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Since the pioneering works of Taylor and Bretherton, the thickness h of the film deposited
behind a long bubble invading a Newtonian fluid is known to increase with the Capillary
number power 2/3 (h ∼ RCa2/3), where R is the radius of the circular tube and the
Capillary number, Ca, comparing the viscous and capillary effects. This law, known
as Bretherton law, is only valid in the limit of Ca < 0, 01 and negligible inertia
and gravity. We revisit this classical problem when the fluid is a Yield-Stress Fluid
(YSF) exhibiting both a yield stress and a shear-thinning behaviour. First, we provide
quantitative measurement of the thickness of the deposited layer for Carbopol Herschel-
Bulkley fluid in the limit where the yield-stress is of similar order of magnitude as the
capillary pressure and for 0.1 < Ca < 1. To understand our observation, we use scaling
arguments to extend the analytical expression of Bretherton’s law to YSF in circular
tubes. In the limit of Ca < 0, 1, our scaling law, in which the adjustable parameters
are set using previous results concerning non-Newtonian fluid, successfully retrieves
several features of the literature. First, it shows that (i) the thickness deposited behind
a Bingham YSF (exhibiting a yield stress only) is larger than for a Newtonian fluid
and (ii) the deposited layer increases with the amplitude of the yield stress. This is
in quantitative agreement with previous numerical results concerning Bingham fluid. It
also agrees with results concerning pure shear-thinning fluids in the absence of yield
stress : the shear-thinning behaviour of the fluid reduces the deposited thickness as
previously observed. Last, in the limit of vanishing velocity, our scaling law predicts
that the thickness of deposited YSF converges towards a finite value, which presumably
depends on the microstructure of the YSF, in agreement with previous research on the
topic performed in different geometries. For 0.1 < Ca < 1,the scaling law fails to describe
the data. In this limit, non-linear effects must be taken into account.

1. Introduction

When a plate or a fibre is drawn out of a liquid bath, a thin liquid film remains on its
surface. Similarly, when a long bubble moves into a tube of radius R which is pre-filled
with a fluid, a thin layer of liquid remains on the wall of the channel as the bubble
displaces the fluid. Finding how h, the thickness of the deposited film, varies with the
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different parameters driving the deposition of the fluid on solid walls has been extensively
studied for various geometries and fluids, and is commonly referred to as ”the coating or
deposition problem”.

The deposition of Newtonian fluids, in conditions where gravity and inertia are negli-
gible compared to surface tension and viscous effects, was first investigated in the 1950’s
by Landau & Levich (1942); Taylor (1961); Bretherton (1961); Cox (1962), they showed
that h, the liquid layer deposited in a tube of radius R scales as:

h

R
∼ Ca 2

3 (1.1)

Where Ca = ηV
T is the capillary number, V the bubble velocity, η the fluid viscosity

and T the liquid air surface tension. Equation 1.1 is the classical Bretherton’s law
which compares remarkably well with experiments for Ca � 1 (or, equivalently: h

R �
1) (Bretherton 1961; Taylor 1961; Aussillous & Quéré 2000), with a proportionality
coefficient of 1.34, which depends on the length of the bubble as shown by Schwartz
et al. (1986). For Ca ≈ 1, h tends to a finite value ( hR ' 0.4) as shown by Taylor (1961),
and later by Cox (1962) and Reinelt & Saffman (1985).

The deposition of non-Newtonian fluids, initially motivated by the development of
photographic industry (Deryagin & Levi 1964), has been widely used in various industrial
processes to enhance, modify, or decorate the surface properties of chosen substrates.
Indeed, coating materials, such as paints and lacquers commonly used to prevent cor-
rosion in automotive industry, often behave like non-Newtonian fluids. The deposition
of various non-Newtonian fluids, such as polymer solutions or elastic fluids, has been
addressed theoretically, numerically or experimentally (Gutfinger & Tallmadge 1965;
Huzyak & Koelling 1997; de Ryck & Quéré 1998; Quéré 1999; Kamisli & Ryan 1999;
Gauri & Koelling 1999; Kamisli & Ryan 2001; Kamışlı 2003; Weinstein & Ruschak 2004;
Duggal & Pasquali 2004; Behr et al. 2005; Quintella et al. 2007; Ashmore et al. 2008;
Boehm et al. 2011). In particular, for a shear-thinning or shear-thickening fluid, with a
stress/strain-rate relationship in simple shear given by τ = kγ̇n (where n denotes the
power-law index and k the consistency (in Pa.sn)), the same scaling arguments as for
Newtonian fluids can be used (Gutfinger & Tallmadge 1965; de Ryck & Quéré 1998;
Hewson et al. 2009), thus yielding:

h

R
∼ Ĉa

2
2n+1

(1.2)

where Ĉa =
k(V

R )
n

T/R is a modified capillary number for shear thinning/thickening fluids,

which reduces to Ca for n = 1.
The deposition of Yield-Stress fluids (YSF) has been investigated in different ge-

ometries. Such fluids are characterized by an intermediate fluid or solid behavior: they
exhibit an elastic response below, and liquid flow response above a critical yield stress
τy. In the geometry of a plate withdrawn from a bath full of YSF, the thickness of the
deposited layer was shown to be almost independent of the velocity but proportional to
the material yield stress (Maillard et al. 2014; Boujlel & Coussot 2013). Using particle
imaging velocimetry, the authors observe that a uniform boundary layer builds up along
the plate before emersion out of the bath. This boundary layer, set by a balance between
the yield and gravity stresses also determines h, the thickness of the deposited layer, so
that h ∝ τy, in good agreement with experimental data. This experimental result differs
from earlier theoretical works concerning the deposition of purely plastic materials on a
fibre, which predicts that h ∝ τ2y (Deryagin & Levi 1964; Quéré 1999). This discrepancy is
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due to the geometry: the theoretical predictions concern the deposition on a fibre, where
the capillary pressure, set by the large curvature of the fiber, is of the same order of
magnitude than the yield stress, while in the planar geometry of the plate, the capillary
pressure, far smaller than the yield stress, is neglected (Maillard et al. 2014; Boujlel
& Coussot 2013). In a circular channel, the deposition of YSFs has received relatively
little consideration to date, despite its relevance in numerous and diverse applications in
industry (e.g. gas-assisted injection molding (Park et al. 2003), channel-cleaning processes
in petroleum or food industry, displacement of hydraulic fracturing fluid (Boronin et al.
2015)) or in biomedical research (reopening of pulmonary airways (Zamankhan et al.
2012)). In this confined geometry, the capillary pressure, set by the channel’s curvature
typically of 104 m−1, competes with the gravity and yield stresses as in the geometry
of the fiber. Moreover, in a tube, the flow of YSF is characterized by an intermediate
solid-liquid behaviour (Froishteter & Vinogradov 1980): an elastic solid core appears at
the center of the tube, where the shear stress is inferior to the yield stress, surrounded by
a sheared liquid annulus of thickness e where the shear stress overcomes the yield stress
(as sketched in Figure 1):

e = R− τyL/∆P (1.3)

Where L is the length of the tube and ∆P is the pressure drop between the inlet and
outlet of the tube. The shape of the liquid/air interface may be altered by this solid-like
region of the flow, which could modify in turn the deposition mechanism.

In this article, we report on the deposition of YSF in circular channels, and provide
experimental data obtained in the limit where the capillary pressure is on the same
order of magnitude than the yield stress of the fluid. Our data concern channels with
various radii and over more than two orders of magnitude of flow velocities. To explain
our experimental observations we develop a new scaling model that takes into account
the yield stress, the capillary pressure and the viscous stress, and qualitatively describes
our experimental data (for Ĉa > 0.1) as well as quantitatively match literature data
even in the regime τy . T/R, where previously published models are not applicable (for

Ĉa < 0.1).

2. Material and Experimental set-up

We use a Carbopol gel (980 from Cooper) as our model YSF. Carbopol is made
of polyacrylic acid (PAA) resins dispersed in water and neutralized with a base. The
neutralization generates ionic repulsion between the polymer chains which adopt an
expanded configuration, thus forming blobs that swell until the osmotic pressure inside
the blob balances the pressure inside the solvent. The size of individual blobs is of the
order of 100 µm (Piau 2007; Mahaut et al. 2008). Due to its non-thixotropic behaviour
(Coussot et al. 2009), Carbopol gel is a good model of simple YSF.

