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Abstract Data processing is the core of any statistical information system.
Statisticians are interested in specifying transformations and manipulations of
data at a high level, in terms of entities of statistical models. We illustrate
here a proposal where a high-level language, EXL, is used for the declarative
specification of statistical programs, and a translation into executable form
in various target systems is available. The language is based on the theory of
schema mappings, in particular those defined by a specific class of tgds, which
we actually use to optimize user programs and facilitate the translation to-
wards several target systems. The characteristics of such class guarantee good
tractability properties and the applicability in Big Data settings. A concrete
implementation, EXLEngine, has been carried out and is currently used at the
Bank of Italy.
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1 Introduction

The generation of statistical products, in the form of finished and deliverable
data artifacts, is the primary goal of statistical information systems. The prod-
ucts can be directly addressed to the public, as it happens for publications in
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official statistics, or be specifically designed to be used in research, analysis,
and decision making. In all cases, data processing is of primary importance
in the production process and consists of several integrated human and au-
tomatic data manipulation activities that transform the raw data, coming in
various formats from different sources, into the statistical products.

With the recent progress in computing tools and techniques, many activi-
ties in statistical information systems can be effectively automated, especially
in the systematic production of official statistics, where a definite and precise
set of transformation steps can be specified. A major, long term goal in this
respect would be the possibility to write high-level statistical programs in a
language oriented to the actual business of statistics and independent of any
specific technology. Such programs should also be easy to execute in real sys-
tems and exhibit good scalability. Indeed, similar problems arise in many areas
of software development and especially in the database field, where a lot of
consideration has been devoted to the approaches that try to provide support
to transformations, by means of methods and languages for the declarative
specification of actions for the extraction and manipulation of data.

A major contribution in this direction comes from logic-based frameworks,
which provide formal devices and languages to describe transformations, per-
form reasoning, query answering and data exchange tasks [3,15,32]. These
frameworks try to balance the richness of modeling features and the complex-
ity of performing the mentioned tasks, with the ultimate goal of achieving high
expressive power and suitability for Big Data settings [9].

Among them, schema mappings can be considered as a very encompassing
framework [11]. It is also worth mentioning that while most of the theory of
mappings has been developed for the relational model, arguments for more
general, model-independent approaches have been made [7]. They also have
proven applicability: for example, the close relationship between schema map-
pings and ETL (Extract - Transform - Load) executable flows, typically used
in data warehousing, has been practically clarified by many works, e.g., the
Orchid prototype [23], and had been understood since Clio early studies [31].

The need for automatic translation of high-level statistical programs into
various executable forms is a central problem, because of the presence of sev-
eral kinds of execution engines (the target systems) used in practice. The
most adopted general-purpose engines are relational database systems, since
they guarantee a simple and solid SQL interface, as well as a resilient archi-
tecture and high performance and scalability for small and local operations.
Many other engines are domain dependent, usually third-party tools specif-
ically designed to address the needs of statistical calculations: examples are
R, Matlab, STATA, and eViews. The languages used in those engines are also
domain dependent and require advanced programming skills to build efficient
applications even for simple tasks. Furthermore, the proliferation of different
languages results in difficulties in the reuse of code. For these reasons, the need
for a unifying approach, linking the specification of high-level statistical pro-
grams and the underlying IT solutions with scalability guarantees has clearly
emerged [24].
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In this paper we leverage the effectiveness of schema mappings and the
huge expertise on them in the database community, to build a theoretical
and practical bridge between a high-level specification of a statistical program
and its execution in many different systems (relational databases, statistical
engines, ETL tools).

Our conceptual goal is to formalize the relationship between programs
expressed at high level, in terms of statistical concepts, and their executable
form in the systems. For this, we use schema mappings as an intermediate
representation between the statistical concepts and the languages of target
systems, where real execution takes place. Our schema mappings are based
on a class of tgds (tuple-generating dependencies), which for our purposes
have a good balance between expressive power and tractability. Moreover, we
provide a system-independent algorithm that converts the mappings into the
various execution languages. We show that the result of the execution of the
schema mappings is equivalent to the procedural application of the programs.
To achieve this target, we formulate a data exchange problem instance out of
the generated schema mappings and show that its solution is equivalent to the
effect of the statistical program. As a consequence of the tractability of the
transformation tasks in our class of tgds, we also argue for the scalability of
our approach.

Our practical goal is decoupling the abstract specification of statistical pro-
cedures from their technical implementation, while guaranteeing the genera-
tion of efficient executable code. Indeed, we use schema mappings for multi-
query optimization, that is, the combination of different program directives
into fewer queries, to favor efficient execution in the target systems. To this
end, we introduce a novel notion of composition of mapping dependencies in
the presence of mathematical operators; we characterize the general problem
of composability of dependencies by means of a necessary and sufficient con-
dition, and show how we practically leverage it in our algorithms to generate
optimized executable mappings.

This paper is based on the experience of two of the authors at the Bank of
Italy, which has shared these objectives, playing for decades a key role in the
process of standardization and devising Matrix [22], a statistical data model,
and a high-level language named EXL [22] (EXpression Language) used to
write statistical programs over cubes (involving sum, difference, aggregations
of cubes etc.) exploiting the potential of the Matrix model (at the specification
level, with limited executability).

Here, we present an executable system, EXLEngine, in which EXL is used
for high-level specifications. The programs specified by Bank statisticians are
fed into EXLEngine, which translates them into schema mappings. The schema
mappings are optimized with techniques based on the theory of mapping com-
position and finally translated into an executable form for the specific target
system. For example, mappings (and so the original program) could be trans-
lated (i) into SQL to delegate the execution to a DBMS; or (ii) into ETL
jobs to pass the execution to a specialized stream-like architecture such as
an ETL engine; or (iii) into a specialized language for a statistical tool (such



4 P. Atzeni, L. Bellomarini, F. Bugiotti, M. De Leonardis

as R, Matlab, etc.). The system is actually used at the Bank of Italy for the
calculation of national financial statistics.

A preliminary version of the system has been presented in [4]. Here, we
extend such a paper, with the following main addictions: we formalize and
develop the role of schema mappings in the framework, giving a formal char-
acterization of the results and propose novel optimization techniques based on
composition, in mappings with arithmetic operations and aggregations. More-
over, we add many details.

The remainder of the paper is organized as follows. In the next Section
we give an overview of our approach. In Section 3, we recall some preliminary
notions about schema mappings. In Section 4 we present EXL, a specification
language for statistical programs. In Section 5 we illustrate how to generate
schema mappings out of statistical programs and focus on how we compose
them to favor optimization. We address correctness and scalability by studying
a data exchange setting formulated with the generated mappings. We study
and characterize the general problem of composing dependencies in presence
of mathematical operators. In Section 6 we show how to translate the schema
mappings into various executable forms, such as SQL queries or ETL jobs. The
implementation of EXLEngine is then briefly illustrated in Section 7 along with
preliminary but meaningful performance evaluations. In Section 8 we discuss
related work and finally in Section 9 we draw our conclusions.

2 Overview

A conceptual representation of our approach is sketched in Figure 1.

Fig. 1: The complete execution process: from EXL to the executable languages.

1. EXL programs are translated into schema mappings; 2. schema mappings
are logically optimized; 3. schema mappings are translated into a form that is
executable in the target systems.

Let us now go through the process by using an example, a small statistical
program, for which we show the specification in EXL in Figure 2 and a sample
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of the respective values in Figure 3. It calculates the percentage change of the
GDP (Gross Domestic Product) trend by quarter, given the GDP per capita
by region and quarter and the population of each region by day; the program
finally calculates an indicator over GDP called FGDP. In EXL, uppercase
strings denote relations. All of them are assumed to have a key constraint on
one or more attributes (named dimensions) and carry a numeric value in a
specific attribute (the measure). Notice that unlike usual logic formalisms, the
syntax omits any indication of the attributes for compactness of representation.

1 PQR := avg(PDR , group by quarter(d), region)

2 RGDP := RGDPPC * PQR

3 GDP := sum(RGDP , group by quarter)

4 GDPT := stl_T(GDP)

5 PCHNG := (GDPT - shift(GDPT ,1)) * 100 / GDPT

6 PM := PM2 * 0.2

7 FGDP := GDP * PM * PCHNG /100

Fig. 2: An EXL program related to the national GDP.

PDR
Day Reg Pop

1
A 100
B 200

2
A 105
B 202

. . . . . . . . .

91
A 120
B 210

92
A 130
B 240

. . . . . . . . .

182
A 125
B 215

183
A 135
B 245

. . . . . . . . .

274
A 140
B 250

275
A 160
B 270

. . . . . . . . .

PQR
Quart Reg Pop

1
A 102.5
B 201

2
A 125
B 225

3
A 130
B 230

4
A 150
B 260

RGDPPC
Quart Reg Gdppc

1
A 1000
B 2000

2
A 1200
B 2200

3
A 1100
B 2150

4
A 1120
B 2150

RGDP
Quart Reg Gdp

1
A 102500
B 402000

2
A 150000
B 495000

3
A 143000
B 494500

4
A 168000
B 559000

GDP
Quart Gdp

1 504500
2 645000
3 637500
4 727000

GDPT
Quart Gdp

1 504000
2 645000
3 637000
4 720000

PCHNG
Quart Change

2 21.8
3 -1.25
4 11.52

PM2
Quart Factor

2 4
3 2
4 6

PM
Quart Factor

2 0.8
3 0.4
4 1.2

FGDP
Quart Fgdp

2 112488
3 -3187
4 100500

Fig. 3: Sample values for the program in Figure 2.

In the program in Figure 2, PDR(d, r, p) represents the population p of a
region r on day d. PQR(q, r, p) represents the same population p during a quar-
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ter, and it is calculated (line 1) from PDR by changing its sampling frequency
from day to quarter and aggregating the population measure by computing the
average of the daily values (by means the avg function). RGDP(q, r, g) is the
regional gross product g in a quarter, and it is obtained (line 2) by multiply-
ing RGDPPC (regional gross domestic product per capita) of the quarter and
the (previously calculated) average population in the same quarter. GDP(q, g)
is then obtained (line 3) as the sum of RGDP(q, r, g) over regions. Then, in
line 4, the seasonal decomposition1 operator stl T is used to isolate the trend
GDPT(q, g). The PCHNG(q, c) is obtained (line 5) as the difference between
the values of GDPT in two consecutive quarters, divided by the trend itself
and multiplied by 100 (to have a percentage).2 Finally (line 7) we also calcu-
late an indicator FGDP(q, f) by multiplying GDP by PCHNG, the constant
100, and a forecast model PM(q, f), in turn obtained by scaling another model
PM2(q, f) (line 6).

