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Abstract 14 

 15 

From top-of-atmosphere (TOA) observations, atmospheric correction for ocean color inversion 16 

aims at distinguishing atmosphere and water contributions. From a methodological point of view, 17 

our approach relies on a Bayesian inference using Gaussian Mixture Model prior distributions on 18 

reference spectra of aerosol and water reflectance. A reference spectrum for the aerosol 19 

characterizes the specific signature of the aerosols on the observed aerosol reflectance. A reference 20 



 

 

spectrum for the water characterizes the specific signature of chlorophyll-a, suspended particulate 21 

matters and colored dissolved organic matters on the observed sea surface reflectance. In our 22 

Bayesian inversion scheme, prior distributions of the marine and aerosol variables are corrected 23 

using the observed values of covariates, typically acquisition geometry acquisition conditions and 24 

pre-estimates of the aerosol and water reflectance in the near-infrared part of the spectrum, to 25 

optimize the 25 random initializations for our MEETC2 algorithm. 26 

We evaluate our estimates of the sea surface reflectance from the MERIS TOA observations. Using 27 

the MERMAID radiometric in-situ dataset, we obtain significant improvements in the estimation of 28 

the sea surface reflectance, especially for the 412, 442, 490 and 510 nm bands, compared with the 29 

standard ESA MEGS algorithm and the a state-of-the-art neural network approach (C2R). The mean 30 

gain value on the relative error for the 13 bands between 412 and 885 nm is of 57% compared with 31 

MEGS algorithm and 10% compared with the C2R. The water leaving reflectances are used in 32 

Ocean Color for the estimation of the chl-a concentration, the colored dissolved organic matters 33 

absorption and the suspended particulate matters concentration underlying the potential of such 34 

approach to improve the standard level 2 products in coastal areas.  We further discuss the potential 35 

of MEETC2 for the incoming OLCI / Sentinel 3 mission that should be launched in 2015. 36 

Index term: 1) Atmospheric corrections in complex coastal waters. 2) Ocean color. 3) Bayesian 37 

inversion. 4) Gaussian Mixture Model.  38 

  39 

1 Introduction 40 

 41 

The inversion of Ocean Color signal in coastal areas from top-of-atmosphere (TOA) 42 

measurements remains a scientific challenge. This is a crucial point for the ocean color community 43 

as many governmental policies such as the European Water Framework directive (WFD) rely on 44 



 

 

estimation of coastal water quality, itself possibly derived from space-based ocean-color 45 

measurements (http://ec.europa.eu/environment/water/water-framework/index_en.html). Hence, 46 

ocean color inversion is certainly among highest priority research topics for ocean–color 47 

community. Different aspects may explain the difficulties encountered in this inversion process. 48 

Firstly, the contribution of suspended matters to the reflectance in the near infrared (700-900 nm) is 49 

an issue as many algorithms expect these reflectances to be null. This assumption is called the black 50 

pixel hypothesis and relies on the strong natural absorption of the water in this domain (Antoine et 51 

al. 2006, be Gordon and Wang, 1994). Secondly, bio-optical modelling, i.e. the estimation of the 52 

water-leaving reflectance from the Inherent Optical Properties (IOPs, namely the absorption and 53 

backscattering of the sea water constituents) in complex coastal waters is also challenging. Despite 54 

accurate physical models exist for open clear waters  that cover 85% of the oceans, their derivation 55 

for coastal waters is more complex (Maritorena et al., 2002; IOCCG Report 3&5, 2000).  Lastly, 56 

aerosol and water reflectance spectra may show important correlation in the near infrared, a spectral 57 

domain typically used by the standard algorithms to distinguish the two contributions. 58 

As a consequence, available operational standard level-2 reflectance products may perform 59 

poorly in coastal areas, and consequently these products are often flagged as anomalous values for 60 

such areas (MERIS DPM, 2005). The result for end users is typically that very few observations are 61 

available in coastal areas if the standard quality standards are applied. For available pixels in coastal 62 

turbid waters, reflectances in the blue and green bands are often underestimated and may involve 63 

physically-meaningless negative values (Jamet et al., 2011; Goyens et al., 2013). Obviously Park et 64 

al.(2004) show this strongly affects relevance of level-2 products for the end users, which typically 65 

use water-reflectance spectra as inputs to estimate the chlorophyll-a and the suspended particulate 66 

matter concentrations (SPM, Doxaran et al. 2002), or the vertical light attenuation (Saulquin et al. 67 

2013;  Morel et al. 2006, Wang et al., 2009; Jamet et al., 2012).  68 

Over the last fifteen years, many coastal water algorithms have been developed to address user’s 69 

needs for reliable water-reflectance data in coastal areas. Among them, the Schiller & Doerffer 70 



 

 

(1999) MERIS Case2-Regional (C2R) based on a non-linear machine learning model, namely a 71 

Neural Networks (NN, Krasnopolsky & Schiller, 2003; Schiller & Doerffer, 1999), estimates water 72 

reflectance over turbid areas. The learning paradigm relies on the calibration of a non-linear model 73 

to relate the available satellite-derived observations to the geophysical quantity of interest from a 74 

training dataset. This training dataset typically consists of a collection of in-situ measurements 75 

along with the satellite-derived measurements. This learning-based strategy may suffer from two 76 

major drawbacks: weak geophysical/biological interpretability of this ‘black-box’ model and the 77 

assumption on the representativity of the training dataset. They may restrict the applicability of the 78 

model to a specific region and questions its validity with respect to the generally unknown 79 

variability of the atmospheric and water conditions. 80 

Here, we develop a Bayesian latent class approach to address these limitations. To our 81 

knowledge, Bayesian model mixtures have been seldom explored for ocean color inversion (Frouin 82 