We prepare the Carbopol solution by dispersing it in water at a concentration of 1.1
% and neutralizing the resulting solution using sodium hydroxide (NaOH, 1 mol/L). The
mixing lasts 24 hours and is performed with a planetary mixer to ensure an homogeneous
mixing throughout the sample. The density (ρ) of the Carbopol solution we used is 980
kg/m3, and its surface tension (T ) is 66 mN/m (Boujlel & Coussot 2013; Jorgensen et al.
2015).

Carbopol plugs (of length L > 2R) are pushed at constant pressure in glass capillaries
(radius R = 235, 513, 702 µm). To avoid wall slip (Barnes 1995), our glass capillaries
are treated with a solution of polyethilenimine (from Sigma-Aldrich) (Metivier et al.
2012). The capillaries tube are cleaned with ethanol, dried, and finally immersed in a
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Figure 1. (a) Sketch of the experiment with the different lengthscales of the problem
highlighted; (b) Typical images of a YSF plug as it accelerates during the channel flow for
τy = 70 Pa, R = 513 µm, and an applied pressure ∆P = 25 mbar. The plain lines stand for the
measure of L(t). The interval of time between images is equal to 0.33 s. (c) Rheogram of the
Carbobol gel used in the experiments: stress (τ) versus strain rate (γ̇). Triangles are obtained
with a parallel-plates rheometer, and pentagons are computed from Mooney-Rabinowitsch
formula in a smooth glass capillary (R = 513 µm) treated with PEI to avoid wall slip. The
plain line represents the Herschel-Bulkley law with τy = 70 Pa, k = 35 Pa.sn and n = 0.35.

Rheometer τy (Pa) k (Pa.sn) n

Parallel-plates rheometer 74 38 0.35
Capillary rheometer 70 35 0.35

Table 1. Comparison between rheological properties of Carbopol gels measured by ”classical”
rheometry (rough parallel-plates rheometer) and computed from Mooney-Rabinowitsch formula
in a smooth glass capillary (R = 513 µm) treated with PEI to avoid wall slip.

PEI solution at 0.2 % w.t. in water for 24 hours. The pressure is imposed using a Fluigent
pressure controller (MFCZ, 0-2 bar, ±2 mbar), and a movie of the experiments is recorded
with a camera (AVT Marlin, maximum frame rate 200 fps). The maximum resolution of
the camera is 2.82 µm (1 px). Using equation 2.1 this value leads to a mean error on h
of approximately 20%.

2.1. Rheological properties of Carbopol gels

Under simple shear, the rheological properties of Carbopol gels are classically modeled
by an Herschel-Bulkley law: τ = τy +kγ̇n where τ and γ̇ are respectively the shear stress
and the shear rate. Figure 1c shows a rheogram of a Carbopol gel over a wide range
of shear rate. Low shear rates are explored with a parallel-plates rheometer (Bohlin C-
VOR, with rough plates of diameter 40 mm) whereas large shear rates are explored using
a capillary rheometer (glass capillary of radius R = 513 µm) and computed from the
Mooney-Rabinowitsh formula (Macosko 1994). The measured values of τy, k and n in
these two configurations are reported in table 1. In the following we consider that: τy = 70
Pa, k = 35 Pa.sn and n = 0.35. The shear modulus of our carbopol gel is obtained by
stress-strain rate measurements and found to be 100 Pa.
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Figure 2. (a) Typical experimental data for a YSF plug pushed at constant pressure (∆P = 50
mbar) in a capillary of radius R = 702 µm. Squares: time evolution of the length of the plug
(L); Circles: time evolution of the velocity of the rear meniscus of the plug (V ).The data points
in grey area are excluded from the deposition analysis in regards to finite size effect (L 6 2R).
Plain and dashed lines are fitting functions used to compute equation 2.1. (b) Film thickness
(h) deposited by Carbopol plugs (τy = 70 Pa, k = 35 Pa.sn and n = 0.35) as a function of
the bubble velocity (V ) in capillaries of different radii. Squares: R = 702 µm, ∆P = 10 mbar;
triangles: R = 513 µm, ∆P = 20 mbar; circles: R = 235 µm, ∆P = 30 mbar. The dashed line
stands for the typical variation of the deposited thickness expected for a Newtonian fluid, and
the plain line for the typical variation of the deposited thickness predicted for a shear-thinning
fluid with n = 0.35 for R = 1 mm. The three plain red lines indicated the thicknesses of the
sheared layer of YSF in the three tubes deduced from equation 1.3: e(R = 702 µm) = 0.32 mm,
e(R = 513 µm) = 0.21 mm, and e(R = 235 µm) = 0.08 mm; for a given tube’s radius, h < e.

