factors (IM2) 

It can be confirmed that RT have lower prediction 

accuracy than parametric models since they are piecewise 

constant. However, RT identifies different ranges of the 

main factors corresponding to different models.  

V.   HYBRID MODELS 

In light of the above, we can see that each presented 

model has its advantages and drawbacks. Parametric DoE 

and RS models allow quantifying the effects of each factor, 

of their quadratic terms and of their interactions on the 

lifespan with good prediction performance on the test set 

points belonging to the same experimental domain of the 

training set points. However, the second order models 

appear to over-fit the data although estimated from an 

optimized training set. On the other hand, interpretation of 

the interactions through the product terms is not obvious. 

With RT, a simple and graphical life-stress relationship is 

obtained. Relative importance of the main factors can be 

deduced from the hierarchical structure of the RT. This 

structure also allows to identify ranges of the main factor 

where more specific and thus more accurate models can be 

derived. However, RT are piecewise constant and have 

lower prediction performance on the test set than 

parametric models. Therefore, we suggest in this section to 

combine these two approaches in a piecewise linear model 

in order to benefit from the advantages of the two methods 

and to overcome their drawbacks. The proposed model is 

called Hybrid Model (HM) and is presented as an original 

method based on RT for lifespan modeling.   

A.   Construction of HM 

The principle of HM is first to identify the most 

important factor and its splitting values through the RT. 

Then, by the means of dummy variables, one coefficient 

for each of the two other factors is defined in each range of 

the main factor. This model structure allows to: 

- Refine the parametric model by examining the life-

stress relationship in each identified range, 

- Explicit interactions with the main factor by 

examining the effect of the main factor range on the 

coefficients of the other two factors, (interaction 

between the least important two factors have a very 

low effect according to parametric models), 

- Improve the prediction quality of regression trees. 

As RT, HM will be computed from the RS training sets 

of the two campaigns (blue and red points in Fig. 5a and 

5b) using the factor levels XV, XF and XT as predictors and 

Log(L) as a response where L is in (s) for IM1 and in (mn) 

for IM2. Then the model prediction performance will be 

evaluated on the corresponding test set (green points of 

Fig. 5a and 5b) with criteria defined in section III.B. 

B.   Hybrid Lifespan Models for IM1 

For IM1, voltage was identified as the most important 

factor dividing RS training set into two ranges: HV and 

MV&LV at XV = 0.5. The HM can thus be written as (6): 

Y = Log(L)HM = M + EVXV + EF/HV HV.XF +

EF/MV&LV MV&LV.XF + ET/HV HV.XT + ET/MV&LV MV&LV.XT
(6) 



where HV (respectively MV&LV) is a dummy variable equal

to 1 when XV belongs to HV (respectively MV&LV) zone 

and 0 elsewhere.  

Equation (6) has the general form of a multi-linear 

regression model between the response Log(L) and the 

predictor variables XV, HV.XF, MV&LV.XF, HV.XT and

MV&LV.XT. Model coefficients can thus be estimated by

OLS method. The coefficients of HM (6) estimated from 

the 18 points of IM1 RS training set (blue and red points 

of Fig. 5a) are represented in the diagram of Fig. 13.  
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Fig. 13  Hybrid Model coefficients (IM1) 

This model confirms once again that voltage is the most 

important factor for IM1. It also confirms the existence of 

interactions between the voltage and the frequency 

(respectively the temperature) since two different 

coefficients exist for the frequency (respectively the 

temperature) depending on the voltage zone. In addition, 

the relative effects of frequency and temperature in each 

zone are coherent with their order in the RT of Fig. 10a: 

the frequency effect is lower than the temperature effect in 

MV&LV, but higher in HV. HM (6) prediction 

performance on IM1 test set (green points of Fig. 5b) is 

summarized in Fig. 14 and Table VII. Obviously, HM 

model improves the prediction quality of both RT and RS 

models regarding the test set.  
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Fig. 14 Test set measured and predicted Log(L) (IM1) 

TABLE VII 
TEST SET PREDICTION PERFORMANCE OF HM (IM1)  

Max (REY) Mean (REY) Max (REL) Mean (REL) 

8.7% 3.8% 35.6% 16.8% 

C.   Hybrid Lifespan Model for IM2 

For IM2, frequency was identified as the most important 

stress factor dividing RS training set into two ranges: HF 

and LF at XF = 0.5. The HM can thus be written as (7): 