& Pelletier, 2014). The key feature of our model is the inversion of water and atmospheric signals 83 

from TOA observations using a multi-hypothesis setting. Rather than considering a single model, 84 

linear or not, we develop a Bayesian framework where the priors stated as mixture of models. 85 

Mixture models are trained both for water and aerosol contributions and lead to the identification of 86 

the reference spectrum families characterized by their mean spectrum and the associated covariance 87 

matrices. This training phase exploits in-situ data or radiative transfer simulations in the atmosphere 88 

and the water (Barker et al., 2008; Berk, 1999, Deuzé et al. 1989). Contrary to the machine learning 89 

approaches (NN, or Support Vector Regressions, SVR; Burges, 1998), the identified a priori 90 

distributions of the water and aerosol variables are directly linked to interpretable reference water or 91 

atmospheric spectra. 92 

Our inversion scheme, referred to hereafter as MEETC2, is applied here to the estimation of 93 

water reflectances in complex waters from the MEdium Resolution Imaging Spectrometer (MERIS) 94 

TOA observations. Nevertheless the methodology is generic and may be directly applied to other 95 

sensors such as the incoming OLCI sensor embedded onto the sentinel 3 platform. Model 96 



 

 

calibration and validation involve the MEris MAtchup In-situ Database (MERMAID) radiometric 97 

in-situ dataset (Barker et al. 2008). Quantitative comparisons with the standard MEGS v8 (Antoine 98 

et al. 2006) and the MERIS C2R Neural Network outputs clearly demonstrate the relevance of our 99 

approach.  100 

2 Review of the standard Ocean Color inversion method 101 

2.1 Atmospheric correction principles 102 

 103 

Ocean-color sensor measures at TOA the upwelling radiance (Lu) in mW.m
-2

.sr
-1 

backscattered 104 

by the ocean-atmosphere system. This radiance originates from photons scattered by air molecules 105 

and/or aerosols, which may also have been reflected directly at the sea surface (glint effect, Cox & 106 

Munk, 1954a&b), and may potentially have penetrated into the ocean. The measured TOA 107 

reflectance (ρ𝑇𝑂𝐴) is the ratio between the upwelling radiance Lu and the downwelling irradiance 108 

Ed, i.e. Lu integrated over the solid angle [0;2π]. The water reflectance contribution measured at 109 

TOA, i.e. transmitted through the atmosphere, is generally lower than 20% of the signal (Robinson 110 

et al. 2004). Due to this low signal/noise ratio, the unmixing of the atmospheric contribution from 111 

the water one reveals particularly complex. This inversion proves even more complex in coastal 112 

areas where the spectral water contribution may be closer to the aerosol contribution.  113 

The traditional signal decomposition expresses measured TOA reflectance for each wavelength 114 

λ as a sum of elementary contributions:  115 

ρ𝑔𝑐(𝜆) =  𝜌𝑅𝑎𝑦(𝜆) + 𝜌𝑎𝑒𝑟(𝜆) +  𝑡𝑑(𝜆). 𝜌𝑤 (𝜆) + 𝜌𝑐𝑜𝑢𝑝𝑙(𝜆)  +  ε(𝜆) (1) 
 116 

where 𝜌𝐺𝐶  is the observed TOA reflectance ρ𝑇𝑂𝐴 corrected from the glint and gaseous 117 

absorption, 𝜌𝑅𝑎𝑦  (known) the reflectance of a purely molecular atmosphere (no aerosol),  118 



 

 

𝜌𝑎𝑒𝑟 (unknown) the reflectance of the aerosols, 𝜌𝑐𝑜𝑢𝑝𝑙 (unknown) the coupling between air and 119 

aerosol molecules, td (unknown) the diffuse transmittance of the atmosphere, 𝜌𝑤 (unknown) the 120 

water reflectance which is here the main quantity of interest to be estimated. ε is considered a white 121 

noise process. Here we consider a classical multivariate normal distribution (MVN) noise with null 122 

mean and spectral covariance matrix Σ𝜖 .  123 

We consider here the Rayleigh-corrected reflectance variable ρ𝑅𝐶(𝜆) (Antoine et al., 2005, 124 

Santer et al. 1999, Gordon and Wang, Gordon 1997): 125 

ρ𝑅𝐶(𝜆) =  ρ𝑔𝑐(𝜆) − 𝜌𝑅𝑎𝑦(𝜆) = 𝜌𝑎𝑒𝑟(𝜆) +  𝑡𝑑(𝜆). 𝜌𝑤 (𝜆) + 𝜌𝑐𝑜𝑢𝑝𝑙(𝜆) + ε(𝜆) (2) 

The diffuse transmittance td is the product of both air molecules and aerosol particles scattering: 126 

𝑡𝑑(𝜆) = 𝑒−[0.5.𝜏𝑟𝑎𝑦(𝜆)+(1−𝑤𝑎(𝜆).𝐹𝑎(𝜆)).𝜏𝑎(𝜆))] .𝑀 (3) 

where 𝜏𝑟𝑎𝑦(𝜆) is the Rayleigh optical thickness, 𝜏𝑎(𝜆) is the aerosol optical thickness, M the air 127 

mass factor, wa the aerosol single scattering albedo, Fa the forward probability scattering. 𝜏𝑎 is 128 

linked with the estimated aerosol reflectance for primary scattering (MERIS DPM, 2005): 129 

𝜌𝑎𝑒𝑟(𝜆) =  
𝑃(𝜆). 𝑤𝑎(𝜆)