2.2. Measurement of the film thickness

We deduce the film thickness (h) from the length (L) of YSF plugs pushed by an air
bubble at constant pressure in glass capillaries. As the plug advances inside the capillary,
L decreases due to the deposition of the film on the capillary’s wall. Its velocity (V )
increases in turn due to the decrease in hydrodynamic resistance associated with its flow
at imposed gas pressure (Baudoin et al. 2013). This method, used to study the inertial
limit of deposition of Newtonian fluids in capillaries (Aussillous & Quéré 2000), allows
to obtain a whole curve h = f(V ) in a single experiment. To ensure that dynamical
effects are indeed negligible in YSF deposition, we also measure the layer deposited
when pushing the gas at constant velocity and check that this stationary measurement
coincide with the dynamical one.

The typical velocity of the experiment (V ), measured at the rear meniscus of the
plug (i.e. the front meniscus of the bubble), typically ranges between 1 mm/s and 20
cm/s. A sketch of the experiment, as well as consecutive images of a moving plug are
shown on figure 1b. Data of L(t) and V (t) are presented on figure 2a. The length of the
plug decreases (respectively the velocity increases) more and more rapidly during the
experiment until the plug ruptures. We associate this behavior with the large viscosity
contrast between the fluid and air as shown by Fujioka et al. (2008) and later on by
Baudoin et al. (2013).

To avoid finite size effects (Zamankhan et al. 2012; Fujioka et al. 2008), we only consider
data for which the length of the plugs (L) verifies L > 2R, i.e. the data in dashed area of
the graphs in figure 2a are not considered in the following. We report that when L < 2R
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the film thickness tends to increase rapidly. However, due to the high speed of this regime
we were not able to investigate it systematically.

Assuming that the deposit is homogeneous on the channel surface, and that the plug
has a cylindrical shape, a mass balance on the moving plug yields:

h

R
= 1−

√
1− 1

V (t)

dL

dt
(2.1)

The deposited thickness (h) is thus deduced from data presented on figure 2 using
equation 2.1. In equation 2.1, the film thickness is assumed to be invariant by rotation
along the axis of the tube. Yet, it can be seen from figure 1b that it is not always true,
therefore the determined film thickness is an equivalent mean annular film thickness.

3. Experimental results

Data obtained using equation 2.1 for YSF plugs in capillaries of different radii are
shown in a log-log plot on figure 2b along with the typical power-law variation of the
deposited thickness with the velocity predicted by equation 1.1 and 1.2.

Different features are visible on figure 2b. First, at a given flow velocity, increasing
the radius R results in a larger deposited thickness h. Second, for all capillary radii, h
increases like V x with x varying between 0.1 for R = 513, 702 µm and 0.3 for R = 235
µm. This exponent x is smaller than what is expected for a Newtonian fluid (x = 2/3).
For the smallest value of R, it is close to x = 0.4, the value expected for a non-Newtonian
shear-thinning fluid with the same power-law index n = 0.35 than the Herschel-Bulkley
fluid we use (see figure 1.2). Moreover, as highlighted by the red horizontal lines of figure
2b, h is always smaller than e, the sheared liquid layer deduced from Equation 1.3. This
suggests that the deposition process is barely affected by the solid-core of the flow and
indeed as R decreases, the capillary pressure increases and overcomes the yield stress
nearly everywhere in the channel. Thus, the solid core of the flow, characteristic of the
YSF, tends to disappear, and the YSF behaves all the more like a shear thinning fluid
than the tube radius is small.

To further compare these results to the classical deposition mechanism for Newtonian
fluid, we represent the film thickness h normalized by R as a function of a modified cap-
illary number Ĉa = k(VR )n/(TR ), which takes into account the shear-thinning/thickening
part of the non-Newtonian character of the fluid and compare it on figure 3a to the data
obtained by Taylor (1961) (using viscous fluids with a viscosity η ranging between 0.03
and 0.079 Pa.s).