Our program is first translated into schema mappings and then into an
executable form for the back-ends. In Figure 1, we show such translations
for statement (5) of the program in Figure 2, first into tgds and then into
executable forms (e.g., SQL and R).

In Section 5, we discuss the correspondence between EXL (presented in
Section 4) and our class of tgds.3 Indeed, the tgds we need are extensions of
those commonly used in data exchange settings, because we also have tuple-
level operators and aggregations. These schema mappings represent in our
approach an intermediate system-independent step, which then needs to be
translated into an executable form. However, a direct one-to-one translation
of the mappings would not exploit the target system optimizer at best. To this
purpose, in the full technique we present in Section 5, we propose and apply
an optimization algorithm that combines all the pairs of dependencies that
can be conveniently composed into a single one.

In general, for the mappings, many translations are indeed possible and
we support different target systems. Beside relational databases, there are
other possible target systems and languages, which include those specifically
designed for statistical elaborations, such as R and Matlab. They are typically
vector or matrix oriented and offer a number of powerful statistical functions.
The translation from a tgd into such target languages is often very natural.

ETL platforms are another interesting kind of target system that we sup-
port, as as we will discuss in Section 6. A statistical program can be intu-
itively seen as an ETL job composed of a number of flows each representing a
tgd statement. In this context all flows have the same structure and involve:
data source steps, feeding data into the ETL stream; merge steps, combining
streams coming from different sources; calculation steps, performing simple

1 The seasonal decomposition is an operator that decomposes a time series into various
components, one of which is the trend, which, roughly speaking considers medium- or long-
term “variations”, ignoring seasonal, cyclic (and stochastic) ones [14,37].

2 Note that for the first quarter the PCHNG is not meaningful.
3 As we will see in Section 5, we also have some egds, which enforce the functional nature

of EXL relations.



Executable Schema Mappings for Statistical Data Processing 7

or user-defined algebraic or statistical calculations; output steps, writing the
results back into the system. For each relation in the left-hand side (lhs) of
the tgd there is a data source step in the flow. Data streams coming from
these steps are merged on the basis of dimensions, while their measures are
combined with the calculation step.

As we said, the approach we propose in this paper (and just sketched
above) has been implemented in the EXLEngine system, used at the Bank of
Italy for the generation and execution of schema mappings out of declarative
statistical programs.

3 Foundations of Schema Mappings

Before introducing the EXL language and explaining our approach to the
generation of executable mappings, let us provide some formal background.

A relation schema, denoted by a relation name R, is a finite collection of
attributes, R(A1, . . . , Ak). A database schema (or, simply, a schema) is a finite
collection of relation schemas, R = {R1, . . . , Rn}, with distinct relation names.
An instance over a relation schema R(A1, . . . , Ak) is a finite set of tuples, over
the schema of R, each of the form (v1, . . . , vk), where each Ai is an attribute
of R and each vi is its corresponding value. An instance over a schema R
is a finite set of facts, each of the form R(v1, . . . , vk), where R(A1, . . . , Ak)
is a relation schema in R and (v1, . . . , vk) is a tuple over R. In the common
practice, the values vi are taken from two (infinite) sets, a set C of constants
(attribute values), and a set V of variables (also called labeled nulls). Variables
are used to handle transformations where specific constants cannot be found:
ideally, relations contain values, but sometimes they are not known.

Mappings: Given two database schemas S (source) and T (target), a
schema mapping (or just mapping) M is a binary relation over all the possible
instances of the two schemas, that is, M ⊆ S ×T. In mappings, instances of
S are assumed to take values from the domain C, while instances in T take
values from C ∪ V; also, S and T do not have relation names in common.

Data exchange: Given an instance I ∈ S, we say that J ∈ T is a data
exchange solution (or simply solution) for I under a mapping M , if (I, J) ∈M .
As mappings are relations, in general there can be multiple solutions J ∈ T
for a given instance I ∈ S.

Dependencies: If S and T are schemas with no common relation names, a
sentence σ is a source-to-target tuple-generating-dependency (st-tgd) from S to
T if it has the form: ∀x(φ(x)→ ∃yψ(x,y)), where x and y are two disjoint sets
of variables of V, φ(x) (the left-hand-side, abbreviated as LHS) is a conjunction
of atoms with relation names (relational atoms in the following) over S, with
variables in V and constants in C, and ψ(x,y) (the right-hand-side, RHS) is a
conjunction of atoms with relation names over T, built with variables in V and
constants in C. A sentence σ is a target tuple-generating-dependency (t-tgd), if
it has the same form as st-tgds, but φ(x), the lhs, is a conjunction of relational
atoms over T. Given target schema T, a sentence σ is an equality-generating-



8 P. Atzeni, L. Bellomarini, F. Bugiotti, M. De Leonardis

dependency (egd) over T, if it has the form: ∀x(φ(x) → xi = xj), where xi
and xj are variables of φ.

Specification of mappings: Let Σ be a set of dependencies. We say that
a mapping M from S to T is specified by Σ (and we write M = (S,T, Σ))
if, for every (I, J) ∈ S×T, it is the case that (I, J) ∈M if and only if (I, J)
satisfies Σ. We say that S and T are the source and target schemas of M ,
respectively.

As we will see, in our setting, schema mappings are specified through a set
of st-tgds, non-recursive t-tgds extended with operators, and egds.

Chase: The solutions to a data exchange setting with st-tgds, t-tgds and
egds are usually obtained by means of the chase procedure [26,32]. Intuitively,
it “applies” constraints to an instance, “forcing” their satisfaction. For tgds,
this means adding, if needed, new tuples corresponding to the rhs for each set
of tuples that unify with the lhs. New values can be “invented” with various ap-
proaches: a common one is Skolem functions, which deterministically produce
new values for the target given n-uples of source values. Instead, forcing egds
satisfaction means unifying values, assigning variables or equating constants,
which may lead to failure. The procedure has a running instance of 〈S, T 〉
which is initialized as 〈I, ∅〉 (the input instance I for the source schema and
the empty instance for the target one). Then the target instance is modified by
applying all the dependencies in Σ as long as they are applicable. Application
of tgds means generation of new tuples in the target instance (as the name
“tuple generating” suggests), while application of egds leads to modification
to the values, if they violate the dependency and they are not constants. Vi-
olations of egds that involve constants cause a “failure” of the procedure. In
general, the chase is not guaranteed to terminate, due to the possible presence
of recursion in t-tgds with infinite creation of new labeled nulls. However, if
t-tgds are weakly acyclic (i.e., the procedure cannot enter a cycle where the
application of a t-tgd creates a labeled null for each pass in the cycle), then
the chase is guaranteed to terminate and return a solution, if one exists, or
fail, if none exists (an egd is violated). If there is one, the returned solution is
known as universal and is unique up to homomorphism [38].

4 The Expression Language

In this Section we illustrate the language we adopt for the high-level specifica-
tion of statistical programs. Indeed, we present a formalization of the language
actually used at the Bank of Italy in these activities.

Section 4.1 gives an overview of the language. Then, Sections 4.2 and 4.3
give details about two kinds of operators that are present in the language:
tuple-level and multi-tuple, respectively. Numeric examples of application of
the operators can be found in Figure 3.
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4.1 The language

Let us now turn our attention to EXL (EXpression Language), a specification
language for statistical programs over relations, and formalize the language
used by the Bank of Italy in this context. We have already seen an example
in Section 2. The language handles relations that model tabular functions. In
particular, they are required to have a key constraint, defined on a subset of
their attributes (the dimensions, which are the independent variables in the
tabular function) and have exactly one numeric attribute (the measure, which
is the dependent variable of the tabular function).

The manipulations on relations are specified in the form of input/output
transformations, encoded by operators, which take relations and other parame-
ters as input and return relations. The operator-based formalism is particularly
suitable for an easy specification of high-level programs, with an approach that
is similar to that of ETL flows.

More formally, an EXL statistical program is a sequence of statements. A
statement is an assignment (denoted by the symbol :=) where the left-hand
side (lhs) is a relation identifier and the right-hand side (rhs) is an expression.

In an EXL program, relation identifiers are partitioned into two categories:
elementary, whose tuples are available as base data provided to the system,
and derived, defined by means of expressions. This partitioning is similar to
the one in relational databases between base tables and views, where each
view has a unique definition, and to the one in deductive databases, and in
Datalog specifically, between extensional and intensional predicates. In an
EXL program, the expression in a statement (which specifies the definition
of a derived relation) contains only elementary relations or relations that are
derived in previous statements of the program. So, no recursive definition of
derived relations is allowed, as this is not needed in the statistical applications
of interest. Moreover, as a relation defines a function, there needs to be a
unique way to obtain it, and so a relation identifier must not appear as lhs
more than once (as opposed to what happens in Datalog, where intensional
predicates can be defined by means of multiple rules, because there is no
functional restriction).

Expressions specify how the tuples in a derived relation are calculated.
They can be recursively defined as follows:

– a relation identifier (e.g. R) is an expression; we use the term relation
literal for this base case; the type of the expression is the same as that of
the relation;

– the application of any n-ary EXL operator to n expressions (whose types
are compatible with the operator) is an expression; its type is determined
by the specific operator.

Let us now discuss operators. The language has many of them and com-
prises elementary algebraic ones (sum, product, etc.) as well as all the complex
operators commonly adopted for statistical analysis (including linear regres-
sion, seasonal decomposition as well as various aggregations such as average,
median, standard deviation). Given that each operator has a specific syntax
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and semantics and that a complete generalization is not possible (nor a de-
tailed presentation of all of them), we illustrate now some interesting operators,
which represent the main categories.