4(cos(Ѳ𝑠) + cos(Ѳ𝑣))
(1 −  𝑒−𝜏𝑎(𝜆).𝑀 ) 

(4) 

where 𝑃(𝜆). 𝑊𝑎(𝜆) is the aerosol phase function times the single scattering albedo for the 130 

current scattering angle, Ѳ𝑠 and Ѳ𝑣 are respectively the sun and the view zenith angles. For a fixed 131 

geometry, aerosols contributions in the NIR are often assumed to follow an exponential decay 132 

(Gordon & Wang, 1994): 133 

𝜌𝑎𝑒𝑟(𝜆) =   𝜌𝑎𝑒𝑟(𝜆0)𝑒𝑐(𝜆−𝜆0) (5) 

where 𝜆0 = 865 nm and c is the exponential decay of the aerosol spectrum, i.e. representative 134 

of the aerosol type. Though relevant in the NIR domain, the assumption of an exponential decay 135 



 

 

appears too restrictive in the 400-700 nm range where multiple scattering between aerosol and air 136 

molecules may become significant. Following Steinmetz et al. (2011), a polynomial model is 137 

considered to provide a more general model of aerosol contributions. Using our training dataset (cf 138 

§ 4) a polynomial of order 3 was found as relevant to estimate the aerosol contributions: 139 

𝜌𝑎𝑒𝑟(𝜆) =   𝜌𝑎𝑒𝑟(𝜆0) + 𝑎1(𝜆−𝜆0) + 𝑎2(𝜆−𝜆0)2 + 𝑎3(𝜆−𝜆0)3 (6) 

2.1.1 The MERIS standard processing atmospheric correction scheme  140 

 141 

In the standard Level 2 processing of MERIS, the following four-step scheme is applied to 142 

estimate the water-leaving reflectances (Antoine & Morel, 2005): 143 

1/ The signal is corrected from absorbing gaseous such as ozone, oxygen, water vapor and 144 

nitrogen dioxide.  145 

2/ The estimated contribution of suspended matter particles in the NIR is removed from TOA 146 

observations after single scattering transmittance through the atmosphere. This step is known as the 147 

Bright Pixel Atmospheric Correction (BPAC) and detailed in the next section.  148 

3/ A mixture of two aerosol models among 34 (for MERIS) is estimated from the values of ratio 149 

ρpath =  ρgc / ρray  (Eq.2) at 779 and 865 nm, leading to the estimation of both the aerosol 150 

reflectance 𝜌𝑎𝑒𝑟(𝜆) and the multiple scattering transmittance 𝑡𝑑(𝜆) (Eq.3).  151 

4/ Water reflectance contribution is estimated by subtracting the estimated aerosol contribution 152 

from 𝜌𝑎𝑒𝑟(𝜆) using Eq. 2. 153 

 154 

The Bright Pixel Atmospheric Correction (BPAC)  155 



 

 

Whereas, in open ocean waters, one can exploit null contribution of water reflectance in the near 156 

infrared (NIR) range to infer aerosol contributions, no such simple inversion scheme applies in 157 

coastal waters, which are characterized by a non-null contribution in this domain (Ruddick et al., 158 

2005&2006) and possible correlations between atmospheric and water spectra. This is a major issue 159 

to be dealt with in the atmospheric corrections in coastal waters. BPAC is an iterative algorithm to 160 

correct the TOA signal from the estimated contribution of turbidity. It aims at removing the water 161 

contribution, caused by suspended matters, of the TOA observed reflectance (Moore et al., 1999). 162 

This step is essential in the standard MERIS level 2 processing as the estimation of the aerosols is 163 

performed using the NIR bands under the assumption 𝜌𝑤(𝑁𝐼𝑅) =0. Moore proposed for MERIS a 164 

two steps algorithm which iterates: the estimation of 𝜌𝑎𝑒𝑟(709, 865) , c and 𝜌𝑎𝑒𝑟(779)  using 165 

𝜌𝑝𝑎𝑡ℎ(779, 865), then, using the estimated residuals  �̂�𝑤 in the NIR from Eq.2 and a parametric 166 

model, the estimation of the SPM concentration and related ρ̂w at TOA. This converging algorithm 167 

suffers from important drawbacks for very turbid waters. In such areas, the considered water model 168 

does not allow retrieving high concentrations of SPM (Goyens et al. 2013). It typically leads to an 169 

over-correction of the blue water-reflectance, i.e. an underestimation of ρw at 412 and 442 nm with 170 

the standard Level 2 processing, and may resort to geophysically-meaningless negative reflectance 171 

values. 172 

3 Method 173 

3.1 Spectral reference signatures of the sea water using Non-Negative 174 

Matrix Factorization 175 

 176 

Given the spectral overlap of water and aerosol contributions especially in coastal areas, 177 

inversion of (Eq.1) requires some prior knowledge on water contributions. We propose here to 178 

determine from the training dataset a parametric spectral representation of water contributions. We 179 



 

 

use here a Non-Negative Matrix Factorization (NNMF) with projected gradients (Lin, 2007). 180 