For Ĉa < 1, the thickness of YSF is smaller than what is expected for a Newtonian
fluid. While for Ĉa > 1, it seems to tend to a value close to the Newtonian one. We
also report that the data do not collapse on a single curve, which further implies that
for a given value of n all the dynamics of the coating process cannot be captured using
Ĉa only. Since the yield stress of the fluid does not appear in this representation, this
deviation is logically attributed to the intermediate solid-liquid behavior of the fluid,
which contribution will be highlighted below.

4. Model and Discussion

In the following, we first review the deposition laws reported in the literature for
different fluids. Then, by adapting the classical model for the deposition of a Newtonian
fluid, we propose a new scaling law for the deposition of a YSF.
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Figure 3. (a) Normalized film thickness (h/R) as a function of the capillary number Ĉa for
different capillary radii, hence different B. Here, B = 0.80 corresponds to R = 702 µm, ∆P ' 10
mbar, e

R
= 0.46; B = 0.58 to R = 513 µm, ∆P = 20 mbar, e

R
= 0.42; B = 0.27 to R = 235

µm, ∆P = 30 mbar, e
R

= 0.34 and ∆P = 100 mbar, e
R

= 0.73. The symbols obtained by Taylor
for different Newtonian fluids (Taylor 1961) are fitted by an empirical expression proposed
Aussillous & Quéré (2000) (thick black line). The three other lines (thin black, grey and dash)
correspond to Equation 4.7 with α = 0.33 and β = 2.4 (b) Computed values of the normalized

film thickness as a function of Ĉa extracted from fig. 14 of the work by Zamankhan et al.
(2012) (full diamonds), and from Jalaal & Balmforth (2016) (open symbols) and fitted for their
corresponding value of B and n using equation 4.7 and α = 0.33 and β = 2.4
.

Re = ρV 2−nRn

k
Bo = ρgR2

T
Ĉa =

k(V
R )n

T/R
B =

τyR

T
Bi =

τy

k(V
R )n

Range 10−5 − 0.06 0.008− 0.07 0.2− 2.43 0.27− 0.78 0.31− 1.8

Table 2. Summary of the dimensionless number used (Re for Reynolds, Bo for Bond, Ca for
capillary, Bi for Bingham) to characterize the flow and their respective ranges.

The case of a Newtonian fluid coating the inside of a circular channel was first
considered by Taylor and Bretherton in conditions where gravity and inertia are negligible
compared to surface tension and viscous effects (Taylor 1961; Bretherton 1961). In this
limit, the deposition process can be understood as follows: the viscous stresses thicken
the film in order to decrease the hydrodynamic resistance associated with the flow in
the deposited layer. They also deform the meniscus with respect to its static shape in a
region of length λ where the thin film forms. The static and the deformed shape of the
interface (also called the dynamic meniscus), are both represented on figure 1a) in plain
and dashed lines. This change of shape generates interfacial stresses, thus leading to a
gradient of capillary pressure scaling like 1

λ
T
R that counteracts the viscous volumetric

forces scaling like ηV
h2 , with η the fluid viscosity, T its surface tension, and V the velocity

of the moving bubble. An analytical solution of this problem was provided by Bretherton
(1961) under the lubrication approximation: in the limit where h � λ, matching the
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curvatures of the static and dynamic menisci provides a second equation for the length
of the dynamic meniscus λ:

λ ∼
√
hR (4.1)

Combining equation 4.1 with the balance between the capillary pressure gradient and
the viscous effects, the deposition law can be naturally expressed in terms of the capillary
number Ca = ηV

T leading to Equation 1.1. In the limit of relative thick film, the radius
of curvature of the static meniscus is R − h rather than R, yielding to an expression
proposed by Aussillous & Quéré (2000), which fits accurately the experimental data as
can be seen in figure 3a:

h

R
∼ Ca2/3

1 + Ca2/3
(4.2)

The deposition of purely plastic materials of yield stress τy and density ρ on a fibre or,
respectively, on a plate, has been obtained theoretically by balancing the divergence of
the stress tensor

τy
h with the capillary pressure gradient 1

λ
T
Ld

, where Ld is the radius of

the fiber or, respectively, the capillary length
√

T
ρg . Then, using equation 4.1 (Deryagin

& Levi 1964; Quéré 1999) yields:

h

Ld
∼ B2 (4.3)

where B =
τyLd

T is a dimensionless number comparing the yield stress to the capillary
pressure.