Y = Log(L)HM = M + EFXF + EV/HF HF.XV +

EV/LF LF.XV + ET/HF HF.XT + ET/LF LF.XT
(7) 

where HF (respectively LF) is a dummy variable equal to 1

when XF belongs  to  HF  (respectively  LF)  zone  and  0

elsewhere. HM (7) coefficients estimated from the 27 

points  of  IM2 RS training  set  (blue  points  of  Fig.  5b)  are  

given in the diagram of Fig. 15.  
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Fig. 15  Hybrid Model coefficients (IM2) 

This model confirms that the voltage has the lowest 

effect for IM2 in each frequency zone. It also confirms the 

existence of interactions between the frequency and the 

voltage (respectively the temperature) since two different 

coefficients exist for voltage (respectively the temperature) 

depending on the frequency zone. The prediction 

performance of HM (7) on IM2 test set (green points of 

Fig. 5b) is summarized in Fig. 16 and Table VIII. As in 

the case of IM1, HM improves prediction quality of both 

RT and RS models regarding the test set. 

TABLE VIII 
TEST SET PREDICTION PERFORMANCE OF HM (IM2)  

Max (REY) Mean (REY) Max (REL) Mean (REL) 

8.3% 3.2% 20.9% 8.2% 
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Fig. 16.  Test set measured and predicted Log(L) (IM2) 

D.   Discussion 

From the two test campaigns, it was confirmed that a 

HM shows better prediction quality than RS parametric 

model, both being estimated from the same organized 

training set.  
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On the other hand, it can be shown that, in general, for k 

factors, the experimental matrices of HM having the same 

expressions as (6) and (7) and estimated from a CCD or a 

3-level FFD3 always satisfy the orthogonality criteria. The 

information matrix of HM (6) estimated from a CCD can 

be written in function of k, N0 and  as in (8). Therefore,

matrix (8) remains diagonal for all CCD, regardless to N0 

and . The information matrix of HM (7) estimated from a

3-level FFD3 is also diagonal. It can be written in function 

of k as (9): 
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 Orthogonal design property is therefore an additional 

advantage for HM over RS models. It offers more 

flexibility for the choice of the organized design of HM 

training set. On the other hand, in both test campaigns, 

HM prediction performance is very close to that of DoE 

models computed from 2-level FFDs. However, the 

advantage of HM over DoE model is that HM involves a 

smaller number of variables than DoE model (2k instead of 

2k for k factors). In addition, all variables in HM are 

important and they are more easily interpretable than those 

of DoE model. Therefore, with k factors and only two 

levels per factor that can be tested, the best lifespan model 

configuration in terms of accuracy and experimental cost is 

a first order model with interaction terms computed from 

the 2k experiments of the 2-level FFD2. If more levels per 

factor  can  be  tested  so  that  a  CCD or  a  3-level  FFD3 can 

be established, the best lifespan model is a HM configured 

after identifying the different regions of the main stress 

factor with a RT constructed on the same training set.  

VI.  CONCLUSION AND FUTURE WORK

In conclusion, an original statistical method was 

developed for the lifespan modeling of insulation materials 

under PD regime. This method was validated on two 

different insulation materials in two experimental domains 

corresponding to accelerated aging conditions. The 

presented models relate the lifespan logarithm to three 

main aging factors through three different forms: 

parametric, non-parametric and hybrid models 

. These models allow to evaluate the effects of the three 

factors and of their interactions. While parametric forms 

are commonly used in modeling tasks, non-parametric 

regression trees and hybrid models provide original life-

stress relationships that have never been investigated in 

insulation aging studies before. These different models 

were compared and the optimal use of each was defined 

accordingly through an original, more flexible and 

methodological approach. 

In future work, the presented methodology will be 

applied to the lifespan modeling of other thermal class 

insulating materials and other critical parts of electrical 

machines. On the other hand, more stress factors will be 

considered in the insulation lifespan models such as 

pressure, humidity or mechanical vibrations. Finally, as 

prognostic is the final goal of this lifespan modelling, 

model prediction of long life aging during almost normal 

conditions will be investigated. For this objective, 

materials will be tested in domains below the PD regime in 

order to test the validity of the presented models at lower 

stress levels that are closer to normal conditions. 
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