Similarly to PCA, it relies on an additive decomposition on a basis learnt from the data. In contrast 181 

to PCA, it does not involve orthogonality constraints but imposes non-negativity for both the basis 182 

function and the projection coefficients. NNMF is among the most popular approaches in 183 

multispectral and hyperspectral remote sensing as a mean to unmix contributions issued from 184 

various sources in a sensed environment (Jia & Qian, 2009).  Formally, NNMF leads to the 185 

following parametric representation of a given water spectrum 𝜌𝑤 (𝜆): 186 

𝜌𝑤 (𝜆) = 𝑊(𝜆, 𝑛) ∗ ℎ(𝑛) (7) 

where W(𝜆, 𝑛)>0 spectral reference signature basis identified by NNMF using the training data, 187 

and h(n)>0 refer to the coordinates of the spectrum  𝜌𝑤 (𝜆) in the decomposition space. It may be 188 

noticed that NNMF decomposition could also be replaced here by a bio-optical model. 189 

Nevertheless, to our knowledge none of this model is today performant enough to estimate, in 190 

coastal areas, the water leaving reflectance spectrum from the water’s constituents. The NNMF 191 

decomposition, by imposing non-negativity of both the coordinates and the reference spectral 192 

signatures appropriately constrains our inversion to converge toward physically-realistic solutions 193 

(cf § 4.3.1) conversely to the standard Level-2 processing (ESA and NASA). In our case, four 194 

spectral reference signatures were needed to address the training in-situ spectrum variability (cf 195 

4.2). 196 

3.2 Bayesian setting 197 

 198 

From Eq.1, the variables to be estimated are Xw = {hi}, i.e. the coordinates of 𝜌𝑤 in the basis W 199 

(Eq. 7), and Xa ={ai}  i.e. the polynomial coefficients of the aerosol models (Eq.6). Conversely to a 200 

standard least square estimation framework, we develop a Bayesian setting. It relies not only on the 201 

likelihood of the residuals 𝛿𝜌𝑅𝐶 = �̂�𝑅𝐶 − 𝜌𝑅𝐶  but also on the prior distributions of Xa  and Xw. 202 



 

 

Formally, we consider the Maximum A Posteriori estimation (MAP, Harold & Sorenson, 1980) 203 

which aims at maximizing the posterior probability 𝑃(Xa, Xw|𝜌𝑅𝐶 , φ): 204 

𝑃(Xa, Xw|𝜌𝑅𝐶 , φ) 𝛼 𝑃(𝜌𝑅𝐶|Xa, Xw, φ) . 𝑃(Xa, Xw| φ) 

We suppose here that xa 𝑎𝑛𝑑  xw are independent i.e.: 

𝑃(Xa, Xw|𝜌𝑅𝐶 , φ) 𝛼 𝑃(𝜌𝑅𝐶|Xa, Xw, φ) . 𝑃(Xa| φ). 𝑃( Xw| φ) 

(8)  

The first term 𝑃(𝜌𝑅𝐶|xa, xw, φ) is the likelihood of the observation model (Eq. 1) with respect 205 

to variables Xa, Xw  and φ. φ is here a vector of covariates composed of the observation geometry 206 

and pre-estimates of the water and aerosol contributions in the NIR performed in the bright pixel 207 

estimation step (BPE, § 4.3).  𝑃( Xa| φ) and 𝑃( Xw| φ) refer to the priors on Xa  and Xw variables 208 

given the covariates.  209 

In the proposed Bayesian framework, P(𝜌𝑅𝐶  | Xa, Xw, φ )  is modeled with a multivariate normal 210 

distribution with a null mean vector and full covariance matrix Σ𝜖 . As detailed in the next sections, 211 

P(Xa| φ) and P(Xw| φ)  a priori distributions are modeled using a mixture of MVN distributions, 212 

namely a Gaussian Mixture Models (GMM, Reynolds, 1995). The MAP criterion cost function is 213 

finally expressed using the log likelihood: 214 

𝐶 =  −log (𝑃(Xa, Xw|𝜌𝑅𝐶 , φ))  (9) 

 

Covariates and non-homogeneous prior distributions  215 

 216 

Covariates are here geophysical parameters significantly correlated with the variables of 217 

interest. From a physical point of view, the observed shape of aerosol reflectance spectrum 𝜌𝑎𝑒𝑟(𝜆), 218 

i.e. ai coefficients of Eq.6, is correlated with the variables which describe geometry of acquisition 219 

conditions (Өs, the sun zenith angle, Өv, the view zenith angle, and δψ, the delta azimuth), and the 220 



 

 

variables which describe the aerosol type and quantity, 𝜌𝑎𝑒𝑟(865) and c (Eq. 5), estimated using the 221 

NIR part of the spectrum (cf § 4.3). To characterize the correlation between variables and possible 222 

covariates, we use a linear discriminant analysis (McLachlan et al., 2004) and the training dataset.  223 

The selection of the significant contributors led to consider φ𝑎 = {𝜌𝑎𝑒𝑟(865), c, Өv, Өs} for the 224 

aerosol variable Xa and φ𝑤 = {𝜌𝑤(780), c, Өv, Өs, δψ}  for the water variable Xw. To derive the 225 

priors of  Xa and Xw, we model, using the training dataset and  the Expectation Maximization 226 

algorithm (Dempster, 1977), the joint distributions P(Xw,φ𝑤) and P(Xa,φ𝑎) as GMMs: 227 

𝑃(𝑋𝑤 , φ𝑤)  =  ∑ 𝛬𝑖  𝑔Σ{𝑋𝑤,φ 𝑤}𝑖
({𝑋𝑤 , φ 𝑤} − 𝜇{𝑋𝑤,φ 𝑤}𝑖

)

Zw=𝑖

 

𝑃(𝑋𝑎, φ𝑎)  =  ∑ 𝛬𝑗  𝑔Σ{Xa,φ 𝑎}𝑗
({𝑋𝑎, φ 𝑎} − 𝜇{Xa,φ 𝑎}𝑗

)

Za=𝑗

 