The common feature of operators is that, obviously, an operator produces
a result relation (a function with at most one value for each dimensions tuple)
from one or more input relations. In general, the value of the relation on a
dimensions tuple may depend on the values of several input tuples (this is for
example the case in aggregation operands and in many statistical ones). In this
respect, we distinguish two main classes, as follows. We say that an operator
is tuple-level if a value in the result depends only on the value of at most one
tuple for each of the operands, while we say it is multi-tuple if a value of the
result depends on a (typically non-singleton) set of tuples of an operand.

As it is common in many languages, we have a syntax with special symbols
for some algebraic operators and a function notation (with an identifier and
operands in parentheses) for the others.

Operators of all kinds might have, beside operands (which are in turn
expressions), also additional arguments, which can be scalar parameters, or
structural elements. Examples of scalar parameters include the logarithm base,
as in log(2, x ∗ 3), or the shift in the time series we already saw in the example
in Section 2. Structural elements include, for instance, the specification of the
grouping dimensions in aggregation operators, as we will show in Section 4.3.

4.2 Tuple-level operators

Let us now concentrate on tuple-level operators, which are the ones expressing
tuple-to-tuple correspondences. They can be unary or n-ary.

Unary operators have one single operand relation and possibly some extra
scalar parameters. This category includes the most natural operators on the
measures of relations (such as sum, subtraction, product, division by a con-
stant, increment, logarithm, exponential, trigonometric function). Here, the
resulting relation has the same dimensions as the operand and contains a tu-
ple for each tuple of the operand, with the same values for the dimensions and
a calculated one for the measures: for example, given the statement K := 1+E,
we have that each tuple of K is defined after each tuple of E with the same
values for the dimensions and the measure calculated as 1 plus the value of
the measure of E, tuple-wise.

Other unary operators operate on the dimensions. The most common here
is the shift, which is essentially a sum on the values of a numeric or time
dimension. The semantics of the time shift with parameter s is that for each
value t on which the operand relation is defined, the result relation is defined
on dimension values t+s and with the same value: given expression e, we have
that shift(e(t+ s)) = e(t), for all t.

N-ary operators have two (or even more, but this is not essential here)
operand relations, generating a third one as a result. The two operands and
the result as well have the same dimensions (same name and type for each), and
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the semantics is defined as expected, for each dimensions tuple. A nontrivial
issue is how to deal with relations that have the same dimensions but their
values exist on different dimensions tuples: here different versions exist, we
mainly refer the simplest, which produces the result tuple only for dimensions
tuples that appear in both relations, but there are others assuming a default
value for the “missing” tuples (for example, in the sum operator, we could have
zero as the default value). Indeed the language supports also a more general
case that operates on relations with different but compatible dimensions: there
is at least one operand that comprises the dimensions of each of the others
(and all of those dimensions appear in the result).

4.3 Multi-tuple operators

The second class, that of multi-tuple operators, includes many of them, which
are indeed important in the production of statistical data, as they restructure
relations, calculating new values from sets of previous ones. Among them, we
have a significant subclass whose elements can be considered as black boxes,
because they receive one relation in input and transform it by producing an-
other relation. They have no additional parameters or clauses and so their
semantics is just defined by the black-box function they refer to. An interest-
ing representative is the seasonal decomposition (stl) operator we mentioned
in Section 2. Another specific, widely used subclass is that of aggregation (or
summarization) operators, which “roll up” relations, by applying a specific
arithmetic operator (for example sum, max, min, or average) to the values
of the relation that correspond to dimensions with the same value. Here the
syntax is the following:

aggr(e, group by dimensionList)

where aggr is one of the aggregation operators and dimensionList is a list of
dimensions in e or scalar expressions over them (for example, the application
of the quarter function to a date dimension, as we saw in statement (1) in
the example in Section 2). The semantics is essentially the same as we have
in SQL aggregate queries: the result relation contains only the dimensions in
dimensionList and it is defined as follows: let (x1, . . . , xk) be a tuple with
one value for each dimension in dimensionList and V be the bag4 of values
in relation e that are associated with dimensions tuples (in e) that coincide
with (x1, . . . , xk) on dimensionList. Then, the value of the result relation on
(x1, . . . , xk) is the result of applying function aggr to the bag V . The relation
tuple exists only if the bag V is non-empty.

4 That is, repeated elements are meaningful.
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5 Generating Schema Mappings from Statistical Programs

In this section we present our various results on schema mappings in our
setting. In Section 5.1 we show how schema mappings can be generated out of
an EXL statistical program. In Section 5.2 we argue for the correctness of the
translation, showing that a solution to the data exchange problem specified by
the mappings equals the result of the application of the statistical program.
We discuss the complexity and the scalability of the approach in Section 5.3.
Then in Section 5.4 we show how we combine the generated mappings to allow
multi-query optimization. In Section 5.5 we characterize the general problem
of composability and present useful result that effectively apply to our context.
Finally, in Section 5.6, we present our optimization technique.

5.1 The generation of schema mappings

With respect to the theory of schema mappings recalled in Section 3, we need
to make some extensions to the language for dependencies. In fact, as we saw in
Section 4, we do need to handle operators, which can be complex, with results
that depend on sets of input tuples, as in the case of aggregation functions or
most statistical operators. So, we will need to provide suitable definitions for
the semantics of the dependency language as well as on the chase procedure
for correctness proof.

The source relational schema S contains a relation Fi(Xi,1, . . . , Xi,ni
, Yi)

for each relation in the EXL program of interest. The target schema T contains
the same relations, which we however need to rename, since we assume (as
usual [27]) S ∩T = ∅.

So, for each FS,i(Xi,1, . . . , Xi,ni , Yi) ∈ S, we have a relation
FT,i(Xi,1, . . . , Xi,ni , Yi) ∈ T , and a st-tgd in Σ that “copies” the source rela-
tion into the target one:

FS,i(x1, . . . , xni
, y)→ FT,i(x1, . . . , xni

, y)

However, we will not refer to these tgds any longer in the rest of the paper, as
their role is straightforward, and we will keep on using the same symbol for
the relation in the source and its copy in the target.

An additional auxiliary set of dependencies is needed on the target to
enforce the key constraints on dimensions. This is modeled by means of egds
of the form:

Fi(x1, . . . , xni
, y1) ∧ Fi(x1, . . . , xni

, y2)→ (y1 = y2)

Finally, we have t-tgds that correspond to the EXL statements. We start, in
the following discussion, from a scenario where each expression is decomposed
into many expressions, each comprising only one operator.5 We argue that:

5 We could say “at most” one operator, but it is easy to assume that there are no state-
ments that just copy a relation with no additional operations.
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first, this assumption does not cause loss of generality, as any statement can
be rebuilt with simple substitutions (and indeed the corresponding mappings
will be composed, as we will show in Section 5.4); second, working with ba-
sic statements maximizes the possibility to reuse intermediate partial results
(which also will be more clear in the following). For example, statement (5) in
the example in Section 2 is decomposed into four statements, as follows:

(5a) GDPT1 := shift(GDPT,1)

(5b) CHNG := GDPT - GDPT1

(5c) RCHNG := CHNG / GDPT

(5d) PCHNG := 100 * RCHNG

According to these hypotheses, all EXL statements have the form

– R := op (R1, . . . , Rk)

where the operator op might have the syntax with special symbols (for example
the infix syntax with + or *) or the standard function notation, and the number
of operands would depend on the operator itself.

Let us first see tgds for tuple-level operators, where, as we saw, the result
relation is computed value by value, by applying a function to the individual
values of the input relations for one dimension tuple for each of the operands.
In general, the dimension tuple in the result need not be the same as in the
operand(s): for example, in the time shift operator, the value in the result
relation is the same as in the operand, but for a different dimension tuple. In
all these cases, we can find an extension of the usual notion of tgd, with as
many atoms in the lhs as the number of operands and some scalar expression
in the rhs, for the measure or for one of the dimensions. For example, consider
the following expressions (a scalar multiplication, a vectorial sum, and a time
shift, respectively)

– R2 := 3 * R1

– R5 := R3 + R4

– R7 := shift(R6,1)

They would give rise to the following tgds (assuming the relations in the first
two statements all have two dimensions and those in the third have only one):

– R1(x1, x2, y)→ R2(x1, x2, 3× y)

– R3(x1, x2, y1), R4(x1, x2, y2)→ R5(x1, x2, y1 + y2)

– R6(t, y)→ R7(t− 1, y)

These tgds are indeed a bit more complex than those usually found in data
exchange settings, but their semantics is a straightforward extension of the
classical one, in the sense that a tuple has to exist in the relation in the rhs for
each tuple in the lhs (for unary operators, or pair of tuples for n-ary operators
and so on). Also, in the values that are created by these tgds are uniquely
defined by operators, therefore the generated tuples are uniquely defined as
well both when they are copied and when they are calculated.
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Let us now consider multi-tuple operators, which produce values that are
calculated from sets of tuples, usually within a single relation.6 These include
all the aggregation operators as well as many interesting statistical ones. Here
tgds require special care, because the constraints they specify need to refer to
a relation as a whole, rather than to individual tuples independently from one
another. For example, statement (3) in the example in Section 2 specifies the
sum of different values of the measure, one for each of the tuples that refer to
a given quarter. This means that, in the extreme case, a value for the result
relation could even depend on all the tuples of the input relation.

Here, given a statement of the form

– R2 := aggr ( R1 , group by D1, ..., Dk )

assuming that D1, ..., Dk are the first k dimensions of R1, we would have the
following tgd:

– R1(x1, . . . , xk, xk+1, . . . , xn, y)→ R2(x1, . . . , xk, aggr(y))

whose semantics would be:

– for every different tuple x1, . . . , xk in the projection of R1 on D1, ..., Dk,
there is a tuple x1, . . . , xk, y

′ in R2 (so with the same x1, . . . , xk values for
the dimensions) with a value y′ for the measure that is the result of the
aggregation function aggr applied to the bag of values that the measure
has in the tuples of R1 that coincide with this tuple on D1, ..., Dk.

It is worth mentioning that aggregation functions have been introduced in
various settings that make use of logic formalisms, and the need for a care-
ful definition of semantics arose in all of them, especially when a procedural
semantics is added (for efficiency of evaluation) to a model based one. A sim-
ple solution, which would be sufficient for our goals, is based on stable model
semantics or on stratified semantics [36], where the basic idea would be very
simple: an aggregation function is computed only when its input operands
are completely known. Given that we have no recursion, this becomes easy to
achieve in our case, following the total order over EXL statements.