We emphasize the two following points concerning equation 4.3. First, equation 4.3
does not depend on flow velocity V , and therefore predicts a deposited film of finite
thickness even in the absence of flow. Secondly, equation 4.3 has been derived using
equation 4.1, which is only valid for h

λ � 1. Moreover, in terms of length of the dynamic

meniscus, equation 4.3 is equivalent to h
λ ∼ B. Thus, equation 4.3 can not be used when

the yield stress is of order of the capillary pressure (or equivalently B ' 1).
Thus, to take into account the different contributions of the capillary, viscous and

yield stresses in the limit where B ' 1, we adapt the classical models for deposition of
Newtonian fluid to YSF. The dimensionless numbers used to characterize the flow and
their experimental range of variation are summarized in table 2. Since τy is quite large,
there is always a competition between the yield stress and the capillary pressure jump
during the flow of the Carbopol gel in our channels. To compare these two effects, we
consider the dimensionless number B =

τyR
T as suggested by Deryagin & Levi (1964).

In our experiment, B is of order 1 (0.27 6 B 6 0.78). Moreover, the Reynolds and
Bond numbers are both � 1, thus inertial and gravity forces are negligible compared
to viscous forces and surface tension (or the yield stress since τy ∼ T

R ). Therefore, the

main effects to take into account are: (i) the viscous stresses of the fluid (k
(
V
h

)n
in the

dynamic meniscus); (ii) the yield stress of the fluid τy; (iii) the gradient of capillary
pressure between the dynamic meniscus ( T

R−h ) and the static meniscus ( 2T
R−βh ), where β

is an adjustable parameter taking into account the non-Newtonian character of the YSF.
We now propose a model in the lubrication approximation to take into account our data
on the full range of Ĉa. Then, we discuss the physical ingredients of two limiting cases:
Ĉa� 1 and then Ĉa > 1.

Following Bretherton, we assume that lubrication approximation holds and that the
flow is quasi-2D. Thus, to model the flow dynamics, we simply balance the divergence
of the stress tensor and the capillary pressure gradient inside the dynamic meniscus of
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length λ. This results in equation 4.4 and its equivalent expression in dimensionless form,
equation 4.5:

τy
h

+
k

h

(
V

h

)n
=
α

λ

(
2T

R− βh
− T

R− h

)
(4.4)

B + Ĉa

(
R

h

)n
∼ h

λ

(
2

1− β hR
− 1

1− h
R

)
(4.5)

To find the length of the dynamic meniscus λ, we match the curvature Cλ between the
static meniscus assuming a shape of spherical cap of radius R − βh, and the dynamic
meniscus of unknown curvature. In the expression above, the fitting parameter β is used
to describe an eventual thickening of the film at the bubble appex. We also report that
for all moving plugs we are always able to fit the central part of the interface by a circular
segment. This suggests that matching the curvature between the spherical cap and the
dynamic meniscus is a suitable method to describe our results. Then, using a scaling law
equivalent to the one proposed in (Aussillous & Quéré 2000) gives:

1

R− h
+ Cλ ∼

2

R− βh
(4.6)

Using Equations 4.5 and 4.6 with Cλ ∼ h
λ2 , we compute h, λ as a function of R, B

and Ĉa in equation 4.7. Yet, to compare the calculation to the experimental data, we
introduce a matching parameter (denoted α). For a Newtonian fluid, this numerical value
was determined analytically by Bretherton α = 1.34 (Bretherton 1961). For YSFs α is
unknown, and its numerical computation remains to be done.

Ĉa = α

(
h

R

)n+1/2
(

2

1− β hR
− 1

1− h
R

)3/2

−B
(
h

R

)n
(4.7)

We now discuss the different limits of equation 4.7.
In the limit of Ĉa � 1 and considering the flow of a Newtonian fluid (B = 0 and

n = 1), equation 4.7 provides that h
R � 1 and reduces to equation 1.1 as expected.