(10) 

We use subscript i (resp. j) for the water-specific (resp. aerosol-specific) GMM. 𝛬𝑖 is the prior 228 

probability of mode i in the GMMs. It refers to the probability of the hidden state variable Zw to be 229 

in mode i, P(Zw=i) (resp. P(Za=j)). 𝑔Σ{𝑋𝑤,φ 𝑤}𝑖
 (resp. 𝑔Σ{𝑋𝑎,φ 𝑎}𝑗

) is a zero-mean MVN distributions 230 

with covariance matrice  Σ{𝑋𝑤,φ 𝑤}𝑖
 (resp. Σ{𝑋𝑎,φ 𝑎}𝑗

) and  mean vector  𝜇{𝑋𝑤,φ 𝑤}𝑖
 (resp. 𝜇{𝑋𝑎,φ 𝑎}𝑗

 ) for 231 

the joint variables {𝑋𝑤, φ 𝑤}  (resp. {𝑋𝑎, φ 𝑎} ) for mode i (resp. j).  232 

We update, given the covariate’s values, the a priori distributions of Eq. (10) to obtain the a 233 

priori conditional distributions of Eq.8:  234 

𝑃(𝑋𝑤|φ𝑤)  =  ∑ 𝛬𝑖|φ 𝑤  𝑔Σ𝑋𝑤|φ𝑤,𝑖
(𝑋𝑤 − 𝜇𝑋𝑤|φ 𝑤,𝑖

)

Zw=𝑖

 

𝑃(𝑋𝑎|φ𝑎)  =  ∑ 𝛬𝑗|φ𝑎
 𝑔ΣXa|φ𝑎,𝑗

(Xa − 𝜇Xa|φ𝑎,𝑗
)

Za=𝑗

 

(11) 



 

 

These non-homogeneous priors on Xa and Xw involve conditional means, covariances and priors 235 

given the covariates and the initial GMM model estimated onto the joint variables. For instance, for 236 

mode i of the aerosol prior, the conditional parameters are given by (Petersen, 2008): 237 

𝜇𝑋𝑎|φ 𝑎,𝑗 = E(𝑋𝑎|φ 𝑎, 𝑍𝑎 = 𝑗) =  𝜇𝑋𝑎,j +  Σ𝑋𝑎,φ 𝑎,𝑗. Σφ 𝑎,𝑗
−1   . (φ 𝑎 −  𝜇𝜑𝑎,j) 

Σ𝑋𝑎|φ 𝑎,𝑗 = Σ𝑋𝑎,𝑗 −  Σ𝑋𝑎,φ 𝑎,𝑗. Σφ 𝑎,𝑗
−1 . Σφ 𝑎,𝑋𝑎,𝑗 

𝛬𝑋𝑎|φ 𝑎,𝑗  =  𝛬𝑗 ∗ 𝑃(𝑋𝑎|φ 𝑎, 𝑍𝑎 = 𝑗) / ∑ 𝛬𝑗 ∗ 𝑃(𝑋𝑎|φ 𝑎, 𝑍𝑎 = 𝑙)

𝑙

 

(12) 

3.3 Functional scheme  238 

 239 

Figure 1 summarizes the functional scheme for the proposed Bayesian inversion given the 240 

calibrated model parameters, i.e. means and covariance matrices for the GMM models and the 241 

MVN distribution of the residuals, ρ̂𝑅𝐶(𝜆) − ρ𝑅𝐶(𝜆), of Eq. (1). In the first step, the Bright Pixel 242 

Estimation (BPE) is based on the water similarity spectrum (Ruddick et al., 2005) to estimate 243 

𝜌𝑤(780), 𝜌𝑎𝑒𝑟(865) and c the slope of the aerosol. An iterative convergent algorithm is used. 244 

Given the estimated covariates, we update in step 2 the GMM for Xa and Xw conditionally to the 245 

covariates (Eq.(12). Step 1 & 3 involve gradient descent based inversions and a taylor series of Eq. 246 

(4). As the MAP criterion may not be a concave criterion, the initialization of the gradient descent, 247 

step 3, is a key issue as gradient-based maximization may converge toward local minima. We 248 

proceed as follows: 25 aerosol parameters are randomly generated using the updated distributions. 249 

Xw initialization is performed using the estimated �̂�𝑤(780), Xa initialization and Eq. 2. Overall, 250 

among the 25 computations, we select in step 4 the solution corresponding to the highest value of 251 

the MAP criterion (Eq.9). 252 
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 256 
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 259 

 260 

 261 

 262 

Figure 1: operational scheme for the atmospheric correction MEETC2 bayesian inversion 263 

4 NUMERICAL EXPERIMENTS 264 

 265 

To validate the proposed methodology, the 5976 radiometric in-situ profiles have been 266 

randomly splitted into two sets of equal size: a training dataset and a validation dataset. Model 267 

parameters are estimated using the training dataset. The optimal number of clusters, k, used in the 268 

GMM to estimate Xa and Xw  a priori Probability Density Functions (PDF), is determined using the 269 

Bayes Information Criterion (BIC) (Bhat & Kumar, 2010) and the explained variance criterion 270 

(Saulquin et al., 2014). Validation is performed with the validation dataset, using scatter plots 271 

between estimated and in-situ 𝜌𝑤(𝜆), histograms, and related regression statistics. We evaluate 272 

type-II regression statistics, i.e. a regression model that accounts for uncertainties for both y and x 273 

as the in-situ measurements also involves uncertainties (Laws, 1997). 274 
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4.1 The in-situ MERMAID dataset 275 