We report below a set of t-tgds, derived from the EXL statements of our
running example according to the procedure we have just described. In state-
ment (1) we have a scalar function (quarter) that operates on the values of
a dimension together with the average function to allow the roll up, and we
have it in the same way in the tgd. In statements (5) and (7) we have four
and three operators respectively and the resulting tgd takes care of all of them
(altogether), as we will explain in Section 5.4.

(1) PDR(q, r, p)→ PQR(quarter(q), r, avg(p))

(2) PQR(q, r, p) ∧ RGDPPC(q, r, g)→ RGDP(q, r, p ∗ g)

(3) RGDP(q, r, g)→ GDP(q, sum(g))

(4) GDP→ GDPT(stl T(GDP))

(5) GDPT(q, r1) ∧GDPT(q − 1, r2)→ PCHNG(q, (r1 − r2)× 100/r1)

(6) PM2(q, r)→ PM(q, r ∗ 0.2)

(7) GDP(q, r1) ∧ PM(q, r2) ∧ PCHNG(q, r3)→ FGDP(q, r1 × r2 × r3/100)

6 The case with several relations is indeed possible and we will discuss it in Section 5.4.
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5.2 Correctness of the schema mappings

Let us now argue for the correctness of the schema mappings generated out of
the EXL programs in the way we illustrated in Section 5.1. To this purpose,
we consider the data exchange problem associated with the EXL program.
Given that an EXL program always terminates (due to the acyclicity of the
statements), we prove that the data exchange problem always has a solution,
which can be found by means of a suitable variation of the chase (Th. 1).

Then, we show that the chase indeed generates the same instance of the
target schema as the EXL program, and so the two are equivalent and the
solution coincides with the output of the EXL program (Th. 2).

Theorem 1 Given a mapping M = (S,T, Σ) and an instance I of S, where
S is the relational schema containing the input relations in the EXL program,
Σ is a set of st-tgds, non-recursive t-tgds with operators and egds (the de-
pendencies are assumed to be built as described in Section 5.1), and T is the
relational schema containing the output relations in the EXL program, the
chase terminates, succeeds and solves the data exchange problem.

Proof The data exchange problem we have in our case exhibits some differences
with respect to the usual case (Section 3), due to the presence of operators.

Independently of their specific behaviors, tuple-level and multi-tuple oper-
ators produce new values in the target. We argue that both categories can be
seen as pre-defined Skolem functions.

Tuple-level operators are functions that deterministically generate a new
value in a target tuple given a combination of values in a source tuple, there-
fore they are Skolem functions by definition. For multi-tuple operators, we
adopt a stratified semantics, in which the application of the tgds in the chase
is constrained. Rather than allowing the applications of tgds in any order,
we follow a stratified approach: we consider the total order induced by the
dependency graph, calculated from the EXL program and apply tgds in that
order.7 In this way, when we apply aggregations, the values of a tuple in the
target is calculated on the basis of the complete bag of values in the source,
which implies that repeated applications will produce the same value. This
makes multi-tuple operators also suitable as pre-defined Skolem functions for
the existential quantification.

Since the t-tgds adopted in our setting are non-recursive and so by defini-
tion weakly acyclic, the chase is guaranteed to terminate (see Section 3). Let
us now consider egds. In general, egds can cause a failure of the chase, but in
our setting this cannot happen since: 1. operators are well-defined and have
a deterministic behavior (they produce the same output values for repeated
input values); 2. each relation appears in the rhs of exactly one t-tgd, which
prevents any conflicts in the target.

7 This total order is not strictly necessary, the only thing that is needed is that the rules
that involve these general operators are applied only after their operands have been fully
computed.
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This guarantees that in our setting the chase always terminates, returns a
solution and solves the data exchange problem. ut

Theorem 2 Given a mappingM = (S,T, Σ) and an instance I of S, where S
is the relational schema containing the input the relations in the EXL program,
Σ is a set of st-tgds, non-recursive t-tgds with operators and egds (the depen-
dencies represent are assumed to be built as described in Section 5.1), and T
is the relational schema containing the output relation in the EXL program,
the data exchange solution J is equivalent to the output of the EXL program.

Proof (Sketch) In order to prove that the schema mapping generated out of
an EXL program is actually equivalent to it, we argue that the instance J
that is the solution of the data exchange problem is equal to the output of
the EXL program. This holds if J contains a relational fact for each relation
tuple generated by the EXL program and vice versa. We can claim that this
is the case because of the way the tgds have been defined: for each statement
we have a mapping with one tgd that generates one tuple (and exactly one)
for each tuple generated by the corresponding statement. This can be proven,
in tedious but straightforward way, for each of the operators, in both classes,
tuple-level and multi-tuple. ut

5.3 Scalability of the approach

Given the absence of recursion, the t-tgds of our data exchange setting are by
definition in the weakly acyclic class, for which the data exchange problem is
known to be polynomial in data complexity [33]. Although polynomial time
data complexity is desirable for conventional settings, it can become unafford-
able for Big Data applications, usual in the statistical context. In fact, even
linear time data complexity can be considered prohibitive. In this respect, we
observe that in spite of the expressive limitation posed by the complete ab-
sence of recursion (e.g., impossibility to express a transitive closure), our data
exchange setting is in the highly tractable NLOGSPACE class. This can be
easily proven on the basis of the tree structure of the chase, along the lines
of similar results in reasoning and query answering in description logics [9,
16]. Although our approach is translation-based and so we rely on the features
of the target optimizer, NLOGSPACE complexity guarantees that any EXL
program can be implemented in a highly parallel way, or in other terms, that,
when available, the parallelization features of the optimizers will be leveraged.

5.4 Composing the mappings

We have worked so far with elementary statements, each of which uses one
operator, which is translated into a single, simple t-tgd (elementary tgd). As
we will see in Section 6, each tgd can be translated into an executable program
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in the target system. Though intuitive and straightforward, this approach may
lead to a target program composed of many simple steps (one operation each)
and so unable to exploit the optimization capabilities of the specific target
system. Indeed, each of these systems has its own optimization strategies,
which can be applied to complex expressions and not to sequences of simple
operations. In order to delegate the optimization responsibility to the target
systems, we need to compact the statements passed to them, and we propose
to proceed by composing the tgds in our mappings.

Let us start by introducing a suitable notion of composition for tgds. Let
us first say that two tgds8 σ1 and σ2 are consecutive if the atom in the rhs of
σ1 appears among the atoms in the lhs of σ2. With reference to our language of
tgds with operators, the general form of two consecutive tgds is the following:

σ1 : φ1(·, y1, . . . , yn)→ K1(·, op1(y1, . . . , yn))

σ2 : φ2(·, z1, . . . , zm) ∧K1(·, z)→ K2(·, op2(z1, . . . , zm, z))
(1)

In the above dependencies, φ1 and φ2 are conjunctions of relational atoms; the
dot (·) notation represents any vector of variables that bind to the dimensions;
variables y1, . . . , yn and z1, . . . , zm represent the measures of the conjuncted
atoms in φ1 and φ2 respectively (one measure for each atom). K1 in σ1 is a
relational atom, with any tuple of dimensions (which need not coincide with
those of φ1 as there may be aggregations), and one single measure calculated
with the application of an operator op1 to all the measures of φ1. In atom K2

the measure is calculated as the application of an operator op2 to the measures
of φ2 and K1. In σ2, K1 is the same relational atom as in σ1, with the measure
bound to variable z.

In the following, we will consider in general each operator op as the com-
position opM ◦opT of an n-ary tuple-level constituent (opT ), applied first, and
a unary multi-tuple constituent (opM ) with aggregations and grouping func-
tions, applied on the result of the former. According to the general definition
of composition of functions, for each tuple x1, . . . , xn, we therefore have:

op(x1, . . . , xn) = (opM ◦ opT )(x1, . . . , xn) = opM (opT (x1, . . . , xn))

As we will see, this formalization turns out to be very useful to guarantee the
closure of our definitions in the recursive cases, where the composition of tgds
is applied to the result of a previous one, possibly giving rise to operators
with a hybrid (tuple-level and multi-tuple) nature. However, in the base cases
of our settings, operators are elementary, that is, they are either tuple-level
(hence only having the opT constituent) or multi-tuple (hence only having the
opM constituent). In particular, when op1 is simply a multi-tuple operator,
φ1 consists of one atom only, thus in the rhs of σ1 we have only measure y1
(for that atom). Also, for elementary tgds, in case op2 is simply a multi-tuple
operator, φ2 is absent, hence z is the only argument of K2.

8 As in the rest of the paper, we refer to tgds with one atom in the rhs.
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Here we assume that operators do not act on dimensions as it would not
add much to the general discussion, however in Section 5.5 we will show that
we cover this case as well in the system.

We define the composition of two consecutive tgds (in the general form (1)
shown above), with op1 = opM

1 ◦ opT
1 and op2 = opM

2 ◦ opT
2 , as follows.

σ2 ◦ σ1 : φ2(·, z1, . . . , zm) ∧ φ1(·, y1, . . . , yn)→
K2(·, (opM

2 ◦ opM
1 ◦ opT

2 )(z1, . . . , zm, opT
1 (y1, . . . , yn)) (2)

Two comments are useful. First, as it will turn out that this definition
leads to effective composition in some cases and has an undesirable behavior
in others—we will distinguish between the two situations by means of the
notion of correctness. Second, the definition refers to the general case where
each operator has both a tuple-level and a multi-tuple constituent. To illustrate
it, we first refer to the base cases with only one constituent per operator and
then to the general case.

Let us consider the base case where each operator op = opM ◦opT is either
simply tuple-level (and reduces to opT ) or simply multi-tuple (it reduces to
opM ).

op1

op2 tuple-level multi-tuple

tuple-level K2(·, op2(z1, . . . , zm, op1(y1, . . . , yn)) K2(·, op2(op1(y1, . . . , yn))
multi-tuple K2(·, op1(op2(z1, . . . , zm, y1) K2(·, op2(op1(y1))

Fig. 4: Simplifications of the rhs of the composition for the base case.