Then, for a flow of YSF in the limit of vanishing velocity, equation 4.7 reduces to 4.3,
which is consistent with the predictions made in the geometry of a fibre when gravity is
negligible (Deryagin & Levi 1964; Quéré 1999). In the confined geometry of the tube, this
can be understood as follows: in the flow ahead of the bubble, the order of magnitude of
the shear rate γ̇ is V

R , thus in the limit of Ĉa � 1, i.e. k
(
V
R

)n � T
R . Since T

R ∼ τy, τ ,
the total shear stress given by τ = τy + kγ̇n, is simply τ ∼ τy. Therefore, the deposited
thickness depends mostly on a balance between the yield stress (τy) and the capillary

pressure (TR ), i.e. of the dimensionless number B =
τyR
T in agreement with equation 4.3.

In the limit of Ĉa > 1, since B ∼ 1 we expect Bi = B

Ĉa
� 1: the velocity profile

along the channel section is Poiseuille-like and the total shear stress τ ∼ k
(
V
R

)n
. The

deposited thickness is thus expected to saturate towards a constant value as experimen-
tally observed for Newtonian fluids in figure 3a (Taylor 1961) and shear-thinning fluids
(Boehm et al. 2011).

Equation 4.7 also allows to qualitatively determine how the non-newtonian features of
the constitutive equation of the Herschel-Bulkley fluid, i.e. τy 6= 0 and n 6= 1, influence the

deposition process. For a given n and h/R, the larger B, the smaller Ĉa. Thus, for a given
value of n the deposited thickness increases with the yield stress. This is valid whatever
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the value of n: for a given Ĉa, the thickness deposited behind a Bingham fluid is always
larger than deposited behind a Newtonian fluid as shown numerically (Zamankhan et al.
2012). We also find that for shear-thinning/thickening fluid (i.e. when τy = 0 and n 6= 1),
h/R is an increasing function of n. The thickness deposited behind a shear-thinning fluid
(n < 1) is smaller than deposited behind a Newtonian fluid (n = 1), itself smaller than
deposited behind a shear-thickening fluid (n > 1) as previously reported in various works
(Gutfinger & Tallmadge 1965; de Ryck & Quéré 1998; Hewson et al. 2009). However,
the thickness deposited behind a Herschel-Bulkley with τy 6= 0 and n < 1 or behind
a newtonian fluid τy = 0 and n = 1 is less straightforward to compare. Equation 4.4

suggests that the yield stress will balance the shear-thinning effects when τy ∼ k
(
V
h

)n
,

i.e. when B ∼ Ĉa
(
R
h

)n
, which equivalently writes B/Ĉa

(
h
R

)n ∼ 1 or Bi
(
h
R

)n ∼ 1. Thus,

when Bi
(
h
R

)n
> 1, the yield stress is dominant and the deposited thickness h/R behind

a Herschel-Bulkley fluid is larger than behind a Newtonian one, while when Bi
(
h
R

)n
< 1,

the shear thinning behavior dominates and the deposited thickness is smaller than for
Newtonian fluid. This is in agreement with our experiments which are obtained for large
value of Ĉa for which the shear-thinning behavior of the fluid is dominant.

We now move to the quantitative comparison of 4.7 and numerical results of the
literature. Using a regularized constitutive equation, Zamankhan et al. (2012) studied the
creeping motion of YSF liquid plugs in 2D channels and computed the evolution of h/R

as a function of Ĉa for Bingham fluids (n = 1) and B = 0.04. Jalaal & Balmforth (2016)
consider Herschel-Bulkley fluid with B in the range of [0.033 − 0.33]. Using lubrication

theory, they calculate and compute h/R up to value of Ĉa in the order of 1 by retaining
the full surface curvature of the interface, which induces non-linear effects (Jalaal &
Balmforth 2016). In figure 3b, we fit the numerical data of Zamankhan et al. (2012)

and Jalaal & Balmforth (2016) (chosen for their wide range of Ĉa) using equation 4.7.
By adjusting the fitting parameters of equation 4.7 to their data, which gives α = 0.33
and β = 2.4, we obtain an excellent agreement as long as Ĉa < 0.01. For larger value
of Ĉa, our expression underestimates the computed values of h/R. We also note that,
while the work of Zamankhan et al. (2012) consider a parallel plate geometry, it is in
good agreement with the work of Jalaal & Balmforth (2016), and the present analytic
expression, which are both derived for axisymmetric geometries. This may come from the
approximation of an almost two dimensional flow in the matching region under conditions
of sufficiently small values of Ca (Bretherton 1961; Jalaal & Balmforth 2016). Using the
same values α = 0.33 and β = 2.4, we compare equation 4.7 with our experimental data
in Figure 3a). Here also, we fail to describe the data, which is presumably due to the

large values of Ĉa experienced here.