 276 

The MERMAID (http://hermes.acri.fr/mermaid/home/home.php) in-situ matchup database is a 277 

comprehensive dataset that gathers in-situ measurements of water leaving radiances, IOPs, and 278 

MERIS TOA reflectances measured at the same location. Many sites are available and among them, 279 

the most known are the NASA bio-Optical Marine Algorithm Dataset  (NOMAD, Werdell & 280 

Bailey, 2005), the “BOUée pour l'acquiSition d'une Série Optique à Long termE” (BOUSSOLE, 281 

Antoine et al., 2006) mooring  program, the Aerosol  Robotic  Network  (AERONET; Zibordi et al. 282 

2009) stations, the Helgoland transect (Petersen et al. 2008) that provides a full dataset of 283 

radiometric in-situ measurements in the Baltic Sea complex waters, and the MUMM Trios dataset 284 

(Ruddick et al.,2006).  Our initial dataset gathers 5976 matchups (without glint) measured at the 285 

MERIS wavelengths: 412.5, 442.5, 490, 510, 560, 630, 665, 681, 708, 753.75, 778.75, 865 and 885 286 

nm. For  each  in-situ  measurement of Figure 2 (left),  we  use  the  corresponding 3 by 3 MERIS 287 

pixels (Bailey & Werdell, 2006).  288 

  

Figure 2: Left, the 5976 in-situ water reflectance spectra in complex waters. Right, the 289 

corresponding (matchups) ρ𝐺𝐶  (TOA) observed from the MERIS sensor.  290 

 291 



 

 

4.2 Calibrated priors  292 

 293 

A 25-mode mixture model (cf § 3.3) was selected to model the joint distribution of {Xa, φ 𝑎}. 294 

Figure 3 shows the 25 aerosol modes reconstructed from the GMM centers for 𝜌𝑎𝑒𝑟(865) =295 

0.01.We remind that the PDF of {Xa, φ 𝑎} involves a full covariance matrix Σ0𝑋𝑎𝑖 for each mode 296 

that is accounted for in the maximization of Eq. 8.  297 

 298 

Figure 3: The 35 aerosol modes reconstructed from the GMM and Eq 6. 299 

From the NNMF applied to the in-situ water spectra, a four reference spectral signatures, W(𝜆) 300 

was needed to reconstruct 99% of the variance of the in-situ spectra training dataset (Eq.7, Figure 301 

4a). The NNMF reference spectral signatures characterize the influence of the optically active 302 

constituents of the water column onto the observed water leaving reflectance spectra: 303 

 Reference n°1 (dark blue) is a typical spectral signature observed in presence of SPM 304 

(Doxaran et al., 2002; Bricaud et al. 1998).  305 

 Reference n°2 (green) highlights the spectral signature of CDOM absorption with its typical 306 

decrease toward the blue. 307 



 

 

 Reference n°3 (red) is the typical spectral signature of the chl-a, i.e. absorption in the blue 308 

and the resulting observed in the green (560 nm).  309 

 Reference n°4 (light blue) is the spectral signature of the pure water (Pope & Fry, 1997).  310 

A 35-mode GMM is optimal to fit the prior distribution of {X𝑤, φ 𝑤}. Figure 4 shows the 35 311 

water reflectance reference spectra. Similarly to the prior distribution of aerosol contributions, a full 312 

covariance matrix Σ0𝑋𝑤𝑖 is estimated for each mode i.  313 

  

Figure 4: Left, the reference spectral signature basis, W(λ), estimated using NNMF with 314 

projected gradients. Right, the 35 reference water models reconstructed using the GMM centers and 315 

Eq 7.  316 

4.3 Ocean color inversion results  317 

4.3.1 Inversion performance for the Mermaid dataset   318 

 319 

We perform a quantitative evaluation of the performance of the proposed Bayesian inversion 320 

model, MEETC2, for the Mermaid dataset and coastal waters. For the validation dataset, i.e. the 321 

half of the 5976 spectra, we analyze for each wavelength the estimated water reflectances ρ̂𝑤 322 

against in-situ measurements (Figure 5, red). In addition to the proposed Bayesian inversion, we 323 



 

 

also report on Figure 5 the inversion performed with MEGS v8 (blue), and C2R (green). Table 1 324 

summarizes the corresponding statistical results for the 13 wavelengths.  325 

On this validation dataset, MEETC2 clearly outperforms MEGS and C2R at bands 412, 442, 326 

490 and 510 nm  in term of mean-bias, mean absolute error, slope, R² coefficient and σ. From 620 327 

to 885 nm MEETC2 slightly outperforms the two other models. Overall, the gain on the relative 328 

absolute error over the 12 bands is of 57% compared with MEGS and 10% compared with C2R. 329 

  

  



 

 

  

Figure 5: comparisons between the estimated ρ̂𝑤 at 412, 442, 490, 560, 665 and 681 nm using 330 

MEETC2 vs in-situ (red), MEGS 8 vs in-situ (blue) and C2R (NN) vs in-situ (green). 331 

Table 1: Statistical analyses of the estimated water reflectances vs. in-situ data for the proposed 332 

Bayesian model (MEETC2), the standard MEGS processor and the neural-net-based algorithm 333 