Figure 4 shows how the rhs of (2) is simplified in the various cases. If op1 is
tuple-level, then opM

1 does not appear (technically, it is the identity operator)
and so op2 is the outermost operator, independently of its tuple-level or multi-
tuple nature. We first calculate op1 on its parameters y1, . . . , yn and then use
the result value as a parameter (z in σ2) for op2.

If op1 is multi-tuple, then y1 is its only parameter. Thus, if op2 is multi-
tuple as well, then op1 will be the innermost and its result will be the only
parameter of op2.9 Otherwise, if op2 is tuple-level, op1 will be the outermost.

Observe that with respect to the orderly application of dependencies σ1
and σ2, in the multi-tuple/tuple-level case the operators are nested in the
reverse order. In particular, opT

2 is applied between opT
1 and opM

1 , breaking the
original order. This inversion is essential and unavoidable in the definition for
type reasons, as it guarantees that the multi-tuple constituents of the operators

9 Indeed, the case where the two operators are multi-tuple and have different group-
ing dimensions requires a slight extension of the syntax, where the grouping dimensions
would be specified as an argument of the operator itself, so, for example R(x, y, z) →
Q(x,max(avg(z, group by x, y))), calculates the maximum, grouped by x, of the averages of
z, grouped by x and y.
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are always the outermost. In this way, we are also guaranteed that in the rhs
there are no variables whose values are not generated by a grouping function,
whenever a grouping occurs. Otherwise, if we allowed variables external to the
grouping functions, their values would be non-deterministically chosen among
those of the bag of values of each group and so the tgd would be ill-defined.
As we will see, this “inversion” is a crucial point and makes the correctness of
tgd composition a non-trivial issue.

Let us now come to the general case, in which op1 and op2 have both
tuple-level and multi-tuple constituents, for example as a result of previous
compositions. Our definition of composition is closed with respect to our lan-
guage for tgds: a composition always produces tgds to which composition can
be applied. The closure property can be easily verified by showing that (2)
has the same form as the tgds used for σ1 or σ2 in (1). The lhs of (2) contains
a conjunction of atoms, coherently with (1). The rhs of (2) can be rewritten
into an equivalent way as follows:

K2(·, (opM
2 ◦ opM

1 ◦ opT
2 ◦ opT ′

1 )(z1, . . . , zm, y1, . . . , yn)) (3)

In (3), operator opT ′
1 is the m+n-ary extension of opT

1 that takes as input
z1, . . . , zm, y1, . . . , yn and produces the same results as opT

1 for y1, . . . , yn and
simply ignores z1, . . . , zm. Then, for the associativity of composition, we have
that opM

2 ◦ opM
1 and opT

2 ◦ opT ′
1 respectively represent the multi-tuple and the

tuple-level constituents of a new generic operator. Thus, like in (1), the rhs
of (2) is the application of a generic operator. Therefore the closure property
is respected.

We also argue that our composition is associative, that is, given three
pairwise consecutive tgds σ1, σ2 and σ3, we have that the composition (σ1 ◦
σ2) ◦ σ3 produces the same tgd as σ1 ◦ (σ2 ◦ σ3). This can be proven in a
straightforward way on the basis of the associativity of operator composition.

Let us now see our definition of composition in action with some examples:

(a) S(x, s), T (x, t)→ V (x, s+ t),
(b) R(x, r), V (x, v)→ Q(v, r + v)

The composition of the two above dependencies is
R(x, r), S(x, s), T (x, t) → Q(x, r + (s + t)). This is a very initial case, since
the tgds include only tuple-level operators. In practice, we replaced V (x, v) in
(b) with the conjunction S(x, s), T (x, t) from (a). In (a) and (b) the variables
denoting the dimensions have been unified (into x) and a renaming has been
applied to avoid ambiguities among the variables denoting the measures.

A more sophisticated case, which involves a multi-tuple operator in the first
tgd, follows:

(m) S(x, y, z)→ V (x, sum(z))
(n) R(x, k, w), V (x, q)→ Q(x,w × q)
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Applying the definition of composition, we have n◦m : R(x, k, w), S(x, y, z)→
Q(x, sum(w× q)). Observe that if we orderly apply (m) and (n), we first have
the summation and then the multiplication. Instead, in n ◦m, the operations
are applied in the reverse order. Interestingly, as the results in the next Section
will motivate, we obtain the same outcome. Consider for example an input in-
stance with the facts S : {(1, 0, 2), (1, 2, 3), (2, 3, 1)}, R : {(1, 0, 2), (2, 3, 4)} and
notice that in both the ordered application and the composition, the outcome
is Q : {(1, 10), (2, 4)}. It is also important to outline that in composition n◦m,
the operator sum(w × z) has both a multi-tuple and a tuple-level constituent
(sum and w × q, respectively). Let us consider the following tgd:

(p) Q(x, y), Z(x, z)→ P (x, y × z)

Now, since n ◦ m and p are consecutive, we can calculate p ◦ n ◦ m, which
is R(x, k, w), S(x, y, z), Z(x, z) → P (x, sum(w × q × z)). For example, for Z :
{(1, 5), (2, 2)}, we would have P : {(1, 50), (2, 8)}. Also observe that we would
obtain the same result tgd, if we first composed p ◦ n and then p ◦ n ◦m.

5.5 Correctness of composition

In order to be exploited for optimization, the application of a composed tgd
to a source instance should give the same results as the orderly application of
the two tgds. In this Section, we study the general problem of composing two
consecutive tgds in the presence of operators of any kind. We define the notion
of correctness for the composition and characterize the composability problem
by presenting a necessary and sufficient condition for it. Finally, we show that
in our context, the composability of the tgds can be verified in a simple way,
just with reference to the algebraic properties of the involved operators.

What makes the problem of composing tgds in the presence of operators
interesting and non-trivial is that two tgds are not always composable as it
may be the case that the results given by the composed tgd differ from the
ones obtained with the orderly application of the two. Consider, for example,
the following setting:

(h) S(x, y, z)→ V (x, sum(z))
(k) R(x, k, w), V (x, q)→ Q(x,w + q).

If we apply the definition we have given in Section 5.4, we obtain the following
composed tgd R(x, k, w), S(x, y, z),→ Q(x, sum(w + z)). Let us now consider
a source instance with the following facts S : {(1, 0, 2), (1, 2, 3), (2, 3, 1)}, R :
{(1, 0, 2), (2, 3, 4)}. If we orderly apply (h) and (k), we obtainQ : {(1, 7), (2, 5)}.
Conversely the composition returns a different result instanceQ : {(1, 9), (2, 5)}.

Given two consecutive tgds σ1 and σ2, we say that their composition σ1◦σ2
is correct if for every pair 〈I, J〉 that satisfies σ1 ◦ σ2, there exists an instance
K, such that 〈I,K〉 satisfies σ1 and 〈K,J〉 satisfies σ2 and vice versa.
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The following result characterizes the problem of composability, that is, it
tells whether two consecutive tgds can be composed.

Let us first introduce a preliminary notion. We say that there exists a single
cardinality constraint between a nonempty subset x1, . . . , xk of the common
attributes of two relations R1 and R2 if for every tuple (x1, . . . , xk, . . . , xl) of
R1 there is at most one tuple (x1, . . . , xk, . . . , xs) in R2 with the same values
for x1, . . . , xk.

Theorem 3 Given two consecutive tgds:

– σ1 : φ1(·, y1, . . . , yn)→ K1(·, (opM1 ◦ opT1 )(y1, . . . , yn))
– σ2 : φ2(·, z1, . . . , zm) ∧K1(·, z)→ K2(·, (opM2 ◦ opT2 )(z1, . . . , zm, z))

their composition σ1◦σ2 is correct (and we say that σ1 and σ2 are composable)
if and only if the following two conditions hold:

(a) the grouping operation in opM1 involves a nonempty subset of the dimen-
sions of φ1 such that there exists a single cardinality constraint from those
dimensions to a subset of the dimensions of φ2;

(b) opT2 distributes over opM1 .

Proof Applying our definition of composition given in Section 5.4, defini-
tion (2), and rewriting the rhs as explained in (3) in the same Section, we
have:

σ2 ◦ σ1 : φ2(·, z1, . . . , zm) ∧ φ1(·, y1, . . . , yn)→
K2(·, (opM

2 ◦ opM
1 ◦ opT

2 ◦ opT ′
1 )(z1, . . . , zm, y1, . . . , yn)) (4)

Let K be the result of applying σ1 to a generic instance I and let J be the
result of applying σ2 to K. Because σ1 and σ2 are full, we have that K and J
are unique. Then, let J ′ be the result of the application of σ2 ◦σ1 to I, unique
as well.

We want to show that if conditions (a) and (b) hold, then the composition
is correct, that is J = J ′ (sufficient condition) and that there are no other
cases in which the composition is correct (necessary condition), that is, in
every other case J 6= J ′.

Let us start with the sufficient condition. Since there is a cardinality con-
straint from the dimensions of φ1 to those of φ2 and the aggregation in opM

1

preserves all the dimensions of φ1 that participate in such cardinality con-
straint (by condition (a)) and opT

1 does not alter the values of such dimen-
sions, then the dimension tuples in K that derive from coalescing into the
same group those of I in σ1 unify at most once in the join φ2 ∧ K1 in σ2
and the corresponding dimension tuples of I unify at most once in φ2 ∧ φ1
in (4). Moreover, the dimension tuples of K that are discarded in φ2 ∧K1 in
σ2, correspond to dimension tuples of I that are discarded in φ1 ∧ φ2 in (4).
Intuitively, when (a) holds, the grouping in opM

1 can be applied indifferently
before or after the join, resulting in the same number of tuples, with the same
values for the dimensions. As for the measures, in (4), we apply the following
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composition to I in order to obtain J ′: opM
2 ◦ opM

1 ◦ opT
2 ◦ opT

1 , while in the
orderly application of σ1 and σ2, we apply opM

1 ◦ opT ′
1 to I to obtain K and

then opM
2 ◦ opT

2 to K to obtain J . As we have said in Section 5.4, opT ′
1 pro-

duces the same measures as opT
1 ; hence, let L be the result of applying either

of them to I. Then, we want to prove that for L, applying opM
1 ◦opT

2 equals to
applying opT

2 ◦opM
1 . Recalling the semantics of multi-tuple operators, we have

that opM
1 applies to a multiplicity of tuples in L and combines them, whereas

opT
2 performs a tuple-level combination of the measures of such tuples. Since

by condition (b), opT
2 distributes over opM

1 , both the compositions produce
the same output instance N . Therefore, because both in (4) and in σ1 and σ2
we apply opM

2 to N , it follows J = J ′.