We also focus on the regime independent of the velocity (V → 0). In this regime, h is
supposed to depend only on the ratio of the yield stress to the capillary pressure whatever
the geometry (plate, fibre, channel) as highlighted by equation 4.3 and 4.7. Thus, in figure
4, we compare equation 4.7 in the limit of V → 0 to the normalized value of the first
experimentally measurable value of h for (i) Carbopol gels (τy = 70 Pa) in tubes (235
µm < R < 702 µm) (our data) (ii) Suspensions (0.2 Pa < τy <1.5 Pa) in tubes (R =
1.93 mm) (Park et al. 2003) and (iii) Carbopol gels (8 Pa < τy < 82 Pa) on plates using√

T
ρg as characteristic length (Maillard et al. 2014) as a function of B. All data collapse

on a single curve that saturates toward h/Ld ∼ 0.07 when B → 0, increases like B2 for
0.3 < B < 1 (as given by equation 4.3) and saturates again toward 1 for B > 1. Since,
(i) the experimental data of this study are not always obtained for completely negligible

values of the viscous stress (i.e. Ĉa > 0, which is difficult to achieve experimentally due to
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Figure 4. Normalized film thickness as a function of B =
τyLd

T
measured for the smallest

accessible velocity for literature results and our experiments: capillaries with Ld = R = 235,
513, 702 µm and τy = 70 Pa (squares - present work ); capillaries with Ld = R = 1.93 mm and

0.2 6 τy 6 1.5 Pa (diamonds - Park et al. (2003)); withdrawal of plate with Ld =
√

T
ρg

and

8 6 τy 6 82 Pa (triangles - Maillard et al. (2014)). The green dashed line is a guide for the eye
indicating the typical B2 variation, as in equation 4.3. The black line stands for equation 4.7 in
the limit of V → 0 with α = 0.33 and β = 2.4.

the minimum force necessary to overcome the yield stress); (ii) as underlined previously,
the lack of non-linear terms in the expression of the matching of curvature introducing
errors on h when either B and/or Ĉa approach 1, it is difficult to conclude regarding the
apparent good quantitative agreement of the model and the experimental data of this
study for 1 < B < 0.1. However, for B < 0.1, the measured values are significantly larger
than the prediction: yield-stress fluids possess a microstructure of finite size which may
set a minimal value for h when V → 0. Such finite size effects were reported to modify the
deposition of dilute emulsions leading to a saturation of the deposited thickness (Quéré
& de Ryck 1998).

5. Conclusion

When there is a competition between the yield stress and the capillary pressure, for
a given value of the power law index (n), the deposition of a YSF in a tube cannot be

described by the modified capillary number (Ĉa) only. In the limit of vanishing Ĉa, the
yield stress enhances the deposition (quantified by B), similarly to what is observed in
unconfined geometry (Deryagin & Levi 1964; Maillard et al. 2014). Indeed, when the
yield stress compete with the capillary pressure, the solid-like nature of the material
imposes the deposition of a YSF layer of finite size as the velocity vanishes. The physical
process of the deposition with no-slip boundary conditions, when inertial and gravity
effects are negligible, is well described by a balance between the internal stresses (yield
stress and viscous stress) of the fluid and the capillary pressure gradient. The model we
propose is able to predict the initial deposited thickness of numerical data of literature
until the film becomes too thick. For h

R > 0.05, the expression we use to evaluate the
curvature and the lubrication approximation do not hold anymore. We also underline
that an effect of the microstructure of the fluid is expected at low velocity and that, as
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a consequence, unifying the results obtained with different materials and geometries is a
challenge that requires a better understanding of the role of the microstructure and of
the various effects (gravity, yield stress, capillary pressure, viscous stress, roughness of
the tube).
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Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347–384.
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