C2R. For each wavelength, we report the mean error (bias), the slope of the regression with the in 334 

situ data, the associated R
2
 score and standard deviation, σ. We report in bold the algorithms which 335 

provided the best performance. 336 

λ(nm)  Mean error Slope R² (Pearson) σ 

412.5 
MEETC2 
MEGS 
C2R 

-0.0004 
-0.0083 
-0.0023 

1.14 
0.44 
0.42 

0.70 
0.16 
0.15 

0.0039 
0.0149 
0.0075 

442.5 
MEETC2 
MEGS 
C2R 

-0.0002 
-0.0060 
-0.0031 

1.13 
0.39 
0.31 

0.75 
0.38 
0.60 

0.0041 
0.0128 
0.0060 

490 
MEETC2 
MEGS 
C2R 

0.0004 
-0.0033 
-0.0022 

0.97 
0.92 
0.77 

0.77 
0.76 
0.57 

0.0049 
0.0098 
0.0046 

510 
MEETC2 
MEGS 
C2R 

0.0007 
-0.0020 
-0.0013 

0.96 
0.91 
0.72 

0.85 
0.65 
0.78 

0.0046 
0.0085 
0.0040 

560 
MEETC2 
MEGS 
C2R 

0.0007 
-0.0007 
-0.0007 

1.04 
0.95 
0.88 

0.88 
0.81 
0.90 

0.0049 
0.0056 
0.0050 

620 
MEETC2 
MEGS 
C2R 

0.0006 
-0.0014 
-0.0012 

1.00 
1.05 
0.97 

0.93 
0.85 
0.90 

0.0038 
0.0050 
0.0039 

665 MEETC2 1.1809e-03 0.97 0.88 0.0033 



 

 

MEGS 
C2R 

-0.8881-03 
0.2650-03 

1.07 
1.02 

0.85  
0.88 

0.0043 
0.0033 

681 
MEETC2 
MEGS 
C2R 

0.0657e-03 
-0.6257e-03 
0.5037e-03 

0.99 
1.06 
1.02 

0.92 
0.85 
0.89 

0.0033 
0.0041 
0.0033 

708 
MEETC2 
MEGS 
C2R 

-0.0136e-03 
-0.6400e-03 
0.7668e-03 

0.94 
1.13 
1.10 

0.87 
0.83 
0.87 

0.0030 
0.0039 
0.0037 

753 
MEETC2 
MEGS 

0.2656 e-03 
-0.4222 e-03 

0.90 
1.35 

0.90 
0.78 

0.0014 
0.0027 

778 
MEETC2 
MEGS 

0.2418 e-04 
-0.4084e-04 

0.90 
1.21 

0.89 
0.74 

0.0014 
0.0029 

865 
MEETC2 
MEGS 

0.3793 e-04 
-0.2259e-04 

0.94 
1.02 

0.88 
0.75 

0.0009 
0.0017 

885 
MEETC2 
MEGS 

0.2794 e-04 
-0.2269e-04 

0.95 
1.02 

0.88 
0.88 

0.0007 
0.0014 

We further analyze the extent to which we recover realistic water reflectances from the 337 

proposed Bayesian inversion MEETC2. To this end, we compared for each wavelength, the 338 

distribution of in-situ measurements to the MEETC2 estimates. Figure 6 shows a global agreement 339 

between the distributions of �̂�𝑤(𝜆), compared to the reference in-situ distributions, for wavelengths 340 

412, 442, 510 and 560 nm.  341 

  



 

 

  

Figure 6: Comparison of the distributions of the estimated water reflectances ρ̂𝑤 at 412, 442, 342 

510, 560 nm for in-situ measurements (blue) and the proposed inversion (MEETC2 model, red).  343 

To illustrate the added value of the introduction of priors on both water and aerosol spectra, we 344 

implement model (Eq. 8) without priors on Xa and Xw, i.e. the cost function of Eq. 9. In this case, 345 

the cost function in the inversion is directly comparable with the one of a Generalized Least Square 346 

Model (GLS) with error covariance matrix Σ𝜖 . Figure 7 shows the corresponding results obtained, 347 

using the same validation dataset. We clearly see in Figure 7a smoothing effects for bands 412, 442, 348 

510 and 560 nm on the estimated distributions of  �̂�𝑤. The resulting bias with the in-situ is lower 349 

using the MAP estimator and a priori knowledge (Figure 6).  350 

  



 

 

  

Figure 7: Comparison of the distributions of the estimated water reflectances ρ̂𝑤 at 412, 442, 351 

510, 560 using a cost function without a priori for the inversion (Eq. 9) vs in-situ. In that case, the 352 

MAP criterion reduces to the Maximum Likelihood criterion. 353 

4.3.2 Example of estimated water reflectance on a very turbid area  354 

  355 

Figure 8 shows the estimated �̂�𝑤 , using the 20090322 MERIS Full Resolution (FR) level 1 356 

observations over the French La Gironde’s estuary, using the three algorithms. At springtime in this 357 

area, a bloom occurs leading to high chl-a concentrations (typically of magnitude from 5 to 15 358 

mg.m
-3

). At the same time, the seasonal river outflow involves high, SPM concentrations and 359 

CDOM absorption (Doxaran et al. 2009). In the same manner, Figure 9 shows the estimated �̂�𝑤, 360 

using the 20040208 MERIS Full Resolution (FR) level 1 observations over the French La Seine’s 361 

estuary. 362 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Estimated 𝜌𝑤(412, 442, 560, 680 ) (left to right) from the MERIS FR Level 1 image of the 20090322 over the French river La Gironde’s 

estuary. Top, MEETC2 retrievals, middle, MEGS v8 and bottom C2R retrievals. 

    

    

    



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Estimated 𝜌𝑤(412, 442, 560, 680 ) (left to right) from the MERIS FR Level 1 image of the 20040208 over the French river La Seine’s 

estuary. Top, MEETC2 retrievals, middle, MEGS v8 and bottom C2R retrievals. In pink are highlighted negative reflectances. 