For the necessary condition, we show that whatever violation to either
condition (a) or (b) leads to an incorrect composition (J 6= J ′). For condition
(a), let us suppose that there is no single cardinality constraint from any
subset of the dimensions of φ1 to the dimensions of φ2 that is preserved by
the grouping operation in opM

1 . In this case, given an instance I, if we apply
σ1, there is at least one dimension tuple in K, deriving from coalescing into
the same group those of I, for which the corresponding tuples in I match
with more than one tuples in the join φ2 ∧ φ1. Therefore, in (4), operator
opM

1 considers twice at least a dimension tuple that in σ2 is considered once,
resulting in J 6= J ′.10 To violate condition (b), it is sufficient to consider any
two mathematical operations such that the distributivity does not hold to show
that the values of the calculated measures are not correct. In effects, in these
cases, distributing the application of opT

2 in opM
1 is not correct by definition.

A typical example involves summation and sum:
∑

i xi + c 6=
∑

i(xi + c). ut

The above result characterizes the problem of telling whether two tgds are
composable in the presence of generic operators. However, while condition (b)
can be statically verified in constant time since it only depends on the alge-
braic properties of the involved operators, condition (a) is data dependent and
exponential time in the number of the involved dimensions. In EXLEngine, we
consider a more specific context, very common in practice, where tgd compos-
ability can be verified only on the algebraic properties of the operators.

So far in this Section, we have considered the most general form of n-ary
tuple-level operators in tgds, with no assumptions on their dimensions. Let
us now assume that n-ary tuple-level operators always involve operands such
that the dimensions of (at least) one are a superset of the dimensions of each
of the others (and all those dimensions appear in the result).

With this restriction, we can derive the following theorem.

10 Notice that there is the residual, and indeed remote, possibility in which the repeated
dimension tuple has the identity element as its measure for the aggregation under consider-
ation or that, in general, the repeated tuples compensate the error. However this condition
is value and aggregation dependent and should be considered as a case of “correctness by
chance”.
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Theorem 4 Two consecutive tgds σ1 and σ2 such that the dimensions of K1

are a superset of those of φ2 are composable if and only if opT2 distributes over
opM1 .

Proof Let us consider the two tgds. Since by hypothesis the dimensions of K1

are a superset of those of φ2 (or φ2 is not present, in which case the condition is
trivially satisfied), then in σ2, each tuple in K1 unifies with at most one tuple
in φ2. Since K1 derives from φ1 in σ2, then φ1 has a superset of the dimensions
of K1 and thus a superset of the dimensions of φ2 as well. Therefore, each tuple
of φ1 unifies at most with one tuple of φ2, satisfying (a). Thus, σ1 and σ2 are
composable if and only if (b) holds. ut

This result is particularly useful in practice, and adopted in EXLEngine,
because the superset-subset verification is polynomial in the number of the
dimensions and the distributivity check is constant time. Indeed, we are aware
that by applying this condition in the system, we choose not to compose
the consecutive tgds such that condition (a) holds although K1 has a subset
of the dimensions of φ2. However, these cases are rather rare since, in most
of the statistical programs, the operand relations in a tuple-level operator
have exactly the same dimensions and aggregations do not entail projecting
dimensions out, but just changing their grain, for example as we have seen for
operators on dates.

A final remark concerns the possible modifications to dimensions. Notice
that we have assumed that op1 does not alter the values of the dimensions.
Indeed, in Section 4 we have introduced such possibility, for example with
operators acting on dates, such as shift and quarter. We handle these cases
with an intuitive extension of the definition of composition we have given in
Section 5.4, which can be explained by the following example:

(l) A(t, x)→ B(t− 1, x)
(m) B(t, y), C(t, z)→ E(t, y + z).

The two above tgds are consecutive, but (l) has an operator that modifies the
time dimension and no operators that modify the measures. We assume (l)
has the identity operator (which does not alter the measure) and account for
the shift in the join condition so that we can calculate m ◦ l with the usual
definition: A(t− 1, x), C(t, z)→ E(t, x+ z).

5.6 Optimization by composition

Once it has generated one tgd for each elementary statement, EXLEngine
builds up a tgd graph G for it. A tgd graph G(V,E, λ) for a schema mapping
M(S,T, Σ) is a graph, having a vertex Mi in V for each tgd σi of Σ and
an edge (Mi,Mj) for each pair of vertices that correspond to consecutive tgds
(σi, σj) of Σ. Each vertex Mi is labeled with a string representing its respective
tgd σi.
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In the graph, every internal vertex represents an intermediate result of the
calculation, which is then used by the subsequent vertices as an input. Final
results are represented by leaf vertices (outdegree zero), while roots (indegree
0) stand for the elementary relations.

We want to modify and compact the graph so as to delegate the optimiza-
tion responsibility to the target system. This is based on the assumption that
sharing intermediate temporary results is more efficient than having many
separate, locally optimized, tgds. In general this is questionable, but appears
reasonable in a heterogeneous context, where we deal with a plenty of different
target systems. We are aware that a runtime optimizer adopting cost-based
techniques to detect common subqueries could achieve good performances in
some cases, for example in the presence of small volumes of data, yet this sub-
query detection functionality is unavailable in the prominent statistical tools,
and only to a very limited extent even in relational systems.

Let us see how we proceed in detail. We search for all the composable pairs
of tgds such that the result of the first is used only by the second and coalesce
them into a single tgd. In case the result of a tgd is used by more than one
tgds, we choose to ignore them and do not compose multiple times.11

Let us now come to the details of our optimization algorithm. By construc-
tion, G is acyclic and, for each vertex, three kinds of subgraph structures are
possible, as shown in Figure 5:

Fig. 5: (a) a sequence; (b) a convergence; (c) a divergence.

(a) sequences, when an edge links two vertices Mi, with one outgoing edge
(outdegree is one), and Mj , with one incoming edge (indegree is one); the
tuples produced by Mi are used only by Mj , therefore we choose to compose
the two dependencies into one; (b) convergences, when the indegree of Mj is
greater than one; also in this case, the tuples produced by each incomingMi are
used only by Mj , therefore we choose to compose Mi, . . . ,Mn and Mj into one
tgd; (c) divergences, when the outdegree of Mi is greater than one. In this case
the tuples produced by Mi are used my multiple dependencies. As explained,

11 There is the residual possibility that two EXL statements share a subsexpression, result-
ing in two tgds sharing one ore more atoms of the lhs. Since we break down all the statements
into elementary statements, we could end up having tgds with coinciding premises, which
indeed we detect and simplify in the system.
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our choice here is not composing Mi and Mj , . . . ,Mn and considering Mi as
a materialization point, so as to maximize the reuse of common results.

Starting from a vertex Mi, EXLEngine performs a depth-first traversal,
analyzing the successors. As long as we are in the presence of either a sequence
or a convergence centered in Mi, the algorithm explores all the successors and
keeps on compacting them. In case of divergence, a fresh depth-first traversal
recursively starts from every “undiscovered” successor.

As any depth-first traversal, the algorithm always terminates in at most
|V |+ |E| steps. The correctness of the algorithm is guaranteed by the compos-
ability of the tgds that are compacted and by the associativity property of out
composition, which ensures that whatever composition succession is equivalent
(and correct).

Figure 6 shows the tgd graph, built for the mapping in our running example
and Figure 7 is its optimized version. Dependencies (1a), (1b), (2) and (3) form
a sequence, which has been compacted into (1.2.3). Tgd (4) and (1.2.3) have
not been compacted since not composable; similarly for (4) and (5.6.7) ((5)
has been obtained by rebuilding (5a-d)). Tgd (7), obtained by rebuilding (7a)
and (7b) and has been composed with (6) and (7). Tgd (1.2.3) produces a
divergence and is not composed anymore.

Fig. 6: The tgd graph of the mapping of our running example. Nodes are labelled with the
progressive number of the dependency (see Section 2), and edges with the atoms in common
between consecutive dependencies. Labels “temp” denote a temporary anonymous result,
deriving from the decomposition of multi-operator statements.

Let us now come again to our running example and see how the mapping
graph in Figure 6 can be reduced to fewer composed mappings (depicted in
Figure 7) with our algorithm.

Starting from node (1a), as its outdegree is 1, we check if it is can be com-
posed with (1b) and rebuild the original tgd (1) (and we do the same for all the
decomposed tgds). Now, as reported in Section 2, tgd (1) aggregates by aver-
aging over p and groups by quarter(d) and r; tgd (2) uses the result PQR. We
join along q and r and multiply the measures. As the multiplication distributes
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Fig. 7: The reduced tgd graph.

over the average (avg(n)× c = avg(n× c)) and PQR and RGDPPC have the
same dimensions, the two mappings are composed into (1.2) as follows:

PDR(q, r, p) ∧ RGDPPC(q, r, g)→

RGDP(quarter(q), r, avg(p ∗ g))

Then, we need to check if (1.2) can be composed with (3). They share RGDP
and tgd (3) aggregates by sum grouping by q. As the second operator does
not have tuple-level constituent, we can simply compose by nesting them. We
obtain tgd (1.2.3):

PDR(q, r, p) ∧ RGDPPC(q, r, g)→

GDP(q, sum(avg(p ∗ g, group by quarter(q), r)))

Now, tgd (1.2.3) shows a divergence, as both tgd (4) and (7) use GDP. There-
fore, we move to (4). Tgds (4) and (5) share GDPT, but (4) has an aggregation
stl T. Since arithmetics in (5) are not distributable with respect to seasonal
decomposition, (4) and (5) are not composed. In particular, (4) is unchanged:

GDP(q, r)→ GDPT(q, stl T(r))))

We move to (5), and check if it is composable with (7). We just have tuple-level
operators in both the mappings, therefore no particular conditions need to be
checked. The same applies to (6) and we have the composed mapping (5.6.7):

GDP(q, r1) ∧ PM(q, r2) ∧GDPT(q, r3) ∧GDPT(q − 1, r4)

→ FGDP(q, r1 × r2 × ((r3 − r4)× 100/r3)).