    

    

    



 

 

4.3.3   Estimated water types associated with the MEETC2 inversion 363 

 364 

The NNMF reference spectral signatures in Figure 4 (left) characterize the influence of the 365 

optically active constituents of the water onto the observed water leaving reflectance spectra. This 366 

reference basis may be used to validate indirectly, using oceanographic knowledge, the spatial 367 

coherency of the estimated �̂�𝑤 . Figure 10 depicts the projection coefficients of the estimated 368 

MEETC2 �̂�𝑤 onto the reference spectral signatures. Figure 10c depicts the presence of chl-a over 369 

the all area as expected for this spring period and region. We observe the typical clear contrasted 370 

situation in an estuary between waters whose spectral shape is mainly constrained by SPM (Figure 371 

10a) and clearer waters (Figure 10d) in the oceanic part of the estuary. This spatial consistency of 372 

the distribution of the water types from the estimated  �̂�𝑤 , relatively to our knowledge of the 373 

seasonal behavior in this area, contributes to validate the shapes of our estimated spectra. 374 

 
 

      

 Figure 10: projection coordinates of the MEETC2 estimated �̂�𝑤 in the four NNMF reference 375 

spectral signature basis.  376 

Type 1: SPM dominated  𝜌𝑤 Type 2: Cdom dominated  𝜌𝑤 

Type 3: Chl-a dominated  𝜌𝑤 Type 4: pure water  dominated  𝜌𝑤 

a b 

c d 



 

 

5 Discussion  377 

 378 

A significant improvement of ocean color inversion in coastal waters.  379 

Retrieving reliable Ocean Color reflectances from space in coastal areas remains a major 380 

challenge for a number of operational and scientific issues, including for instance the delivery of 381 

reliable satellite-derived products in coastal areas for the space agencies, bio-optical and biological 382 

modeling, as well as environmental monitoring policies such as the WFD. Using the MERMAID 383 

satellite/in-situ collocated observation database, a Bayesian latent class model was shown to 384 

significantly enhance the inversion of water reflectances for complex waters compared to the 385 

standard MEGS inversion scheme and the C2R, a Neural Network trained using similar in-situ data 386 

(Schiller & Doerffer, 1999).  387 

The improvements were especially noticeable for the 412, 442, 490 and 510 nm bands, which 388 

are used in Ocean Color for the estimation of the chl-a concentration, CDOM absorption and light 389 

attenuation underlying the potential of such approach to improve the standard level 2 products in 390 

coastal areas. An additional important feature of the proposed inversion, based onto the Non 391 

Negative Matrix Factorization water model, is strictly positive estimates of the water leaving 392 

reflectances in coastal areas. Meaningless negative estimates, as observed in the standard MEGS 393 

products are not anymore possible. 394 

The complexity of the inversion is particularly stressed by the number of needed hidden models, 395 

respectively 25 for coastal aerosol reflectances and 35 for water reflectances, to address the spectral 396 

variability of both water and atmospheric contributions in such areas, and to unmix the possibly 397 

correlated aerosol and water spectra.  398 

 399 

 400 



 

 

A physically-interpretable modelling framework  401 

Conversely to Neural Network, the modes retrieved by the Gaussian Mixture Models 402 

correspond to identifiable aerosols, such as identified in the MERIS and the OLCI reference aerosol 403 

database, and water types. The fact that we explicitly distinguish parametric representations of 404 

aerosol and water spectra makes also easier the independent calibration of the models and our 405 

Bayesian model may benefit in a much simpler manner for newly collected and/or simulated dataset 406 

to improve each prior distribution independently. This is regarded as a key property for future 407 

operational applications with respect to ongoing advances in radiative transfer modelling, in-situ 408 

monitoring and future satellite missions.  409 

Operational potential in the framework of the ocean sensor of upcoming Sentinel 3 410 

platform 411 

The incoming OLCI Ocean Color sensor, embedded on the Sentinel 3 platform, should succeed 412 

the MERIS sensor in 2015.  The available spectral bands will be close to the MERIS ones. Beyond 413 

genericity of our Bayesian framework, we thus expect the considered parameterization, especially 414 

the NNMF-based representation, the GMM-based priors and the covariance models, to be directly 415 

transferable to the future OLCI observations. Our ongoing work addresses the development of an 416 

operational product based on the proposed Bayesian mode that will be freely distributed in the 417 

Odesa software (http://www.odesa-info.eu/info/). The dependency of both aerosol and water prior 418 

distributions to the observation geometry conditions will be addressed soon using radiative transfer 419 

simulations such as the Successive Order Scattering radiative transfer code (Deuzé, 1989) and 420 

Hydrolight (Mobley, 1998) to cover the full possible range of observation conditions.  421 

From a modeling perspective, additional developments appear of interest, especially new 422 

covariates, e.g. humidity and wind conditions to further constrain the prior distributions of the water 423 

and aerosol variables. Parallelized implementation is also under investigation, as, conversely to 424 

existing MEGS and C2R processors, our optimization is computationally more demanding than 425 



 

 

these as it relies on quasi-randomized initializations for the atmospheric initial model, i.e. multiple 426 

initializations given the observed geometry conditions and per-estimates in the near infrared. 427 

Optimal and noiseless results will be obtained with increased number of random initializations to 428 

converge towards the ‘true’ solution. This random initialization issue and the associated computing 429 

cost, is classic for genetic algorithms (Davis, 1991) and the new generation of satellite products 430 

such as the Soil Moisture Ocean Salinity (SMOS) product (Font et al., 2010). 431 
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