6 Generating Executable Code

The final step in our process is the translation of the schema mapping (gener-
ated and optimized as shown in Section 5) into a form that can be executed
on target systems. This is the goal of the present section. As we said in the
introduction, we are interested in various implementations, which include re-
lational DBMSs as well as domain-specific tools, such as R and Matlab, two
widespread domain-specific tools, and also ETL flows as used in business in-
telligence processes. In Section 6.1 we describe the general method, while in
Section 6.2 we see translations towards specific target systems.
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6.1 The method

The translation is based on the observation we made in Section 5.2 that the
tgds in our schema mappings can be applied orderly one at a time. The result
of each mapping is then the input of the following ones. So, without loss of
generality, we can concentrate on the translation of each tgd independently of
the others.

As explained in Section 5.1, our tgds have, in the rhs, a single atom and,
in the lhs, the conjunction of two or more atoms, or a single atom. From a
procedural point of view, each tgd can be satisfied with application of a fixed
series of actions. Relations in the lhs are always assumed to be materialized
(and non-composable mappings materialize their rhs). Hence, input relations
are retrieved from the storage system, by means of the atoms in the lhs (get
actions); if there is a conjunction ∧ in the lhs, the relations are joined (merge
action). Computations are then specified in the rhs (calculation action) and
finally the result is “saved” into the result relation (assignment action). Each
action generates an intermediate relation, which is then used as the input
for the subsequent actions. For example, in case of three relations in the lhs,
the merge action joins them. Calculations are then performed and the result is
finally stored into the system. In many languages this behavior can be obtained
by the use of temporary variables (as it happens with R and Matlab) storing
intermediate relations; in SQL we adopt nested queries, although we could
have also used views or temporary tables as well; in ETL tools, the generated
steps are simply connected in the appropriate order.

For example, we now consider four of the tgds we have seen in Section 5.1,
after the optimization phase.

(1.2.3) PDR(q, r, p) ∧ RGDPPC(q, r, g)→
GDP(quarter(q), r, sum(avg(p ∗ g)))

(4) GDP→ GDPT(stl T(GDP))

In terms of actions, with a syntax which is mainly self-explanatory, they would
be expressed as follows:

(1.2.3)

PDR = get(PDR, [q, r], p);
RGDPPC = get(RGDPPC, [q, r], g);
MERGED = merge(PDR,RGDPPC);
CALC = calculate(MERGED, [multiply,avg, sum], groupBy = [q];
save(CALC,GDP);

(4)

GDP = get(GDP, [q], g);
CALC = calculate(PQR, stl t)
save(CALC,GDPT);
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Now, apart from specific calculations, all target systems have features that
implement actions of these types (which we do not describe here for the sake
of space). As a consequence, our tool can generate various executable versions,
one for each target system, with the only exceptions related to missing com-
putation operators. The algorithm is system-independent but system-aware:
it is system-independent, since its logic does not change, whatever the target
system; it is system-aware, in the sense that the algorithm knows the syntax
of the target systems and generates the executable statements accordingly.
However, the only system-dependent part is the generation of executable code
out of the actions.

6.2 Translation examples

We now present the complete translations generated by our method and tool
for the composed tgds shown in Section 6. We consider the various target
systems one at a time.

6.2.1 SQL mappings

Let us consider tgd (1.2.3), which is quite general since it includes both tuple-
level and multi-tuple operators. Our tool translates it into an SQL insertion
statement as follows.

INSERT INTO GDP(Q,R,P)

SELECT to_quarter(MERGED.Q) AS Q, MERGED.R AS R,

AVG(SUM(MERGED.P * MERGED.G)) AS P

FROM

SELECT * FROM (

(SELECT PDR.Q AS Q, PDR.R, PDR.P

FROM

(SELECT Q,R,P FROM PQR_TABLE) PDR ,

(SELECT Q,R,G FROM RGDPPC_TABLE) RGDPPC

WHERE PDR.Q = RGDPPC.Q

AND PQR.R = RGDPPC.R

) MERGED

GROUP BY Q, R

The atoms in the lhs lead to two get subqueries, which are generated first.
They are then combined with the join on the corresponding aliases PDR and
RGDPPC (in the merge action), with the equality condition for the repeated
variables in the lhs. Measures are combined in a calculation action by means
of a tuple-level and multi-tuple operators and the result is inserted, with an
assignment, into the target table.

The script correctly generates all the tuples implied by the tgd, since they
are uniquely identified by appropriate matches (join condition on Q and R) on
dimensions. All the calculations appear, properly nested, in the target list. In
this query, the aggregation is absolutely similar to those common in SQL and
the generation of the executable statement is straightforward and it includes
a GROUP BY clause as well as SUM and AVG.
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Tgds with complex multi-tuple operators require more care. Let us consider
tgd (4). It does not reduce the cardinality by partitioning and combining
tuples, but essentially computes a new table where each tuple depends on
several (possibly all) of the tuples in the argument. Thus for tgd (4), the
corresponding calculation action uses a tabular function, and we have:

INSERT INTO GDPT(Q,G)

SELECT Q, G

FROM STL_T(( SELECT Q,G

FROM GDP_TABLE) GDP)

In the script, the tabular function STL T returns the trend component for
a given time series stored in a table with suitable naming (and types) conven-
tions; it can be either a system provided API (and indeed many commercial
systems have statistical add-ons) or a user-defined stored function.

6.2.2 Mappings in specialized languages

Let us start again with tgds with tuple-level operators only.
We first refer to R, the programming language for statistical computing.

Unlike SQL, it is matrix oriented, with structures that are called data frames
and many ad hoc operations defined on them. Therefore, the implementation
of tgds has to refer to data frames.

A translation of tgd (1.2.3) requires various statements.

merged <- merge(PDR ,RGDPPC ,by=c("q","r"))

calculated$i <- merged["p"] * merged["g"]

calculated <- calculated[-c("p","g")]

calculated$q <- to_quarter(calculated$q)

calculated <- aggregate(

aggregate(calculated , by=list(c(q,r)),FUN="sum"),

by=list(c(q,r)), FUN="avg")

Get actions are omitted, since they directly correspond to the names of the
relations.

The first statement derives from the merge action and uses the R operator
called merge to build a temporary matrix by joining PDR and RGDPPC on q
and r. The second statement adds a new column i to merged, computed as the
element-wise product of p and g (calculation). Then original columns p and g
are removed (assignment), and finally sum and average are calculated after of
the conversion of q to quarters.

Matlab is another example of matrix oriented tool and translations are
based on similar ideas, with differences essentially on syntax. Let us see how
tgd (2) is expressed in this language as well.

joined=join(PDR , 1:2, RGDPPC , 1:2)

calculated [;5]= joined[ ; 3] .* joined[ ; 4]

calculated =[ calculated[ ; 1] calculated [ ; 2] calculated [ ; 5]]

calculated [;1]= to_quarter(calculated [;1])

GDP = grpstats(grpstats(calculated , {1,2},

{’sum’}),{1,2},{’mean’})
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Get actions are trivial again. Here the Matlab join operator (merge action)
is used to build the temporary matrix joined, as the composition of PDR and
RGDPPC; its four columns correspond, in order, to variables q, r, p and g in
the tgd. Then, the second statement (corresponding to a calculation action)
adds a new column, i (in position 5), as the element-wise product of p and g
(here denoted by positions 3 and 4, respectively). The subsequent assignment
keeps only the needed columns. Then time is converted to quarters and, finally,
the last statement (assignment) builds GDP by calculating the appropriate
aggregations.

6.2.3 ETL translation

ETL and Business Intelligence tools are another common family of target sys-
tems. The translation engine can indeed turn schema mappings into executable
ETL jobs by feeding the metadata catalog of the specific tool, where the jobs
are described. Many tools provide APIs to interact with the catalog and build
the ETL jobs programmatically. Other tools require a more complex interac-
tion, e.g., through XML files or command-line interfaces. EXLEngine actually
supports Pentaho Data Integration,12 an open source ETL product which has
the advantage of being completely metadata driven.

For every tgd, an ETL flow is generated by the engine. All flows are finally
tailored into a more comprising job according to the total order of tgds. For
each atom in the lhs, a data source step appears in the flow as the translation
of get actions. The input streams coming from the data source steps are joined
(merge) on the dimensions by means of a merge step, which, in turn, is im-
plemented in different ways in the systems, according to the ETL design and
the chosen access plan. The joined stream is then processed by a calculation
step (for the corresponding action), which actually implements the rhs of the
tgd. Finally, the stream is written back into the system with an output step
(assignment).

With reference to tgd (1.2,3), the ETL flow in Figure 8 is generated.

Fig. 8: Example of schema mapping deployment as ETL flow.

12 http://kettle.pentaho.com/
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It is apparent that a complete execution of the data flow generates all the
tuples implied by the tgd, since every tuple in the sources is fed into the stream
and treated exactly once.

7 Implementation: EXLEngine

The approach to statistical data processing described in this paper has been
concretely embraced in developing EXLEngine, the calculation engine adopted
by the Bank of Italy. In this system, programs are written in EXL, the language
we illustrated in Section 4 and translations towards most popular systems for
statistics are implemented as shown in Section 6.1.

Fig. 9: The architecture of EXLEngine.

The typical interaction with the engine are shown in Figure 9. EXLEngine
stores all the statements of all the available EXL programs in a rule repos-
itory. Each statement defines a set of dependencies between the relations in
the lhs and the one in the rhs. The repository can be seen as a network of
dependencies, or a knowledge graph, where the nodes are the relations and an
edge represents the fact that the successor is calculated from the predecessor.
The tuples of each node are calculated by combining all the adjacent prede-
cessors in the graph, according to the specific EXL statement that encodes
how to combine them. Given such a graph, two tasks can be performed: 1.
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input-driven calculation: given some input relations, we want to update all
the descendant relations in the graph; 2. output-driven calculation, i.e., given
some output relations, we want to update all their tuples from the values of
the predecessors. These two tasks can be also seen as forward- vs backward-
chaining approaches typical in logic programming or, in another perspective,
as materialization of the data exchange results vs query answering.

So, given a set of names for relations and the input-driven/output-driven
mode, the determination engine builds at runtime an EXL program to be run,
by extracting the necessary dependencies from the repository.

The translation engine performs the schema mapping generation algorithm
presented in Section 5 and produces a translation for each tgd. The transla-
tion engine interacts with a logic optimizer, which executes the optimization
algorithm and packs the generated tgds into fewer and more compact ones.
The translation engine finally produces the executable scripts, suitable for the
specific target systems.

At runtime, the dispatcher component delivers the scripts to the target
systems. To this end, the obtained tgds are grouped by an execution optimizer
into clusters whose relations can be independently processed by different target
engines. Each target engine then executes only its native code and produces
the results. For example a cluster may be calculated by a RDBMS that receives
a SQL translation, while another one may be best suited for an R node. The
interaction with the actual back-end tools takes place via dedicated adapters
to the tools’ APIs (e.g., JDBC, R Java interface, etc.).

7.1 System status and performance

Fig. 10: Execution times for EXLEngine.

The system at Bank of Italy fully implements the described tgd language
with a number of statistical operators and is used in many real applications.
Many extensions, especially those regarding the interaction of different back-
ends with one another, are under development and will be integrated in the
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future. The application of our approach in many business scenarios shows good
performance and we plan to conduct a full-scale evaluation soon. Results in
Figure 10 give a glimpse on the current performance in a synthetic case that
we built to test the system at scale. We calculated the GDP for a number of
fictional countries, executing the calculation with Oracle and R back-ends. Re-
sults are promising and show the effectiveness of our optimization techniques
based on composition, especially in the presence of advanced optimizers.

8 Related Work

This section describes prior work on the field and alternative approaches. First
we recall some foundational approaches motivating and inspiring EXLEngine;
then we discuss alternatives for scaling in statistical data processing.

Bridging the gap between specification and execution

EXLEngine strongly relies on the presence of an intermediate level, that of
schema mappings, decoupling the high-level specification from the executable
code and supporting optimization. Schema mappings and their properties have
been analyzed in detail in a number of works [8]. Here we mostly use Fagin et
al.’s [26] definitions and adopt their language for tgds with some extensions.
Although we propose some modifications to support our needs (introduction
of mathematical and statistical operators), we do not alter the declarative
essence of the tgd language, and the resolution methods (e.g., the chase) remain
applicable. For data exchange, we refer to classical formulations [1].

Composition of generic schema mappings has been originally characterized
by Fagin et al. [28] and more recently extended in the presence of target con-
straints [2]. Various application settings for composition have been proposed
(e.g., schema evolution [29]), including mapping optimization [30]. With this
paper, we contribute with a further application of mapping compositions, ana-
lyzing the internal characteristics of operators, discussing their composability,
and actively using them in the optimization.

The translation-based strategy of EXLEngine leverages the experience of
Atzeni et al. [6,7,5] on MIDST, a solution for model-independent schema and
data translation; these works propose model-independent solutions based on
the composition of elementary translations. Elementary translations are spec-
ified as Datalog programs acting on a pivot metamodel. Here we do not foster
a pivot metamodel but directly use mappings as a hub between an abstract
transformation specification and its implementation.

We make specific reference to the Matrix data model and to the EXL
language [21], both developed by the Bank of Italy, but any other language
corresponding to the same logic fragment could have been considered.

Approaches and algorithms for the execution of schema mappings in SQL
systems and DBMSs have been proposed in several works and in EXLEngine
we exploit these experiences to build a system-independent and multi-target
translation engine, able to address the most adopted tools in statistics.
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A pioneer system to execute schema mappings is Clio [25,31], which pro-
vides semi-automatic schema mapping generation features as well as mecha-
nisms to translate graphical mappings into executable queries. Also +Spicy [35]
delivers a system translating schema mappings into executable queries, not
only encoded in SQL but also in XQuery. In this sense, it is one of the first
systems to decouple a high-level specification from the executable statements.
Unlike EXLEngine, Clio and +Spicy directly rely on the mappings, described
within a graphical CASE tool, for the specification; conversely, we choose
to introduce a user-oriented specification language to make the system more
suitable for a real production context. In facts, according to our experience,
graphical environments tend to become unproductive when dealing with tens
or hundreds of objects (hence even thousands of dependencies), as this is the
case for statistical data processing. On the other hand, other systems, such
as MIDST [5] and HePToX [13], directly use a logic-based language to de-
scribe mappings. In this sense, we could directly feed schema mappings into
EXLEngine, as the first correspondence with the initial EXL statements is
rather intuitive. However, we propose a programming-like specification lan-
guage, as it is more user-friendly and easier to grasp.

Scaling in statistical data processing

Many existing schema mapping systems (Clio, +Spicy, HepTox, MIDST) are
based on a one-to-one correspondence between mappings and queries. Indeed,
the user specifies the mapping with some formalism, and the tool produces
an executable translation for some target system. This practice impedes an
effective use of the optimizers of such systems and heavily relies on a good
mapping design. EXLEngine actively exploits and manipulates schema map-
pings to support multi-query optimization in a system-independent way.

With respect to mapping execution, an important category of related sys-
tems are the chase-based tools [10], designed to enforce a set of constraints
(e.g., in the form of tgds) over a database instance for several goals, including
data exchange and data cleaning. Native implementations of most advanced
chase techniques often lead to very good performance, although their general
purpose target and absence of domain-specific features (for example many
even lack algebraic operations) make an evaluation over the statistical setting
not promising. On the other hand, reasoners and knowledge graph manage-
ment systems [9] promise to be important players in scalable data processing,
and the interaction with external systems (for example specialized statistical
and machine learning tools) is considered among the core desiderata; thus, a
convergence of the efforts would lead to interesting developments.

The notion of composition we introduce for optimization has some com-
monalities with the classical techniques adopted in query-optimization prob-
lems [17,18] and it is our opinion that our results also generalize the view
unfolding problem, giving a necessary and sufficient condition that also con-
siders aggregations and operators.
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An interesting related system is Orchid [23]. It adopts an abstract data
model (OHM ) for ETL flows, whose instances are then translated first into
schema mappings and then into executable ETL scripts. Moreover, this system
handles the generated mappings for some kind of multi-query optimization,
providing a composition algorithm, which, however, does not handle aggrega-
tions nor consider mathematical operations. We observe that, instead, aggre-
gations and calculations in general are very frequent in ETL and fundamental
in statistical data processing.

Two main architectural approaches are present for the processing of large
amounts of statistical data: scaling the statistical tool or scaling the data man-
agement system [39]. Systems in the first category tend to stick to a specific
tool and language and provide a scalable infrastructure for it. Many exam-
ples are present and can be classified according to the level of abstraction of
the interface they propose: message-passing techniques deliver low level APIs,
while parallel computing shift towards fewer highly parallelizable high-level
primitives [34]. Systems in the second category try to incorporate analytics
into the data management system and rely on its scalability. Cohen et al. [19]
present one of the first proposals to extend SQL with statistical functions and
implement them in a relational DBMS. Away from the relational model, many
other examples, such as Mahout,13 SystemML [12] or Spark,14 directly imple-
ment many algorithms on top of Hadoop and basically provide an high-level
abstraction over it. Finally, others [40] foster a radically diverging approach,
attempting to give a completely new data model for scientific data processing
and designing ad hoc systems.

EXLEngine attempts a meet-in-the-middle approach, where the specific
capabilities of statistical tools are recognized with the driving principle of
“not reinventing the wheel”. At the same time, we observe that RDBMS and
data management systems in general (including ETL tools) are still a primary
choice in data processing. Therefore we decided to stick neither to a language
nor to a system and provide a language- and system-independent approach.
For this, the use of schema mappings is essential and allows for a complete
decoupling, from both a syntactical/semantic and a performance point of view.

In this respect, a system that is somehow close to EXLEngine is Ri-
cardo [20]. Unlike EXLEngine, they provide an R-like interface on top of
Hadoop. While Ricardo allows for the specification of sophisticated procedu-
ral programs, where coding skills of the users are valuable, our system offers
a simpler declarative interface and is even more agnostic on the language and
on the system side. Indeed, we rely even more heavily on optimization capa-
bilities of data management systems and handle a variety of them, including
(but not only) R. In this sense, EXLEngine could even exploit Ricardo as a
target system.

13 http://mahout.apache.org
14 http://spark.apache.org
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9 Conclusions

Statistical data processing is a core task for many companies and organiza-
tions and it is acquiring more and more relevance in the so-called Big Data
settings and with the recent renewed interest in machine learning. In this work,
we contribute in bridging the gap between the high-level specification of the
statistical programs needed to achieve the desired tasks and the underlying
technical implementations.

One of the major issues in organizations is the adoption of a range of
different tools, each with its specific language and features. Statisticians and
analysts would like to specify the programs at high level, independently of
the underlying execution platform, yet leveraging at the same time the whole
range of possible execution environments. Here we consider the framework of
schema mappings and show that st-tgds, non-recursive t-tgds and egds capture
a useful fragment for the description of statistical programs, in which the
chase procedure for data exchange always terminates and can be executed in a
scalable way. We present EXLEngine, a real execution environment adopted by
Bank of Italy, which embodies many techniques from our approach, including
advanced optimizations based on tgd composition.

In this paper, we touch on a complexity characterization of the fragment,
which testifies the possibility of parallel implementations, essential for scalabil-
ity. Although our execution optimizer is able to split the calculation tasks and
assign them to different engines, which can run in parallel, within the single
engine, the parallelization choices are completely delegated to the back-end.
In our future work we plan to refine the interaction with back-ends in order
to guide and tune their execution plans at best.

Also, the approach still has some limitations that are being addressed. Some
operators are extremely natural to be supported by certain target systems, as
the respective language directly incorporates executable versions for them. It is
the case with more advanced statistical transformations and specialized tools.
Other cases are more difficult, since one single high-level statistical operator
may correspond to several operations in the back-end. We are aiming at a
complete support, which would include the translation of almost any operator
to every target system.
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